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ABSTRACT 

STATISTICAL ANALYSIS AND COMPARISON OF OPTICAL 

CLASSIFICATION OF ATMOSPHERIC AEROSOL LIDAR DATA 

Kwasi Gyening Afrifa 

Old Dominion University, 2018 

Director: Dr. Khan M. Iftekharuddin 

     This dissertation presents a new study for the analysis and classification of atmospheric 

aerosols in remote sensing LIDAR data. Information on particle size and associated properties 

are extracted from these remote sensing atmospheric data which are collected by a ground-based 

LIDAR system. This study first considers optical LIDAR parameter-based classification methods 

for clustering and classification of different types of harmful aerosol particles in the atmosphere. 

Since accurate methods for aerosol prediction behaviors are based upon observed data, 

computational approaches must overcome design limitations, and also consider appropriate 

calibration and estimation accuracy. Consequently, two statistical methods based on generalized 

linear models (GLM) and regression tree techniques are used to further analyze the performance 

of the LIDAR parameter-based aerosol classification methods. The goal of this part of GLM and 

regression tree analyses is to compare and contrast distinct classification data schemes, and 

compare the results with the measured aerosol reflection data in the atmosphere. The detail 

statistical comparison and analysis show that the optical methods adopted in this study for 

classification and prediction of various harmful aerosol types such as soot, carbon monoxide 

(CO), sulfates (SOx) and nitrates (NOx) are effective.
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NOMENCLATURE 

AAE               Absorption Angstrom Exponent 

ANOVA        Analysis Of Variance 

AOD              Aerosol Optical Depth 
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LIDAR           LIght Detection and Ranging 
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CHAPTER 1 

INTRODUCTION 

     Aerosols are substances consisting of liquid and solid particles suspended in air. Aerosol 

particles play a central role in the atmosphere. Changes of their physical and chemical properties 

induces feedback mechanisms, with combined impacts ranging from air pollution and related 

health effects. They represent very key components in the determination of air quality. Aerosols 

are categorized based on their source: anthropogenic aerosols, which are produced by man-made 

processes; and natural aerosols, which obtained from wind uplifting of particles, erosion, or other 

natural processes. Aerosols are sometimes categorized as primary or secondary particles. 

Primary particles are particles that are emitted directly into the air, such as volcanic ash and dust. 

Secondary particles are formed in the atmosphere from chemical reactions of gases and 

subsequent particle-forming processes like condensation, coagulation and aggregation. Some 

examples of secondary particles are nitrates, sulfates and organic carbon. Aerosols are classified 

based on the aerosol diameter by the Environmental Protection Agency (EPA). Fine particles or 

Particulate Matter (PM) with aerosol diameter less than 2.5 micrometers are classified as PM2.5, 

while coarse particles with aerosol diameters less than 10 micrometers are classified as PM10. 

With the use of the best estimate, anthropogenic contributions represent 12.5% of the total 

aerosol budget and sulfates represent more than 42% of all anthropogenic aerosols. 

     It is essential to identify the types of aerosols due to the effects they have on climate, health, 

and the environment. Governmental agencies understand the need to deal with air pollution not 

only on a local basis, but on a regional basis because aerosols from an area are easily transported 
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to another region. Lots of people in the United States live in counties where the PM2.5 

concentration regularly exceeded the EPA safe limits. Territorial aerosol distributions can be 

affected by sources such as industry and transportation, as well as the physical geography, terrain 

and transport of aerosols from outside the territory. 

     Efforts have been made to model and monitor PM2.5 mass concentration in urban areas by 

the EPA. In-situ measurements of PM2.5 mass concentration at point locations are monitored 

throughout the United States by ground stations. The Moderate resolution imaging 

spectroradiometer (MODIS) instrument, aboard the Aqua and Terra satellite, provides daily 

measurements with large spatial coverage of the aerosol optical depth (AOD), a quantity related 

to the aerosol column amount and the aerosol ability within the column to scatter and absorb 

sunlight [1]. Light Detection and Ranging (LIDAR) is a powerful tool for atmospheric aerosol 

profiling because it resolves the vertical distribution of an atmospheric column. Any correlation 

between MODIS AOD and ground station PM2.5 monitors will be difficult without the use of 

LIDAR or a similar instrument capable of measuring aerosols as a function of altitude. 

     The buildup of pollution in Donora near Pittsburgh, PA in 1948 and another in London, 

England in 1952 led to the deaths of people that could be linked to the inhalation of particulate 

matter and other health related issues. These pollution events led to the passage of state and 

federal laws like the Air Pollution Control Act of 1955 and the Clean Air Act of 1963. Small-

sized aerosols, can become embedded in the lungs after inhalation. Exposure to PM2.5 is related 

to premature death, lung disease, decreased lung function, asthma attacks, irregular heartbeat, 

respiratory and cardiovascular disease; mainly in children, older adults, and people with pre-

existing lung and heart disease [2]. Some studies also provide evidence that PM10 is also 

associated with mortality and morbidity [3]. 
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     Aerosols are also known to impact climate and the environment by means of absorption 

and/or scattering of visible and infrared radiation leading to cooling or warming of the 

atmosphere. The size, shape and composition of the aerosols are considered to determine their 

effect on the earth’s radiation budget, which is the balance between the incoming radiation from 

the sun and the outgoing longwave and shortwave radiation from the earth. Sulfates produced 

from the burning of fossil fuels are the biggest anthropogenic aerosol contribution to the earth’s 

radiation budget, which cools the planet. Black carbon also produced by the burning of fossil 

fuels produces a warming effect. Tropospheric aerosols contain sulfates, nitrates, carbon 

monoxide and soot with their sizes spanning over more than four orders of magnitude, from a 

few nanometers to several micrometers [4]. 

1.1 Aerosol Measurement Techniques 

Passive remote sensing provides the advantage of large spatial coverage even though it is 

generally less accurate and has variable vertical resolution depending on the altitude and 

technique. When light interacts with the aerosol particles in the atmosphere, it would be 

attenuated due to extinction, a combination of scattering and absorption. The optical depth, 𝜏, 

through a path length, L, is defined by the relation: 

   𝜏(𝜆, 𝐿) = ∫ 𝜅(𝜆, 𝑧)𝑑𝑧

𝐿

0

                                                                (1) 

where 𝜆 is the wavelength,  𝜅 is the extinction coefficient, and 𝑧 is the range. The extinction 

coefficient is a measure of light removed over the path length, either by scattering or absorption 

and is equivalent to 
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𝜅 = ∑(𝑁𝑎𝑏𝑠,𝑗𝜎𝑎𝑏𝑠,𝑗 + 𝑁𝑠𝑐𝑎𝑡,𝑗𝜎𝑠𝑐𝑎𝑡,𝑗)

𝑗

                              (2) 

where 𝑁𝑎𝑏𝑠,𝑗 and𝑁𝑠𝑐𝑎𝑡,𝑗  are the number concentrations of the various absorbing and scattering 

species, and 𝜎𝑎𝑏𝑠,𝑗 and 𝜎𝑠𝑐𝑎𝑡,𝑗 are the absorption and scattering cross sections. The passive 

sensors use an external source of radiation to calculate the optical depth or other atmospheric 

quantities. 

     Unlike passive sensors, active sensors provide their own source of radiation (e.g. laser) to 

determine atmospheric properties. They have the advantage of improved vertical resolution 

through the atmosphere. A LIDAR emits short, laser pulses into the atmosphere. The light 

emitted from the laser is scattered and absorbed by molecules and aerosols in the atmosphere. 

Scattered light returning to the LIDAR is collected by a telescope and transmitted to a detector. 

The return signal is measured as a function of time, therefore, distance from the LIDAR, and 

used to determine range-resolved atmospheric absorption and scattering properties [5]. 

     Doppler LIDAR is used to measure wind speeds along the laser beam path, by determining 

the frequency shift of backscattered light. Differential Absorption LIDAR (DIAL) is used to 

determine concentrations of atmospheric gases by emitting an on-line wavelength, which is 

absorbed by the gas, and an off-line wavelength which is not absorbed. Raman LIDAR can be 

used to detect molecular species and temperature in addition to the backscatter signal by making 

use of Raman wavelength shifts attributable to the specific molecule being measured. An elastic 

backscatter LIDAR operates under the assumption that the light scattered from molecules and 

aerosols has the same wavelength as the emitted light. Under this assumption, a priori knowledge 

of the atmosphere must be assumed or obtained from an external source in order to obtain the 

extinction. In contrast, the High Spectral Resolution LIDAR (HSRL) resolves the molecular and 
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aerosol signals independently using Doppler broadening, which removes the need for a priori 

knowledge. 

     LIDAR measurements are made from various platforms. Ground based LIDAR systems 

provide point source data with high temporal coverage. Aircraft LIDAR can be used to 

determine aerosol transport with high spatial resolution. Sparse global coverage of aerosols can 

be obtained from spaceborne LIDAR systems such as the Cloud-Aerosol LIDAR with 

Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol LIDAR and Infrared Pathfinder 

Satellite Observation (CALIPSO) satellite LIDAR system. The LIDAR measurements in this 

research project come primarily from a ground based LIDAR system. The fundamental benefit of 

using LIDAR in atmospheric measurements is the ability to determine the vertical profile of 

aerosol layers. Another benefit of LIDAR aerosol measurements is the possibility for higher 

spatial resolution than MODIS and similar instruments. Due to the LIDAR being an active 

sensor, it also provides the opportunity for nighttime measurements, whereas passive sensors 

require a natural light source. 

1.2 Problem Statement 

     The goal of this research project is to classify the types of aerosols found in a heavy traffic 

area in Hampton Roads near the campus of Old Dominion University (ODU) with the usage of 

the Compact Aerosol LIDAR (CAL) which is a sophisticated ground based LIDAR system. This 

area is chosen for the study because of its proximity to Virginia International Sea Port, where 

many diesel engine trucks travel on the streets near ODU campus.  Several experiments are done 

on campus on different days and locations to obtain LIDAR data which are to be used to identify 
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the types of aerosols in the atmosphere. The experiments are proposed to achieve the following 

goals related to problem statements. 

