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ABSTRACT 
 

DYNAMIC PROJECT TIME AND COST EVALUATION UNDER THE COMBINED 

INFLUENCE OF CONTRACT, QUALITY, AND UNCONTROLLABLE CHANGE 

 

Thomas V. Hammock 

Old Dominion University, 2015 

Director: Dr. Han P. Bao 

 

This dissertation proposes a method that quantifies the dynamics caused by disruptions 

due to multiple changes that can occur during the progression of a large scale project. To begin, 

equations consisting of multiple parallel event sequences are derived that define the relationship 

between individual process events and the final project completion time. Matrix notation and a 

precedence matrix concept are used in this derivation to produce equations that are best suited for 

computer programming applications. This relationship is the foundation upon which the equations 

are built to calculate the variation impact on each event of a large scale project.  Pursuing this 

further, the Analytical Hierarchy Process is used to rank Contract, Quality and Uncontrollable 

Variation types to generate two multiplication factors. One factor accounts for the variation type, 

and the other captures the variation influence relative to each event. These factors are used to 

define and formulate the equations used to quantify the impact of variation on each project event. 

Matrix notation, binomial variables, and Hadamard operators are used in the formula to optimize 

the result’s applicability to large data sets required for large scale projects. In the final analysis, 

the impact equations are used in a Monte Carlo simulation to produce each impact probability. 

These impact probability results are helpful tools for managing cost and evaluating design 

options.  The Monte Carlo results are also used to reinforce the proposed process by quantifying 

the impact of change and providing a measurable metric for performance accountability. 

Examples and illustrations are used in each derivation to better convey the proposed concepts and 

application
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NOMENCLATURE 
 

F = the effective variation type weighting 

T = the ranking matrix for the type of variation involved 

Rk = ranking matrix for the P events due to the presence of the k
th

 variation  

μk = the binary variable associated with the variation type 

ρk= the binary variable associated with the events 

K = the types of variations 

k = the variable used to represent variation type, k= k
th

 variation type, k=1 to K 

Δ = the change in time, or extraneous time due to variation, i.e.   
  is the change in time for the k 

variation type during the event p 

P = the number of events 

p = variable used to represent event. p= p
th 

event, 1 to P  

[e]0 = the initial event duration matrix 

[e]n = the event duration matrix populated with the “new” events durations calculated for 

variation n 

[E] = the event completion matrix 

[E]n = the event completion matrix for variation n 

[CM] = the cumulative matrix 

N = the total variations during project progression, for our illustration N=4  

n = the variable used to represent the nth variation, n =1 to N, i.e. for variation one, or V1, n=1  

ti = time of variation impact i 

ei = time duration of event i

Mk = the effective event ranking conversion 
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NOMENCLATURE/ACRONYMS (cont.) 

Δn = change in task times due to variation n 

s = event variation impact column matrix 

ϑ = the time during project progression that variation occurred

  



  viii 

TABLE OF CONTENTS 
 

 

 

 Page 

 

LIST OF TABLES ...........................................................................................................................x 

LIST OF FIGURES ....................................................................................................................... xi 

 

Chapter  

    1. INTRODUCTION ...............................................................................................................1 

 1.1 Purpose .....................................................................................................................1 

 1.2 Problem Statement ...................................................................................................1 

 1.3 Large Scale Projects .................................................................................................2 

 1.4 Variation ..................................................................................................................3 

 1.5 Defining the Dependent and Independent Variables .............................................11 

 1.6 Research Applications ...........................................................................................11 

 

    2. LITERATURE REVIEW ..................................................................................................12 

 2.1 Existing Classification of Delay ............................................................................12 

 2.2 Existing Methodologies Used to Evaluate Project Progression .............................13 

 2.3 A Review of Work Done on Process and Project Simulation ...............................15 

   

    3. DERIVATION OF THEORETICAL FOUNDATION .....................................................17 

 3.1 The Relationship between Project Completion Time and Individual  

 Events ...........................................................................................................................17 

 3.2 The Precedence Matrix ..........................................................................................19 

 3.3 Utilizing the Precedence Matrix on a Sequence of Events ....................................21 

 3.4 Utilizing the Precedence Matrix on Two Parallel Sequence of  

 Events ...........................................................................................................................22 

 3.5 The Rework Matrix ................................................................................................24 

 3.6 Algebraic Solution of the Rework Matrix Used on a Sequence of  

 Events ...........................................................................................................................28

 3.7 Results ....................................................................................................................37 

 

    4. SAMPLE CALCULATIONS OF RANKING FOR PARAMETERS ..............................39 

 4.1 Analytical Hierarchy Process (AHP) .....................................................................39 

 4.2 AHP Used to Rank Variation Classifications ........................................................42 

 4.3AHP Used to Rank Events ......................................................................................45 

 

    5. APPLICATIONS ...............................................................................................................51 

 5.1 Utilizing the Derived Equations on a Sequence of Events ....................................51 

 5.2 Results ....................................................................................................................52 

 5.3 Utilizing the Derived Equations on Two Parallel Sequence of  

 Events ...........................................................................................................................52 

 5.4 Results ....................................................................................................................57 



  ix 

Chapter  Page 

 

    6. METHODOLOGY FOR ASSIGNING VALUES TO THE VARIATION  

    TYPE AND TIME .............................................................................................................58 

 6.1 Introduction to Monte Carlo ..................................................................................58 

 6.2 Utilizing Monte Carlo on a Sequence of Events ....................................................58 

 6.3 Results ....................................................................................................................70 

 6.4 Utilizing Monte Carlo on Two Parallel Sequence of Events .................................70 

 6.5 Results ....................................................................................................................78 

 6.6 More Complex Situations ......................................................................................78 

 

    7. CONCLUSION ..................................................................................................................81 

 

REFERENCES ..............................................................................................................................83 

 

APPENDICES ...............................................................................................................................86 

 A. Solving for the Pairwise Matrices Right Principal Eigenvector .............................86 

 B. Pairwise Comparison Consistency Ratio ................................................................90 

 C. Monte Carlo Excel Calculations .............................................................................92 

 D. Parallel Sequences with Constraints Located in the Upper Triangle of  

 the Precedence Matrix..................................................................................................98 

 

VITA ............................................................................................................................................104 

 

  



   x 
 

LIST OF TABLES 

 

  

 

Table Page 

 

3.1.   
  Time Increase Due to Variation k During Event p ............................................................36 

 

4.1. Scale for Pairwise Comparison ...............................................................................................44 

 

4.2. Evaluating Events Relative to Variation Type ........................................................................44 

 

4.3. Pairwise Comparrison Variation Type Relative to Each Other ..............................................45 

 

4.4. Evaluating Events Relative to Contract Variation ..................................................................46 

 

4.5. Ranking Events Relative to Contract Variation ......................................................................46 

 

4.6. Evaluating Events Relative to Quality Variation ....................................................................47 

 

4.7. Ranking Events Relative to Quality Variation ........................................................................48 

 

4.8. Evaluating Events Relative to Uncontrollable Variation ........................................................49 

 

4.9. Ranking Events Relative to Uncontrollable Variation ............................................................49 

 

6.1. Variation Type and Timing .....................................................................................................60

 



   xi 

LIST OF FIGURES 

   

 

 

Figure Page 

 

1.1. Three Different Designs  ...........................................................................................................4 

 

1.2. Gantt Chart For Three Bridges .................................................................................................6 

 

1.3. Bridge Variation #1 ..................................................................................................................7 

 

1.4. Bridge Variation #2 ..................................................................................................................8 

 

1.5. Bridge Variation #3 ..................................................................................................................9 

 

1.6. Variation 4 at week 7, Handrail Requirement  .........................................................................9 

 

1.7. Four Variations  ......................................................................................................................10 

 

3.1. Sequential Events  ...................................................................................................................18 

 

3.2. The Precedence Matrix for the Bridge Illustration  ................................................................19 

 

3.3. Installing a Pump  ...................................................................................................................22 

 

3.4. Two Parallel Uncoupled Sequential Events  ...........................................................................23 

 

3.5. Two Parallel Coupled Sequential Events ................................................................................23 

 

3.6. Variation Impact .....................................................................................................................25 

 

3.7. The Notation Used for the Event Matrix [e]n ..........................................................................27 

 

4.1. Hierarchy ................................................................................................................................43 

 

4.2. Hierarchy Values ....................................................................................................................50  

 

6.1. Variation Type Distribution  ...................................................................................................59 

 

6.2. Variation Type ........................................................................................................................60 

 

6.3. Variation Timing on the Bridge Illustration  ..........................................................................61 

 

6.4. Variation Impact for Four Variations (N=4), on Event 1 (e1)  ...............................................67 

 



   xii 

Figure Page 

 

6.5. Variation Impact for Four Variations (N=4), on Event 2 (e2)  ...............................................67 

 

6.6. Variation Impact for Four Variations (N=4), on Event 3 (e3)  ...............................................68 

 

6.7. Variation Impact for Four Variations (N=4), on Event 4 (e4)  ...............................................68 

 

6.8. Total Variation Impact (N=4), on All Events (e1+e2+e3+e4)  .................................................69 

 

6.9. Cumulative Distribution for the Total Variation Impact  .......................................................69 

 

6.10. Two Parallel Coupled Sequential Events  .............................................................................70 

 

6.11. Variation Impact for One Variation on Precedence Matrix A vs. B  ....................................72 

 

6.12. Cumulative Distribution of the Variation Impact for One Variation on  

 Precedence Matrix A vs. B .................................................................................................. 73 

 

6.13. Variation Impact for Two Variations on Precedence Matrix A vs. B  .................................74 

 

6.14. Cumulative Distribution of the Variation Impact for Two Variations on  

 Precedence Matrix A vs. B  ..................................................................................................74 

 

6.15. Variation Impact for Three Variations on Precedence Matrix A vs. B  ...............................75 

 

6.16. Cumulative Distribution of the Variation Impact for Three Variations on  

 Precedence Matrix A vs. B  ..................................................................................................76 

 

6.17. Variation Impact for Four Variations on Precedence Matrix A vs. B  .................................77 

 

6.18. Cumulative Distribution of the Variation Impact for Four Variations on  

 Precedence Matrix A vs. B  ..................................................................................................77 

 

6.19. Expanding the Precedence Matrix ........................................................................................80 

 

  



   1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Purpose 

The purpose of this dissertation is to propose and illustrate a model for evaluating the 

impact of variation to large scale projects. The research in this dissertation applies to modeling 

and simulation of cost estimation models as a field of study, and the proposed model is 

specifically for large scale projects. Calculating impact due to variation is a critical element in 

planning, production, and business processes in large scale construction projects. The model is 

also a critical element in information systems and risk management. The topic for this 

dissertation is dynamic project time and cost evaluation under combined influence of contract, 

quality, and uncontrollable change. The proposed model for variation impact uses the Analytical 

Hierarchy Process to rank different classifications of variation and the relative ranking of project 

events. It also uses Monte Carlo simulation to estimate the probability of different impacts on 

projects. This dissertation further explains the proposed mathematical model with illustrations to 

show how to apply the model. 

