Document Type


Publication Date




Publication Title

Atmospheric Measurement Techniques








The first ground-based experiment to prove the concept of a novel space-based observation technique for microwave and infrared-laser occultation between low-Earthorbit satellites was performed in the Canary Islands between La Palma and Tenerife. For two nights from 21 to 22 July 2011 the experiment delivered the infrared-laser differential transmission principle for the measurement of greenhouse gases (GHGs) in the free atmosphere. Such global and long-term stable measurements of GHGs, accompanied also by measurements of thermodynamic parameters and line-of-sight wind in a self-calibrating way, have become very important for climate change monitoring. The experiment delivered promising initial data for demonstrating the new observation concept by retrieving volume mixing ratios of GHGs along a ~ 144 km signal path at altitudes of ~ 2.4 km. Here, we present a detailed analysis of the measurements, following a recent publication that introduced the experiment's technical setup and first results for an example retrieval of CO2. We present the observational and validation data sets, the latter simultaneously measured at the transmitter and receiver sites; the measurement data handling; and the differential transmission retrieval procedure. We also determine the individual and combined uncertainties influencing the results and present the retrieval results for 12CO2, 13CO2, C18OO, H2O and CH4. The new method is found to have a reliable basis for monitoring of greenhouse gases such as CO2, CH4, and H2O in the free atmosphere.

Original Publication Citation

Proschek, V., Kirchengast, G., Schweitzer, S., Brooke, J.S.A., Bernath, P.F., Thomas, C.B., . . . Loescher, A. (2015). Retrieval and validation of carbon dioxide, methane and water vapor for the Canary Islands IR-laser occultation experiment. Atmospheric Measurement Techniques, 8(8), 3315-3336. doi: 10.5194/amt-8-3315-2015


0000-0002-1255-396X (Bernath)