     The first goal of this project is to obtain a model to classify aerosols using aerosol optical 

parameters. Two different methods for the classification events need to be addressed without 

compromising the performance of the identification procedure. Experiments performed are used 

to demonstrate the potency of these identification processes. 

     The second goal is to apply classification techniques on these procedures to help distinguish 

between different aerosols. Analyze classification approaches using statistical analysis for 

predictive behavior. This is achieved by applying Generalized Linear Model (GLM) and 

regression tree technique to analyze distinct classification approaches. This enables the 

investigation of temporal variation of recognized aerosols in the atmosphere. 

     In general, this would enable the combined usage of aerosol parameters to identify aerosols in 

the atmosphere when all aerosol intensive parameters cannot be deduced from data from our 

LIDAR. This new scheme would determine aerosols in the atmosphere and the most prevalent 

which causes pollution in the environment. 

1.3  Contributions 

     This study first employs a sophisticated ground-based LIDAR system to acquire atmospheric 

aerosol reflection data over a heavy traffic area in Hampton Roads near the campus of Old 

Dominion University (ODU). The sophisticated ground-based LIDAR system is deployed to 

collect aerosol data in the atmosphere for analysis and classification of harmful aerosol particles. 

Two-step aerosol classification is performed using the remote sensing data. The first step 

involves aerosol particle type classification from the measured remote sensing data with the help 
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of two well-known methods in literature [6, 7]. It was observed that these two optical LIDAR 

parameter-based approaches did not produce the same aerosol particle classification results. 

Consequently, in the second step, statistical and regression analysis techniques were proposed to 

ascertain which of the two classification approaches should be preferred in identifying each 

specific aerosol. In order to accomplish this objective, GLM analysis and regression tree are then 

used to infer whether there are significant differences between the approaches adopted by [6] and 

[7] to identify the aerosols and then recommend which approach is suitable for specific aerosols 

from the measured LIDAR data.   

1.4  Organization of the Research Project 

The rest of the research project is organized as follows. Chapter 2 provides a background review 

which discusses the interaction of light and matter, the LIDAR equation, and LIDAR 

measurements. Chapter 3 describes the experimental setup, the methodology of obtaining the 

aerosol parameters, the review of statistical analysis tools such as regression tree and GLM 

which is an ANOVA technique and their application on the data. Chapter 4 presents the LIDAR 

measurement results and the interpretations for the results obtained after using the statistical 

analysis tools. Chapter 5 of this research project concludes with a summary of the results and 

future work. 
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CHAPTER 2 

BACKGROUND REVIEW 

     The concept of LIDAR demonstrations were initially performed by the use of searchlight 

beams to measure air density profiles [8, 9, 10]. Following the invention of the laser, the first 

LIDAR was made and used to measure aerosol layers in the upper atmosphere [11]. 

Subsequently, LIDAR has been used to determine concentrations of aerosols and various 

atmospheric constituents including wind speed, temperature, water vapor, ozone, and to visualize 

atmospheric dynamics, and physical and chemical processes. 

     A basic LIDAR consists of:(i) a laser transmitter, (ii) a receiver, and (iii) a data acquisition 

system. The laser emits pulses into the atmosphere from the transmitter, and the light is scattered 

and/or absorbed. The combined effect of removing light from the beam by scattering and 

absorption is known as extinction. The Beer-Lambert law gives the intensity of light at a 

particular wavelength, 𝐼𝜆, passing through an atmospheric layer with an extinction coefficient 𝜅𝜆 

as: 

𝐼𝜆 = 𝐼𝑜,𝜆𝑒𝑥𝑝 (− ∫ 𝜅𝜆(𝑧)𝑑𝑧

𝐿

0

)                                                    (3) 

where 𝐼𝑜,𝜆 is the initial light intensity and L is the thickness of the layer. 

     A fraction of light from the initial beam is scattered in all directions as the pulse propagates 

through the atmosphere, some of which is scattered directly back to the receiver where it is 
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detected by a detector. The output of the detector is an electrical signal that is digitized and 

stored by the data acquisition system. 

     The strength of the interaction of light with atmospheric aerosols depends on their size, shape, 

type, and composition. The size parameter, 𝛼, is helpful in determining this interaction and is 

given by 

𝛼 =
2𝜋𝑟

𝜆
                                                                             (4) 

where 𝑟 is the particle radius and 𝜆 is the lidar wavelength. Particles with a size parameter much 

less than unity exhibit Rayleigh scattering, while a scattering parameter 0.1 ≤ 𝛼 ≲ 50 indicates 

Mie scattering [12]. Another important quantity which determines how light scatters from 

aerosols is the index of refraction, 𝑚, which can be a complex number. The real part of the index 

of refraction, 𝑚𝑟, is equivalent to the ratio of the speed of light in a vacuum to the phase velocity 

of electromagnetic radiation in the medium, 𝑉𝑝, 

𝑚𝑟 =
𝑐

𝑉𝑝
                                                                         (5) 

     The imaginary part of the index of refraction, 𝑚𝑖, is related to the ability of the media to 

absorb electromagnetic radiation. For non-absorbing materials, 𝑚𝑖 is equal to zero. The 

imaginary component also affects how the aerosol scatters radiation. 

2.1 Rayleigh Scattering 

     The theory of Rayleigh scattering is used primarily to describe atmospheric molecular 

scattering; however, the principle also applies to very small aerosols. A uniform electromagnetic 

field exists around the aerosols due to the particles being very small in comparison to the 
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wavelength. The electromagnetic field produces an induced dipole in the aerosols which 

oscillates at the same frequency as the incident light. The dipole then reradiates this scattered 

light in all directions. If the incident light is unpolarized, then the intensity of the scattered light 

is given by: 

𝐼(𝜃) =
𝜋2(𝑚2 − 1)2𝐼0

2𝑁2𝑅2𝜆4
(𝑐𝑜𝑠2𝜃 + 1)                                                         (6) 

where 𝑁 is the number density of the scatterers and 𝑅 is the distance from the particle [13]. The 

term 𝑐𝑜𝑠2𝜃 + 1 represents the two polarization components of the scattered light. The 

perpendicular component is independent of the angle, and the component parallel to the 

scattering plane is symmetric; thus there is equal scattering in the forward and backward 

directions. The Rayleigh backscattering cross section, which is a measure of the amount of 

scattering by one particle at 𝜃 = 𝜋, is widely used in the LIDAR field. The backscattering cross 

section, 

𝜎𝑚 =
𝜋2(𝑚2 − 1)2

𝑁2𝜆4
                                                                            (7) 

has units of length squared. An important parameter used in LIDAR measurements is the 

molecular backscattering coefficient, 

𝛽𝑚 = 𝑁𝜎𝜋
𝑅                                                                                    (8) 

which determines the intensity of light scattered at 𝜃 = 𝜋 and has units of inverse length. In 

addition to the symmetric nature of Rayleigh scattering, another important feature is the variation 

of the intensity of scattered radiation with 𝜆−4. The intensity of light scattered at shorter 

wavelengths is much larger than that of longer wavelengths. 
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2.2 Mie Scattering 

     As the size of the aerosols approaches the wavelength of the incident radiation, scattering will 

change greatly. The theory of Mie scattering is used to describe scattering by aerosols. In this 

process, waves from the scattered radiation will interfere constructively in some cases, and 

destructively in other cases. The resulting can be expressed as an infinite series of Bessel 

functions and Legendre polynomials and solved with the help of computers [14, 15]. For an 

initially unpolarized light source, the intensity of scattered light due to Mie scattering from a 

spherical aerosol is commonly expressed as 

𝐼(𝜃) =
𝜆2(𝑖1 + 𝑖2)

8𝜋2𝑅2
𝐼0                                                                  (9) 

where 𝑖1 and 𝑖2 are the Mie intensity parameters for the perpendicular and parallel polarization 

components, respectively [16]. The Mie intensity parameters are functions of the index of 

refraction, size parameter, and scattering angle. For small values of 𝛼, the Mie intensity 

parameters resemble the parallel and perpendicular polarization components of Rayleigh 

scattering. Unlike the case of light scattering by molecules, Mie scattering is non-symmetric. As 

the size parameter increases, there is an increase in forward scattering and the intensity of 

forward scattering becomes much greater than the intensity of back scattering. Mie scattering is 

less dependent on the wavelength, when compared to Rayleigh scattering. The relationship 

between the total scattering coefficient for an aerosol particle and the wavelength of incident 

light is 

  𝛽𝑎 =
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝜆𝜂
                                                                  (10) 
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where 𝜂 is the Angstrom exponent, which is another measure of the particle size [5]. The 

Angstrom exponent can range from a value of 0 for large particles to a value of 4 for purely 

molecular scattering. 

    In tropospheric LIDAR applications, Mie scattering takes place mostly within the boundary 

layer, close to the surface or in dense aerosol or cloud layers aloft, while Rayleigh scattering 

dominates in the upper troposphere, at altitudes over approximately 6km, depending on the 

latitude. 