1.2 Problem Statement

Predicting the dynamic project time and cost evaluation under combined influence of 

contract, quality, and uncontrollable change continues to challenge areas of large scale projects 

such as accounting, finance, planning, and production. Specifically, the existing method of 

accounting for project variation to be used for cost control management is inaccurate and 

lacking. This study explores the relationship between the types of change during project 

progression and explains a method to predict the impact of variation in a large scale project.   
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1.3 Large Scale Projects 

A project can require months or years to complete and cost millions, even billions, of 

dollars. This is particularly true in large scale construction projects such as bridges, tunnels, 

buildings, ships, and airplanes.  Managing these projects consists of a complex and integrated 

array of decisions, actions, and communications necessary to complete projects successfully. 

General project planning practices are reviewed here to help explain the formulas developed in 

chapter 3. A key element to successful project management is to document what the client wants 

by identifying all the work to be done and the personnel available to do the work. This 

communication will also recognize all the risks involved with doing the work, anticipate any 

problems that could interrupt the project once it has started and calculate and publish project 

time and cost targets. After gathering all the necessary information to define and scope the 

project, a baseline schedule and baseline budget is developed. The cost of the project is estimated 

and documented in the project proposal. When the decision is made to go forward with the 

project, it is important to have a plan to monitor and control costs. This monitoring is set at 

intervals to allow necessary intervention to avoid cost overruns. The cause of the actual cost 

exceeding budget in most projects is poor cost control. Other factors that contribute to project 

cost overruns are poor cost estimates and a lack of standards or rules for developing estimates 

and cost control processes.   

The project does not generate revenue during the scoping, planning, engineering, and 

construction phase, and many times dependent cost elements consume a majority of the project 

funding. Some of these time dependent elements are labor, engineering and leased equipment. 

These time dependent costs consume a large amount of cash and are a major cost concern.  
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1.4 Variation 

There are many reasons why a project will deviate from the original contract. These 

changes are often called change order or variation order. Some changes are initiated by the 

owner; other changes are due to technological advances or design oversight. When changes are 

introduced prior, during or after construction work has been executed, the impact of these 

changes can drastically affect project performance. Design changes to the product during the 

manufacturing or construction process, as experience proves, are inevitable but can be properly 

managed and controlled. These changes usually directly affect the contract in terms of time and 

cost. The owner and contractor both must be knowledgeable as to how to control and protect 

their interests. Setting and following the control systems in place is imperative in order to 

successfully manage changes and design variations. It is important to incorporate the 

interdependence of design and construction in the planning phase of a large scale project. The 

design and construction processes are coupled activities. Design is a process of drafting and 

calculating the specifications for a large scale project, usually documented using detailed plans 

and drawings; construction is a process of allocating labor and resources necessary to turn the 

design into the desired product. Construction is the process of building the design calculated and 

conceptualized by the architects and engineers. In both construction and design, various 

operational tasks must be accomplished with a variety of priorities and other dependencies 

among the different tasks. 

For a large scale project, the proposed and actual costs to complete a project are usually 

considerably different. This difference is referred to as variation. The relationship between large 

scale project design and variation must be defined in order to take advantage of opportunities for 

controlling the impact of variation. Identifying and quantifying the relationships between design 
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changes and the necessary events to produce a product in order to mitigate or avoid variation 

impact is vitally important to large scale projects. The customer’s goal is to have the changes 

incorporated into the original product without increasing cost or delivery time and without 

compromising the performance of the other systems in the product.  

Consider, for example, a large scale construction project such as a bridge. 

 

 

 

 

 

 

 

 

Figure 1.1: Three Different Designs 

 

In figure 1.1, the design of each bridge is conceptualized as a function of the contract parameters 

and impact that identical variations have on each design. The independent variables are the 

contract parameters and variations during project progression. The dependent variable is the 

design of the bridge. For our illustration, the parameters are held constant by letting each design 

satisfy all the contract parameters, such as capacity, costs, and time to build, with the same 

results. Those parameters are set as follows. 

• D1=capacity of 40 tons, costs 2 million, will take 10 weeks to build. 

• D2=capacity of 40 tons, costs 2 million, will take 10 weeks to build. 
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• D3=capacity of 40 tons, costs 2 million, will take 10 weeks to build. 

Define activities: For this bridge illustration, four activities will be used: scoping, engineering, 

ordering, and fabricating the bridge. 

• Scope = 3 weeks. In the scope portion of the design process the customer request is 

defined. After the request is defined the requirements needed to make the design change are 

calculated. Knowing the requirements needed for the design change, each event of the project is 

examined to determine how the design change impacts the event. 

• Engineering = 2 weeks. During the engineering part of the design, engineering calculates 

the necessary dimensional or component modifications needed to bring the concept to reality. 

Drawing changes are made and issued to the necessary departments for processing.   

• Ordering = 1 week. Obtaining the material and components required for the design 

change is performed during the order portion of the process. This process includes notifying 

contractors, changing and issuing work orders and work packages and canceling materials not 

needed. 

• Fabricating = 4 weeks. In the fabrication portion the material is fabricated and 

processed, components are installed and the system is tested.  

Figure 1.2 below shows the Gantt Chart for building the bridges. 
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Figure 1.2. Gantt Chart For Three Bridges 

 
 
 

Next, there will be four variations introduced that occur during the project progression to 

illustrate the impact that each variation has on the project.  For example, after the first week of 

the project the customer approaches the supplier requesting that the bridge be 2 feet wider than 

the original design (see Figure 1.3). Note that 1 week after beginning the project that is the 

scoping process and no engineering, ordering, or fabricating has been performed. This request 

being made at the beginning of the project progression minimizes the impact. If this request were 

made in the final week of project completion then it would impact all phases of the project. In 

general, the earlier the variation, the smaller the impact it has on the project.   
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Figure 1.3. Bridge Variation #1 

 

 

 

Note that increasing the bridge width has different impacts depending on the design of the 

bridge. The design 1 (D1) bridge will require 1 week for adding 2 feet to the width; the design 2 

(D2) bridge requires .5 week; the design 3 (D3) bridge requires 2 weeks. Why the difference? It 

may be that one design requires more engineering calculations, more labor for fabrication, or a 

longer lead time for materials. The concept illustrated here is that different designs will have 

different impacts from the same variation.  

For the second variation shown in figure 1.4, the customer approaches the supplier two 

weeks after the project has been started and requests that the capacity be increased from 40 tons 

to 50 tons. The later into the project that the change requests are made, the more impact they will 

have on the project.  
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Figure 1.4. Bridge Variation #2 

 

For this particular request, the impact is the same for all three designs. It will take 1 week extra 

to modify the original designs for an increased capacity from 40 to 50 tons.  

 The third variation shown in figure 1.5 is a quality variation that occurs at week 4 in that 

the fasteners do not meet required specifications. This particular problem causes a 2 week delay 

for the design 1 bridge, a 1.5 week delay for the design 2 bridge and a 3 week delay for the 

design 3 bridge. 
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Figure 1.5. Bridge Variation #3 

  

The fourth variation 7 weeks after the project has started is in the form of a city citation requiring 

that the handrails be modified to meet code. This delayed the design 1 bridge by 4 weeks (see 

figure 1.6), the design 2 bridge by 2 weeks, and the design 3 bridge by 5 weeks.  

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Variation 4 at week 7, Handrail Requirement 

Engineerin

g 
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When all four variations are superimposed on one chart in figure 1.7, the total delays are: 

8 weeks for the design 1 bridge, 5 weeks for the design 2 bridge, and 11 weeks for the design 3 

bridge.  

 

 

 

 

 

 

 

 

 

Figure 1.7. Four Variations 

 

Customer change requests and code requirements are traditionally the responsibility of the 

technical sales team. The quality department usually resolves problems such as the defective 

fasteners in the illustration above, but if the relationship between design and variation was 

defined, the contractor and customer would be on common ground when a design is selected by 

knowing the impact of variation during project progression.  

In our bridge illustration, the impact that variation had on the project was given. The bridges can 

be compared for a number of variations. In our illustration, the number of variations, N, is four, 

i.e. N =4. Using the initial completion time as a base (10 weeks), a variation impact factor can be 

calculated for each design by dividing the completion time after variation impact by the initial 

V(1) V(2) V(3) 

V(4) 
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completion time. For D1, (18/10) =1.8, D2=1.5, and D3=2.1. In general, if the relationship 

between design and variation is defined, variation impact can be evaluated. 

1.5 Defining the Dependent and Independent Variables 

This dissertation derives the relationship between design and variation and quantifies the 

impact that variation has on project time and cost at completion.  It proposes methods for solving 

what the variation is, when the variation occurs, and where the variation impacts. Thus, the 

dependent and independent variables are defined as follows. 

Given: the project plan, the design, the sequence of events, the rework factors 

Independent variables: the number of variations, the time that the variation occurs, the type of 

variation 

Dependent variables: variation impact 

1.6 Research Applications 

Defining the impact of variation on a specific design before the project begins helps to: 

• Mitigate contract litigation 

• Bound spending 

• Optimize design  

• Quantify cost to support design research 

• Control costs  

• Justify funding from specific industries for defining their Precedence Matrix, 

rework factor, and variation initiation profile  

 

  



  12 

 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Existing Classification of Delay  

There is an abundance of literature discussing the impact of change on a project. A few 

examples include: (Brown, D. W. 1988), (Construction Industry Institute. 1988), (Hester, W. T. 

et al. 1988), (Leonard, C. A. 1987). Change has also been cause for litigation between the 

customer and supplier because of missed deadlines and increasing costs (Building Research 

Advisory Board 1978). Living in a world where the international market borders are melting is 

increasing competition in the area of efficiency and flexibility. The many sightings show that this 

is an ongoing occurrence (Brown, D. W. 1988), (Construction Industry Institute. 1988), (Hester, 

W. T. et al. 1988), (Leonard, C. A. 1987), (Salvahan, 2011). There are several helpful 

suggestions for better managing design change, but there remains an abundant opportunity for 

developing methods to improve the change process (Dellon, A. L. et al. 1988),  (Hester, W. T. et 

al. 1988). It is also important to note that the challenge of budgeting and forecasting the cost of 

large projects is largely due to implementing design changes that occur after the project has 

started. These design changes can be from initial contract proposal oversights or from 

implementing technological advances that occur during the duration of the build process. The 

cost of these changes increase exponentially (El-Haik & Al-Aomar, 2006) p 134 and 

135,(Mather & Management, 1999) p 200 and 201 as the project advances.

   



  13 

2.2 Existing Methodologies Used to Evaluate Project Progression 

 Many references use the term “delay” instead of variation to describe an event that 

changes the original planned timeline of a large scale project.  One common practice of 

classifying delay is by using three categories: critical, excusable, and compensable (Ndekugri  et 

al. 2008 ). The first category, critical or non-critical delay, applies to events that impact the 

original timeline’s critical or non-critical completion path.   A delay is classified into one of two 

possibilities in the second category, excusable or non-excusable, depending on whether the 

supplier or contractor is excused for the extension of time because of the delay. A delay is 

compensable or non-compensable depending on whether or not the customer is going to pay for 

the cost consequences caused by the delay. (Kumuraswamy et al. 2003; Ndekugri  et al. 2008 ). 

