Date of Award

Spring 5-2023

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Physics

Program/Concentration

Nuclear and Particle Physics

Committee Director

Sebastian Kuhn

Committee Member

Stephen Bültmann

Committee Member

Balša Terzić

Committee Member

Ted Rogers

Committee Member

Linda Vahala

Abstract

A new polarized nuclear target has been developed, constructed, and deployed at Jefferson Laboratory in Newport News, VA for use with the upgraded 12 GeV CEBAF (Continuous Electron Beam Accelerator Facility) accelerator and the Hall B CLAS12 (12 GeV CEBAF Large Acceptance Spectrometer) detector array. This ‘APOLLO’ (Ammonia POLarized LOngitudinally) target is a longitudinally polarized, solid ammonia, nuclear target which employs DNP (Dynamic Nuclear Polarization) to induce a net polarization in samples of protons (NH3) and deuterons (ND3) cooled to 1K via helium evaporation, held in a 5T polarizing field supplied by the CLAS12 spectrometer, and irradiated with 140 GHz microwave radiation. It was utilized in the RGC (Run Group C) experiment suite through a collaboration of the JLab Target Group, Old Dominion University, Christopher Newport University, the University of Virginia, and the CLAS Collaboration. RGC comprised six experiments which measured multiple spin-dependent observables across a wide kinematic phase space for use in nucleon spin studies. The dimensional constraints necessary for the incorporation of APOLLO into CLAS12, as well as the considerations necessary to utilize the CLAS12 solenoid, introduced unique challenges to the target design. This document presents the innovative solutions developed for these challenges including a novel material transport system, superconducting magnetic correction coils, and an all new bespoke NMR (Nuclear Magnetic Resonance) system. In addition to a detailed description of the complete target system and an initial report of the RGC experimental run, it will also present a study of Quark-Hadron Duality in the g1 spin structure function based on Hall B EG1b data and pQCD fits from the JAM (Jefferson Lab Angular Momentum) Collaboration.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

DOI

10.25777/36yz-ft35

ISBN

9798379734374

ORCID

0000-0001-6967-0385

Included in

Nuclear Commons

Share

COinS