2.3 Atmospheric Absorption 

     Light at certain wavelengths may be absorbed by gases and aerosols in the atmosphere. The 

imaginary component of the index of refraction relates to the ability of a substance to absorb 

radiation. Molecules can exist at only certain energy levels due to a combination of their electron 

configuration, rotational state, and vibrational state. Photons can be absorbed or emitted resulting 

in a discrete change of energy level, Δ𝐸, as long as the photon frequency meets the condition 

Δ𝐸 = ℎ𝑣                                                                              (11) 

where ℎ is Planck’s constant and 𝑣 is the photon frequency [13]. However, most of the common 

elastic scattering LIDAR wavelengths are not in the range of molecular absorption lines hence 

absorption is normally not an issue. The LIDAR measurements which will be presented as part 

of this project were conducted at wavelengths of 532 nm and 1064 nm, where absorption is 

negligible and where aerosol scattering dominates. 
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2.4 Lidar Equation 

     The elastic LIDAR equation defines the power returned to the LIDAR receiver, 𝑃(𝑧), and is 

given as a function of the distance from the transmitter, that is range, 𝑧: 

𝑃(𝑧) =
𝐶

𝑧2
[𝛽𝑚(𝑧) + 𝛽𝑎(𝑧)]𝑇2                                                (12) 

where 𝐶 is the calibration constant, 𝛽𝑚 and 𝛽𝑎 are the backscattering coefficients for molecules 

and aerosols, respectively, and 𝑇2 is the two-way transmittance. The calibration constant can be 

expressed as 

𝐶 = 𝑃0

𝑐𝜏

2
𝐴𝜂                                                                          (13) 

𝑃0is the power off a single laser pulse, 𝜏 is the temporal pulse width, 𝐴 is the area of the lidar 

telescope, and 𝜂 is the overall system efficiency which includes the efficiency of all transmitter 

and receiver optics, as well as the detection efficiency. The two-way transmittance is given by 

𝑇2 = 𝑒𝑥𝑝 (−2 ∫[𝜅𝑚(𝑧′) + 𝜅𝑎(𝑧′)]𝑑𝑧′

𝑧

0

)                                        (14) 

where 𝜅𝑚 and 𝜅𝑎 are the molecular and aerosol extinction coefficients, respectively. Equation 12 

assumes single scattering. Multiple scattering can occur in optically dense atmospheres (e.g. fog 

or clouds) when forward scattered light, through subsequent scattering events, returns to the 

LIDAR receiver. This effect is reduced by narrowing the beam divergence and receiver Field Of 

View (FOV). Also, scattered light from the solar and lunar background can contribute to 

additional power detected by the LIDAR; however, most of this signal is removed by 
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background subtraction during data processing, as well as by using narrow-band interference 

filters in front of the detectors and properly baffled receiving optics. 

2.5 Analytic Solutions to the Lidar Equation 

     The LIDAR equation cannot be solved for an elastic backscatter because there are too many 

unknowns. However, by using a priori knowledge from independent sources, a solution can be 

obtained. The molecular properties, 𝛽𝑚 and 𝜅𝑚 can be obtained from atmospheric soundings or 

look-up tables. Then a number of analytic methods [17, 18, 19] can be used to determine the 

solutions for 𝛽𝑎 and 𝜅𝑎. 

     Two useful quantities for obtaining a solution to the LIDAR equation are the molecular 

extinction-to-backscatter ratio, 

𝑆𝑚 =
𝜅𝑚

𝛽𝑚
=

8𝜋

3
𝑠𝑟                                                                (15) 

And the aerosol extinction-to-backscatter ratio, 

𝑆𝑎 =
𝜅𝑎

𝛽𝑎
                                                                          (16) 

which depend on the size, shape, and composition of the aerosol particles, as well as the 

wavelength of the incident light. In actuality, due to the heterogeneity of aerosols, 𝑆𝑎 has been 

shown to vary with altitude [20]; however, due to inherent limitations with elastic backscatter 

LIDAR, it is assumed to have a constant value within an atmospheric column. The aerosol 

extinction-to-backscatter ratio is commonly referred as the LIDAR ratio. In practice, a priori 

knowledge is used to determine the value of 𝑆𝑎 or independent measurements of the aerosol 

optical depth (AOD) are used to constrain its value. 
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     Substituting the values of 𝑆𝑚 and 𝑆𝑎 into Equation 12, 

𝑃(𝑧)𝑧2 = 𝐶[𝛽𝑚(𝑧) + 𝛽𝑎(𝑧)]𝑒𝑥𝑝 (−2 ∫[𝑆𝑚𝛽𝑚(𝑧′) + 𝑆𝑎𝛽𝑎(𝑧′)]𝑑𝑧′

𝑧

0

)               (17) 

and then by introducing the parameters, 

𝑋(𝑧) = 𝑃(𝑍)𝑧2                                                                  (18) 

𝑌(𝑧) = 𝑆𝑎[𝛽𝑚(𝑧) + 𝛽𝑎(𝑧)]                                                        (19) 

the LIDAR equation can be rewritten as 

𝑋(𝑧) =
𝐶

𝑆𝑎
𝑌(𝑧)𝑒𝑥𝑝 (−2 ∫[𝑆𝑚𝛽𝑚(𝑧′) + 𝑌(𝑧′) − 𝑆𝑎𝛽𝑎(𝑧′)]𝑑𝑧′

𝑧

0

)                                  (20) 

Rearranging the terms gives 

 𝑆𝑎𝑋(𝑧)exp [−2(𝑆𝑎 − 𝑆𝑚) ∫ 𝛽𝑚(𝑧′)𝑑𝑧′] = 𝐶𝑌(𝑧)

𝑧

0

exp [−2 ∫ 𝑌(𝑧′)𝑑𝑧′]

𝑧

0

                     (21) 

Logarithms are taken on both sides of the equation and differentiated with respect to 𝑧, 

𝑑𝑙𝑛(𝑆𝑎𝑋(𝑧)exp [−2(𝑆𝑎 − 𝑆𝑚) ∫ 𝛽𝑚(𝑧′)𝑑𝑧′])
𝑧

0

𝑑𝑧
=

1

𝑌(𝑧)

𝑑𝑌(𝑧)

𝑑𝑧
− 2𝑌(𝑧)                                    (22) 

The left hand side is a function of 𝑧 containing values that are all either known or assumed, so 

Equation 21 is in the form of the Bernoulli equation. Using the boundary condition 

𝑌(𝑧∗) = 𝑆𝑎[𝛽𝑚(𝑧∗) + 𝛽𝑎(𝑧∗)]                                           (23) 
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where 𝑧∗ is some reference altitude where the value of 𝛽𝑎 can be assumed, the LIDAR equation 

has the solution 

𝛽𝑎(𝑧) =
𝑋(𝑧)exp [−2(𝑆𝑎 − 𝑆𝑚) ∫ 𝛽𝑚(𝑧′)𝑑𝑧′]

𝑧

𝑧∗

𝑋(𝑧∗)

𝛽𝑚(𝑧∗)+𝛽𝑎(𝑧∗)
− 2𝑆𝑎 ∫ 𝑋(𝑧′)exp [−2(𝑆𝑎 − 𝑆𝑚) ∫ 𝛽𝑚(𝑧′′)𝑑𝑧′′]𝑑𝑧′𝑧′

𝑧∗

𝑧

𝑧∗

− 𝛽𝑚(𝑧)                 (24) 

We chose an altitude of 𝑧∗ where aerosol scattering is negligible compared to molecular 

scattering, thus 𝛽𝑎(𝑧∗) = 0 and then used iterative procedure to determine the value of 𝛽𝑎(𝑧) at 

all other altitudes. Similarly, the measured LIDAR backscatter profile can be normalized with 

respect to the computed molecular backscatter profile to determine the scattering ratio. A 

scattering ratio of unit indicates pure molecular scattering, and values above unity indicate the 

presence of clouds or aerosols. 

    After the determination of 𝛽𝑎(𝑧), the aerosol extinction, 𝜅𝑎, and LIDAR derived AOD, 𝜏, can 

be determined using the equations: 

𝜅𝑎(𝑧) = 𝑆𝑎𝛽𝑎(𝑧)                                                                   (25) 

and 

𝜏 = ∫ 𝜅𝑎(𝑧)𝑑𝑧

𝑧∗

0

                                                           (26) 
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CHAPTER 3 

LIDAR EXPERIMENTAL SETUP 

3.1 Chapter Overview 

     This chapter discusses the design and protocol for the experiments conducted in this report 

examining the analysis of classification of aerosols. The system was setup on the Old Dominion 

University campus in order for the LIDAR to have an unimpeded access to the skies. The ground 

based LIDAR is able to provide us the temporal variation of LIDAR measurements. In this 

chapter, the LIDAR system used in this project report will be described in Section 3.2. The 

methodology for conducting LIDAR experiments and calculating parameters are described in 

Section 3.3. The ANOVA method to analyze the classified results will be explained in Section 

3.4 and the regression tree technique to analyze the classified results will also be explained in 

Section 3.5. 

3.2 Description of LIDAR 

     The LIDAR used for the experiments is the Compact Aerosol LIDAR (CAL) system which 

was built in the Science Directorate at NASA Langley Research Center and is described in [21]. 

A summary of the key system characteristics is shown in Table 1. The LIDAR system is 

mounted on an aluminum frame as shown in Figure 1. The LIDAR system has a mass of 115 kg 

and dimensions of 108 cm x 64 cm x 53 cm. The laser (Big Sky/Quantel CFR 200) is a 

frequency doubled Nd:AG, 20 Hz, with 1.5 mrad divergence output. The 532 nm (80 mJ, 
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nominal) and residual 1064 nm (60 mJ, nominal) pulses are transmitted into the atmosphere 

using a steerable 45° turning mirror. 

     The aerosol LIDAR receiver uses a 30.5 cm diameter (f/2) telescope using a parabolic mirror 

with a 1.6 mrad FOV. A 1 mm diameter optical fiber is mounted at the focal point of the  

TABLE 1: Summary of LIDAR system 

Laser 

 Manufacturer Big Sky (Quantel) 

Repetition rate 20 Hz 

Beam divergence 1.5 mrad 

Pulse width 11 ns, FWHM 

1064 nm energy 60 mJ 

532 nm energy 80 mJ 

Telescope 

 Diameter 0.30 m 

FOV 1.6 mrad 

Filters 

 1064 nm 1.0 nm, FWHM (66.5%T) 

532 nm 0.5 nm, FWHM (78%T) 

Detectors 

 1064 nm channel APD (analog)                     Perkin Elmer (C30955E) 

532 nm channels CPM (analog)                    Perkin Elmer (MH943) 

CPM (photon counting)     Perkin Elmer (MP943) 
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FIG. 1: Diagram of CAL LIDAR system 

telescope mirror which passes the light into the receiver box as shown in Figure 2 [22]. The 

received light is collimated and split into 532 nm and 1064 nm channels, with a further split of 

the 532 nm channel into photon counting (10%) and analog (90%) signal channels. The 1064 nm 

signal passes through a 66.5%T, 1 nm Full-Width-at-Half-Maximum (FWHM) interference 

filter, focuses onto an APD detector (Perkin Elmer C30955E), and is then amplified (Femto 

DHPVA-100). The 532 nm signal passes through a 78%T, 0.5 nm FWHM interference filter 
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before being split into separate analog (CPM Perkin Elmer MH943) and photon counting 

channels (CPM Perkin Elmer MP943). 