 One goal of all Delay Analysis Methods is to show how project delays affect various 

activities and, ultimately, the project completion date. Another goal of the Delay Analysis 

Method is to allocate each part of the overall project delay to the responsible party involved in 

the project. (Ndekugri  et al.2008; Stumpf, 2000). This allocation serves as the basis for cost 

and/or time settlements for the contracting businesses. The general business practice for 

contractors to collect costs due to delays is for them to show that the delayed events, according to 

terms of the contract, were at the risk of the owner, and prove the delay moved the project 

completion date. The critical path method (CPM) of planning can be used to prove the delay 

moved the project completion date. That is why Delay Analysis Methods use a critical path 

method to justify time-related claims such as delay of project completion time and increasing 

cost (Wickwire et al. 1989; Bramble and Callahan, 2000).  

 Some common methodologies such as As-planned vs. As-built, Impacted As-planned, 

Collapsed As-built, Window Analysis, and Time Impact Analysis and are reviewed to give an 
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overview of the current conventions used for analyzing delay or variation. Details of each 

method are beyond the scope of this dissertation.  The references cited in each review can be 

used for further information. 

 The As-planned vs. As-built methodology contrasts the events of the original CPM 

baseline plan with those of the as-built plan to assess and evaluate the delays. This methodology 

has advantages in that it is inexpensive, simple and easy to understand (Ndekugri  et al. 2008). 

Two shortcomings of this method are its inability to account for changes in the critical path and 

its difficulty  in dealing with complex delay situations (Lucas, 2002; Lovejoy, 2004; Pickavance, 

2005). 

 The Impacted As-planned methodology is where project delays are included in the CPM 

as planned events to show how the delay changes the project completion date. The change 

between the original planned completion date and the modified planned completion date is the 

amount of time caused by the delay. One advantage of this methodology is that it does not use an 

as built schedule to calculate the amount of time caused by each delay. Some weaknesses of this 

method are that it fails to account for any changes in the critical path and sequence of events. 

(Ndekugri  et al. 2008; Pickavance, 2005; Wickwire and Groff, 2004). 

 The Collapsed As-built methodology uses an as-built CPM schedule with all the project 

delays incorporated. This schedule is ‘collapsed’ by taking away the delays that occurred during 

project progression. This collapsed schedule shows how the project would have been completed 

without the delays. One strong point of this method is its level of accuracy; however, it fails to 

deal with changes in the critical path and work needed in finding the as-built critical path. 

(Lovejoy, 2004); Wickwire and Groff, 2004). 
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 The Window Analysis method utilizes the as-built CPM schedule by dividing it into 

sections or ‘windows’ for analysis. Major project milestones, such as changes in the critical path, 

major delays, or completion of major project components, define the boundaries of the window. 

These milestone events determine the quantity and time interval of the windows for the total 

project. This method of analysis gives more accurate results as the number of windows increase. 

(Hegazy and Zhang, 2005; Ndekugri  et al. 2008). Window analysis is performed by updating the 

plan within the first time interval by using as-built data and incorporating all the delays occurring 

in that time interval. The remaining as-planned schedule beyond this interval is held unchanged. 

The change in the original plan and the as-built plan that includes all the delays is the amount of 

project in the time interval. This process is repeated for each time interval to calculate the impact 

of each delay and total project delay. This method accounts for the changing nature of the critical 

path, but it is expensive because of the large amount of work needed to perform the analysis. 

(Bordoli and Baldwin, 1998; Finke, 1999; Galloway and Nielsen, 1990) 

 The Time Impact Analysis methodology is similar to the window method described 

above, but instead of examining time intervals between milestones, the analysis focuses on a 

specific delay.  The Time Impact Analysis method considers the impact of delays 

chronologically. The actual project status before and after the delay is used to quantify the delay 

in the project completion date. This is one of the most reliable techniques, but it is expensive 

because of the large amount of work required to perform the analysis. (Alkass et al., 1996; 

Pickavance, 2005). 

2.3 A Review of Work Done on Process and Project Simulation 

Sterman (2000) discusses how project budget models have been used to fight claims and 

to forecast the financial consequences of various decisions.  These models are confidential and 
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are developed for a specific company. There is not a model proposed available to the public that 

gives the impact of variations as a relationship of design to the number of variations. Sterman 

does not present a general format that can be tailored to fit different types of industry by 

structuring the precedence matrix and AHP to fit a specific large scale process. 

 System dynamics in modeling is where a dynamic hypothesis is a working theory of how 

the variation happened. This hypothesis focuses the customer’s and supplier’s efforts on 

structures that model reality. System dynamic modeling methods “are not able to easily 

accommodate multiple and/or concurrent disruptions caused by different project parties”(Nelson, 

Derek, 2011). The methods presented in this dissertation accommodate multiple variations, with 

multiple types of variation, and account for their dependence by using a precedence matrix. 
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CHAPTER 3 

DERIVATION OF THEORETICAL FOUNDATION 

 

3.1 The Relationship between Project Completion Time and Individual Events 

As stated in chapter 2, identifying and quantifying the relationships between design 

changes and the necessary events to produce a product in order to mitigate or avoid their impact 

is vitally important to large scale projects. The customer’s goal is to have the changes 

incorporated into the original product without increasing cost or delivery time and without 

compromising the performance of the other systems in the product. In order for the supplier or 

contractor to communicate the disruption caused by a change, it is important that the details of 

the original contract timeline agreement be established and documented. The problem is that 

each change situation is different, and many times there are no standards for implementing or 

tracking the change. Another problem is that there are no procedures in place to account for the 

difference between the original and actual project timeline or the initial and actual change 

timeline performance.  This dissertation proposes using matrix notation to represent the original 

project timeline. Matrix notation is defined as the precedence, the event, the cumulative, the final 

timeline matrices. Matrix notation gives visibility to the event details required to accomplish the 

tasks necessary for project completion and is an efficient way to handle the volume of data 

inherent to large scale projects. Using matrix notation also has the benefit of allowing us to use 

matrix arithmetic and matrix algebra to calculate the impact that design change has on the 

original project timeline matrix. For a large scale project that is in progress, there are two critical 

issues that must be resolved before we can apply lean manufacturing methods to the design 

change process. These issues are: 
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1. What events in the project does the change impact or affect, and  

2. How the change in the event will affect the project.  

To answer the second issue, one must know if the change impacts constraining events. In 

other words, if the change impacts non-constraining events, then the change in that event might 

not influence the finishing time of the final product. This is important because it allows us to 

separate and quantify original project plan variances from initial change impact variances. The 

contractor is usually responsible for such changes due to quality discrepancies. The customer is 

responsible for the change impact on the original project forecast such as contract changes. 

Separating and quantifying these responsibilities is essential for managing the project 

successfully. Below, an illustration is used to develop a general equation for the original project 

timeline and individual project events. This general equation is further developed to express the 

variance in both the original project timeline and the impact that a change has on the project. 

Derivation, using the bridge illustration 

• Let ei = the time duration for each activity i. 

• e1 = scoping the job = 3 weeks 

• e2 = engineering the job = 2 weeks 

• e3 = sourcing and ordering material = 1 week 

• e4 = Fabricating or building = 4 weeks 

 

 

 

 
Figure 3.1 Sequential Events 
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Figure 3.1 is a Gantt chart illustrating a series of sequential events for constructing a bridge. 

Column [E] is used to represent the time for each event to be completed. The cumulative time 

that preceded each event is represented by the column matrix [CM]. For example, the cumulative 

time that preceded e2 was the 3 weeks of e1. In matrix form,  

 

 Eq. 3.1a

3.2 The Precedence Matrix 

In equation 3.1, experienced planners or project managers that are qualified to accurately 

estimate the time needed to perform a certain task provide the values for the event matrix [e]. 

The matrix [CM] is used to develop the mathematical relationship between individual events and 

the final project timeline. The values for [CM] are calculated utilizing a tool called the 

precedence matrix. The precedence matrix for the sequence of events shown in figure 3.1 is 

defined and illustrated in figure 3.2.  

 

  Event j 

 [PM] = Event i  

   
 
 
 
 

  

 
 
 
 
 

  

 
 
 
 
 

  

 
 
 
 
 

  

 
 
 
 
 

 

 Figure 3.2. The Precedence Matrix for the Bridge 

Illustration 
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Where PMij indicates the presence (1) or absence (0) of a precedence between event i and event 

j. For example, PM32 = 1 means that event e3 (sourcing and ordering materials) follows event e2 

(fabricating). PM31 = 0 means that event e3 does not follow e1. 

As illustrated in the examples to follow, projects that have events sequences flowing from left to 

right and parallel sequences of events flowing from top to bottom will have constraints between 

events located in the lower triangle of the precedence matrix. The cumulative matrix [CM] for 

projects with events flowing from left to right and sequences flowing from top to bottom is 

obtained through the following procedure:  

Procedure 

 For i = 1,  

     CM1 = 0, E1 = e1 + CM1 = e1 

 For i = 2: P (P is the total number of events) 

  CMi = Max [( if (PM)ij = 1, Ej,0) for j = 1 to i-1] 

  Ei+1 = ei+1 + CMi+1 

 end 

Note, the procedure for obtaining [CM] for a project that has event constraints located in the 

upper precedence matrix triangle is covered in Appendix D. 

In equation form, 

  0 if i= 1 

 [CM] =  Max  IF(PMij = 1, Ej, 0)   if i ≠ 1  Eq. 3.2 

    j = 1,2,3…i-1  
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3.3 Utilizing the Precedence Matrix on a Sequence of Events 
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3.4 Utilizing the Precedence Matrix on Two Parallel Sequence of Events 

Next, consider installing a pump as shown in figure 3.3 using the sequence of events 

shown in figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The precedence matrix for these two uncoupled sequence of events is  

  

Figure 3.3. Installing a Pump 

Figure 3.4. Two Parallel Uncoupled Sequential Events 
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  . Eq. 3.3 

 

 

The precedence matrix shown above requires e1 to be done before e2, e2 to be done before e3, 

e3 to be done before e4, etc.  

Next, consider the two parallel sequential events that are coupled. The coupling is due to 

the constraint of requiring the foundation to be finished before the pump assembly can be 

installed. The two critical paths are shown below in figure 3.5. 

 

 

 

 

 

 
 

 The precedence matrix for these two coupled sequence of events is 

 

 

 

Figure 3.5. Two Parallel Coupled Sequential Events 

Eq. 3.6 

9 
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3.5 The Rework Matrix 

To solve for the impact that variation has on a project, the rework that the variation 

causes must be calculated. To help quantify the rework caused by variation, the variations will be 

separated into their major types for analysis.  

 

                                                 = [

   
   
   
   

]

 

  Eq. 3.5                                                                                                   

 

Equation 3.5 expresses variation n, such as variation 1: design change at week 1. For our 

illustration, variations are classified into K=3 types of variations. Contract is k=1, quality is k=2 

and uncontrollable is k=3 variations. Each type of variation is ranked relative to one another in 

order to associate the amount of rework required due to each variation expressed as a multiple of 

the initial time needed to complete each event.  

If all classes aren’t included in the variation, then a convention is used to maintain the 

correct magnitude for rework. The total variation is the sum of each variation expressed. 

