1987

Comment on "Orientation, Alignment, and Hyperfine Effects on Dissociation of Diatomic Molecules to Open Shell Atoms"

Mark D. Havey
Old Dominion University, mhavey@odu.edu

Linda L. Vahala
Old Dominion University, lvahala@odu.edu

Follow this and additional works at: http://digitalcommons.odu.edu/ece_fac_pubs

Part of the Atomic, Molecular and Optical Physics Commons, and the Electrical and Computer Engineering Commons

Repository Citation
http://digitalcommons.odu.edu/ece_fac_pubs/29

Original Publication Citation

This Response or Comment is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
diagonalizing a few-channel Hamiltonian—the energy adaptation may lead to very large reductions in computational effort.

Although the simple approach used here has apparently never been utilized before, it is similar in spirit to other approaches that have been tried. One very similar approach is the method of contracted scattering basis functions, which was developed and applied successfully in the context of the Kohn variational method. Another approach that may succeed for the same physical reasons is the use of basis functions based on a semiclassical interpretation of trajectories. Such basis functions include momentum adaptation and may be more efficient for expanding several degrees of freedom, whereas energy adaptation, which is simpler, should suffice for expanding translational functions in algebraic close coupling approaches to scattering problems. Finally we note that similar techniques have been employed by Kuruglu and Micha for expanding the T operator, and a similar prediagonalization technique has been used by Bačič and Light for discrete-variable ray basis sets for bound-state eigenvalue calculations.

This work was supported in part by the National Science Foundation under Grant No. CHE83-17944.

COMMENTS

Comment on "Orientation, alignment, and hyperfine effects on dissociation of diatomic molecules to open shell atoms"

M. D. Havey
Physics Department, Old Dominion University, Norfolk, Virginia 23508

L. L. Vahala
Electrical Engineering Department, Old Dominion University, Norfolk, Virginia 23508

(Received 10 June 1986; accepted 9 October 1986)

A recent paper in this journal reported expressions describing the orientation and alignment produced, in an axial recoil limit, by one photon dissociation of diatomic molecules. Reported also were values, applicable to the resonance transitions of the alkali atoms, for orientation and alignment depolarization coefficients $g(1)$ and $g(2)$. However, due to a numerical oversight, most of the values presented for $g(k)$ in that paper are incorrect, in some cases by as much as a factor of 2. We give in this Comment a tabulation of correct $g(1)$ and $g(2)$ values applicable to the resonance transitions of the common alkali isotopes. The values of $g(1)$ and $g(2)$ were determined on several polarization degrees of $\alpha = 0$ for the α'-axis. Since $\alpha = 0$ the dependence of $g(k)$ on measured hyperfine splittings and radiative lifetimes [see Eq. (1) below] is always some uncertainty in the value of $g(k)$. As estimates of such a dependence are of considerable value to experimentalists, we supplement the values of $g(k)$ presented here with uncertainties in the coefficients derived from those in the measurements. Finally, an application to the results of Rothe et al. on the polarization of atomic $Na D 2$ resonance produced in photodissociation of Na_2, is made.

The depolarization coefficients generally describe the influence of an initially unpolarized and unobserved angular momentum I on an average tensor multipole $\langle T_{\alpha\beta} \rangle$ describing a state of angular momentum J. The orientation and alignment are the axially symmetric tensors $\langle T_{\alpha0} \rangle$ and $\langle T_{\alpha0} \rangle$. If a multipole of initial value $\langle T_{\alpha0} \rangle$ becomes depolarized via an interaction between I and J, then $\langle T_{\alpha0} \rangle = g(k) \langle T_{\alpha0} \rangle$, where

$$g(k) = \sum_{\alpha'} \sum_{\alpha''} \frac{(2F' + 1)(2F + 1) \, W^2(F'F'J'J'K'I)}{2J' + 1 + \omega_{F'F''}^2}.$$

(1)

Here F and F' are the set of quantum numbers formed by coupling I and J, $W(\cdots)$ is a Racah coefficient, and $\omega_{F'F''}$ the angular frequency splittings produced by the interaction of I and J. The average duration of the interaction is τ. The $\langle T_{\alpha0} \rangle$ might be produced by photodissociation of a diatomic molecule, in an optical collision, or by numerous other excitation mechanisms. Equation (1) is applicable so long as the angular momentum I is not effected by the dynamics of the creation of $\langle T_{\alpha0} \rangle$, and so long as the excitation mechanism is rapid compared to all $\omega_{F'F''}$. If J interacts with more than one angular momentum (say via a fine and hyperfine inter-
action), Eq. (1) is not applicable; other expressions are available for those cases. 4