 

FIG. 2: Diagram of CAL receiver box 

     The 532 nm and 1064 nm analog channels are filtered electro-optically by a 1.5 MHz filter 

and sampled at a rate of 5MHz using a 14-bit digitizer (Gage Applied Technologies CS1450). 

The data files are then averaged over 2 seconds intervals and stored on the computer using a 
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custom LabView program. The 532 nm photon counting channel is sent to a multi-channel scaler 

(Ortec MCS-pci) where typical integration times of 10s (200 ns dwell) are used before storing 

the waveform. 

3.3 Methodology for Lidar Experiments 

     Table 2 shows the summary of the collected data during this study. The LIDAR data 

collection was conducted during the daytime. The data collections were performed at the same 

location on August 16, 2016 and August 17, 2016; and on July 21, 2017 at various locations on 

the Old Dominion University campus. 

TABLE 2: Summary of LIDAR data acquired during 2016-2017 on the Old Dominion 

University campus 

Experiment Date Location Time Average Outside 
Temperature 

Weather Conditions 

August 16, 2016 ESB 11:04 - 12:14 88°F Mostly Sunny skies 

August 17, 2016 ESB 12:46 – 13:59 90°F Clear Sunny skies 

July 21, 2017 Constant Hall 13:42 – 13:57 93°F Sunny skies 

July 21, 2017 Rogers Hall 15:34 – 15:49 91°F Sunny skies 

July 21, 2017 NEB 16:45 – 17:00 91°F Sunny skies 

 

     At altitudes above 5km, noise contamination exceeds the backscattering signal for the two 

532nm channels. The theoretical LIDAR power was obtained using Equation 17 with 𝛽𝑎 = 0. 

The calibration constant Equation 13 was calculated using values from Table 1 and the overall 

system efficiency which was taken as the product of the receiver efficiency given in Section 3.2 

and the quantum efficiency of the detector. The values for the overall system efficiencies and 

resulting calibration constants for each LIDAR channel is given in Table 3. The molecular 
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backscattering coefficient was calculated using a model for the molecular number density found 

in [5]. 

TABLE 3: System efficiencies and calibration constants for CAL 

Channel                                    System efficiency               Calibration constant (x 𝟏𝟎𝟑, 𝑾𝒎𝟑) 

1064nm                                           17.6%                                              112 

532nm analog                                 6.1%                                                52.1 

532nm photon counting                 0.76%                                              6.44 

 

3.3.1 Calculation of Aerosol Optical Parameters for Method 1 

The first classification method as described in [6] used intensive parameters of aerosol (LIDAR 

ratio and backscatter color ratio) which vary with aerosol type. The LIDAR ratio, 𝑆𝑎 is 

calculated on the 532nm channel as the ratio of extinction coefficient to the backscatter 

coefficient. The expression for 𝑆𝑎 is as follows: 

𝑆𝑎 =
𝜅𝑎

532

𝛽𝑎
532

                         (27) 

where 𝑆𝑎 is the LIDAR ratio, 𝜅𝑎
532  is the aerosol extinction coefficient at 532nm and 𝛽𝑎

532 is the 

backscatter coefficient at 532nm.The aerosols have optical parameters, such as LIDAR ratio, 

which varies with aerosol size, shape and composition. Aerosols found in the atmosphere have 

low values of LIDAR ratios for coarse mode particles and higher LIDAR ratios for small and 

highly absorbing mode particles [6]. Another parameter that is used was backscatter color ratio. 

The backscatter color ratio is defined as the ratio of backscattering coefficient at 532nm to 

1064nm. This is expressed as: 
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𝐵𝐶𝑅 =
𝛽𝑎

532

𝛽𝑎
1064                     (28) 

where 𝐵𝐶𝑅 is the backscatter color ratio, 𝛽𝑎
532 is the aerosol backscatter coefficient at 532nm 

and 𝛽𝑎
1064 is the aerosol backscatter coefficient at 1064nm.Backscatter color ratios are inversely 

related to aerosol particle sizes [23, 24]. 

3.3.2 Calculation of Spectral Parameters for Method 2 

The second classification method to identify aerosols in the atmosphere is done based on their 

spectral optical properties which are absorption and scattering. The second scheme is mostly 

described by [7]. We calculate the parameters SAE, AAE, EAE and SSA to be combined to 

identify the presence of aerosols from the data obtained from our LIDAR. The four parameters 

were obtained through the following equations. To obtain the extinction Angstrom exponent, the 

equation used is 

𝐸𝐴𝐸 = −
𝑙𝑛 (

𝜅532

𝜅1064
)

𝑙𝑛 (
532

1064
)

                          (29) 

where 𝜅532 is the extinction coefficient at 532nm and 𝜅1064 is the extinction coefficient at 

1064nm. For the scattering Angstrom exponent, the next equation is used: 

𝑆𝐴𝐸 = −
𝑙𝑛 (

𝛽532

𝛽1064
)

𝑙𝑛 (
532

1064
)

                      (30) 

where 𝛽532 is the backscatter coefficient at 532nm and 𝛽1064 is the backscatter coefficient at 

1064nm. The sum of absorption and scattering is the extinction. Absorption coefficient decreases 

monotonically with wavelength and it is approximated by a power law expression which is 
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described by an absorption Angstrom exponent (AAE) [25]. From equation below we obtain the 

absorption Angstrom exponent 

𝐴𝐴𝐸 = −
𝑙𝑛 (

𝛾532

𝛾1064
)

𝑙𝑛 (
532

1064
)

                    (31) 

where 𝛾532 is the absorption coefficient at 532nm and 𝛾1064  is the absorption coefficient at 

1064nm. The single scattering albedo is found as the ratio of the backscatter coefficient to the 

extinction coefficient 

𝑆𝑆𝐴 =
𝛽532

𝛽532 + 𝛾532
=

𝛽532

𝜅532
          (32) 

3.4 Analysis of Variance (ANOVA) 

     Analysis of Variance (ANOVA) is a statistical method used to test differences between 

multiple means of data [26]. The inferences about the means are made by analyzing variance. 

This statistical method for making simultaneous comparisons among multiple means yields 

values that can be tested to build classification and test significant relationship between 

variables. The Generalized Linear Models (GLM) procedure is the proposed analysis method 

adopted [27, 28, 29]. We modeled the identified aerosols and activity profiles using such 

procedure. This model is based on the fact that the intensity is a function of many sources and 

nuisance or errors. A mixed effect model was first used. Such a model can be described as 

follows: 

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛿𝑗 + 𝜖𝑖𝑗               (33) 
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where 𝑌𝑖𝑗 corresponds to the recorded aerosol at the 𝑖 − 𝑡ℎ altitude level and at the 𝑗 − 𝑡ℎ 

duration, 𝜇 is the overall intensity, 𝛼𝑖 represents the effect due to altitude, and 𝛿𝑗 represents the 

effect due to duration for each method, ∈𝑖𝑗 represents the error terms, 𝑗 defined as the number of 

altitude levels with 𝑗 = 1,2, … ,128. 𝑖 defines the number of aerosols profile measurements in a 

given duration 𝑖 = 1,2, … , 𝑛𝑘  where 𝑘 =1,2,3,4, and 5 denotes the locations of data collection 

and 𝑛𝑘 is number of aerosols profile measurements in location 𝑘. Thus 𝑛1 = 63 at location 1 

(Rogers Hall July 21, 2017), 𝑛2 = 61 at location 2 (Constant Hall July 21, 2017), 𝑛3 = 60 at 

location 3 (NEB July 21, 2017), 𝑛4 = 286 at location 4 (ESB August 16, 2016) and 𝑛5 = 251 at 

location 5 (ESB August 17, 2016). The model can be expressed as 

𝑌 = 𝑋𝜑 + 𝜀                  (34)    

where 𝑌 is the vector of measured intensity by altitude and duration, 𝑋 is the design matrix, 𝜑 is 

the vector of regression coefficients and 𝜀 is the vector of error terms. Assumptions are made 

that the errors are normally distributed.  Estimation of the parameter set 𝜑 is such that 

𝜑̂ = (𝑋′𝑋)−1𝑋′𝑌          (35) 

assuming that the design matrix 𝑋 is invertible. If not, using the generalized equation will allow 

us to obtain solution, even though they will not be unique. Normality is a strong assumption 

made and transformation techniques may be considered to achieve such assumptions and reduce 

biases. 