 Total Δ= ∑   
   Δn   Eq. 3.6 

 

The time increase due to each variation is represented with the symbol   
  where k is the 

variation type, and p is the event during which the variation occurs. For our bridge construction 

example, the sequence of events and the variations occurring during project progression are 

illustrated and denoted using the variables shown in figure 3.6 below. 
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In the bridge illustration, V1 occurs during the scoping event (p= 1) of the project, 1 week 

after the project started. V1 is a contract type of variation, k=1. V1 will impact all the activities 

that occurred during the first week (ϑ1) of the project. V2 occurs during the scoping event (p= 1) 

of the project 2 weeks after the project started. V2 is a contract type of variation, k=1. V2 will 

impact all the activities that occurred during the first two weeks (ϑ2) of the project. V3 occurs 

during the engineering event (p= 2) of the project 4 weeks after the project started. V3 is a quality 

type of variation, k=2. V3 will impact all the activities that occurred during the first four weeks 

(ϑ1) of the project. V4 occurs during the fabricate event (p= 4) of the project 7 weeks after the 

project started. V4 is an uncontrollable type of variation, k=3. V4 will impact all the activities that 

occurred during the first seven weeks (ϑ4) of the project. 

 

Fig. 3.6 Variation Impact  
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For our illustration, we use the Hadamard product (denoted [A] ◦ [B]), which is a binary 

operation that takes two matrices of the same dimensions, and produces another matrix where 

each element ij is the product of elements ij of the original two matrices. It should not be 

confused with the more common matrix product. For our derivation, we use the symbol “⦁” to 

represent multiplication to avoid mistaking the multiplication operator “x” for a variable. 

Each variation Δn is expressed as a product of factors associated with the variation type k and is 

then multiplied by the initial event column matrix [s]. Note that depending on the project and the 

rework involved, it might be more suitable to use a column matrix other than the initial event 

column matrix shown in this derivation. This flexibility allows the same method to be 

customized to fit a variety of projects.  

The problem is finding the value or convention for assigning a value to the factors used to 

operate on the initial event column matrix. A general expression that captures the impact of 

different types of variation and accounts for the variation impact differences of each event can be 

expressed using components Fk and Mk. Fk is a multiplier that accounts for the variation type, 

and Mk is the component that captures the different influence variation has on each event within 

each type of variation. 

 Δn =∑   
        

 ⦁   
  }] ◦     

 
n Eq. 3.7 

The sub notation n in Δn and [s]n is used to denote the variation number. Note that [s] is specific 

to the variation and is dependent on the time during project progression in which the variation 

occurs. 

For example, the bridge illustration has the notation and values shown in figure 3.7 as follows. 

Given [e]0 = [

  
  

  
  

] =  [

 
 
 
 

] ,  

http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Matrix_multiplication
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 [s]1 = [

 
 
 
 

]

 

= [

 
 
 
 

]

 

, [s]2 = [

 
 
 
 

]

 

= [

 
 
 
 

]

 

, [s]3 = [

  

    

 
 

]

 

= [

 
 
 
 

]

 

, 

 [s]4 = [

  
  

  

          

]

 

= [

 
 
 
 

]

 

 

Let μk = 1 if k belongs to the variation, i.e. k is involved in the variation, and μk = 0 if k does not 

belong to the variation.  

Then, 

 Fk = 
  

∑   
    

  
 Tk Eq. 3.8 

Let ρp = 1 if event p belongs to the variation, i.e. p is involved in the variation., and ρp = 0 if p 

does not belongs to the variation.  

 Mk = 
 

∑   
    

  
    

   [ρ]k ◦ [R]k  Eq. 3.9 

Fig. 3.7 The Notation Used for the Event Matrix [e]n  
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3.6 Algebraic Solution of the Rework Matrix Used on a Sequence of Events 

For the bridge illustration, k = 1,2,3. k is the type of change in a design variation 

 k= 1 means “Contract” change. 

 k = 2 means “Quality Control” change. 

 k = 3 means “Uncontrollable” change. 

 K = 3 is the total types of changes for our bridge illustration. 

Also, for the bridge illustration, p = 1,2,3,4.  p is the event identification.  

 p = 1 means “Scoping” event of the project. 

 p = 2 means “Engineering” event of the project. 

 p = 3 means “Ordering” event of the project. 

 p = 4 means “Fabricating” event of the project. 

 P = 4 is the total number of events in a project. 

Expanding Eq. 3.7 gives: 

 Δn = [{ (F1 ⦁M1) + ( F2 ⦁M2) + (F3 ⦁M3) }] ◦ [s]n  Eq. 3.10 

where  

 F1 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T1  Eq. 3.11 

 F2 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T2  Eq. 3.12 

 F3 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T3  Eq. 3.13 

and  

 M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]1 ◦ [R]1  Eq. 3.14 

 M2 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]2 ◦ [R]2  Eq. 3.15 

 M3 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]3 ◦ [R]3  Eq. 3.16 
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[ρ]1 = , 

[
 
 
 
 
  

 

  
 

  
 

  
 ]
 
 
 
 

 

or, to simplify, because the subscript outside the matrix brackets denotes that the 

binomial column matrix,    [

  
 

  
 

  
 

  
 

]

 

belongs to the change type k = 1. Likewise, 

[ρ]2 = ,    [

  
 

  
 

  
 

  
 

]

 

    and    [ρ]3 =   [

  
 

  
 

  
 

  
 

]

 

. 

[R]1 =  

[
 
 
 
 
  

 

  
 

  
 

  
 ]
 
 
 
 

 

 or, to simplify, because the subscript outside the matrix brackets denotes that the 

binomial column matrix  [

  
 

  
 

  
 

  
 

]

 

belongs to the change type k = 1. Likewise, 

[R]2 = ,    [

  
 

  
 

  
 

  
 

]

 

    and    [R]3 =  [

  
 

  
 

  
 

  
 

]

 

.  

Note that this general expression can be used for many types of variations with as many 

numbers of variations required capturing the full variation impact. Also, each variation can have 

components of each class that the particular variation impacts. The total variation for the four 

variations used in our illustration is:  

 

 Total Δ = Δ1 +Δ2 + Δ3 + Δ4            Eq. 3.17 
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For the bridge illustration, variation 1 occurred 1 week after the project started; the only impact 

was e1. It is a contract variation that specifies that the bridge be wider than agreed upon in the 

original contract. 

 

 Δ1 = [{(F1 ⦁M1) + (F2 ⦁M2) + (F3 ⦁M3)}] ◦ [s]1 Eq. 3.18 

The variation is a contract variation, which reduces equation 5 to: 

 Δ1 = [{(F1 ⦁M1)}] ◦ [s]1  Eq. 3.19 

Also, recall F1 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T1  Eq. 3.20 

Because there is only a contract variation, μ1 and μ2 = 0, and equation 6 reduces to 

 F1 = 
  

   ⦁    
  ⦁ T1  Eq. 3.21 

giving  F1 = 1  Eq. 3.22 

Recall equation 9, 

 M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]1 ◦ [R]1  Eq. 3.23 

Only event one is impacted resulting in   
 ,   

 , and   
  = 0. Substituting into equation 9 gives 

  M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   [

  

 
 
 

]

 

◦ [R]1  Eq. 3.24 

and  M1 =    [

    

 
 
 

]

 

◦   [

  
 

  
 

  
 

  
 

]

 

 Eq. 3.25 

This results in  M1 =   [

 
 
 
 

]

 

   Eq. 3.26 
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giving  Δ1 = {(1 ⦁ [

 
 
 
 

]

 

)} ◦   [

 
 
 
 

]

 

  Eq. 3.27 

which yields  Δ1 =   [

 
 
 
 

]

 

  Eq. 3.28 

where ϑ = 1 because the time that has elapsed since project initiation is only 1 week. Note that in 

equation 3.19, the sub notation outside the matrix brackets specifies the variation number, not the 

variation type. This is because the event variation impact column matrix [s] is specific to the 

time in which the variation occurred during project progression. 

For the bridge illustration, variation 2 occurred 2 weeks after the project started. Thus, 

only e1 was impacted. It is a contract variation that specifies that the bridge capacity be more 

than agreed upon in the original contract. Recall equation 5, 

 Δ2 = [{(F1 ⦁M1) + (F2 ⦁M2) + (F3 ⦁M3)}] ◦ [s]2  Eq. 3.29 

reduces to Δ2 = {(F1 ⦁M1)} ◦ [e]2  Eq. 3.30 

and F1 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T1  Eq. 3.31 

Because there is only a contract variation, μ1 and μ2 = 0, and equation reduces to 

 F1 = 
  

   ⦁    
  ⦁ T1  Eq. 3.32 

giving  F1 = 1  Eq. 3.33 

and the equation 

 M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]1 ◦ [R]1  Eq. 3.34 

Only event one is impacted, resulting in   
 ,   

 , and   
  = 0. Substituting into equation 3.34 gives 



  32 

 

  M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   [

  

 
 
 

]

 

◦ [R]1  Eq. 3.35 

and  M1 =  [

    

 
 
 

]

 

◦ [

  
 

  
 

  
 

  
 

]

 

 Eq. 3.36 

This results in  M1 =   [

 
 
 
 

]

 

  Eq. 3.37 

giving  Δ2 = {(1 ⦁ [

 
 
 
 

]

 

)} ◦  [

 
 
 
 

]

 

     Eq. 3.38 

which yields  Δ2 =  [

 
 
 
 

]

 

 Eq. 3.39 

where e1 = 2 because the time that has elapsed since project initiation is only 2 weeks. Note in 

equation 27 that the sub notation outside the matrix brackets specifies the variation number, not 

the variation type. This is because the event variation impact column matrix [s] is specific to the 

time in which the variation occurred during project progression. 

For the bridge illustration, variation 3 occurred 4 weeks after the project started impacting e1and 

e2. It is a quality variation.  Recall equation 5, 

 Δ3 = [{(F1 ⦁M1) + (F2 ⦁M2) + (F3 ⦁M3)}] ◦ [s]3  Eq. 3.40 

The variation is a quality variation, which reduces equation 5 to 

 Δ3 = [{(F2 ⦁M2)}] ◦ [s]3  Eq. 3.41 

Also recall, F2 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T2  Eq. 3.42 
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Because there is only a quality variation, μ1 and μ3 = 0, and equation 6 reduces to 

 F2 = 
  

   ⦁    
  ⦁ T2  Eq. 3.43 

giving  F2 = 1  Eq. 3.44 

Recall equation 9, 

 M2 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]2 ◦ [R]2  Eq. 3.45 

Only event one and two are impacted, resulting in   
  and   

  = 0. Substituting into equation 9 

gives 

  M2 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   [

  

  

 
 

]

 

◦ [R]2  Eq. 3.46 

and M2 =   [

  
     

 ⦁  
    

 ⦁  
  

  
     

 ⦁  
    

 ⦁  
  

  
 

  
 

]

 

 ◦    [

  
 

  
 

  
 

  
 

]

 

 Eq. 3.47 

This results in  M2 =   [

  
 ⦁  

     
 ⦁  

    
 ⦁  

  
  

 ⦁  
     

 ⦁  
    

 ⦁  
  

  
 

  
 

]

 

     Eq. 3.48 

giving  Δ3 = {(1 ⦁    [

  
 ⦁  

     
 ⦁  

    
 ⦁  

  
  

 ⦁  
     

 ⦁  
    

 ⦁  
  

  
 

  
 

]

 

   )} ◦   [

  
 

    
 

 
 

]

 

  Eq. 3.49 

The binomial ρ’s = 1, to yield 

 

  Δ3 =    [

     
     

    
  

         
     

    
  

 
 

]

  

 Eq. 3.50 
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where e1 = 3 and   e2 = 1 because the time that has elapsed since project initiation is 4 weeks. 

