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Abstract
Background: Stereotactic body radiation therapy (SBRT) is known to modulate
the immune system and contribute to the generation of anti-tumor T cells and
stimulate T cell infiltration into tumors. Radiation-induced immune suppression
(RIIS) is a side effect of radiation therapy that can decrease immunological
function by killing naive T cells as well as SBRT-induced newly created effector T
cells, suppressing the immune response to tumors and increasing susceptibility
to infections.
Purpose: RIIS varies substantially among patients and it is currently unclear
what drives this variability. Models that can accurately predict RIIS in near real
time based on treatment plan characteristics would allow treatment planners to
maintain current protocol specific dosimetric criteria while minimizing immune
suppression. In this paper, we present an algorithm to predict RIIS based on a
model of circulating blood using early stage lung cancer patients treated with
SBRT.
Methods: This Python-based algorithm uses DICOM data for radiation therapy
treatment plans, dose maps, patient CT data sets, and organ delineations to
stochastically simulate blood flow and predict the doses absorbed by circulating
lymphocytes. These absorbed doses are used to predict the fraction of lympho-
cytes killed by a given treatment plan. Finally, the time dependence of absolute
lymphocyte count (ALC) following SBRT is modeled using longitudinal blood
data up to a year after treatment. This model was developed and evaluated on
a cohort of 64 patients with 10-fold cross validation.
Results: Our algorithm predicted post-treatment ALC with an average error
of 0.24 ± 0.21 × 109 cells/L with 89% of the patients having a prediction error
below 0.5 × 109 cells/L. The accuracy was consistent across a wide range of
clinical and treatment variables. Our model is able to predict post-treatment
ALC < 0.8 (grade 2 lymphopenia), with a sensitivity of 81% and a specificity
of 98%. This model has a ∼38-s end-to-end prediction time of post treatment
ALC.
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2 PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT

Conclusion: Our model performed well in predicting RIIS in patients treated
using lung SBRT. With near-real time model prediction time, it has the capa-
bility to be interfaced with treatment planning systems to prospectively reduce
immune cell toxicity while maintaining national SBRT conformity and plan quality
criteria.

1 INTRODUCTION

Stereotactic body radiation therapy (SBRT) is an effec-
tive treatment for non-small cell lung cancer (NSCLC)
that can achieve local control in more than 90% of
cases.1 Beyond its primary mechanism for tumor con-
trol, SBRT has also been shown to modulate the
immune system in ways which can improve outcomes.2,3

SBRT promotes generation of anti-tumor T-cells which
may target distant metastases or residual disease not
removed by the primary treatment.4 It can also stimulate
tumor-infiltrating lymphocytes (TILs), leading to a mech-
anism known as “soft kill,”which has been shown to lead
to more favorable outcomes.5–8 However, long-term out-
comes for patients treated with SBRT remain poor, with
5-year survival rates of only 42% often driven by distant
failures.9

In addition to medical comorbidities, one poten-
tially modifiable driver of poor long-term outcomes
is radiation-induced immunosuppression (RIIS).10,11

RIIS stems from toxicity to highly radiosensitive
lymphocytes12–15 and in severe cases can result in
treatment-related lymphopenia (TRL), which has been
associated with poor outcomes in numerous treatment
sites.16–19 Reducing immune suppression is a promis-
ing avenue for improving patient outcomes following
SBRT, especially with the increasing concurrent use
of immunotherapy and radiation for cancer patients.20

Radiation treatments that reduce RIIS may allow more
patients to be eligible for immunotherapy and may
lead to improved survival following immunotherapy due
to creating an immune hot environment.21 Further-
more, since the radiation induced immune suppression
is a time-dependent function, understanding the time-
dependent nature of RIIS may also improve outcomes
by enabling optimal timing of immunotherapy adminis-
tration for maximal tumor control.22 Specific treatment
plan characteristics have been linked to immunosup-
pression following RT for NSCLC. In advanced stage
lung cancer, PTV volume, Lung V5-V10,10 mean thy-
mus dose, and mean thoracic duct dose,23 V20 of
thoracic spine, lung, and heart,24 blood rich and immune
rich organs25 have been linked to RIIS, while in early
stage lung cancer thoracic spine V3,26 heart and lung
dose volumes,27 and Heart+GV (integral dose, V5,
V10, V15, V30), Thoracic spine (V1, V2, V5), lymph
node stations (integral dose, V5, V10, V15) and rest
of the body, external-PTV (integral dose, V1, V2, V5,
V10, V15)) linked with near term RIIS, and acute long-

term RIIS has been correlated with only Heart+GV
(V15, V20, V40).28 However, given the large heterogene-
ity in these threshold values, baseline immune status,
tumor volumes, stage of the cancer and radiation treat-
ment plans among patients, as well as the relative
motion of the immune cells in the body with respect
to the treatment beams, a patient-specific approach is
needed.

It is well established that the irradiation of circulating
blood significantly reduces absolute lymphocyte counts
(ALCs).29,30 Even a highly focused RT treatment such
as SBRT can deliver a low but potentially toxic dose
(> 0.5 Gy)31 to circulating lymphocytes (CLs). Con-
ventional RT planning and analysis tools, which aim to
minimize the dose delivered to critical organs, are not
equipped to reduce doses to a patient’s blood pool.
While these critical organs have well-defined contours
and remain stationary during treatment, the blood pool
is distributed throughout the body and circulates con-
tinuously. Individual blood cells can flow in and out of
the irradiated field over the course of a treatment. To
evaluate the dose delivered to CL for a given RT plan
and estimate ALC, the dynamics of blood flow as well
as time-dependent dose delivery must be considered in
the planning process.