3.5 Regression Tree Analysis 

Although ANOVA is typically the first choice for prediction, an alternative method to perform 

prediction is regression tree, which was first introduced by [30].The data here consists of the two 
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predictors altitude and duration and the response aerosol values. Suppose the data has 𝑁 

observations: that is, (𝐱𝑖, 𝑦𝑖) for 𝑖 = 1, 2, . . . , 𝑁, where 𝐱𝑖 = (𝑥𝑖1, 𝑥2𝑖)
′, 𝑥𝑖1 is the 𝑖th observation 

from the first predictor, 𝑥𝑖2 is the 𝑖th observation from the second predictor, and 𝑦𝑖 is the 𝑖th 

observation from the response. To grow the tree, the algorithm needs to decide on the important 

variables (predictors) and splits points. If the predictors are equally important, the choice would 

be arbitrary. Now, suppose the data is partitioned into 𝑀 regions 𝑅1, … , 𝑅𝑀 and the response is 

modeled as a constant 𝑐𝑗 for 𝑗 = 1, … , 𝑀: 

𝑓(𝑥) = ∑ 𝑐𝑗

𝑀

𝑗=1

𝐼(𝑥 ∈ 𝑅𝑗)                        (36) 

If the adopted criterion is minimizing the sum of squares ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2
, it can be shown that 

the best choice of 𝑐𝑗 is the average of 𝑦𝑖 in 𝑅𝑗. That is,  

𝑐𝑗̂ = ave(𝑦𝑖|𝑥𝑖 ∈ 𝑅𝑗)                     (37) 

Therefore, the sum of square errors for a tree is 

𝑆 = ∑ ∑(𝑦𝑖 − 𝑐𝑗̂)
2

𝑛𝑗

𝑖=1

𝑀

𝑗=1

                (38) 

For 𝑀 = 2, an algorithm suggested by [31] stated that starting with all of the data, consider a 

splitting variable 𝑘 and a split point 𝑠, and define the pair of the half-planes 

𝑅1(𝑘, 𝑠) = {𝑥|𝑥𝑘 ≤ 𝑠}, 𝑅2(𝑘, 𝑠) = {𝑥|𝑥𝑘 > 𝑠}          (39) 

Then choose the variable 𝑘 and split point 𝑠 that minimizes 
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∑ (𝑦𝑖 − 𝑐1̂)2

𝑥𝑖∈𝑅1(𝑘,𝑠)

+ ∑ (𝑦𝑖 − 𝑐2̂)2

𝑥𝑖∈𝑅2(𝑘,𝑠)

                      (40) 

After finding 𝑘 and 𝑠, the data is partitioned into the two resulting regions. The same splitting 

process is repeated again on each of the two regions, then on all the resulting regions until the 

region has values that are the same. 

The above model will be trained on a sub-sample of the data known as the training sample. Then, 

it will be tested on a testing sample, which is what is left of the data after selecting the training 

sample. Typically, the training sample takes 75% of the data, and of course the testing sample 

takes the rest, i.e. 25% of the data. 

3.6 Application of Statistical Methods 

After using the two methods to obtain classified aerosols in the atmosphere, the results from the 

two methods are compared to identify the differences or similarities of the aerosols. Since 

sampling methodology of data collection is complex and classification can be misleading, 

initiatives are employed in statistical analysis to extract the most reliable information from data 

through the model and its parameters. We use GLM of the ANOVA technique and regression 

tree as the statistical analysis tools. To validate the difference in the two classification schemes in 

aerosol, GLM and regression tree models are considered. The analysis is performed by assigning 

classification labels or counts of 1, 2, 3, 4 and 5 to the aerosols - NOx, SOx, CO, soot and No 

Aerosol found in our remote sensing data, respectively. For the aerosol described as No Aerosol, 

it means there is the absence of the four originally described aerosols. Due to the dominance of 

aerosol value of 5, we decided to remove it from the model and build predictions on the 

remaining data. The first classification using the calculated LIDAR ratio and backscatter color 
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ratio is done by assigning a particular aerosol to a location and duration when the aerosol optical 

parameter condition for that aerosol is met as seen from Table 4. 

TABLE 4: Method 1 

Aerosol Optical Parameter 

𝑆𝑎 𝐵𝐶𝑅 

NOx 70 - 80 3.3±10% 

SOx 70 - 100 3.3±15% 

CO 43 - 52 0.7±10% 

Soot 60 - 65 1.4±10% 

 

The classified aerosols from our LIDAR using Method 1 is shown in Fig.3 below. 

 

FIG.3: Aerosols Detected Using 𝑀𝑒𝑡ℎ𝑜𝑑 1 (July 21, 2017 Rogers Hall) 
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The second classification method was done by using SSA, SAE, AAE and EAE as our 

parameters. From Table 5, the aerosols were assigned when the parameter conditions for that 

particular aerosol were met. 

TABLE 5: Method 2 

Aerosol Spectral Parameter 

𝑆𝑆𝐴 𝐴𝐴𝐸 𝐸𝐴𝐸 𝑆𝐴𝐸 

NOx > 0.85 > 2.5 1.8- 2 1.5-3.5 

SOx > 0.95 ≈ 2 1.5– 1.9 0.5-3 

CO < 0.85 < 2 1.75- 2.1 1-3 

Soot < 0.8 < 1.5 < 2 ≈ 4 

 

The classified aerosols from our LIDAR using method 2 is shown in Fig.4. below. 
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FIG. 4: Aerosols Detected Using 𝑀𝑒𝑡ℎ𝑜𝑑 2 (July 21, 2017 Rogers Hall) 

The plots of the aerosol distribution show a wide and scattered representation. Identification and 

estimation of aerosols is highly unpredictable because there is no clear separation based on 

duration and altitude. 

Although standard algorithms are used, the analysis encounters major challenges in scaling up to 

massive datasets with most of them being at aerosol value 5. Because of that, thinning is applied 

to the data, and values of 5 have to be removed. The predictions are made on the remaining 

observations. Even though some of the observations can be 5, the predictions will be made on the 

first four values of aerosols. The GLM is extended to both methods of classification. GLM 
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analysis is performed to find the significance of altitude and duration. The analysis is performed 

using the SAS 9.3®software [32]. 
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CHAPTER 4 

LIDAR EXPERIMENTAL RESULTS 

4.1 Chapter Overview 

     In this chapter, the LIDAR data analysis for this study will be presented. The measurements 

taken by this ground-based Compact Aerosol LIDAR (CAL) pointed to the atmosphere is used to 

compute optical parameters and then used to identify aerosols. Two classification methods 

described are then analyzed by the ANOVA approach and Regression Tree. In Section 4.2, the 

results of the ANOVA analysis will be shown. Also in Section 4.3, the results of Regression Tree 

analysis will be shown. There will then be a discussion of the results in Section 4.4. 

4.2 Results of ANOVA Analysis 

The ANOVA analyses for the classification of aerosols using different methods for the various 

dates and locations are shown in this section. 

4.2.1 August 16, 2016 at ESB 

The ANOVA tables for each of the method types are displayed in Tables 6 and 7. 

 

TABLE 6: ANOVA for Method 1 – August 16, 2016 at ESB 

Source DF SS MS F P value 

Altitude 1 494.97 494.97 821.33 <0.0001 

Duration 1 0.79 0.79 1.31 0.2518 

Error 2381 1434.9 0.60 X X 

Total 2383 1930.66 X X X 
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TABLE 7: ANOVA for Method 2 – August 16, 2016 at ESB 

Source DF SS MS F P value 

Altitude 1 154.59 154.59 298.71 <0.0001 

Duration 1 0.05 0.05 0.09 0.764 

Error 964 498.89 0.518 X X 

Total 966 653.53 X X X 

 

The classification/count of misclassification based on the ANOVA analysis using the first 

method is shown in Table 8. 

TABLE 8: Count of Misclassification for Method 1 and proportions are given in the parentheses 

– August 16, 2016 at ESB 

 
 
 

 

 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 162 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

162 

2 0 

(0) 

609 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

609 

3 0 

(0) 

55 

(6) 

752 

(82.1) 

109 

(11.9) 

0 

(0) 

916 

4 0 

(0) 

0 

(0) 

0 

(0) 

697 

(100) 

0 

(0) 

697 

Total 162 664 752 806 0 2384 

 

The classification/count of misclassification based on the ANOVA analysis for the second 

method is presented in Table 9. 
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TABLE9: Count of Misclassification for Method 2 and proportions are given in the parentheses 

– August 16, 2016 at ESB 

 
 
 

 

 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 51 

(70.8) 

21 

(29.2) 

0 

(0) 

0 

(0) 

0 

(0) 

72 

2 0 

(0) 

157 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

157 

3 0 

(0) 

0 

(0) 

374 

(71.6) 

148 

(28.4) 

0 

(0) 

522 

4 0 

(0) 

0 

(0) 

0 

(0) 

216 

(100) 

0 

(0) 

216 

Total 51 178 374 364 0 967 

 

4.2.2 August 17, 2016 at ESB 

The ANOVA tables for each of the method types are displayed in Tables 10 and 11. 

 

TABLE 10: ANOVA for Method 1 – August 17, 2016 at ESB 

Source DF SS MS F P value 

Altitude 1 401.02 401.02 828.81 <0.0001 

Duration 1 0.87 0.87 1.81 0.1792 

Error 1814 877.71 0.48 X X 

Total 1816 1279.60 X X X 

 

TABLE 11: ANOVA for Method 2 – August 17, 2016 at ESB 

Source DF SS MS F P value 

Altitude 1 164.98 164.98 451.64 <0.0001 

Duration 1 0.95 0.95 2.60 0.1071 

Error 1007 427.90 0.65 X X 

Total 1008 593.83 X X X 
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The classification/count of misclassification based on the ANOVA analysis using the first 

method is shown in Table 12. 

TABLE 12: Count of Misclassification for Method 1 and proportions are given in the 

parentheses – August 17, 2016 at ESB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 12 

(92.3) 

0 

(0) 

0 

(0) 

0 

(0) 

1 

(7.7) 

13 

2 0 

(0) 

481 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

481 

3 1 

(0.2) 

50 

(9.4) 

481 

(90.4) 

0 

(0) 

0 

(0) 

532 

4 0 

(0) 

0 

(0) 

1 

(0.1) 

790 

(99.9) 

0 

(0) 

791 

Total 13 531 482 790 1 1817 

 

The classification/count of misclassification based on the ANOVA analysis for the second 

method is presented in Table 13. 