Note that the sub notation outside the matrix brackets specifies the variation number, not the 

variation type. This is because the event variation impact column matrix [s] is specific to the 

time in which the variation occurred during project progression.  

For the bridge illustration, variation 4 occurred 7 weeks after the project started, and the 

uncontrollable variation increased the bridge capacity. The variation impacts e1, e2, e3, and e4. 

Recall equation 5, 

 Δ4 = [{(F1 ⦁M1) + (F2 ⦁M2) + (F3 ⦁M3)}] ◦ [s]4  Eq. 3.51 

The variation is a quality variation, which reduces equation 5 to 

 Δ4 = [{(F3 ⦁M3)}] ◦ [s]4  Eq. 3.52 

Also, recall  F3 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T3  Eq. 3.53 

Because there is only a uncontrollable variation, μ1 and μ2 = 0, and equation 6 reduces to 

 F3 = 
  

   ⦁    
  ⦁ T3  Eq. 3.54 

giving  F3 = 1  Eq. 3.55 

Recall equation 9, 

 M3 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]3 ◦ [R]3  Eq. 3.56 

All events are impacted, and the binomial ρ’s =1 . Substituting into equation 9 gives 

  M3 = 
 

  ⦁  
   ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   [

 
 
 
 

]

 

◦ [R]3  Eq. 3.57 

and  M3 =   [

     
    

    
    

  
     

    
    

    
  

     
    

    
    

  
     

    
    

    
  

]

 

 ◦ [

  
 

  
 

  
 

  
 

]

 

 Eq. 3.58 
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= [

  
  

  

          

]

 

= [

 
 
 
 

]

 

 

 

This results in  M3 =  [

  
     

    
    

    
  

  
     

    
    

    
  

  
     

    
    

    
  

  
     

    
    

    
  

]

 

  Eq. 3.59 

 

giving  Δ4 = {(1 ⦁  [

  
     

    
    

    
  

  
     

    
    

    
  

  
     

    
    

    
  

  
     

    
    

    
  

]

 

)} ◦  [

  
  

  

          

]

 

   Eq. 3.60 

The sub notation for the matrix M specifies the type of variation and is brought inside the 

matrix brackets as a superscript. The binomial ρ’s = 1, and by definition R1+R2+R3+R4 = 1 

substituting yields 

  Δ4 =     

[
 
 
 
 

     
 

     
 

     
 

               
 ]
 
 
 
 

 

 Eq. 3.61 

where e1 = 3 and e2 = 2, e3 = 1 and              = 1 because the time that has elapsed 

since project initiation is 7 weeks. Note that the sub notation outside the matrix brackets specifies 

the variation number, not the variation type. This is because the event matrix [s] is specific to the 

time in which the variation occurred during project progression. Equation 3.6, 

 Total Δ = Δ1 +Δ2 + Δ3 + Δ4            Eq. 3.62 

gives  
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 Total Δ =   [

 
 
 
 

]

 

+  [

 
 
 
 

]

 

+ [

     
     

    
  

         
     

    
  

 
 

]

  

+ 

[
 
 
 
 

     
 

     
 

     
 

               
 ]
 
 
 
 

 

 Eq. 3.63 

For the bridge illustration, where k is the variation type (k=1 for Contract, k=2 for 

Quality, k=3 for Uncontrollable), and p is the event during which variation occurs (p=1 for 

scope, p=2 for engineering, p=3 for ordering, p=4 for fabricating). Table 3.1 below summarizes 

the algebraic results derived above for a variation occurring at any time during bridge project 

progression. 

 

 

 

 

 

Table 3.1. 𝛥𝑝
𝑘  Time Increase Due to Variation k During Event p 



  37 

 

3.7 Results 

The key attribute of equations 3.1b, 3.2 and 3.7 is that they can be used for as many 

variations and as many variation types within each variation required to model the actual project 

disruptions. The flexibility of equations 3.1b, 3.2 and 3.7 is another advantage allowing a variety 

of techniques to be used for assigning values to Fk and the elements of the Mk matrix. The 

method suggested and discussed in the next chapter is one of many approaches to consider. For 

example, the matrices could be populated with elements that are time dependent equations or a 

simpler convention such as using integers for multiplying the initial project timeline. Large 

projects have hundreds or even thousands of events resulting in an overwhelming amount of 

data. A computer program is necessary for handling such a large amount of data efficiently. A 

powerful feature of equations 3.1b, 3.2 and 3.7 is the capacity for handling large quantities of 

data by utilizing matrices and binomial variables μ and ρ which is a convenient format required 

for computer programming. From the illustration in section 3.1, the equation that accounts for 

variation impact has a sub notation n on the outside of each matrix to designate the variation 

impact calculated.  

  [e]n + [CM]n = [E]n Eq. 3.1b 

The sub notation 0 is used for the original project plan, and for the bridge illustration it has the 

following notation and values.  

 

 Eq. 3.1c

The event duration matrix for variation n is expressed as  

  [e]n = [e]0 +          Eq. 3.64 
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where [e]0 is the initial event matrix and, because this is single series of events, 

 Total Δ = [

   
   
   
   

]

 

+ [

   
   
   
   

]

 

+…[

   
   
   
   

]

 

 Eq. 3.65 

Each variation of n can be used in the equation 3.1b to solve for [E]n.  These column matrices 

can be added in matrix form to examine the variation impact on each event. Note that if there 

were more than one series of events, and the series were coupled, the variation impacts the 

duration matrix [e]n from equation 3.64, and the other matrices [CM]n and [E]n are calculated 

from equation 3.2 introduced earlier.  

Another way to express the variation impact is by examining the difference in project 

completion time. The change in project completion time is calculated using [E]n from equation 

3.2  and finding the difference in the maximum element of [E]0 and the maximum element in [E]n 

. 

 ΔEn = {(Max [Ej]n) j=1,2,3…P} – {(Max[Ej]0) j=1,2,3…P}  Eq. 3.66 
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CHAPTER 4  

SAMPLE CALCULATIONS OF RANKING FOR PARAMETERS 

 

4.1 Analytical Hierarchy Process (AHP) 

In the previous chapters, an equation was developed to calculate the amount of time 

required for reworking an event based on the initial time of that particular event. The product of 

two factors is used to adjust the initial time for calculating the time required to rework due to 

variation. The value of the terms F and M are based on the evaluation of a number of alternatives 

in terms of appropriate criteria. The pertinent data needed to assign values to F and M are 

difficult to quantify. While there are various ways to assign values to F and M, the one illustrated 

in this dissertation is the analytical hierarchy process (AHP) because of its efficiency for 

correctly quantifying the data associated with the interpreting F and M. The Analytical Hierarchy 

Process (AHP) decomposes problems into a hierarchy of criteria and alternatives. This process 

has been examined, analyzed, and inspected since Thomas L. Saaty developed the process in the 

1970s. The analytical hierarchy decomposition is a three step process. The first step is to state the 

objective, the second is to define the criteria, and the third is to pick the alternatives. After the 

decomposition, the next step in the process is to rank the decisions based on several criteria. 

These rankings are set up in a pairwise matrix, and the right hand eigenvector of the associated 

pairwise matrices gives the ranking of each alternative based on the established criteria. 

The analytical hierarchy process is analyzed, utilized and studied in many countries 

around the world. For example, China has nearly a hundred universities that offer courses in 

AHP; over 900 papers have been published on the subject and at least one professional journal 

focuses on AHP (Saaty, et al.1990). AHP is a tool for decision makers to rank alternatives based 
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on certain criteria. A key element of the Analytical Hierarchy Process is assigning values to the 

decision options available in a project or process. These assigned values are used for pairwise 

comparisons and, ultimately, calculating the eigenvector that ranks decision options relative to a 

set of criteria. Assigning the correct values to each decision is the most important step in the 

Analytical Hierarchy Process. Each decision option value is compared to another in light of an 

established criteria in a process called pairwise comparison. One of the most significant scales 

used to assign values to each choice developed by Saaty is shown in Table 4.1 (Triantaphyllou, 

et al.1994). Other scales are suggested in (Triantaphyllou, et al.1994) based on theory. The scale 

proposed by Saaty established 9 as the scale’s upper limit based on Weber’s law concerning 

change of perceptible consequence. In 1846 Weber proposed that a change is perceptible only if 

it is a constant percentage of the change itself (Saaty 1980). Stated in simpler terms, people can 

only discern or choose one option from another if the differences between those options or 

choices are large enough to be discernible by the human senses. Considering an extreme 

example, people cannot choose between options if the number of options exceeds human 

perception, such as an infinite number of options. People are not able to consistently discern 

between an option A given a weight or importance of 5 and option B having a weight of 5.001. 

To further expound and support the reasoning behind the scale proposed by Saaty, experiments 

have shown that people cannot mentally process comparing more than seven objects at one time, 

plus or minus two (Miller, 1956). The data and research performed by Weber and Miller 

established the foundation for Saaty’s scale having an upper limit of 9 and a lower limit of 1. 

Saaty’s scale defines the available values for pairwise comparison as {9,8,7,6,5,4,3,2,1, 

½,1/3,1/4,1/5,1/6,1/7,1/8,1/9}. 
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Before AHP is explained utilizing an illustration, the criticisms of AHP, other multiple 

decision criteria methods, and the different scales used for multiple decision criteria judgment 

are discussed. Detailed explanations of these issues are beyond the scope of this dissertation but 

are mentioned to provide references for further study. 

Many colleges teach the Analytical Hierarchy Process. Managers, equipped with an 

understanding of the foundations of each fundamental element, substantially utilize AHP for 

operating institutions and businesses (Forman, 2001). There are many that criticize the process 

even though it is largely accepted as being theoretically sound and abundantly applicable 

(McCaffrey, 2005). Most of the disapproval arises from an aspect of the process that causes 

erroneous results due to rank reversal. Several other multiple decision criteria methods besides 

the AHP are vulnerable to rank reversals, and there are different types of rank reversals (Forman, 

2001; Saaty, 2001). The topic of rank reversals is beyond the scope of this dissertation, but it is 

thoroughly explained in an Operations Research paper (Forman, 2001) and in a chapter entitled 

Rank Preservation and Reversal. (Saaty, 2001; Dyer and Wendell (1985). Another criticism by 

Oskar Perron is that the principal right eigenvector method solution of some pairwise matrices is 

not monotonic (consisting of sets such that each set contains the preceding set or such that each 

set is contained in the preceding set.(Landau, 1914). This is also true for some reciprocal n x n 

matrices, where n>3. Several other solution methods are explained in Zermelo, 1928; Hasse, 

1961; Ramanujacharyulu, 1964. See Appendix B for pairwise consistency verification. 

Several multi-criteria decision-making methods have been proposed as an improvement 

to Saaty’s AHP. In 1983, Belton and Gear illustrated that the AHP can reverse the ranking of the 

choices when an identical choice to one of the initial choices is incorporated (Belton and Gear, 

1983). To avoid reverse ranking, they suggest that the elements in each column of the AHP 
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decision matrix be divided by the maximum element in that column. This suggested approach 

was called the revised-AHP, and later, after Saaty’s acceptance, it was called the Ideal Mode 

AHP (Saaty’s 1994). Other interested parties also introduced AHP variants. In 1993, Forman 

proposed an AHP synthesis mode to fix a problem in which adding or removing an extraneous 

choice will not change the ranks of the initial choices (Forman, 1993). The updated AHP version 

accommodates rank preservation using the ideal mode and allows rank to change using the 

distributive mode. The AHP problem type dictates the mode used to calculate the solution. 

