1992

Self-Consistent Determination of Low-Za Pellet Ablation and Pellet Penetration

Linda L. Vahala
Old Dominion University, lvahala@odu.edu

Glenn Gerdin
Old Dominion University

A. G. El Cashlan
Old Dominion University

Paul Parks

Follow this and additional works at: http://digitalcommons.odu.edu/ece_fac_pubs

Part of the Plasma and Beam Physics Commons

Repository Citation
http://digitalcommons.odu.edu/ece_fac_pubs/38

Original Publication Citation
Self-consistent determination of low-Z pellet ablation and pellet penetration

Linda Vahala, Glenn Gerdin, and A. G. El Cashlan

Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529

Paul Parks

GA Technologies Inc., San Diego, California 92138

(Submitted on 17 March 1992)

The ablation dynamics of LiT pellets are solved self-consistently over a modest range of parameters using a surface dissociation model. The self-consistently determined parameters are then used to modify the standard low-Z pellet penetration codes. Since LiT pellets have certain advantages over carbon (in particular, Li conditioning of the walls and T for refueling a D-T reaction), the penetration of LiT into fusion plasmas is considered.

I. INTRODUCTION

The study of low-Z impurity pellet ablation in high-temperature plasmas has been a subject of great interest from the viewpoint of fusion diagnostics. However, there are considerable difficulties in obtaining adequate pellet penetration into the fusion core. Because of carbon's high sublimation energy (7.5 eV/atom), it penetrates farther than other low-Z materials. Lithium pellets, although they have a lower sublimation energy (1.6 eV/atom) and hence a weaker penetration depth than carbon, are useful in wall conditioning. Recently, McCool et al. have suggested the use of LiT pellet injection into deuterium plasmas (the conditioning). It is not clear, especially for LiT pellets, how close the pellet surface is being ablated is determined from the phase transition boundary conditions at the pellet surface, and is given by

\[
\frac{dr_0}{dt} = \frac{f_B n_0 \eta \rho_0}{n_0 \Delta H + \gamma T_t \left[M_1^2 / 2 + 1 / (\gamma - 1) \right]}
\]

(subscript 0 refers to the solid material, while 1 refers to the vapor cloud at the phase transition boundary) \(n_0 \) is the solid pellet number density, \(\Delta H \) is the sublimation energy of the pellet, and \(\gamma \) is the ratio of specific heats. \(f_B \) is the magnetic screening factor which reduces the energy flux reaching the pellet due to anisotropic magnetic field effects. This reduction depends on the ratio of pellet radius to the average electron gyroradius and typically 0.5 < \(f_B \) < 0.7. The heat flux attenuation factor \(\eta = q_1 / q_\infty \), where \(q_\infty \) is the background plasma electron heat flux and \(q_1 \) is the heat flux at the pellet surface. The term inside the square brackets in Eq. (1) is usually approximated by \(\Delta H + 2.7T_t \), based on assumption (i).

The pellet radius \(r_0(t) \), \(r_0^{*} \), is then determined by integrating Eq. (1) for given (constant) pellet speed \(v_p \) and specified background plasma density \(n_\infty \) and temperature \(T_\infty \) profiles. In most pellet penetration codes, the input parameters are typical of \(f_B \), \(T_1 \), \(M_1 \), \(\alpha \), and \(r_0^{*} \). These codes then solve iteratively for the attenuation factor \(\eta \) after which Eq. (1) can be integrated to determine the pellet penetration.

Here, over a modest range of parameters, we determine SC solutions to the low-Z model. From these SC solutions, the input parameters for the penetration codes are determined and the sensitivity of the standard codes on these parameters can be tested.

II. SELF-CONSISTENT (SC) LOW-Z MODEL

A SC solution is determined from the cloud continuity, cloud momentum, cloud energy, plasma heat flux and plasma energy equations, and two boundary conditions that determine the location of the pellet surface. The cloud energy equation exhibits a singularity in the subsonic region and this can be handled by starting the radial inward
TABLE I. Self-consistent LiT parameters.