TABLE 13: Count of Misclassification for Method 2 and proportions are given in the 

parentheses – August 17, 2016 at ESB 

 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 9 

(90) 

1 

(10) 

0 

(0) 

0 

(0) 

0 

(0) 

10 

2 0 

(0) 

157 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

157 

3 0 

(0) 

16 

(3.4) 

441 

(94.4) 

10 

(2.1) 

0 

(0) 

467 

4 0 

(0) 

0 

(0) 

1 

(0.3) 

375 

(99.7) 

0 

(0) 

376 

Total 9 174 442 385 0 1010 

 

4.2.3 July 21, 2017 at Constant Hall 

The ANOVA tables for each of the method types are displayed in Tables 14 and 15. 
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TABLE 14: ANOVA for Method 1 – July 21, 2017 at Constant Hall 

Source DF SS MS F P value 

Altitude 1 59.27 59.27 91.69 <0.0001 

Duration 1 1.26 1.26 1.96 0.1624 

Error 600 387.88 0.646 X X 

Total 602 448.41 X X X 

 

TABLE 15: ANOVA for Method 2 – July 21, 2017 at Constant Hall 

Source DF SS MS F P value 

Altitude 1 45.254 45.254 64.36 <0.0001 

Duration 1 0.716 0.716 1.0181 0.3136 

Error 379 155.73 0.63 X X 

Total 381 201.70 X X X 

 

The classification/count of misclassification based on the ANOVA analysis using the first 

method is shown in Table 16. 

TABLE 16: Count of Misclassification for Method 1 and proportions are given in the 

parentheses – July 21, 2017 at Constant Hall 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 36 

(63.2) 

21 

(36.8) 

0 

(0) 

0 

(0) 

0 

(0) 

57 

2 0 

(0) 

138 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

138 

3 0 

(0) 

0 

(0) 

293 

(99.7) 

1 

(0.3) 

0 

(0) 

294 

4 0 

(0) 

0 

(0) 

0 

(0) 

114 

(100) 

0 

(0) 

114 

Total 36 159 293 115 0 603 
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The classification/count of misclassification based on the ANOVA analysis for the second 

method is presented in Table 17. 

TABLE 17: Count of Misclassification for Method 2 and proportions are given in the 

parentheses – July 21, 2017 at Constant Hall 

 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 46 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

46 

2 0 

(0) 

102 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

102 

3 0 

(0) 

7 

(4.2) 

159 

(95.8) 

0 

(0) 

0 

(0) 

166 

4 0 

(0) 

0 

(0) 

0 

(0) 

68 

(100) 

0 

(0) 

68 

Total 46 109 159 68 0 382 

 

4.2.4 July 21, 2017 at Rogers Hall 

The ANOVA tables for each of the method types are displayed in Tables 18 and 19.  

TABLE 18: ANOVA for Method 1 – July 21, 2017 at Rogers Hall 

Source DF SS MS F P value 

Altitude 1 134.17 134.17 206.00 <0.0001 

Duration 1 0.26 0.26 0.39 0.53 

Error 657 427.90 0.65 X X 

Total 659 562.33 X X X 

 

TABLE 19: ANOVA for Method 2 – July 21, 2017 at Rogers Hall 

Source DF SS MS F P value 

Altitude 1 56.05 56.05 88.54 <0.0001 

Duration 1 0.46 0.46 0.73 0.39 

Error 246 155.73 0.63 X X 

Total 248 212.24 X X X 
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The classification/count of misclassification based on the ANOVA analysis for the first method 

is shown in Table 20. 

TABLE 20: Count of Misclassification for Method 1 and proportions are given in the 

parentheses – July 21, 2017 at Rogers Hall 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 58 

(87.9) 

8 

(12.1) 

0 

(0) 

0 

(0) 

0 

(0) 

66 

 

2 0 

(0) 

148 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

148 

 

3 0 

(0) 

17 

(6.1) 

242 

(87.4) 

18 

(6.5) 

0 

(0) 

277 

 

4 0 

(0) 

0 

(0) 

0 

(0) 

144 

(85.2) 

25 

(14.8) 

169 

 

Total 58 

 

173 

 

242 

 

162 

 

25 

 

660 

 

 

Also, the classification/count of misclassification based on the ANOVA analysis for the second 

method is presented in Table 21. 

TABLE 21: Count of Misclassification for Method 2 and proportions are given in the 

parentheses – July 21, 2017 at Rogers Hall 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 25 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

25 

 

2 0 

(0) 

55 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

55 

 

3 0 

(0) 

4 

(3.8) 

93 

(88.6) 

8 

(7.6) 

0 

(0) 

105 

 

4 0 

(0) 

0 

(0) 

0 

(0) 

49 

(76.6) 

15 

(23.4) 

64 

 

Total 25 

 

59 

 

93 

 

57 

 

15 

 

249 
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4.2.5 July 21, 2017 at NEB 

The ANOVA tables for each of the method types are displayed in Tables 22 and 23. 

 

TABLE22: ANOVA for Method 1 – July 21, 2017 at NEB 

Source DF SS MS F P value 

Altitude 1 139.85 139.85 248.33 <0.0001 

Duration 1 0.13 0.13 0.2312 0.6308 

Error 545 306.93 0.563 X X 

Total 547 446.91 X X X 

 

TABLE23: ANOVA for Method 2 – July 21, 2017 at NEB 

Source DF SS MS F P value 

Altitude 1 101.58 101.58 218.58 <0.0001 

Duration 1 0.00 0.00 0.0001 0.9924 

Error 337 156.61 0.465 X X 

Total 339 258.19 X X X 

 

The classification/count of misclassification based on the ANOVA analysis using the first 

method is shown in Table 24. 

 

TABLE 24: Count of Misclassification for Method 1 and proportions are given in the 

parentheses – July 21, 2017 at NEB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 31 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

31 

2 0 

(0) 

134 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

134 

3 0 

(0) 

24 

(12.4) 

170 

(87.6) 

0 

(0) 

0 

(0) 

194 

4 0 

(0) 

0 

(0) 

0 

(0) 

189 

(100) 

0 

(0) 

189 

Total 31 158 170 189 0 548 
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The classification/count of misclassification based on the ANOVA analysis for the second 

method is presented in Table 25. 

TABLE 25: Count of Misclassification for Method 2 and proportions are given in the 

parentheses – July 21, 2017 at NEB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 21 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

21 

2 0 

(0) 

50 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

50 

3 0 

(0) 

15 

(10.6) 

117 

(83) 

9 

(6.4) 

0 

(0) 

141 

4 0 

(0) 

0 

(0) 

0 

(0) 

128 

(100) 

0 

(0) 

128 

Total 21 65 117 137 0 340 

 

4.3 Results of Regression Tree Analysis 

The Regression Tree analyses for the classification of aerosols using different methods for the 

various dates and locations are shown in this section. 

4.3.1 August 16, 2016 at ESB 

We begin by training regression tree models on 75% of the full data from both methods, i.e. 1788 

and 725 data points from Method 1 and Method 2, respectively. Then, we test the model 

prediction accuracy on the testing samples which are 596 and 242 data points from Method 1 and 

Method 2, respectively. 

The use of the regression tree technique shows similar results as the ANOVA analysis as seen in 

the Tables. Table 26 shows a classification/count of misclassification that is a cross-tabulation 
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that indicates the model incorrectly classified records in the testing data, which is a simple 

random sample of 25% (596) of the full data from Method 1.  

TABLE 26: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 1 and proportions are given in the parentheses – August 16, 2016 at ESB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 29 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

29 

2 0 

(0) 

158 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

158 

3 0 

(0) 

0 

(0) 

242 

(100) 

0 

(0) 

0 

(0) 

242 

4 0 

(0) 

0 

(0) 

0 

(0) 

147 

(88) 

20 

(12) 

167 

Total 29 158 242 147 20 596 

 

Also, Table 27 shows the classification/count of misclassification corresponding to Method 2. 

 

TABLE 27: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 2 and proportions are given in the parentheses – August 16, 2016 at ESB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 22 

(91.7) 

2 

(8.3) 

0 

(0) 

0 

(0) 

0 

(0) 

24 

2 0 

(0) 

35 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

35 

3 0 

(0) 

0 

(0) 

123 

(100) 

0 

(0) 

0 

(0) 

123 

4 0 

(0) 

0 

(0) 

0 

(0) 

53 

(88.3) 

7 

(11.7) 

60 

 

Total 22 37 123 53 7 242 
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4.3.2 August 17, 2016 at ESB 

We begin by training regression tree models on 75% of the full data from both methods, i.e. 1362 

and 757 data points from Method 1 and Method 2, respectively. Then, we test the model 

prediction accuracy on the testing samples which are 455 and 253 data points from Method 1 and 

Method 2, respectively. 

The use of the regression tree technique shows similar results as the ANOVA analysis as seen in 

the Tables. Table 28 shows a classification/count of misclassification that is a cross-tabulation 

that indicates the model incorrectly classified records in the testing data, which is a simple 

random sample of 25% (455) of the full data from Method 1.  

TABLE 28: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 1 and proportions are given in the parentheses – August 17, 2016 at ESB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 3 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

3 

2 0 

(0) 

127 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

127 

3 0 

(0) 

0 

(0) 

137 

(100) 

0 

(0) 

0 

(0) 

137 

4 0 

(0) 

0 

(0) 

0 

(0) 

171 

(91) 

17 

(9) 

188 

Total 3 127 137 171 17 455 

 

Also, Table 29 shows the classification/count of misclassification corresponding to Method 2. 
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TABLE 29: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 2 and proportions are given in the parentheses – August 17, 2016 at ESB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 2 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

2 

2 17 

(35.4) 

31 

(64.6) 

0 

(0) 

0 

(0) 

0 

(0) 

48 

3 0 

(0) 

0 

(0) 

122 

(100) 

0 

(0) 

0 

(0) 

122 

4 0 

(0) 

0 

(0) 

0 

(0) 

71 

(87.7) 

10 

(12.3) 

81 

Total 19 31 122 71 10 253 

 

4.3.3 July 21, 2017 at Constant Hall 

We begin by training regression tree models on 75% of the full data from both methods, i.e. 452 

and 286 data points from Method 1 and Method 2, respectively. Then, we test the model 

prediction accuracy on the testing samples which are 151 and 96 data points from Method 1 and 

Method 2, respectively. 