To overcome this limitation, several blood circula-
tion modeling approaches have been proposed and
implemented in the brain,32,33 abdomen,34 liver,35,36

esophagus,37 and multiorgan systems.38–41 In the case
of lung cancer, many predictive models use static organ
doses as surrogates for circulating immune cells, in
order to predict overall survival in the case of standard
fractionation. For example, effective dose to immune
cells (EDIC)42,43 is a function of the number of RT
fractions, the integral dose to the entire body, and the
mean dose delivered to the lung and heart. Subse-
quent improvements to EDIC accounted for the mean
dose to the thymus and thoracic duct23 to calculate the
change in ALC (DALC) after radiation therapy. Other
approaches have used cardiopulmonary organ dose
volumes to predict overall survival44 or used gross
tumor volumes, chemotherapy status, and BID treat-
ment status10 to predict the nadir point of post-treatment
ALC.

These models offer promising insights into how RIIS
affects overall survival, as well as its correlation with dif-
ferent treatment modalities and organs. However, they
have some limitations that limit their use as a patient-
specific model for predicting immune levels following
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PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT 3

lung SBRT. In this case, dose fractionations are 3–
5 days and patients’ immune levels vary rapidly after
treatment, unlike standard fractionations where immune
suppression is smoothly varying over time. Accurate
predictions of time-dependent immune levels will help
improve survival outcomes. For example, they may
be valuable in deciding the optimum time window for
administering immunotherapy. Additionally, a model that
accounts for blood flow with organ-specific blood flow
velocities in the thorax, as well as time-dependent lym-
phocyte replenishment, will be of great value due to
its accuracy and flexibility in handling other individual
organs.

The purpose of this work was to develop a model that
predicts long-term acute RIIS for lung SBRT by estimat-
ing the dose delivered to circulating blood lymphocytes.
The algorithm models dose within all organs in the tho-
rax surrounding the treatment area up to a threshold of
40 cGy per fraction (It has been reported that 50 cGy is a
threshold for lymphocyte kill32) and accounts for patient-
specific anatomy, treatment plan, and baseline immune
status to predict time-dependent post-treatment ALC.
We aimed to develop this model to interface with treat-
ment planning systems (based on DICOM format) and
generate fast predictions to augment decision making
during treatment planning.

2 METHODS

2.1 Dynamic delivery simulation

This model included three key components—(i) a simu-
lation of dynamic dose delivery to blood flowing through
key organs with random mixing of blood outside the radi-
ation dose area,(ii) a dose-dependent cell kill model,and
(iii) a time-dependent lymphocyte death and regenera-
tion model. Blood flow dynamics were modeled using a
Monte-Carlo style simulation in which local flow veloc-
ities were determined using published organ-specific
cardiac outputs45,46 and organs’cross-sectional areas in
patient-specific CT images. The dynamic dose delivery
model extracted RT treatment plans,CT planning image
sets, dynamic dose distributions, and contoured organ
structure sets from DICOM format files in order to deter-
mine time-dependent radiation doses for each voxel of
each organ of interest.The simulation modeled a pool of
CLs,which flowed through each organ and accumulated
a distribution of radiation doses. This accumulation was
a function of each lymphocytes position in space, dic-
tated by the blood-flow model, and the time-dependent
radiation dose from the treatment plan. This was used
to determine initial cell kill via a dose-dependent model
following published data.47 Finally, time-dependent lym-
phocyte regeneration and death was determined using
a model fit to patient measurement data, as described

below. Each component of the model is described in
detail in the following sections.

2.2 Blood flow simulation

The pool of CL was simulated using a total blood volume
of 5 L, which moves through the patient’s body assum-
ing a heart-to-heart circulation time (H2H) of 60 s. This
is defined as the time it takes for blood to cycle from the
left ventricle, throughout the body (the systemic circu-
lation), then back to the right atrium and right ventricle
of the heart, then to the lungs to exchange oxygen and
carbon dioxide (the pulmonary circulation), and finally
return to the left atrium of the heart. The simulation
computes the blood flow through each organ separately,
to account for differences in organ size and the rate
of blood flow through each organ. For each organ, the
blood flow velocity is determined by the Equation 1:

v =
5000

(
cm3

)
× CO

H2H (s) ×
[
BVD × ACS

(
cm2

)] (cm∕s) (1)

Here, CO is the cardiac output percentage, which
describes the fraction of total cardiac output flowing to
an organ. BVD is the blood volume density, or the vol-
ume percentage of an organ that is filled with blood. Acs
is the average axial cross-sectional area of the organ,
and the product (BVD × Acs) is the amount of blood that
is contained in that axial slice of that organ. By using
an approach based on the cross-sectional area of each
organ, we were able to model blood flow through com-
plex organ shapes that would be accurate on average
over the course of a full treatment.