We present in Table I values for $g(1)$ and $g(2)$ for selected excited states of the common alkali isotopes, including those considered by Band et al. 1 Also given are the data used to determine the ω_{FP}; these are largely derived from the recommended values for the dipolar (A) and quadrupolar (B) coupling constants (and their uncertainties) as tabulated by Arimondo et al. 10,11 Radiative lifetimes were taken from summaries of atomic transition probabilities. 12,13 The quoted uncertainties in $g(k)$ were obtained by assuming that the given uncertainties in A, B, and τ are statistical, and represent one standard deviation. Equation (1) was then used to calculate the uncertainty in $g(k)$. As an example of the utility of these results, consider the experiment on the photodissociation of Na$_2$ by Rothe et al., 5 via the $B^1\Pi_u - X^1\Sigma_g^+$ transition. 15 Photodissociation of Na$_2$ at 457.9 nm produced mainly atomic Na in the $3^2P_{3/2}$ fine-structure level. The resulting atomic Na $3^2P_{3/2} - 3^2S_{1/2}$ resonance fluorescence was observed at right angles to the exciting light and its polarization vector, and was observed to have a linear polarization degree P_L of $-5(1)$%. $P_L = (I_1 - I_2)/(I_1 + I_2)$. In terms of the alignment, and for the geometry of the experiment 5

$$P_L = \frac{3h}{4 + h} \frac{\langle T_{20} \rangle}{\langle T_{20}^* \rangle},$$

(2)

where h is a ratio of Racah coefficients and is characteristic of the angular momentum of the initial and final states. For a $2^2P_{3/2} - 2^2S_{1/2}$ transition h has a value of $-5/4$. Using the results of Table I with $\langle T_{20} \rangle = 0.053(11)$, we have $\langle T_{20} \rangle = \langle T_{20}^* \rangle / g(2) = 0.18(4)$. Thus a proper analysis of this Na$_2$ photodissociation process, with the obscuring effects of the atomic Na hyperfine structure accounted for, must consider an alignment of $0.18(4)$. This value would produce a linear polarization degree of about $-18(4)$% in the absence of hyperfine structure.

The support of the National Science Foundation under Grant No. PHY-8509881 is gratefully acknowledged.

15The analysis presented here was not done in Ref. 5; the conclusions of that paper thus should be reconsidered.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Natural abundance</th>
<th>Nuclear spin</th>
<th>Atomic state</th>
<th>τ(ns)</th>
<th>A(MHz)</th>
<th>B(MHz)</th>
<th>$g(1)$</th>
<th>$g(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Li</td>
<td>7.5</td>
<td>1</td>
<td>$2^2P_{3/2}$</td>
<td>26.9(2.7)</td>
<td>17.375(18)</td>
<td>0.436(4)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7Li</td>
<td>92.5</td>
<td>3/2</td>
<td>$2^2P_{3/2}$</td>
<td>26.9(2.7)</td>
<td>- 1.155(8)</td>
<td>0.10(14)</td>
<td>0.958(5)</td>
<td>0.88(1)</td>
</tr>
<tr>
<td>23Na</td>
<td>100</td>
<td>3/2</td>
<td>$3^2P_{3/2}$</td>
<td>16.2(5)</td>
<td>94.3(1)</td>
<td>0.377</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>39K</td>
<td>93.3</td>
<td>3/2</td>
<td>$4^2P_{3/2}$</td>
<td>26.2(2.6)</td>
<td>28.85(30)</td>
<td>0.382(1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>6.7</td>
<td>3/2</td>
<td>$4^2P_{3/2}$</td>
<td>25.8(2.5)</td>
<td>6.06(8)</td>
<td>2.83(13)</td>
<td>0.673(8)</td>
<td>0.372(6)</td>
</tr>
<tr>
<td>85Rb</td>
<td>72.2</td>
<td>5/2</td>
<td>$5^2P_{3/2}$</td>
<td>29.4(2.9)</td>
<td>120.72(25)</td>
<td>0.352</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>87Rb</td>
<td>27.8</td>
<td>3/2</td>
<td>$5^2P_{3/2}$</td>
<td>29.4(2.9)</td>
<td>406.2(8)</td>
<td>0.375</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>133Cs</td>
<td>100</td>
<td>7/2</td>
<td>$6^2P_{3/2}$</td>
<td>34(3.4)</td>
<td>291.90(13)</td>
<td>0.344</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27Al</td>
<td>100</td>
<td>5/2</td>
<td>$6^2P_{3/2}$</td>
<td>33(3.3)</td>
<td>50.34(6)</td>
<td>0.219</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Letters to the Editor

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 72.218.112.13 On: Fri, 22 Jan 2016 23:50:38