Presently, the AHP both in the original or ideal mode is the most universally approved practice 

and is treated by many as the most dependable multi-criteria decision-making method 

(Triantaphyllou et al. 1994). 

The primary obstacle of the pairwise comparisons used in Saaty’s Analytical Hierarchy 

Process is evaluating the available alternatives. Every multi-criteria decision-making technique 

that uses the pairwise comparisons approach ultimately assigns ratios of integers to the decision 

maker’s qualitative descriptions of each alternative. This method can be used to define 

correlation associations (Triantaphyllou 1993). Saaty proposed the scale shown in Table 4.1. 

Other scales have also been proposed such as the 78 different scales evaluated by Triantaphyllou 

(Triantaphyllou et al. 1994). All the different scales are rooted from some scholarly rationale that 

establish the scheme used to assign quantities to the annotated alternatives. These references for 

different scales used in multi-criteria decision-making methods can be used for further study. 

 

4.2   AHP Used to Rank Variation Classifications 

For our example, the objective is to define the rework factor for each event. The criterion 

is based on the variation caused by contract changes, quality discrepancies or uncontrollable 

events. Variation causes contract changes because of technology changes, customer requests, or 
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miscommunication in the original contract. Quality discrepancies could be bad material from the 

supplier, trades workmanship, or miscommunication. Another variation criterion is 

uncontrollable events such as changes in government legislation, natural disasters, or radical 

global market changes. The alternatives are the activities being performed.  

Problems are decomposed into a hierarchy of criteria and alternatives using the following steps: 

 State the objective 

 • Define the weighting of each variation classification as it applies to each type of event 

• The impact of variation on project events such as scoping, engineering, ordering material, and 

fabricating. 

Pick the alternatives 

 • Contract Variations, Quality variations, Uncontrollable variations 

Given a hierarchy shown in figure 4.1 below, and a scale for pairwise comparison shown 

in table 4.1, a valuation of events relative to the variation type can be made as shown in table 4.2. 

Then the pairwise comparison can be made as shown in table 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Hierarchy 

  

Weighting of Variation classifications 

e1, Scoping e2, Engineering e4, Fabricating e3, Ordering 

Contract Quality Uncontrollable 
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Table 4.1. Scale for Pairwise Comparison  

The Scale used for Pairwise Comparison 

Magnitude of 

Significance 
Description Interpretation 

1 
Equivalent 

Weight 

Variation classifications or within two events have 

the same project impact. 

3 
Modest 

Weight 

Experience evaluates one variation classification or 

variation within an event moderately higher than 

another. 

5 Heavy Weight 
Experience evaluates one variation classification or 

variation within an event much higher than another. 

7 
Very Heavy 

Weight 

One variation classification or variation within an 

event is evaluated as being very much higher than 

another. 

9 
Maximum 

Weight 

The history of experience evaluates one variation 

classification or variation within an event as having 

the highest possible project impact. 

Weights of 1.1, 1.2, and 1.3 are used for variation classification or variation within an 

event that have only a slightly different weight. Even magnitude such as 2,4,6, and 8 are 

for assigning intermediate weights. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Evaluating Events Relative to Variation Type 
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That gives a pairwise matrix of  

 Contract Quality Uncontrollable 

Contract 1 3 2 

Quality 1/3 1 2 

Uncontrollable 1/2 1/2 1 

 

Solving results for their relative rework weights, (see appendix A for Eigen value calculations) 

0.5472 
0.2631 

0.1897 

 

4.3   AHP Used to Rank Events 

In terms of rework due to variation caused by a request that changes the contract, 

pairwise comparisons determine the preference of each alternative over another. Table 4.4 shows 

the rework due to variation caused by a request to change the contract. 

  

Ranking Explanation 

Contract = 6 Quality = 2 

Contract changes occur frequently while there are 

procedures in place for quality control that limits 

their occurrence and impact. 

Contract = 2 Uncontrollable = 1 
Contract changes occur frequently while 

uncontrollable events are limited. 

Quality = 2 Uncontrollable = 1 

There are procedures in place for quality control 

that limit their occurrence, while uncontrollable 

events are limited. 

[ TCriteria ] = 

Table 4.3. Pairwise Comparison Variation Type Relative to Each Other 
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Event Contract 

e1, scoping the 

foundation 

Any contract change will involve some amount of 

scoping to evaluate the extent that project activities will 

be affected. 

e2, engineering the 

foundation 

Most contract changes require engineering to re-analyze 

the contract modified project to ensure the revised 

product meets customer criteria. 

e3, ordering the 

material for the 

foundation 

Unless a contract change requires a different 

component, material, or modifies a suppliers lead time, 

then purchasing would not be involved in the change. 

e4, installing the 

foundation 

Contract changes usually occur during the beginning of 

the project allowing enough lead time for adjustment to 

avoid any adverse implication to the fabrication process 

 

 

 

In table 4.5 each activity is ranked for setting up the pairwise comparison matrix. 

 

 

 

Ranking Explanation 

e1 = 2 e2 = 1 A contract change has more impact on scoping 

than engineering 

e1 = 6 e3 = 1 A contract change has more impact on scoping 

than ordering 

e1 = 3 e4 = 2 A contract change has more impact on scoping 

than fabricating 

e2 = 4 e3 = 1 A contract change has more impact on engineering 

than ordering 

e2 = 1 e4 = 4 A contract change has less impact on engineering 

than fabricating 

e3 = 1 e4 = 6 A contract change has less impact on ordering than 

fabricating 

 

 

  

Table 4.4. Evaluating Events Relative to Contract Variation  

 

Table 4.5. Ranking Events Relative to Contract Variation  
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The ranking in Table 4.5 results in a pairwise matrix of  

 e1 e2 e3 e4 

     

e1 1 2 6 3/2 

e2 1/2 1 4 ¼ 

e3 1/6 1/4 1 1/6 

e4 2/3 4 6 1 

 

The values in the matrix’s right eigenvector are measurements of their relative rework weights. 

Solving results in:  

.392 

.162 

.054 

.392 

 

Table 4.6 evaluates the rework due to variation caused by quality.  

 
 

 

Event Quality 

e1, scoping the 

foundation 

Quality problems require a thorough investigation or 

scoping to discover the extent and magnitude of the 

effects to other project activities. 

e2, engineering the 

foundation 

The engineering department must be notified of any 

quality problems so that a thorough product analysis can 

be performed to uncover any potential problems that 

might occur. 

e3, ordering the 

material for the 

foundation 

Many quality problems require a supplier to replace 

parts or warranty service. Warranty issues and supplier 

accountability are usually handled by the purchasing 

department 

e4, installing the 

foundation 

Fabrication will almost always be affected adversely due 

to quality problems. 

 

 

 

Ranking each activity for setting up the pairwise comparison matrix gives table 4.7.  

  

[ R ]Contract  = 

Table 4.6. Evaluating Events Relative to Quality Variation  
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Ranking Explanation 

e1 = 3 e2 = 1 A quality change has more impact 

on scoping than engineering 

e1 = 6 e3 = 1 A quality change has more impact 

on scoping than ordering 

e1 = 4 e4 = 1 A quality change has more impact 

on scoping than fabricating 

e2 = 2 e3 = 1 A quality change has more impact 

on engineering than ordering 

e2 = 1 e4 = 3 A quality change has less impact on 

engineering than fabricating 

e3 = 1 e4 = 2 A quality change has less impact on 

ordering than fabricating 

 

 

Table 4.7 gives a pairwise matrix of  

 e1 e2 e3 e4 

     

e1 1 3 6 4 

e2 1/3 1 2 1/3 

e3 1/6 1/2 1 ½ 

e4 1/4 3 2 1 

 

The priorities are measurements of their relative rework weights; mathematically, they are the 

values in the matrix’s right eigenvector. Solving results in  

.560 

.134 

.084 

.222 

 

In terms of rework due to variation caused by uncontrollable, pairwise comparison 

determines the preference of each alternative over another.  

Table 4.8 evaluates the rework due to variation caused by uncontrollable variation.  

  

[ R ]Quality  = 

Table 4.7. Ranking Events Relative to Quality Variation  



  49 

 

 

Event Uncontrollable 

e1, scoping the 

foundation 

Uncontrollable changes are often defined minimizing 

the amount of scoping required to evaluate the 

modifications needed from each activity to complete the 

project. 

e2, engineering the 

foundation 

The uncontrollable changes that involve design changes 

will involve design changes will involve engineering, 

while others, such as pricing and scheduling, will not 

require engineering involvement. 

e3, ordering the 

material for the 

foundation 

Many quality problems occur during product 

fabrication. Problems such as this need to be reworked 

or recalled to perform corrections. 

e4, installing the 

foundation 

Uncontrollable changes can affect the fabrication 

process, although changes such as pricing can have 

minimal fabrication process impact. 

 

 

 

Ranking each activity for setting up the pairwise comparison matrix gives table 4.9. 

 

 

Ranking Explanation 

e1 = 3 e2 = 1 A uncontrollable change has more 

impact on scoping than engineering 

e1 = 4 e3 = 1 A uncontrollable change has more 

impact on scoping than ordering 

e1 = 3 e4 = 1 
A uncontrollable change has more 

impact on scoping than fabricating 

e2 = 1 e3 = 2 
A uncontrollable change has more 

impact on engineering than ordering 

e2 = 1 e4 = 4 
A uncontrollable change has less impact 

on engineering than fabricating 

e3 = 1 e4 = 6 
A uncontrollable change has less impact 

on ordering than fabricating 

 

  

Table 4.8. Evaluating Events Relative to Uncontrollable Variation  

Table 4.9. Ranking Events Relative to Uncontrollable Variation  
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Gives a pairwise matrix of  

 e1 e2 e3 e4 

     

e1 1 3 4 3 

e2 1/3 1 1/2 1/4 

e3 1/4 2 1 1/6 

e4 1/3 4 6 1 

 

The priorities are measurements of their relative rework weights; mathematically, they are the 

values in the matrix’s right eigenvector. Solving results in  

.484 

.086 

.102 

.320 

 

Figure 4.2 summarizes the results. 

 

 

 

 

 

 

 

 

 

 

  

[ R ]Uncontrolable  

= 

Fig. 4.2. Hierarchy Values 

Summary of Rankings 
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CHAPTER 5 

APPLICATIONS 

 

5.1 Utilizing the Derived Equations on a Sequence of Events 

The total variation for the four variations used in our bridge illustration is  

 Total Δ = Δ1 +Δ2 + Δ3 + Δ4   Eq. 5.1 

Also, from the bridge illustration and our AHP analysis T1 = .5472 , T2 = .2631 , T3 = .1897 

and    [R]1 =   

    
    
    
        

   [R]2 =   

    
    
    
         

    and    [R]3 =   

    
    
    
         

.  