Using this approach, we simulated the following
regions: individual great vessels (aorta, vena cava, pul-
monary artery), lungs, heart, liver, spleen, and stomach
in the case of tumors in the lower thorax. We also mod-
eled flow through “other organs” (a cartoon depiction of
the thorax is shown in Figure 1 top left) by subtract-
ing the above regions from the total external contour.
Given a set of voxels S inside the patient, and a set
O of organs already contoured, the “other organs” were
given by Sother = S − ∪i∈OSi . For each organ, Acs was
computed using the patient’s CT images, while CO was
obtained from published results.45,46 The cardiac out-
put for “other organs” was given by C Oother = 1 −∑
i∈O

COi . For great vessels, lungs, and the heart, we used

CO = 100%,as all blood passes through them with each
circulation. This resulted in great vessel average blood
velocities of ∼8.7 cm/s for aorta, ∼13.4 cm/s for vena
cava,and 7.3 cm/s for pulmonary artery,which are close
to published values.48,49

The radiation dose delivery to the CL pool was sim-
ulated over time by dividing the total dose from each
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4 PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT

F IGURE 1 Top (Left) Blood flow in the thorax and through the blood rich organs (heart and great vessels) and the transfer between the
heart and the lungs that is used in the model. Top (Right) An actual lung SBRT patient simulated with all organs to show the inclusion of all
organs in the thorax. Bottom shows a flow chart showing the workings of the predictive algorithm in increments of space (dx), and increments of
time (dt). The right-hand bottom shows the blood flow through an organ at different time steps, with the irradiated blood at the previous time step
has been moved up.

treatment beam into fractions and subsequently into
discrete time-steps. This time interval, dt, was organ
dependent and defined by the time required for a
circulating cell to traverse an image voxel:

dt = dx
v

(2)

Here, dx is the voxel length of 2.5 mm and v is the
organ-specific blood velocity defined above. The dose
from each beam was then divided into Nseg = T∕dt
segments where T is the time required to deliver the
entire beam. Each beam segment was further divided
into doses delivered to the individual organs listed above.
This was done by applying logical masks from the
contoured structure sets and enabled the dose to be
applied to each structure while avoiding leakage into
other organs. For a given organ O, the dose delivered
in one beam segment can be computed using the dose

D of a single beam for a single treatment fraction and
the organ’s spatial mask maskO.

DO =
D [maskO]

Nseg
(3)

The total blood volume was modeled by a blood matrix

of size N × 1, where N = 5000cm3

0.25×0.25×0.25 cm3
= 320 000

blood particles and 0.25 × 0.25 × 0.25cm3 is the volume
of each dose voxel from the treatment planning system
dose map. For each organ, the contoured logical mask
was applied to the blood matrix to ensure that dose was
only applies to the section of blood “inside”the organ at a
given time. Every dt seconds, the dose for a given beam
segment and organ was applied and the blood matrix
was circulated by one organ cross-sectional layer in the
superior-inferior direction. During the time required to
deliver the entire beam, the blood matrix entries,and the
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PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT 5

CL they represent, accumulate radiation dose as they
move through each organ. We repeated this process for
each organ listed above, including the “other organs,” for
each beam and each treatment fraction in the patient’s
plan. Between each beam and treatment fraction, the
blood matrix was shuffled to simulate the mixing of
blood throughout the body.The result was a blood matrix
whose entries captured the dose accumulated by CL
in the patient’s blood pool over the course of a radia-
tion therapy treatment. Figure 1 (bottom) represents the
model structure schema and blood matrix dose accu-
mulation due to blood flow through the radiation beam
in space and time.

2.3 Lymphocyte toxicity K(t) simulation

To translate accumulated dose into cell death fractions,
we used a kill function K(Di), where Di is an entry of the
blood matrix representing the dose accumulated by an
individual CL after a radiation treatment is administered.
We used a linear-quadratic (LQ) model50 for lymphocyte
kill:

K (Di) = 1 − e
−
(
𝛼Di+𝛽D2

i

)
(4)

Because in vivo lymphocyte radiotoxicity data is not
readily available, the parameters 𝛼, 𝛽 were fit to pub-
lished in-vitro survival curves from Nakamura et al.47

(α = 0.255,β = 0.147). This model predicts 15% kill for a
dose of 0.5 Gy, 33% kill for a dose of 1 Gy, 67% kill for a
dose of 2 Gy,and 88% kill for a dose of 3 Gy.Cumulative
dose to CLs has a wide range from 0 to Dmax, and the
total lymphocyte kill is

K0 =
Dmax∑
Di=0

Ni

(
1 − e

−
(
𝛼Di+𝛽D2

i

))

= N0 −
Dmax∑
Di= 0

Nie
−
(
𝛼Di+𝛽D2

i

)
(5)

Here Ni are the number of cells receiving dose Di ,and
N0 =

∑Dmax
Di=0 Ni is the pre-treatment ALC value.

2.4 Modeling time-dependent ALC

Figure 2 shows the functional form used to predict ALC
over time following treatment. The patient’s lymphocyte
count as a function of time is given by Equation 6 where
K(t) is a time-dependent function for lymphocyte toxic-
ity, and R(t) is a time-dependent function for lymphocyte
regeneration.

F IGURE 2 The time-dependent form of cell kill term K(t),
recovery term R(t), and final prediction N(t).

