Document Type

Article

Publication Date

2003

DOI

10.1046/j.1365-2958.2003.03627.x

Publication Title

Molecular Microbiology

Volume

49

Issue

4

Pages

977-989

Abstract

Mutations and/or overexpression of various transporters are known to confer drug resistance in a variety of organisms. In the malaria parasite Plasmodium falciparum, a homologue of P-glycoprotein, PfMDR1, has been implicated in responses to chloroquine (CO), quinine (ON) and other drugs, and a putative transporter, PfCRT, was recently demonstrated to be the key molecule in CO resistance. However, other unknown molecules are probably involved, as different parasite clones carrying the same pfcrt and pfmdr1 alleles show a wide range of quantitative responses to CO and ON. Such molecules may contribute to increasing incidences of ON treatment failure, the molecular basis of which is not understood. To identify additional genes involved in parasite CO and ON responses, we assayed the in vitro susceptibilities of 97 culture-adapted cloned isolates to CO and ON and searched for single nucleotide polymorphisms (SNPs) in DNA encoding 49 putative transporters (total 113 kb) and in 39 housekeeping genes that acted as negative controls. SNPs in 11 of the putative transporter genes, including pfcrt and pfmdr1, showed significant associations with decreased sensitivity to CQ and/or ON in P. faliparum. Significant linkage disequilibria within and between these genes were also detected, suggesting interactions among the transporter genes. This study provides specific leads for better understanding of complex drug resistances in malaria parasites

Rights

Web of Science: "Free full-text from publisher."

© 2003 Blackwell Publishing Ltd

Original Publication Citation

Mu, J. B., Ferdig, M. T., Feng, X. R., Joy, D. A., Duan, J. H., Furuya, T., . . . Su, X. Z. (2003). Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Molecular Microbiology, 49(4), 977-989. doi:10.1046/j.1365-2958.2003.03627.x

Share

 
COinS