Also, recall [e0] =   

 
 
 
  

   , and 

 Total Δ =   

  
 

 
 
    

+  

  
 

 
 
     

+  

  
 ⦁  

      
     

   

  
 ⦁  

      
     

   
  

 

  
 

      

+  

  
 ⦁  

  

  
 ⦁  

  

  
 ⦁  

  
 

 

  
 ⦁  

  
    

 Eq. 3.66 

Substituting  

 Total Δ =   

  
 

 
 
     

+   

  
 

 
 
     

+    

  ⦁                 
  ⦁                 

  
 

  
 

      

+   

  ⦁     
  ⦁     
  ⦁      

 

  ⦁           

 Eq. 5.2 

gives 

Total Δ =   
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5.2 Results 

There was only one type of variation for each variation used in the example above. This 

simplifies the equations considerably. Observe in variation three how the equation adjusts for 

ranking magnitude of the two events impacted by multiplying event one by 
  

  

  
     

    and event two 

by  
  

  

  
     

   . Also, in variation four, all the events are impacted by the variation because of the 

time the variation occurred. The final total shows that most of the impact was on event one. 

Intuitively, this result seems correct because every variation occurred after event one had started 

or was completed. 

5.3 Utilizing the Derived Equations on Two Parallel Sequence of Events 

Next, consider the two parallel sequential events that are coupled, introduced in chapter 

3. The coupling is due to the constraint of requiring the foundation to be finished before the 

pump assembly can be installed. The two critical paths are copied below from chapter 3 in figure 

3.4 for convenience. 

 

 

 

 

 

 

 

 

In this illustration, the two sequences of events are coupled by requiring the pump foundation 

(e4) to be completed before the pump installation (e8). The precedence matrix for this coupling is 

shown below along with corresponding event equation.  

Figure 3.4. Two Parallel Coupled Sequential 

Events 
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 Eq. 5.3 

 

 

 

 Consider a variation (n=1) at week 4 that has two variation types active (K=3, but μ1 = 1, μ2 = 0 

and μ3 = 1). The active variation types are contract (k=1) and uncontrollable (k=3) variation. 

Week 7 .Use the same AHP values for both series of events. 

Recall Eq. 3.7, Eq. 3.8, and Eq. 3.9 from chapter 3,   

 Δn =∑   
        

 ⦁   
  }] ◦     

 
n Eq. 3.7 

 Fk = 
  

∑   
    

  
 Tk Eq. 3.8 

 Mk = 
 

∑   
    

  
    

   [ρ]k ◦ [R]k  Eq. 3.9 

 For Δ1 =∑   
       

 ⦁   
  ) ◦     

 
1 Eq. 5.4 

This gives  Δ1 = (F1 ⦁ M1 + F2 ⦁ M2 + F3 ⦁ M3) ◦     
 
1 Eq. 5.5 

The F2 ⦁ M2 reduce to 0 because μ2 is 0, and μ1, μ3, ρ1 through ρ3 are 1. Equation 3 yields 

  F1 = 
 

      
 T1   Eq. 5.6 

and F3 = 
 

      
 T3   Eq. 5.7 

 is used for both event sequences. 
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 M1= 
 

    
      

     
     

  
 ⦁  

 
 
  

 

  
 
     

◦ [R]1 Eq. 5.8 

and  M1 =   

     
    

    
    

  
     

    
    

    
  

     
    

    
    

   
 

     
    

    
    

  
    

 ◦    

  
 

  
 

  
 

  
 
     

 Eq. 5.9 

By definition (R1+R2+R3+R4) = 1; therefore,   

 M1 =   

  
 

  
 

  
 

  
 
     

  Eq. 5.10 

For the second sequence, the F2 ⦁ M2 also reduces to 0 because μ2 is 0. Note that ρ4 is 

also 0 because the variation occurred at week 7, and in the second sequence of events the pump 

installation does not start until after week 7. As noted earlier, the second sequence uses the same 

AHP results as the first sequence of events. The binomial variables μ1, μ3,  and ρ1 through ρ3 

are 1; therefore, equation 3 yields  

 M3 = 
 

    
      

     
  

 ⦁  

 
 
  

 

      

◦ 

  
 

  
 

  
 

   
 
     

  Eq. 5.11 

 

and  M3 =   

     
    

    
  

     
    

    
  

     
    

    
   

 

     
    

    
  

    

 ◦    

  
 

  
 

  
 

       

 =   

  
     

    
    

  
  

     
    

    
  

  
     

    
    

   
 

     

 Eq. 5.12 

The results for sequence one and two are arranged to be used with the precedence matrix shown 

in equation to give a column matrix of 
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 M1 =   

  
 

  
 

  
 

  
 

  
     

    
    

  
  

     
    

    
  

  
     

    
    

  
      

   Eq. 5.13 

and      

 M3 =   

  
 

  
 

  
 

  
 

  
     

    
    

  
  

     
    

    
  

  
     

    
    

  
      

 Eq.5.14 

Also,  

 Δ1 = (
  

      
 ⦁  

  
 

  
 

  
 

  
 

  
     

    
    

  
  

     
    

    
  

  
     

    
    

  
    

+ 
  

      
 ⦁   

  
 

  
 

  
 

  
 

  
     

    
    

  
  

     
    

    
  

  
     

    
    

  
   

) ◦   

  
 

  
 

  
 

  
 

  
 

  
 

  
 

    

    Eq. 5.15 

Note that the e4 is 1 because only 1 week of the 2 has occurred. 

  

      
  = (.5472)/(.5472+.1897) = .74, and  

  

      
 = (.1897)/(.5472+.1897) = .26 

For Type 1 variations,  

  
     

    
    

   = .392/(.392+.162+.054) = .64,   

  
     

    
    

   = .162/(.392+.162+.054) = .27,   

  
     

    
    

   = .054/(.392+.162+.054) = .09,  

For Type 3 variations,  
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   = .484/(.484+.086+.102) = .72,   

  
     

    
    

   = .086/(.484+.086+.102) = .13,   

  
     

    
    

   = .102/(.484+.086+.102) = .15,   

 

 Δ1 = (.74 ⦁   

    
    
    
    
    
    
    

      

  + .26   ⦁     

    
    
    
    
    
    
    

      

)  ◦    

 
 
 
 
 
 
 
      

 =   

    
    
    
    
    
    
    

      

   Eq. 5.16 

Recall, 

 [e]n = [e]0 +          Eq. 3.64 

This gives 

 [e]1 =  

 
 
 
 
 
 
 
       

  +   

    
    
    
    
    
    
    

      

    =   

     
     
     
     
     
     
     

      

 Eq. 5.18 

The final completion matrix is filled from the top cell to the bottom using the equation below to 

fill the cumulative matrix from chapter 3.  

           if i = 1, CM1 =0 

  [CMi] =    Max   IF(Pmij = 1, Ej, 0)   if i ≠ 1   Eq. 3.2 

  j=1,2,3….i-1 

 

The new equation becomes 

  [e]1 + [CM]1 = [E]1  Eq.5.19a 
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    Eq. 5.19b 

 

 

5.4 Results 

The maximum element in [Ej] is 11.272; thus, the final project completion time after 

variation Δ1 is 11.272 weeks. This is a 1.272 increase from the original project completion time 

of 10 weeks. Examining each series separately, equation 5.18 gives a variation impact of 1.27 

and 1.55 for the first and second series respectively. Intuitively, it would seem the final project 

completion time would be the larger of the two series, which is the second series of 9 weeks plus 

a variation impact of 1.55 weeks giving a total of 10.55 weeks, but the two series of events are 

coupled by e4 having to be completed before e8 shown in the precedence matrix. Initially, the 

first series of events was 8 weeks, and the first three events in the second series were 7 weeks. 

This resulted in a waiting period of 1 week. After the variation, the time to complete the first four 

events is 9.272 (see E4 in the completion matrix above).  The time to complete the first three 

events in series two is 8.549 weeks. This results in a waiting period of .723 weeks.  Equation 3.2 

accounts for the coupling by populating element CM8 in the cumulative matrix with the larger of 

the two, E4 or E7. 
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CHAPTER 6 

METHODOLOGY FOR ASSIGNING VALUES TO THE VARIATION 

TYPE AND TIME 

 

6.1 Introduction to Monte Carlo 

 Monte Carlo simulation is a numerical method that accounts for risk in quantitative 

analysis and decision making. Named for the city in Monaco famed for its casinos and games of 

chance, the Monte Carlo method was invented in the 1940s by scientists as a numerical solution 

to complex physics problems such as neutron diffusion. Monte Carlo simulation uses random 

numbers as inputs to an inverse cumulative distribution function to simulate sampling from a 

population. These inputs are used to generate and explore an output that models complex 

business activities, plans and processes. Just like the physics problem of the 1940s, large scale 

project activities, plans and processes can also be modeled using Monte Carlo simulation. 

6.2 Utilizing Monte Carlo on a Sequence of Events 

For our illustration above, the timing of the variation conveniently occurred at the end of 

each event. In reality, the timing of the variation is unknown. Also, the type of variation that will 

occur is unknown. To examine the range of variation for each event, representative data is used 

to assign probabilities to the variation type and timing. Having these distributions, Monte Carlo 

analysis is performed to calculate the variation frequency for each event. See Appendix C for 

more Monte Carlo calculations.
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For our illustration, the variation type distribution will be 80% contract variation, 40% 

quality variation, and 30% uncontrollable variation shown in figure 6.1 below.  

 

 

 

 

 

 

 

In the Monte Carlo simulation, N=4 variations, so 4 random numbers will be generated to 

designate the type of variation, and the distribution will fit the 80, 40, 30 distribution.  For each 

of the 4 numbers, a second random number is generated to give the timing of the variation. For 

example, the first random number generated is used to determine the type of variation. If the first 

random number generated is between 0 and .5, then the type of variation is only a contract 

variation, and recall T1=.5472, T2=.2631, T3=.1897, so .5472 is used in Eq. 3.7 to calculate F1 = 

1. If the random number is between .5 and .7, the types of variations are contract and quality 

variation, so .5472 and .2631 are used in Eq. 3.7 to calculate F1 = .6753 and F2=.3246. If the 

number generated is between .7 and .8, then all three types of variation are used in Eq. 3.7, 

forcing  a value of 1 in the denominator, which results in F1=.5472, F2=.2631, F3=.1897. If the 

random number is between .8 and .9, the types are quality and uncontrollable variation, so .2631 

and .1897 are used in Eq. 3.7.  

  

Figure 6.1. Variation Type Distribution 

Uncontrolable Variation

Contract Variation

Quality Variation

.1 .2 .3 .4 .5 .8.7 1.9.6

Random Variable 

Variation Type 
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Consider Table 6.1 below.  

 
 

 

 

 

 

 

 

 

 

 

 

 

To further illustrate, both the type and timing are shown in figures 6.2 and 6.3 below.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Variation Type   

 

Table 6.1. Variation Type and Timing 
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A probability distribution can also be used for the timing of each variation. The timing shown in 

figure 6.3 below is used for this example.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall from the bridge illustration and our AHP analysis, 

T1 = .5472 , T2 = .2631 , T3 = .1897 

Also, recall the results from the AHP for the four events with respect to each other within the 

types of variation yield: 

 

 [R]1 =   

    
    
    
        

   [R]2 =   

    
    
    
         

    and    [R]3 =   

    
    
    
         

.  

Also, recall [e0] =   

 
 
 
  

   .  

Figure 6.3. Variation Timing on the Bridge Illustration 
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The equations developed in sections 3.5 and 3.6 are used and listed below for convenience. 