N (t) = No − K (t) + R (t) (6)

K (t) = K0 ×
(
1 − e−at

)
(7)

R (t) = N0 × R0 ×
(
1 − e−b(t−30)

)
ift ≥ 30

and R (t) = 0 if t < 30,
(8)

Cumulative ALC data from patient blood draws was
used empirically to model the time-dependent lympho-
cyte function. It exhibits an exponential decay up to
a time of 30 days where we observe a nadir point,
and a gradual replenishment afterwards following lung
SBRT.51 Swanson et al. also found a nadir point in
absolute lymphocyte reduction around four week time
point for different types of cancers treated with stan-
dard fractionation RT.52 We modeled the measured time
dependence of lymphocyte kill and recovery using two
exponential functions: (i) a time-dependent kill function
with Equation 7, where a is an unknown decay constant
and t is the number of days elapsed since radiotherapy
treatment initiation; and (ii) a time-dependent replenish-
ment rate R(t), which represents the release of new
lymphocytes into the bloodstream from primary and
secondary lymphoid organs over time, as well as the
proliferation of new cells which depends on the pre-
treatment immune status of a given patient.We assume
replenishment occurs following the nadir at 30 days,and
model it empirically using Equation 8. Here, Ro, b are
parameters to be estimated empirically from available
longitudinal blood draw data.

Model parameters a, b, and R0 were optimized to
minimize the χ2 difference between simulated lym-
phocyte survival fractions and measured blood-draw
data across our patient cohort using a 10-fold cross-
validation process. The cohort was segmented into ten
distinct groups, and ten models were fit using 90% of
the patients to optimize and evaluated using the remain-
ing 10%. This process allowed us to evaluate model
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6 PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT

performance on all available data while avoiding over-
lap between training and test sets. When comparing
post-treatment ALC between the output of our model
and measurement, we projected the regeneration from
the nadir point to the measured ALC date for each
patient.

2.5 Patient cohort

Patients who underwent SBRT for NSCLC were
included in this institutional review board approved retro-
spective analysis. Imaging volumes and SBRT treatment
plans collected for 64 patients in total were used to opti-
mize and validate the model.Table 1 describes the char-
acteristics of measurement data (patient, dosimetric,
and ALC) used for this study, with the blood-rich organ
(heart + great vessels) dose levels that has shown
to significantly correlate with post SBRT ALC loss. All
plans were optimized to meet the dosimetric criteria
defined in the radiation therapy oncology group (RTOG)
0915 (for peripheral tumors, 59.4% of patients)53 or
0813 (for centrally located tumors, 40.6% of cases)54

protocols. All plans were designed for delivery on a
Varian linear accelerator using either a step-and-shoot
intensity-modulated radiation therapy (IMRT) (67.2%
of plans), a volumetric-modulated arc therapy (VMAT)
delivery (29.7% of plans), or a three-dimensional con-
ventional radiation therapy (3D-CRT) delivery (3.1% of
plans).

2.6 Organ-at-risk contouring

The following organs-at-risk (OAR) were manually con-
toured by a set of trained physicians following the
RTOG atlas for organs at risk in thoracic radiation
therapy, encompassing a region of interest up to a
very low threshold dose of 40 cGy per fraction): lungs,
great vessels (aorta, vena cava, pulmonary vessels),
heart, liver, spleen, and stomach (only for lower thorax
tumors). All remaining tissue in the body was combined
to a region denoted “Other Organs.” Example masks
showing this discretization are shown in Figure 1 top
right.

2.7 Lymphocyte measurements

ALC measurements were recorded pre-treatment and
at multiple post-treatment time points. Post-treatment
lymphocyte count drops were determined by computing
the difference between the first post-treatment ALC and
the pre-treatment baseline ALC. Having post-treatment
blood data at different time points helps define the time
dependence of the predictive model.

2.8 Model accuracy

Model accuracy was assessed by comparing predicted
post-treatment ALC with those measured in the post-
treatment blood draws.Accuracy was assessed for each
patient in the test sets created during the survival func-
tion cross-validation process. Differences in prediction
accuracy in the presence of specific plan character-
istics (tumor location, tumor volume, radiation delivery
method, and treatment time) were evaluated to identify
systematic errors.

The model was also assessed in terms of its rate
of immune suppression prediction accuracy using the
cumulative distribution function (CDF). CDF is defined
by the probability that the prediction accuracy will have
a value less than or equal to a given difference of
measurement to prediction.

2.9 Dose-level contributions to
lymphocyte kill

To identify the dosimetric drivers of lymphocyte tox-
icity, we compared contributions to cell kill from dif-
ferent blood dose levels. This is important to assess
whether RIIS is driven primarily by focused high-dose
regions or distributed low doses. The kill contribu-
tion C(D) of dose D for a given patient is given by
Equation 9:

C (D) =
K (D) × P (D)∑

d K (d) P (d)
(9)

where K(D) is the lymphocyte kill function value at
dose D and P(D) is the percentage of blood cells
receiving dose D. D was binned with a resolution of
0.1 Gy.

2.10 Dependence of treatment/patient
characteristics on immune suppression
model

To validate the model’s ability to correlate the post-
treatment RIIS with key patient/plan characteristics
that is observed in the measurement, we evalu-
ated the Spearman correlation functions between
predicted post-treatment ALC and five variables: pre-
treatment ALC, minimum distance between PTV and
heart, days elapsed from treatment initiation to post-
treatment ALC measurement, PTV volume, and treat-
ment delivery time. We also evaluated correlations
between patient measurements and each variable and
compared them to our model predictions. To evalu-
ate systematic differences between patient/plan char-
acteristics, differences in cell kill contribution were
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PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT 7

TABLE 1 Patient and dosimetric characteristics.