<table>
<thead>
<tr>
<th>r_{pl} (mm)</th>
<th>f_g (eV)</th>
<th>M_1</th>
<th>η</th>
<th>α</th>
<th>J_{+13}</th>
<th>T_{ex} (keV)</th>
<th>B_0 (kG)</th>
<th>r/r_{pl}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>0.66</td>
<td>0.31</td>
<td>0.41</td>
<td>0.22</td>
<td>4.3</td>
<td>0.31</td>
<td>8.98</td>
<td>6.53</td>
</tr>
<tr>
<td>0.74</td>
<td>0.66</td>
<td>0.27</td>
<td>0.38</td>
<td>0.22</td>
<td>4.4</td>
<td>0.24</td>
<td>8.97</td>
<td>7.68</td>
</tr>
<tr>
<td>0.68</td>
<td>0.65</td>
<td>0.25</td>
<td>0.38</td>
<td>0.25</td>
<td>4.4</td>
<td>0.18</td>
<td>8.99</td>
<td>8.69</td>
</tr>
<tr>
<td>0.62</td>
<td>0.65</td>
<td>0.34</td>
<td>0.38</td>
<td>0.26</td>
<td>4.2</td>
<td>0.16</td>
<td>9.47</td>
<td>9.83</td>
</tr>
<tr>
<td>0.56</td>
<td>0.65</td>
<td>0.24</td>
<td>0.38</td>
<td>0.28</td>
<td>4.5</td>
<td>0.11</td>
<td>9.72</td>
<td>10.8</td>
</tr>
<tr>
<td>0.49</td>
<td>0.65</td>
<td>0.21</td>
<td>0.38</td>
<td>0.33</td>
<td>4.5</td>
<td>0.08</td>
<td>10.00</td>
<td>11.74</td>
</tr>
</tbody>
</table>

propagation at this singular surface, as done for hydrogen pellets. The initial conditions for the solutions of these differential equations are then varied until the two phase transition boundary conditions are satisfied. These boundary conditions have been derived in the low-Z phenomenological model. In obtaining an inner solution, T_1, M_1, α, and η are determined self-consistently and can readily be checked with those values assumed in the low-Z model. The background plasma profiles n_0 and T_0 are determined only after this subsonic problem has been solved.

Earlier, we have presented our results for carbon and found very good agreement with the assumptions of the phenomenological model. Typically, it has been found that the pellet penetration codes are in good agreement with experiment carbon ablation results, particularly in hot plasmas.

For simplicity, the LiT vapor is assumed to dissociate at the pellet surface. On assuming surface dissociation, one is in essence increasing the sublimation energy by the 2.5 eV/atom dissociation energy. If volumetric dissociation is considered then this effect is diluted since the electrons striking the pellet surface are constrained to magnetic field lines whereas the vapor is not, until it is appreciably ionized. In Table I, we list some relevant parameters determined from a particular sequence of self-consistent LiT pellet solutions. Note that there are some differences with values assumed in the low-Z phenomenological model (in particular low-Z parameters $T_1 = 0.6$, $M_1 = 0.5$, $5 < \alpha < 6$). Close to the pellet surface, the cloud density falls off very rapidly and then it decays following a power law. In Fig. 1, the cloud velocity (v), cloud temperature (T), background plasma flux (q), and electron energy (E) are shown, normalized to their sonic values. The Li$^+$ ionization occurs...
rapidly and this is followed by T ionization, as expected (Fig. 2). Note that the temperature profile in the supersonic region (r/r_* > 1) remains basically constant till the energy sink of T ionization is saturated (r/r_* \approx 20). There is then a substantial increase in the vapor temperature.

The standard low-Z pellet penetration code can now be suitably modified by using input parameters (T, M, \alpha) as inferred from our sc solutions (Table I). Here, we consider pellet penetration into a burning plasma [ITER-P: \rho_0 = 2.0 \times 10^{14} \text{ cm}^{-3}, T_\rho = 17 \text{ keV}] with Maxwellian electrons and two plasma profiles:

\text{broad: } n_\infty (r) = n_0 \left[1 - \frac{r}{a^2} \right]^{1/2},

T_\infty (r) = T_0 \left[1 - \frac{r}{a^2} \right],

(2)

\text{peaked: } n_\infty (r) = n_0 \left[1 - \frac{r^2}{a^2} \right],

T_\infty (r) = T_0 \left[1 - \frac{r^2}{a^2} \right]^2,

where a is the plasma minor radius. Also plotted in Figs. 3 and 4 are the results from using the standard parameters in the low-Z model (Sec. II). Numerically, we find that T_\infty is a key parameter for the penetration code [see also Eq. (1) with the explicit T factor in the denominator]. Also shown in these figures are (i) the case of no surface (or volume) dissociation since these curves are a lower bound on LiT pellet penetration, and (ii) Li pellet penetration, as determined from the standard low-Z model.

III. CONCLUSIONS

The spherically symmetric ablation of LiT pellets is examined self-consistently over a modest range of parameters by solving the full cloud dynamics and phase transition boundary conditions that determine the pellet surface. The vapor cloud parameters at the pellet surface differ somewhat from those assumed in the low-Z model. LiT pellet penetration into a fusion plasma is then determined from the low-Z penetration code after changes to certain pellet surface parameters are made from the self-consistent database for LiT pellets. For pellet penetration, the most important parameter is the surface temperature T_\infty.

ACKNOWLEDGMENTS

The authors are grateful for useful discussions with Ray Fisher. This work was partially supported by the Department of Energy.