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Fig. 12. Heterogeneous rheochaos. Time series (from 2500 to 4000) of the velocity vx (left
column) and the local Deborah number dvx/dy (right column) at 6 different gap locations. From top
to bottom: y = 0.98, 0.78, 0.58, 0.38, 0.18, 0.0.

spatial structures; and a transition layer between |y| = 0.7 and 0.9 with intermediate
dynamic fluctuations among similar laminar structures.

We turn now to a detailed amplification of the spatial features across the plate
gap to complement the dynamical signatures of temporal chaos.

4.4. Heterogeneous rheochaos: Evidence for spatial coherence. Fig-
ure 13 gives four snapshots of the structure in the half-gap 0 ≤ y ≤ 1 of the velocity vx,
local Deborah number Deloc, order parameter s, polar angle of the major director θ,
first normal stress difference N1, and the shear stress τxy. Each scalar structure varies
significantly across the four snapshots, yet each spatial profile is relatively smooth,
providing evidence for spatial coherence.

Figure 14 presents time averages of all properties shown in Figure 13 over the
time interval [2500, 4000], which gives some intuition for the mean spatial structure
in the PDF, flow, and stress. The mean velocity structure has a localized boundary
layer at each plate and then a slightly modulated linear profile across the gap. The
modulations of vx are described by the mean local Deborah number (velocity gradi-
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Fig. 13. Heterogeneous rheochaos: Snapshots of the primary velocity profile vx(y, tk) (top left),
Deloc(y, tk) (top right), s(y, tk) (middle left), θ(y, tk) (middle right), N1(y, tk) (bottom left), and
τxy(y, tk) (bottom right) across the half plate gap (0 ≤ y ≤ 1) at four snapshots: tk = 2680 (solid
line), 2730 (dashed line), 2780 (dot-dashed line), 2830 (dotted line).

ent), which shows the plate layer where the flow accelerates, and then decelerates in
the midgap, with the overall average De matching the plate-imposed mean value 4.04.
The order parameter structure shows that on average the PDF defocuses away from
the plates, with spatial variations on shorter length scales than the flow and director
structures. The first normal stress difference is negative at the plates, nearly zero in
the midgap, and then exhibits an overshoot-undershoot phenomenon in between. The
shear stress varies least among all flow-PDF features, with strongest average shear
stress at the midgap.

5. Concluding remarks. We have presented results of a coupled microscopic
(Doi–Hess kinetic theory) and macroscopic (1D Navier–Stokes) simulation of rigid-
rod macromolecular dispersions, at parameter values where the longwave dynamics is
chaotic. The main goal is to ascertain how monodomain rheochaos saturates in the
presence of both heterogeneity (gradient elasticity) of the PDF and hydrodynamic
feedback. All statistical features (time series, Lyapunov exponents, graphical orbits)
indicate classical signatures of chaotic intermittency at each interior gap height so
that chaotic dynamics persists in the flow-PDF space-time system. Indeed, the ve-
locity time series appears to inherit the chaotic behavior, and the leading Lyapunov
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Fig. 14. Heterogeneous rheochaos. Averages of primary velocity v (top left), local Deborah
number ∂vx/∂y (top right), Flory order parameter s (middle left), polar angle of the peak PDF axis
θ (middle right), first normal stress difference N1 (bottom left), and shear stress τxy (bottom right)
in the time interval [2500, 4000].

exponents across the gap of the coupled flow-PDF system are greater than the mon-
odomain leading Lyapunov exponent. If anything, flow coupling and distortional
elasticity have enhanced the traditional signatures of rheochaos!

The next important question addressed relates to the spatial structures which
form across the gap in the presence of chaotic dynamics. Recall that the PDF struc-
tures are necessarily generated due to plate anchoring of the PDF which is in conflict
with interior dynamic fluctuations, and then these PDF gradients induce stress gra-
dients which provide feedback to generate nonlinear flow perturbations to the plate-
imposed simple shear profile. We find coherent spatial profiles in both the PDF and
the flow at each snapshot, with no evidence for spatial chaos at these parameter val-
ues. Overall, these numerical results of the full kinetic-flow equations predict that
nematic polymer suspensions driven by steady planar shear cells will exhibit persis-
tent orientational and rheological chaos in a large interior cell layer, even with the
inclusion of spatial heterogeneity and non-Newtonian hydrodynamic feedback. This
prediction is consistent with the experimental observations of Berry and collaborators
and with Berry’s private communications [55].

These results are furthermore consistent with the 2D second-moment orientation
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tensor plus flow simulations of [27] but do not confirm the mesoscopic tensor 1D
results with imposed flow reported by [6]. Whether this discrepancy is due to failure
to allow flow coupling, due to a completely different Ericksen number regime, or due
to an extremely large plate gap is not known, and the details are not discernible from
this short letter [6].

The persistence of these chaotic statistical features with laminar spatial morphol-
ogy in higher-dimensional spatial simulations remains for future study with the aid
of our recently documented 2D Navier–Stokes–Smoluchowski algorithm [26]. We note
that reduced-order modeling with the aid of second-moment Landau–de Gennes mod-
els has thus far reproduced all specific attractors determined from highly resolved ki-
netic simulations. We anticipate that the same low-order modeling of spatio-temporal
attractors is possible, with the proviso that the parameters in the reduced-order model
have to be adjusted to match the resolved system. This identification between attrac-
tors of the flow-nematic kinetic and moment-closure systems will play a vital role in
numerical exploration of the large parameter space.
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