Characteristic All patients (n = 64)

Gender Male 28

Female 36

Age median (range), years 72.5 (50–92)

Race Caucasian 53

African American 7

Asian 1

Other 3

PTV volume median (range), cc 29.34 (4.76–403.15)

RT scheme 12 Gy x 5Fx (BEDa = 132 Gy) 32

11 Gy x 5Fx
(BED = 115.2 Gy)

1

10 Gy x 5Fx (BED = 100 Gy) 25

09 Gy x 5Fx (BED = 85.5 Gy) 3

18 Gy x 3Fx
(BED = 151.2 Gy)

2

17 Gy x 3Fx
(BED = 137.7 Gy)

1

RT site Central 26

Peripheral 38

Pre-tx ALC median (range), 109 cells/L 1.68 (0.61–3.19)

Lung volume median (range), cc 3621 (1649–6433)

Lung mean dose median (range), Gy 4.20 (0.88–7.67)

Heart volume median (range), cc 696 (310–1624)

Heart mean dose median (range), Gy 1.45 (0.02–8.99)

Body volume (External) median (range), cc 24263 (12 758–42
913)

Body mean dose median (range), Gy 1.61 (0.77–4.24)

Heart + GVb mean dose median (range), Gy 2.93 (0.15–8.94)

Heart + GV integralc dose median (range), Gy.cm3 2389 (72–10 291)

Heart + GV V5d median (range), cc 154.1 (1.9–671.0)

Heart + GV V10 median (range), cc 61.3 (0.0–405.5)

Heart + GV V15 median (range), cc 19.4 (0.0–217.3)

Heart + GV V20 median (range), cc 4.1 (0.0–105.4)

External-PTV mean dose median (range), Gy 1.53 (0.73–3.37)

External-PTV integral dose median (range), Gy.cm3 36978
(14234–86461)

External-PTV V1 median (range), cc 4613 (1611–10368)

External-PTV V5 median (range), cc 2035 (845–4464)

External-PTV V10 median (range), cc 1125 (253–3365)

External-PTV V15 median (range), cc 601 (109–2122)
aBED refers to the biologically effective dose.
bGV refers to the great vessels (aorta, vena cava, and pulmonary artery) combined.
cIntegral dose refers to the volume integral of the dose deposited in the patient and is equal to the mean dose times the volume.
dVx refers to the percentage of the volume that received at least x Gy radiation dose.

compared between the above five parameters as well
as age of the patient, treatment modality (step-and
shoot IMRT/ 3D/ arc deliveries), and tumor location
(central/peripheral).

3 RESULTS

For a typical lung SBRT plan, 320 000 blood particles
were simulated and propagated through and out of the
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8 PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT

F IGURE 3 (a) Average cumulative blood dose histogram for all patients after one fraction (top, bin width = 0.02 Gy) and after all fractions
(center, bin width = 0.1 Gy). Bottom: cumulative blood dose volume histograms and the corresponding cumulative cell kill contributions for two
sample largest and smallest PTV volumes and for all patients. (b) Cumulative blood dose histogram for sample patients with different PTV
volumes (top), different tumor locations (center) and different treatment delivery times (bottom).

dose volume. Typical times to compute post-treatment
ALC were 12-field 3D plan (23 s), 11-field IMRT plan
(37 s), and 2-arc VMAT plan (37 s). These short simula-
tion times indicate that the model could interface with the
treatment planning system and provide near-real time
feedback to optimize plans with immune suppression
considerations.

3.1 Accumulated blood dose
distribution

The model predicts a distribution of radiation doses
accumulated by the patient’s blood pool. Figure 3a
top shows the average distribution for all patients
after receiving a single treatment fraction. The mean
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PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT 9

F IGURE 4 Histogram of the ALC difference
(prediction—measurement) of all patients and which fold the
prediction is on from the 10 folds.

accumulation is low (0.25 Gy), although it increases
after all five treatment fractions have been administered
(1.15 Gy, see Figure 3a middle). These plots combine
the individual dose distributions for each patient in the
cohort, which are narrowly distributed around different
mean values.

The location and width of the blood dose distribution
are determined by several factors. Patients with larger
PTVs accumulate higher blood dose levels (example
in Figure 3b top four PTV volumes: < 20 cc, between
20 and 40 cc, between 40 and 60 cc and > 60 cc),
due to larger treatment fields, leading to larger vol-
umes of radiation dose exposures. The location of
the tumor in the lung also has an effect, with cen-
tral tumors resulting in higher dose accumulation than
peripheral tumors (Figure 3b middle). This occurs due
to the closer proximity to great vessels and heart,
which have a higher blood density than surrounding tis-
sue in the case of central tumors. For all subgroups

of the patient cohort, the prediction fraction of blood
receiving greater than 3 Gy (corresponding to the high-
est kill fraction reported in Nakamura et al.47) was
negligible.

3.2 Dose-level contributions to
lymphocyte kill

The LQ model (Equation 4) converts the accumulated
dose distribution into an initial lymphocyte kill fraction.
Using the kill contribution metric (Equation 9), we evalu-
ated the delivered dose regions which led to the highest
lymphocyte reduction. In most cases, the highest per-
centage of lymphocyte toxicity for lymphocytes in the
circulating blood pool came from doses around 1.5 Gy.
As Figure 3a bottom shows, for all patients combined,
lymphocyte toxicity was dominated by low dose levels
(33.7% of toxicity came from doses <1 Gy, 75.3% of
toxicity came from dose <1.5 Gy) despite the lower cell
kill probabilities at these levels. Only 8.2% of the lym-
phocyte toxicity came from cells absorbing more than
2 Gy.

