Adaptation Practices and Lessons Learned

Molly Mitchell
Virginia Institute of Marine Science

Follow this and additional works at: http://digitalcommons.odu.edu/hraforum_01
Part of the Climate Commons, Infrastructure Commons, Public Affairs Commons, Public Policy Commons, and the Urban Studies and Planning Commons

Repository Citation
http://digitalcommons.odu.edu/hraforum_01/4

This Presentation is brought to you for free and open access by the Hampton Roads Sea Level Rise/Flooding Adaptation Forum at ODU Digital Commons. It has been accepted for inclusion in November 16, 2012: Best Practices for Adapting to Sea Level Rise and Flooding by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Adaptation Practices and Lessons Learned

Increased Flooding Risk Due To Sea Level Rise in Hampton Roads:
A Forum to Address Concerns, Best Practices and Plans for Adaptation

Nov. 16, 2012
Virginia Modeling, Simulation and Analysis Center of Old Dominion University, Suffolk VA

Molly Mitchell
Recurrent Flooding Study

**Goals**

- Review and develop a comprehensive list of strategies for dealing with recurrent flooding
- Convene a stakeholder advisory panel
- Offer specific recommendations on options for sea level rise adaptation which merit investigation
Historic Flood Data

Flooding Frequency of VDOT Roads
August 19, 2008 to May 1, 2012

Frequency by location
- 1
- 2
- 3 - 4
- 5 - 6
- 7 - 9

Total Repetitive Losses, in Dollars
“Floods are Acts of Nature; But Flood Losses Are Largely Acts of Man”

Dr. Gilbert White

Flood Sources
- Rainfall & Snowmelt
- Extreme Tides
- Storm Surge

Changing Conditions
- Development
- Storm Frequency/Intensity
- Sea Level Rise

Adaptation Strategies
- Management/Retreat
- Accommodation
- Protection

Floodplain Occupancy
- Infrastructure
- Residences
- Businesses
- Agriculture
- People

Risk

Vulnerability

Consequences

Flood damage

“Floods are Acts of Nature; But Flood Losses Are Largely Acts of Man”

Dr. Gilbert White
ADAPTATION STRATEGIES

Controllable: Methods to reduce vulnerability to flooding.

Management/Retreat
Accommodation
Protection

Vulnerability

Elevated house in Mississippi
Photo by Robert Harris/FEMA

Levee in North Dakota
Photo by Andrea Booher/FEMA
Management
Predictive Flood Data

FIRM Maps (FEMA):

- Special Flood Hazard Areas
- Base (1 percent annual chance) flood elevations or depths
- Areas designated as regulatory floodways
- Undeveloped coastal barriers
Predictive Flood Data

Storm surge maps (NOAA):
Education tool aimed at providing a national snapshot of maximum potential storm surge resulting from hurricanes (note: not for planning purposes)
Coastal Barrier Resources Act (1982)

- Restricts Federal expenditures and financial assistance which have the effect of encouraging development of coastal barriers,

- Goals: minimize the loss of human life, wasteful expenditure of Federal revenues, and damage to fish, wildlife, and other natural resources associated with coastal barriers along the Atlantic and Gulf of Mexico coasts.

- **Does not** prohibit privately financed development

- **Does prohibit** most new Federal financial assistance, including flood insurance, within a designated Coastal Barrier Resources System (CBRS).

1990, Coastal Barrier Improvement Act CBIA

- Prohibits the issuance of new Federal flood insurance within "otherwise protected areas" on buildings constructed after November 16, 1991, unless the building is used in a manner consistent with the purpose for which the area is protected.
Accommodation

Elevated house in Mississippi
*Photo by Robert Harris/FEMA*
Tidewatch – Early warning

• On-line tool for gauging the magnitude of coastal flooding in a given location and minimizing its potential impacts

• The Tidewatch system now generates 36-hour public forecasts for 9 water-level stations within Chesapeake Bay and a single station on Virginia’s seaside Eastern Shore.
Probabilistic Tropical Cyclone Inundation Guidance – Early warning

- Probabilities, in percent, of inundation exceeding 0 feet though 20 feet above ground level, at 1 foot intervals
- Provided out to 78 hours
- Does not account for tide, waves, and fresh water (i.e. precipitation runoff and river inflow)
Protection

Additional bank erosion hidden from view

Flood level

Created marsh in Virginia
Photo by K. Durhing
Lessons Learned:

1. PROTECTION LEVELS AND PLANNING HORIZONS
• Level of protection $\propto$ Amount of Risk
  – Increased levels of protection $\rightarrow$ decreased risk
• Netherlands = 1/10,000 year storm
• Red River Basin
  • Major Urban Areas = 1/500 – 700 year storm
  • Rural Residences & Farmsteads = 1/100-200 year storm
  • Transportation 1/200-250 year storm

• Planning horizons
  – Use to reduce uncertainty in projections
  – Typically 40-50 years
  – Differ for different infrastructure

Small projects or dike improvements 10-50 years
Capital works (sluices, locks) 100 years
Major works (storm surge barriers) 200 years

Based on 2012 National Climate Assessment
global sea level rise scenarios + 0.27mm/yr
local subsidence
Lessons Learned:

2. REGIONAL DIFFERENCES IN STRATEGIES
Fast growing urban areas

• New development increases consequences of flooding
  – As lower risk areas are built out, higher and higher risk areas are developed

• Reduction in natural areas increases extent of flooding

- Protection-type projects considered
- Master plan for development that considers current and future flood risks
- Multi-level planning to reduce consequences should protection fail
Rural or low development areas

- Houses are spread out, making them difficult to protect
- Income is frequently linked to water access (makes retreat problematic)
- Saltwater intrusion in agriculture fields can destroy crops
- Ecotourism makes hard engineering unattractive

- Land management/zoning can reduce potential for future problems
- Agricultural areas may consider switching crops
- Ecotourism areas can use soft engineering
3. NEED FOR COMPREHENSIVE PLANNING
In areas where the government takes little or no action, individuals will take action to protect their properties...
But structures can impact adjacent properties AND seawall/levee systems are only as strong as their weakest point...
Lessons Learned:

4. MULTI-LAYERED SYSTEMS
Multilayered Flood Protection

Neatherlands, National Water Plan, 2010

- **Layer 1 = Prevention (Risk)**
  - Mostly Protection measures
- **Layer 2 = Spatial Development (Vulnerability and Consequences)**
  - Mostly Management and some Accommodation measures
- **Layer 3 = Disaster Management (Vulnerability and Consequences)**
  - Subset of Accommodation measures
The Stairstep Diagram

- Based on the concept of multilayered protection plans
- The effectiveness of each additional layer of protection depends on the remaining amount of risk
- The last “step” is the base risk that cannot be mitigated
Questions?

(AP Photo/Carolyn Kaster) http://www.boston.com/bigpicture/2009/03/red_river_flooding.html