Date of Award

Summer 2021

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mechanical & Aerospace Engineering

Program/Concentration

Aerospace Engineering

Committee Director

Oktay Baysal

Committee Member

Leonard V. Lopes

Committee Member

Boris Diskin

Committee Member

Colin Britcher

Committee Member

Miltos Kotinis

Abstract

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to utilize adjoint-based aeroacoustic and aerodynamic sensitivities; (2) to optimize the shape of proprotor blades to improve the overall performance of selected rotorcraft from both aerodynamic and aeroacoustic perspectives.

This dissertation reports on the development and application of an unsteady discrete adjoint solver for aerodynamic and aeroacoustic coupling to obtain an improved design for quieter rotorcraft. The optimization framework developed through this dissertation can be utilized for multiple flight conditions, multiple receivers, and multiple optimization objectives within the same design process. SU2-based code development involves the implementation of aeroacoustic analysis, adjoint computations, and integrations into a multidisciplinary rotorcraft optimization suite. A computational aeroacoustics tool is embedded into the SU2-suite to predict the propagation of the emitted noise from the moving sources with high fidelity. Capabilities of the developed computational aeroacoustics tool are demonstrated for a range of rotor, propeller, and proprotor applications, and they are verified by comparing with wind tunnel data whenever it is available. The aeroacoustic tool also computes sensitivities with respect to the conserved variables and grid coordinates by employing the algorithmic differentiation method. Integration of an acoustic solver into the discrete adjoint solver and related modifications enable the code to compute aeroacoustic sensitivities with respect to the design variables.

Applying the developed optimization framework for a proprotor aims to reduce the noise radiation without sacrificing the required aerodynamic performance value. As an outcome of the optimization during forward-flight and hover, the reshaped blade design emits and propagates lower noise levels as perceived by multiple observers.

The major contributions are: (1) a multidisciplinary optimization framework that presents an optimized rotorcraft design for better aeroacoustics and aerodynamics; (2) a novel adjoint-based formulation for aeroacoustic sensitivities with respect to design variables; (3) single acoustic objective function including multiple flight conditions and multiple microphone positions; (4) implementation of Farassat 1A formulation into opensource software, SU2, to compute noise propagation emitted from moving sources.

In summary, this dissertation provides the results with high fidelity, a well-integrated and rapidly converging optimization tool to improve the rotorcraft's aeroacoustic performance while retaining or improving the aerodynamic performance. Among the conclusions are the following: (1) Computational fluid dynamics analyses (SU2-CFD) can produce accurate results for various rotorcraft applications. (2) The developed aeroacoustic code predicts noise propagation emitted from propellers, rotors, and proprotors with high-fidelity. (3) The acoustic interaction between propeller and wing components can be assessed by employing the aeroacoustic solver. (4) The multidisciplinary optimization framework successively reduces noise level emitted by a proprotor in multiple flight configurations. (5) The optimized design improves emitted noise radiation while satisfying the given aerodynamic constraint(s).

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/2vh6-pr05

ISBN

9798460435043

ORCID

0000-0003-3866-5115

Share

COinS