The use of the regression tree technique shows similar results as the ANOVA analysis as seen in 

the Tables. Table 30 shows a classification/count of misclassification that is a cross-tabulation 

that indicates the model incorrectly classified records in the testing data, which is a simple 

random sample of 25% (151) of the full data from Method 1.  
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TABLE 30: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 1 and proportions are given in the parentheses – July 21, 2017 at Constant Hall 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 8 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

8 

2 0 

(0) 

33 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

33 

3 0 

(0) 

6 

(6.9) 

81 

(93.1) 

0 

(0) 

0 

(0) 

87 

4 0 

(0) 

0 

(0) 

0 

(0) 

21 

(91.3) 

2 

(8.7) 

23 

Total 8 39 81 21 2 151 

 

Also, Table 31 shows the classification/count of misclassification corresponding to Method 2. 

TABLE31: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 2 and proportions are given in the parentheses – July 21, 2017 at Constant Hall 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 5 

(62.5) 

3 

(37.5) 

0 

(0) 

0 

(0) 

0 

(0) 

8 

2 0 

(0) 

30 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

30 

3 0 

(0) 

13 

(30.2) 

30 

(69.8) 

0 

(0) 

0 

(0) 

43 

4 0 

(0) 

0 

(0) 

0 

(0) 

12 

(80) 

3 

(20) 

15 

Total 5 46 30 12 3 96 

 

4.3.4 July 21, 2017 at Rogers Hall 

We begin by training regression tree models on 75% of the full data from both methods, i.e. 495 

and 187 data points from Method 1 and Method 2, respectively. Then, we test the model 
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prediction accuracy on the testing samples which are 165 and 62 data points from Method 1 and 

Method 2, respectively. 

The use of the regression tree technique shows similar results as the ANOVA analysis as seen in 

the Tables. Table 32 shows a classification/count of misclassification that is a cross-tabulation 

that indicates the model incorrectly classified records in the testing data, which is a simple 

random sample of 25% (165) of the full data from Method 1.  

TABLE 32: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 1 and proportions are given in the parentheses – July 21, 2017 at Rogers Hall 

 
 
 
 
 

True Value 
 

Predicted Value Total 

 1 2 3 4 5 

1 16 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

16 

 

2 0 

(0) 

48 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

48 

 

3 0 

(0) 

0 

(0) 

68 

(100) 

0 

(0) 

0 

(0) 

68 

 

4 0 

(0) 

0 

(0) 

0 

(0) 

28 

(84.8) 

5 

(15.2) 

33 

 

Total 16 

 

48 

 

68 

 

28 

 

5 

 

165 

 

Similarly, Table 33 shows the classification/count of misclassification corresponding to Method 

2. 
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TABLE 33: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 2 and proportions are given in the parentheses – July 21, 2017 at Rogers Hall 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 6 

(85.7) 

1 

(14.3) 

0 

(0) 

0 

(0) 

0 

(0) 

7 

 

2 0 

(0) 

8 

(88.9) 

1 

(11.1) 

0 

(0) 

0 

(0) 

9 

 

3 0 

(0) 

4 

(14.8) 

23 

(87.4) 

0 

(0) 

0 

(0) 

27 

 

4 0 

(0) 

0 

(0) 

0 

(0) 

14 

(73.7) 

5 

(26.3) 

19 

Total 7 

 

9 

 

27 

 

14 

 

5 

 

62 

 

 

4.3.5 July 21, 2017 at NEB 

We begin by training regression tree models on 75% of the full data from both methods, i.e. 411 

and 255 data points from Method 1 and Method 2, respectively. Then, we test the model 

prediction accuracy on the testing samples which are 137 and 85 data points from Method 1 and 

Method 2, respectively. 

The use of the regression tree technique shows similar results as the ANOVA analysis as seen in 

the Tables. Table 34 shows a classification/count of misclassification that is a cross-tabulation 

that indicates the model incorrectly classified records in the testing data, which is a simple 

random sample of 25% (137) of the full data from Method 1.  
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TABLE 34: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 1 and proportions are given in the parentheses – July 21, 2017 at NEB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 4 

(80) 

1 

(20) 

0 

(0) 

0 

(0) 

0 

(0) 

5 

2 0 

(0) 

36 

(100) 

0 

(0) 

0 

(0) 

0 

(0) 

36 

3 0 

(0) 

0 

(0) 

55 

(100) 

0 

(0) 

0 

(0) 

55 

4 0 

(0) 

0 

(0) 

0 

(0) 

36 

(87.8) 

5 

(12.2) 

41 

Total 4 37 55 36 5 137 

 

Also, Table 35 shows the classification/count of misclassification corresponding to Method 2. 

TABLE 35: Count of Misclassification of test sample using the Regression Tree Technique for 

Method 2 and proportions are given in the parentheses – July 21, 2017 at NEB 

 
 
 
 
 

True Value 

 

Predicted Value Total 

 1 2 3 4 5 

1 4 

(80) 

1 

(20) 

0 

(0) 

0 

(0) 

0 

(0) 

5 

2 0 

(0) 

10 

(83.3) 

2 

(16.7) 

0 

(0) 

0 

(0) 

12 

3 0 

(0) 

4 

(10.8) 

33 

(89.2) 

0 

(0) 

0 

(0) 

37 

4 0 

(0) 

0 

(0) 

0 

(0) 

31 

(100) 

0 

(0) 

31 

Total 4 15 35 31 0 85 

 

4.4 Discussion of Results 

     In this chapter, the results of the models are presented. The figures displayed in this section 

are to show the effects of altitude coefficients and duration varying coefficients on the model. 

The Tables of the GLM and Regression Tree results show that altitude has more effect on the 
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differences in the aerosols identified. Summary of each of the effects of altitude and duration are 

presented. 

4.4.1 Altitude Coefficients Model 

The GLM model in Equation 34 shows that the altitude has a significant effect on the types of 

observed aerosols as seen in Figs. 5 and 6. There appears to be a clear separation of the aerosols 

based on altitude (Figs. 5 and 6), and a mix of the aerosols when compared with duration. These 

findings match the results that are published by [6] which shows that the classification results are 

used together with the measurements of aerosol optical depth to apportion the aerosol optical 

depth among the various aerosol types. It is then observed that the dominant aerosol types in 

terms of aerosol optical depth vary significantly with altitude. 

4.4.2 Duration Varying Coefficients Model 

 

FIG. 5: 3-D View of Detected Aerosols Using Method 1 
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FIG. 6: 3-D View of Detected Aerosols Using Method 2 

From Fig.5. and Fig. 6., it was observed that duration does not have a significant effect on the 

type of aerosols classification found in the environment. The plots are quite scattered and do not 

lead to any pattern. The figures also show that the aerosols are categorized by the altitudes they 

are found. Thus it proves that altitude is a significant factor in finding aerosols in the atmosphere. 

The analogous analysis shows that in both methods, duration is not found to be a significant 

indicator of aerosol, whereas altitude is as observed in all the ANOVA Tables irrespective of the 

date and/or location the LIDAR data was collected. This significance is observed in the p-values 

from the ANOVA tables for both altitude and duration. The smaller the p-value the more 

significant the factor is. The regression tree technique shows similar results as the ANOVA 
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analysis, that is, in both methods altitude significantly affects the types of observed aerosols 

whereas the duration is not significant. This is known by the value of the variable importance 

and the larger the value is the more significant that factor is. 

4.4.3 Comparison of Analysis 

     For the analysis from August 16, 2016 at ESB, the misclassification of aerosol values for 

Methods 1 and 2 are displayed in Tables 8 and 9 respectively. It appears that the proportions of 

correct classification are high for both methods.  Overall, the use of Methods 1 and 2 did not 

show any significant difference in predicting aerosol value 2 (SOx) and aerosol value 4 (soot). 

However, Method 1 showed more accuracy for aerosol value 1 (NOx) than Method 2. 

Classifications at values 2 (SOx) and 4 (soot) are perfect for both methods. At aerosol value 3 

(CO), both methods have errors but they seem to predict equally well. It is to be noted that 

predictions are made for aerosol values 2 (SOx) and 4 (soot) when Method 2 is used when 

aerosol values 1 (NOx) and 3 (CO) respectively are expected. That forces us to think that some of 

the aerosol at values 2 (SOx) and 4 (soot) can or should be classified as values 1 (NOx) and 3 

(CO) and vice versa, hence Method 1 has less misclassifications than Method 2. 

The variable importance is as follows: the most important variable is altitude with a value equals 

to 100 that is much greater than the one corresponding to the duration variable, which is 0. 

Similarly, Method 2 shows that the most important variable is altitude with a value equals to 100 

which is much greater than 0 the value corresponding to duration. Both tables 26 and 27 show 

high proportions of correct classification. For Method 1, the error rate, or the proportion of 

incorrectly classified aerosols levels is 0.03, while the proportion of incorrectly classified 

aerosols levels for Method 2 is 0.04. Although the misclassification corresponding to the first 



51 
 

method is much smaller than the one from the second method, both are acceptable, and the 

difference might be due the smaller training sample of Method 2 compared to the one from 

Method 1. The first three aerosol values of Method 1 shows perfect accuracy while Method 2 has 

some errors especially at aerosol values 1 (NOx) and 4 (soot). In aerosol value4 (soot) both 

methods have some errors and performs equally as well as each other. It can be seen that 

prediction is made for aerosol value 5 (No Aerosol) even though it was not part of the selection. 

This again suggests that some of the aerosol at value 4 (soot) should have been classified as 

aerosol value 5 (No Aerosol). 

     In respect to the analysis from August 17, 2016 at ESB, the misclassification of aerosol values 

for Methods 1and 2 are displayed in Tables 12 and 13 respectively. It appears that the 

proportions of correct classification are high for both methods.  Overall, the use of Methods 1 

and 2 did not show any significant difference in predicting aerosol value 2 (SOx). At aerosol 

value 1 (NOx), both methods have errors but they seem to predict equally well. Classification at 

value 2 (SOx) is perfect for both methods. At aerosol value 3 (CO), both methods have errors but 

Method 2 seem to predict better than Method 1. At value 4 (soot), both methods almost perfectly 

predict.  