3.3 Predicted absolute lymphocyte
counts

Using our time-dependent ALC model (see Methods),
we forecasted each patient’s ALC at their respective
post-treatment measurement days. The model was fit
and tested using a ten-fold cross validation proce-
dure. The model parameters for (a,b, and R0) and
accuracy for each iteration are given in Table 2. The his-
togram for the raw absolute ALC difference (prediction—
measurement) is shown in Figure 4, with the color
indicating which fold one particular ALC difference was
on.

Figure 5 compares post-treatment ALC model pre-
dictions to patient measurements. The left panel plots

TABLE 2 Results of optimized parameters and prediction accuracy for the training and testing set for each of the 10 folds.

Fold
N
train N test a (day−1) R0 b (day−1)

ALC Difference between prediction and measurement (109 cell/L)
Mean—training SD—training Mean—testing SD—testing

1 57 7 0.5261 0.7020 0.0009 0.21 0.15 0.35 0.15

2 57 7 0.5261 0.7020 0.0009 0.23 0.31 0.20 0.31

3 57 7 0.5261 0.7022 0.0014 0.22 0.27 0.33 0.27

4 57 7 0.5261 0.7020 0.0009 0.22 0.12 0.26 0.12

5 58 6 0.5276 0.7295 0.0009 0.23 0.10 0.26 0.10

6 58 6 0.5263 0.8009 0.0012 0.24 0.10 0.14 0.10

7 58 6 0.5261 0.7049 0.0008 0.23 0.19 0.19 0.19

8 58 6 0.5262 0.7054 0.0009 0.23 0.09 0.18 0.09

9 58 6 2.9997 0.8040 0.0007 0.22 0.24 0.30 0.24

10 58 6 0.5261 0.7020 0.0014 0.24 0.17 0.18 0.17
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10 PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT

F IGURE 5 Left: Predicted post-treatment ALC count as a function of measured ALC count. Right: Cumulative distribution function (CDF)
showing the proportion of patients with a given prediction accuracy.

the predicted post-treatment ALC against the measured
ALC count. The right panel shows the CDF (CDF of
patient predictions achieving a given accuracy. Predic-
tions differed from measured values by an average
(SD): 0.24 (0.21) ×109 cell/L (or 13.7% (10.3%) com-
pared to pre-treatment ALC). Eighty-nine percent of the
patients have a difference between prediction and mea-
surement smaller than 0.5×109 cells/L. The measured
pre-treatment ALC values have a mean (range) of 1.68
(0.61–3.19). Our model’s mean error rate is lower than
half of the lowest ALC value, indicating it has sufficient
sensitivity to detect whether a patient is expected to
develop treatment-related Grade 3 lymphopenia (post-
treatment ALC < 0.5 lymphopenia per NCI guidelines).
Our model is able to predict post-treatment ALC < 0.8
(grade 2 lymphopenia), with a sensitivity of 81%; and a
specificity of 98% (Due to the low statistic, we decided
to test G2 lymphopenia as opposed to G3 lymphopenia).
The mean (STD) for the difference between predic-
tion and measurement over the 10 folds for different
sub-groups (pre-treatment ALC, age, treatment modal-
ity, post-treatment blood draw time point, tumor location,
treatment delivery time,and tumor volume) are shown in
Table 3.

3.4 Prediction accuracy dependence
on patient and delivery characteristics

Different key treatment plan/patient characteristics can
affect RIIS differently. To validate the model further, we
next evaluated whether the model predictions recreate
observed relationships between plan characteristics
and RIIS. Figure 6 shows post-treatment ALC as a
function of five variables. The left column shows the
post-treatment ALC as a function of the plan charac-

teristics for both measurement and simulation and the
right column plots the model accuracy (absolute differ-
ence between prediction and measurement). Variables
shown are (A) pre-treatment ALC,(B) minimum distance
between PTV and heart, (C) days elapsed from treat-
ment initiation to post-treatment ALC measurement,
(D) PTV volume, and (E) treatment delivery time. We
did not observe a trend between any of these plan
characteristics and predictive accuracy. Some notable
observations from these comparisons were:

3.4.1 Pre-treatment ALC

As the pre-treatment ALC increases,post-treatment ALC
values also increase significantly for both the measure-
ment [r = 0.75 (p < 0.001)] and the prediction [r = 0.82
(p < 0.001)].

3.4.2 Minimum distance between PTV
and heart

Patients whose PTV is further from the heart accumu-
late lower RT dose in the blood-rich organs, leading to
higher post-treatment ALCs [r = 0.25 (p = 0.05)]. The
model correctly predicts a positive correlation between
the minimum PTV-heart distance and post-treatment
ALC [r = 0.43 (p < 0.001)].