The variable importance is as follows: the most important variable is altitude with a value equal 

to 100 that is much greater than the one corresponding to the duration variable, which is 0. 

Similarly, Method 2 shows that the most important variable is altitude with a value equal to 98 

which is much greater than 2 the value corresponding to duration. Both Tables 28 and 29 show 

high proportions of correct classification. For Method 1, the error rate, or the proportion of 

incorrectly classified aerosols levels is 0.04, while the proportion of incorrectly classified 

aerosols levels for Method 2 is 0.11. Although the misclassification corresponding to the first 
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method is much smaller than the one from the second method, both are acceptable, and the 

difference might be due the smaller training sample of Method 2 compared to the one from 

Method 1. 

     With the analysis from July 21, 2017 at Constant Hall, the misclassification of aerosol values 

for Methods 1 and 2 are displayed in Tables 16 and 17 respectively. It appears that the 

proportions of correct classification are high for both methods.  Overall, the use of Methods 1 

and 2 did not show any significant difference in predicting aerosol value 2 (SOx) and aerosol 

value 4 (soot). Also, Method 1 showed less accuracy for aerosol value 1 (NOx) than Method 2. 

Classification at value 2 (SOx) is perfect for both methods. At aerosol value 3 (CO), both 

methods have errors but they seem to predict equally well. 

The variable importance is as follows: the most important variable is altitude with a value equal 

to 95 that is much greater than the one corresponding to the duration variable, which is 5. 

Similarly, Method 2 shows that the most important variable is altitude with a value equal to 95 

which is much greater than 5 the value corresponding to duration. Both Tables 30 and 31 show 

high proportions of correct classification. For Method 1, the error rate, or the proportion of 

incorrectly classified aerosols levels is 0.05, while the proportion of incorrectly classified 

aerosols levels for Method 2 is 0.20. Although the misclassification corresponding to the first 

method is much smaller than the one from the second method, both are acceptable, and the 

difference might be due to the smaller training sample of Method 2 compared to the one from 

Method 1. The first two aerosol levels of Method 1 show perfect accuracy while Method 2 also 

has perfect accuracy at aerosol level 2 (SOx). In aerosol levels3 (CO) and 4 (soot) both methods 

have some errors, but Method 1 performs significantly better. 
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     Also for the analysis from July 21, 2017 at Rogers Hall, the misclassification of aerosol 

values for Methods 1 and 2 are displayed in Tables 20 and 21 respectively. It appears that the 

proportions of correct classification are high for both methods.  Overall, the use of Methods 1 

and 2 did not show any significant difference in predicting aerosol value 2 (SOx). However, 

Method 1 showed less accuracy for aerosol value 1 (NOx) than Method 2. Classification at value 

2 (SOx) is perfect for both methods. At aerosol value 3 (CO), both methods have errors but they 

seem to predict equally well. At value 4 (soot), Method 1 works better. It is to be noted that 

prediction is made for aerosol value 5 (No Aerosol) even though it was not part of the selection. 

That forces us to think that some of the aerosol at value 4 (soot) can or should be classified as 

value 5 (No Aerosol) and vice versa. 

The variable importance is as follows: the most important variable is altitude with a value equal 

to 98 that is much greater than the one corresponding to the duration variable, which is 2. 

Similarly, Method 2 shows that the most important variable is altitude with a value equal to 94 

which is much greater than 6 the value corresponding to duration. Both Tables 32 and 33 show 

high proportions of correct classification. For Method 1, the error rate, or the proportion of 

incorrectly classified aerosols levels is 0.03, while the proportion of incorrectly classified 

aerosols levels for Method 2 is 0.18. Although the misclassification corresponding to the first 

method is much smaller than the one from the second method, both are acceptable, and the 

difference might be due to the smaller training sample of Method 2 compared to the one from 

Method 1. The first three aerosol values of Method 1 show perfect accuracy while Method 2 has 

some errors especially at aerosol value 3 (CO). In aerosol value 4 (soot) both methods have some 

errors, but Method 1 performs better. As in the ANOVA analysis, it can be seen that prediction is 

made for aerosol value 5 (No Aerosol) even though it was not part of the selection. This again 
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suggests that some of the aerosol at value 4 (soot) should have been classified as aerosol value 5 

(No Aerosol). 

     Lastly with the analysis from July 21, 2017 at NEB, the misclassification of aerosol values for 

Methods 1 and 2 are displayed in Tables 24 and 25 respectively. The proportions of correct 

classification are high for both methods. The use of Methods 1 and 2 did not show any 

significant difference in predicting aerosol value 1 (NOx), aerosol value 2 (SOx) and aerosol 

value 4 (soot). However, Method 2 showed less accuracy for aerosol value 3 (CO) than Method 

1. Classification is perfect for both methods at values 1 (NOx), 2 (SOx) and 4 (soot). 

     The variable importance is as follows: the most important variable is altitude with a value 

equal to 99 that is much greater than the one corresponding to the duration variable, which is 1. 

Similarly, Method 2 shows that the most important variable is altitude with a value equal to 92 

which is much greater than 8 the value corresponding to duration. Both Tables 34 and 35 show 

high proportions of correct classification. For Method 1, the error rate, or the proportion of 

incorrectly classified aerosols levels is 0.04, while the proportion of incorrectly classified 

aerosols levels for Method 2 is 0.08. The misclassification corresponding to the first method is 

much smaller than the one from the second method, both are acceptable, and the difference 

might be due the smaller training sample of Method 2 compared to the one from Method 1. The 

aerosol values 2 (SOx) and 3 (CO) of Method 1 show perfect accuracy while Method 2 has some 

errors except at aerosol value 4 (soot) where it also has perfect accuracy. In aerosol value 1 

(NOx) both methods have some errors, but they seem to predict equally well. 

 

 



55 
 

CHAPTER 5 

CONCLUSIONS 

This dissertation proposes experiments which are performed on different days and locations to 

obtain LIDAR data to be used to identify the types of aerosols in the atmosphere. The work 

demonstrates computational models to help obtain optical and spectral parameters to help 

classify aerosols. Another contribution of this dissertation project is that it applies classification 

techniques to distinguish between different aerosols. 

It also analyzes classification approaches using statistical analysis for predictive behavior. 

Extensive statistical analyses and comparison of data from both methods reveal significant 

differences in the prediction of aerosol values using the two classification methods described 

with the aid of statistical analysis tools such as GLM and the Regression Tree. The overall 

contributions of this dissertation are summarized and further discussed below. 

     First, the extensive aerosol parameters such as backscatter and extinction coefficients are 

retrieved from the LIDAR data collected as seen in Chapter 2 with the help of retrieval methods 

by Fernald or Klett. Second, the optical and spectral aerosol parameters were computed using the 

extensive parameters and then combined to obtain two different classification methods as 

described in Chapter 3 in order to help classify the various identified aerosols found in the 

atmosphere around the Old Dominion University campus. Third, the statistical analysis tools 

such as GLM and Regression Tree techniques are introduced and implemented by modeling the 

identified aerosols and activity profiles. These tools also enable the prediction of aerosols when 

the two classification methods are used. 
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     Finally, from the use of p-values from the ANOVA tables and the variable importance of the 

Regression Tree technique it is observed that altitude is more significant than duration in the 

identification of aerosols in the atmosphere. This means that to predict the presence of aerosols, 

it is more dependent on the altitude one is observing but not on the duration of observance. 

     Interestingly, it appears that the proportions of classification are high for both methods which 

imply both methods are likely to correctly predict the type of aerosols identified in the 

atmosphere. Using the count of misclassification tables, it is observed that to assume the 

presence of an identified aerosol with value 1 (NOx), both methods were equally adept in 

predicting it. To assume the presences of aerosol with value 2 (SOx) and aerosol with value 3 

(CO) in the atmosphere, Method 1 was likely to predict them more often as compared to Method 

2. Lastly, to assume the presence of aerosol of value 4 (soot), the two methods were equally 

likely to predict its presence. 

     Method 1 is thus more appropriate for the classification of the aerosols than Method 2 due to 

its lower misclassification errors irrespective of the statistical analysis tool which is used and/or 

the date and location which was analyzed. The analysis provided concurrent estimations of the 

underlying aerosol distributions between the methods and locations. As illustrated, the functional 

connectivity between the regions is shown to provide evidence that parameters are significantly 

different. 

5.1 Future Work 

     In this dissertation, aerosols in the atmosphere are classified by the use of two classification 

methods, which are found to be appropriate for prediction of the types of aerosol being sought. 

There are however some limitations to the classification of aerosols using the methods suggested 
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in this dissertation and the statistical description of the data. Future studies are necessary to 

address these limitations. 

5.1.1 Methods Used 

     For the classification methods used, to be more specific for Method 1, a LIDAR with 

depolarizers on both the 532nm and 1064nm channels would be very useful in computing optical 

parameters such as depolarization ratio and depolarization spectral ratios which when combined 

with LIDAR ratio and backscatter color ratio would improve the classification process. This is 

because more parameters help in describing the different characteristics between the aerosols. 

Depolarization ratio is used to distinguish between fine aerosol particles [33]. Low values of 

depolarization ratio usually indicate the presence of spherical particles [34, 35] while high values 

will indicate non-spherical particles. Depolarization spectral ratio is found to be dependent on 

particle size in the case of ice particles and on mixing ratio, and spherical and non-spherical 

particle sizes in mixtures of dust and non-spherical particles [36]. A procedure can be pursued to 

integrate Methods 1 and 2 together to perform the classification of aerosols. 

5.1.2 Types of Statistical Analysis Techniques 

Although a practical way of describing the data has been presented, other algorithms such as the 

Bayesian methods or the Zero inflated Poisson would be alternatives for the research design for 

the innovative and efficient classification of the aerosols.    
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