3.4.3 Days elapsed from treatment
initiation to post ALC measurement

Regeneration (Equation 7) leads to higher measured
ALCs [r = 0.26 (p = 0.04)] at later measurement days.
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PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT 11

F IGURE 6 Left-Post-treatment ALC as a function of some key plan characteristics for both measurement and simulation. The Spearman’s
correlation coefficient r and p-value between the measured and predicted ALC and plan characteristic); Right- model accuracy—absolute
difference between prediction and measurement as a function of there variables. (a) pre-treatment ALC; (b) minimum distance between PTV
and heart; (c) days elapsed from treatment initiation to post ALC measurement; (d) PTV volume; and (e) treatment delivery time.
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12 PREDICTING IMMUNE SUPPRESSION IN LUNG SBRT

F IGURE 6 Continued

The model predictions capture this positive correlation
[r = 0.27 (p = 0.03)].

3.4.4 PTV volume

Patients with larger PTV receive larger volumes of all
doses, leading to higher dose accumulation and lower
post-treatment ALC [r = −0.25 (p = 0.04)]. The model
predictions capture this negative correlation [r = −0.47
(p < 0.001)].

3.4.5 Treatment delivery time

There is no observed trend with post-treatment ALC in
measurement [r = 0.19 (p = 0.13)] or prediction [r = 0.09
(p = 0.47)] with treatment delivery times varying from 99
to 683 s at these low number of treatment fractions.

4 DISCUSSION

In this work, we have presented a model which pre-
dicts radiation-induced lymphocyte reduction following
lung SBRT by simulating the dose delivered to CLs in
the bloodstream.This approach is patient-specific,using
three-dimensional dose maps from treatment planning
software, varied treatment times, and organ-specific
blood flows. Our model predicts initial lymphocyte death
using a linear-quadratic survival curve from literature
and predicts time-dependent lymphocyte replenishment
based on patients’ baseline immune status. The model
could accurately predict post-treatment ALC on an inde-
pendent test patient dataset, with an average absolute
error of 0.24 ± 0.21×109 cells/L and 89% of patients
having an error below 0.5×109 cells/L. Our model also
predicts relationships between patient/treatment char-
acteristics and measured lymphocyte depletion that are
consistent with previous observations. This includes
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TABLE 3 A summary of the mean (STD) for the difference
between prediction and measurement over the 10 folds of the
predictive model within each subset of variables.

Absolute
difference
(109 cells/L)

Percent
difference
(%) Count

Pre Tx ALC (109 cells/L)

<1.0 0.08 (0.08) 9.4 (9.9) 8

1.0–1.5 0.18 (0.12) 14.1 (8.3) 16

1.5–2.0 0.24 (0.22) 14.0 (11.7) 20

≥2.0 0.35 (0.23) 15.0 (10.6) 20

Age

<67 0.27 (0.23) 14.8 (12.0) 16

67–73 0.23 (0.14) 14.4 (8.2) 16

73–80 0.25 (0.27) 14.7 (13.4) 14

≥80 0.22 (0.18) 11.4 (7.6) 18

Modality

3D-CRT 0.15 (0.08) 10.0 (1.7) 2

IMRT 0.26 (0.20) 14.8 (10.0) 43

Arc 0.20 (0.22) 11.7 (11.2) 19

Measurement day

<30 0.18 (0.13) 11.7 (8.0) 19

30–180 0.26 (0.24) 14.5 (11.8) 35

≥180 0.29 (0.21) 15.0 (8.2) 10

Tumor location

Central 0.19 (0.14) 11.9 (7.7) 26

Peripheral 0.27 (0.23) 15.0 (11.6) 38

Treatment time (s)

<200 0.21(0.24) 11.8 (12.1) 16

200–300 0.23 (0.20) 13.5 (8.8) 23

≥300 0.27 (0.20) 15.2 (10.5) 25

Tumor volume (cc)

<20 0.30 (0.26) 16.3 (12.9) 15

20–40 0.21 (0.19) 11.8 (8.8) 23

40–60 0.29 (0.22) 15.3 (10.0) 11

≥60 0.20 (0.14) 12.9 (9.9) 15

Variables considered are Pre-treatment ALC count, age, treatment modality, day
of post-treatment blood draw, central vs peripheral, treatment delivery time, and
PTV volume size.

positive correlations between post-treatment ALC and
measurement day as a result of lymphocyte replenish-
ment following a nadir point,26–28 and negative correla-
tions between post-treatment ALC and target size,35,55

as well as heart proximity to PTV.10,24,27 A strength of
this blood circulation model is that it was developed and
validated using patient-specific data to predict immune
suppression.

Existing modeling approaches for RIIS belong to three
categories:dose volume-based calculations,blood flow-
related simulations with or without surrounding organs
of the PTV,or deep learning-based models.One notable

blood flow model is Beekman et al.’s stochastic model
that simulates systemic blood flow in the human body
based on a previously designed compartmental model
applicable to any anatomical site.41 This model is more
explicitly grounded in flow physics than our approach,
and also requires registration of each patient’s anatomy
with a phantom vasculature to predict blood dose. The
latter step requires great precision when registering the
thorax anatomy (which encompasses a large volume of
low-dose regions) with smaller critical organs such as
the aorta, especially as blood flow rates vary so much
between great vessels and the rest of the body. This
increased complexity allowed them to study effects such
as patient breathing which our model neglects, but it
comes at the cost of significantly longer runtimes (Beek-
man: 64 s to model blood flow and 61 s to accumulate
dose on an M1 iMac with a time step of 0.05 s. Ours: 38
s end-to-end on an Intel Xeon E5-2630 Processor with
a time step of ∼ 0.03 s for the blood-rich organs). Our
stochastic approach to model flow through lower-dose
organs in the thorax is aimed to be accurate on aver-
age over the course of a treatment. Indeed, Beekman
et al. found that changes to blood dose due to breath-
ing tended to average out and be negligible. Our model
also avoids concerns with registering a phantom vol-
ume by using each patient’s specific anatomy. Finally,
our model uses the blood dose distribution to predict a
post-treatment ALC,which accounts for time-dependent
lymphocyte death and regeneration. By linking blood
dose to cell kill and validating our predictions for the first
time, using SBRT patient data for absolute lymphocyte
reduction,we demonstrate the applicability of the model
for mitigating RIIS.

Simpler models that use mean organ doses and
subsets of organs in the thorax to compute immune
suppression may have even shorter evaluation times,
but will have less predictive power according to Beek-
man et al.41 Other recent models have examined ALC
reduction in RT treatments with standard fractionation.
Jin et al. specifically examined RT for pancreatic and
used DVH information to make their predictions,34 rather
than the three-dimensional dose maps that informed
our dynamic dose delivery simulation. Ebrahami et al.
developed a hybrid deep learning model for esophageal
cancer.37 Both models have limited use for SBRT,
where the time-dependent immune suppression is not
smoothly varying as in standard fractionation.

In addition to predicting lymphocyte depletion from
Lung SBRT, this model also provides tools to potentially
mitigate its immunosuppressive impact without alter-
ing efficacy. With near-real time predictive abilities, this
model could interface with treatment planning systems,
to predict lymphocyte depletions for prospective plans,
these could be evaluated alongside traditional organ-
at-risk dose metrics in determining a plan’s quality.
Furthermore, the analysis of dose-dependent lympho-
cyte kill contributions can link specific treatment plan
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characteristics with lymphocyte depletion and help iden-
tify general techniques that may reduce it. After creating
an initial treatment plan, one can estimate the total
lymphocyte toxicity stemming from specific blood-dose
levels (i.e., whether the majority of lymphotoxicity from
the plan is due to a large volume of blood receiving
a small dose or a smaller volume receiving a higher
dose). This information can then be used to priori-
tize physical dose levels (i.e., standard RT planned
doses) to minimize overall cell kill. This method is
being evaluated prospectively in an NCI-funded clini-
cal trial (NCT04273893).56 One potential application of
this model will be to optimize fractionation strategies
from an immune perspective. Accounting for time-
dependent lymphocyte reduction following RT may also
help elucidate optimal timing for combined radiation and
immunotherapy.

The results presented in this study already point to
a few potentially important ways to reduce lymphotox-
icity. For example, we found that patients with centrally
located tumors experience a similar degree of lympho-
cyte depletion as patients with peripheral tumors despite
being treated with 20% lower prescription doses (50 vs.
60 Gy). This counterintuitive finding, though agrees with
the patient measurements, likely stems from differences
in specifics of the dose distributions in these cases.
Treatment plans for centrally located tumors deliver
larger doses to blood-rich organs in the thorax (i.e., the
great vessels and heart) resulting in more CLs accumu-
lating a toxic dose per unit dose to the tumor.Developing
treatment plans for centrally located tumors that explic-
itly avoid blood-rich areas may bring these situations
closer to parity.

This study did have some limitations. The translation
from blood dose to cell kill was estimated using in vitro
data as in vivo lympho-toxicity data are not readily avail-
able. Lymphocyte subtypes (B cell, T cell, CD4+, CD8+,
Tregs, and natural killer cells) have different impacts
on tumor infiltration57 and cancer prognosis. Addition-
ally, their radiation sensitivity,58 cell cycle stage,59 and
RIIS60 could be different. We have currently assumed
equal radio-sensitivities of lymphocyte sub types within
the model. However, during the NCT04273893 trial, we
acquired these sub type data with the intent of adding
sub type predictions to the existing model in the future
using the present study as a benchmark. The current
version of the model did not discriminate the station-
ary lymphocyte populations in bony anatomy such as
the thoracic spine or in lymphatic organs such as lymph
nodes/vessels, special lymphatic organs such as thy-
mus (relevant for patients younger than 20 years),GI/GU
tract (not relevant for lung irradiation). Each of these
subpopulations were treated as “other organs.” Other
patient-dependent factors such as age, race, smok-
ing status that could have an impact on lymphocyte
recovery were also not taken into account. Including
these factors such as patient-specific time-dependent

immune suppression and recovery via osmosis between
primary, secondary lymphoid organs and the blood cir-
culation, lymphocyte rate of recovery will be a focus of
a future study. Furthermore, all analysis was performed
on planned dose distributions and thus uncertainties
in patient alignment were not considered. However, the
model’s predictive power and speed makes it a promis-
ing candidate for decision making at the planning stage
in the immune toxicity. This model is currently being
used for treatment plan decision making at our insti-
tution in a clinical trial setting in order to reduce RIIS
while maintaining highly conformal RTOG 0813/0915
criteria.

5 CONCLUSION

We present a model that accurately predicts lympho-
cyte depletion following Lung SBRT as well as the
onset of lymphopenia in a cohort of 64 patients under
ten-fold cross validation. This model with ∼38-s end-to-
end prediction time has the capability to be interfaced
with treatment planning systems to prospectively reduce
immune cell toxicity without compromising treatment
efficacy during treatment planning. Our proposed RIIS
prediction method is adaptable to predict RIIS in other
dose fractionations in the lung as well as other disease
sites.
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