Also, Δn =∑   
       

 ⦁   
  } ◦     

 
n Eq. 3.7 

Then, Fk = 
  

∑   
    

  
 Tk Eq. 3.8 

 Mk = 
 

∑   
    

  
    

   [ρ]k ◦ [R]k  Eq. 3.9 

 Total Δ = Δ1 +Δ2 + Δ3 + Δ4    Eq.3.17 

 

Expanding Eq. 3.7 gives 

 Δn = [{ (F1 ⦁M1) + ( F2 ⦁M2) + (F3 ⦁M3) }] ◦ [s]n  Eq. 3.10 

 

where F1 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T1  Eq. 3.11 

 F2 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T2  Eq. 3.12 

 F3 = 
  

   ⦁       ⦁       ⦁   
  ⦁ T3  Eq. 3.13 

and  M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]1 ◦ [R]1  Eq. 3.14 

 M2 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]2 ◦ [R]2  Eq. 3.15 

 M3 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁ [ρ]3 ◦ [R]3  Eq. 3.16 

[ρ]1 =    

  
 

  
 

  
 

  
 
     

, [ρ]2  =    

  
 

  
 

  
 

  
 
     

    and    [ρ]3 =   

  
 

  
 

  
 

  
 
     

. 

[R]1 =  

  
 

  
 

  
 

  
 
     

   [R]2 =   

  
 

  
 

  
 

  
 
     

    and    [R]3 =  

  
 

  
 

  
 

  
 
     

.  
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For our illustration; 

  

For Δ1 there is a contract and quality component that occurs at week 1.5, so it only impacts event 

1. Eq 3.10 is 

 Δ1 = [{ (F1 ⦁M1) + ( F2 ⦁M2) }] ◦ [s]1  Eq. 6.1 

where F1 = 
  

   ⦁       ⦁    
  ⦁ T1  Eq. 6.2  

 F1 = 
  

        
   Eq. 6.3 

and F2 = 
  

   ⦁       ⦁    
  ⦁ T2  Eq. 6.4 

 F2 = 
  

        
   Eq. 6.5 

and   M1 = 
 

   
 ⦁  

    
 ⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   

  
 

  
 

  
 

  
 
     

◦ [R]1  Eq. 6.6 

and  M1 =    

    
 
 
 

  
 

  
 

  
 

     

◦   

  
 

  
 

  
 

  
 
     

 Eq. 6.7 

This results in  M1 =   

  
 

  
 

  
 

  
 
     

   Eq. 6.8 

 

The same for M2, which gives  M2 =   

  
 

  
 

  
 

  
 
     

   Eq. 6.9 
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 Δ1 = { (
  

        
 ⦁  

  
 

  
 

  
 

  
 
     

) + (
  

        
 ⦁  

  
 

  
 

  
 

  
 
     

) } ◦   

    
 

  
 

  
 

  
 

     

=   

    
 

  
 

  
 

  
 

     

 Eq. 6.10 

For Δ2 there is an uncontrollable that occurs at week 8 so it impacts all events. Eq 3.10 is 

 Δ2 = [{(F3 ⦁M3)}] ◦ [s]2  Eq. 6.11 

 F3 = 1, M3 =   

  
 

  
 

  
 

  
 
     

 Eq. 6.12 

 Δ2 = {(1 ⦁    

    
    
    
         

)} ◦   

  
 

  
 

  
 

  
 
     

 =   

     
    
    
         

 Eq. 6.13 

For Δ3 there is a quality and uncontrollable that occurs at week 4, so it impacts two events. Eq 

3.10 is  Δ3 = [{ (F2 ⦁M2) + ( F3 ⦁M3) }] ◦ [s]3  Eq. 6.14 

where F2 = 
  

   ⦁       ⦁    
  ⦁ T2  Eq. 6.15 

 F2 = 
  

        
   Eq. 6.16 

and F3 = 
  

   ⦁       ⦁    
  ⦁ T3  Eq. 6.17 

 F3 = 
  

        
   Eq. 6.18 

and   M2 = 
 

   
 ⦁  

    
 
 

 
⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   

  
 

  
 
 
 

  
 

  
 
     

◦ [R]2 Eq. 6.19 

and  M2 =    

     
 
 
     

  

     
 
 
     

   
 

  
 

  
 

     

◦   

  
 

  
 

  
 

  
 
     

=  

  
     

 
 
     

  

  
     

 
 
     

   
 

  
 

  
 

    

 Eq. 6.20 

Similarly, 
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 M3 =    

  
     

 
 
     

  

  
     

 
 
     

   
 

  
 

  
 

    

 Eq. 6.21 

 

Δ3 = {(  
  

        
  ⦁  

  
     

 
 
     

  

  
     

 
 
     

   
 

  
 

  
 

 

) + (  
  

        
 ⦁   

  
     

 
 
     

  

  
     

 
 
     

   
 

  
 

  
 

 

 ) } ◦  

  
 

  
 

  
 

  
 
   

  Eq. 6.22 

  

        
 = .2631/(.2631+.1897) = .581, 

  

        
 = .1897/(.2631+.1897) = .419  Eq. 6.23 

For event quality ranking,  

R1/(R1+R2) = .560/(.560 + .134) = .807 

R1/(R1+R2) = .134/(.560 + .134) = .193 

For event uncontrollable ranking,  

R1/(R1+R2) = .484/(.484 + .086) = .849 

R1/(R1+R2) = .086/(.484 + .086) = .151 

Δ3 = {(.581  ⦁  

    
    
  

 

  
 

    

) + (.419 ⦁   

    
    
  

 

  
 

    

 ) } ◦  

  
 

  
 

  
 

  
 
     

 =    

     
 

     
 

  
 

  
 

     

 Eq. 6.24 

For Δ4 there is a contract that occurs at week 5.5, so it impacts three events. Eq 10 is 

 Δ4 = [{(F1 ⦁M1)}] ◦ [s]4  Eq. 6.25 

F1 = 1,  

and   M1 = 
 

   
 ⦁  

    
 
 

 
⦁  

    
 ⦁  

    
 ⦁  

   
 ⦁   

  
 

  
 
 
 

  
 
 
 

  
 
     

◦ [R]1 Eq. 6.26 
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and  M1 =    

     
 
 
     

    
   

 

     
 
 
     

    
   

 

     
 
 
     

    
   

 

  
 

     

◦   

  
 

  
 

  
 

  
 
     

=   

  
     

 
 
     

    
   

 

  
     

 
 
     

    
   

 

  
     

 
 
     

    
   

 

  
 

     

 Eq. 6.27 

 Δ4 = {(1 ⦁   

  
     

 
 
     

    
   

 

  
     

 
 
     

    
   

 

  
     

 
 
     

    
   

 

  
 

    

  )} ◦   

  
 

  
 

   
 

      

 Eq. 6.28 

   
     

 
 
     

    
   = .392/(.392+.162+.054) = .64 Eq. 6.29 

   
     

 
 
     

    
   = .162/(.392+.162+.054) = .27 Eq. 6.30 

    
     

 
 
     

    
   = .054/(.392+.162+.054) = .09 Eq. 6.31 

 Δ4 =  

   
   
   
     

  °  

  
 

  
 

   
 

     

 =   

    
    
     

 

    

 Eq. 6.32 

 Total Δ= ∑   
   Δn   Eq. 3.6 

  

 Total Δ =               +             +              +              =   Eq. 6.33 

 

This process is repeated for 1000 iterations to give a probability distribution in figures 6.4, 6.5, 

6.6, and 6.7 shown below.  
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Figure 6.4. Variation Impact for Four Variations (N=4), on Event 1 (e1) 

Figure 6.5. Variation Impact for Four Variations (N=4), on Event 2 (e2) 



  68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the highest probability is adding 4 weeks to event 1, 3 weeks to event 2, 1 

week to event 3 and 2 weeks to event 4. To calculate the impact of all 4 variations, equation 3.7 

is used to calculate each Δn ; then equation 3.6 is used to find the total Δ. The total Δ is used in 

equation 3.64 to calculate [e]n ; then equations 3.1b and 3.2 are used in Equation 3.66 to calculate 

Figure 6.6. Variation Impact for Four Variations (N=4), on Event 3 (e3) 

Figure 6.7. Variation Impact for Four Variations (N=4), on Event 4 (e4) 
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the total project time increase. For the total impact, as indicated in figure 6.8, the highest 

probability is 70% of adding 10 weeks to the completion time if there are 4 variations that occur 

during project progression.  

 

 

 

 

 

 

 

 

 

 

The cumulative density curve in figure 6.9 shows a 100% probability at 14 weeks. 

   

 

Figure 6.8. Total Variation Impact (N=4), on All Events (e1+e2+e3+e4) 

Figure 6.9. Cumulative Distribution for the Total Variation Impact  
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6.3 Results 

Note that the variation impact decreases going from the first event to the last event. This 

decrease is due to the timing of the variation. Every variation will impact the first event because 

every event occurs after event one is partially or fully completed. Also note that the model used 

in this illustration results in a 100% probability that the variation impact will be 14 weeks or less 

(see figure 6.9). The initial project time is 10 weeks, so there is 100% probability that the project 

will be 140% longer than the initial planned timeline if there are four variations during project 

progression.  

Examining the variation impact of each event separately is valuable for exposing which 

event has the most opportunity for decreasing the total variation impact. For example, the 

frequency charts show that event one has a 51% probability of 4 weeks and a 29% probability of 

6 weeks while event two has a 24% probability of 2 weeks, a 36% probability of 3 weeks, and a 

27% probability of 4 weeks. Of the four event frequency charts, the ones for event one and event 

two show that these events have the most opportunity for decreasing the impact of variation.  

6.4 Utilizing Monte Carlo on Two Parallel Sequence of Events 

Figure 6.10 shows two parallel coupled sequential events for the pump illustration.  

 

 

  
Figure 6.10. Two Parallel Coupled Sequential Events 
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The precedence matrix, where e4 must be completed before e8, for these two coupled sequence 

of events is: 

 

 

 

 

 

In the illustration above, it is reasonable to examine the condition that the foundation must be 

installed (e4) before the pump can be installed (e8). This condition will be referred to as the one 

utilizing precedent matrix A shown below.  

 

 

 

 

 

Invoking another constraint on the project, ordering the foundation (e3) must be completed 

before ordering the pump assembly (e7). This condition will be referred to as the one utilizing 

precedent matrix B shown below.  
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Examining the Monte Carlo results for one variation from, adding the constraint increases 

the variation impact illustrated in figure 6.11 below. The constraint in precedent matrix A gives 

35% probability of adding 3 weeks and 38% probability of adding 4.5 weeks to the project 

completion time if there are four variations during project progression. The constraint in 

precedent matrix B gives 25% probability of adding 1.5 and 6 weeks to the project completion 

time if there is one variation during project progression. 

 

 

 

 

 

 

 

 

 

 

The cumulative density results in figure 6.12 show 100% probability shifting from 6 weeks to 

7.5 weeks added to completion time when comparing precedent matrix A to matrix B for one 

variation.  

  

Figure 6.11. Variation Impact for One Variation on Precedence Matrix A vs. B  
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Examining the Monte Carlo results for two variations, adding the constraint increases the 

variation impact illustrated in figures 6.13 and 6.14 below. The constraint in precedent matrix A 

gives 35% probability of adding 4.5 weeks and 45% probability of adding 6.75 weeks to the 

project completion time if there are four variations during project progression. The constraint in 

precedent matrix B gives 30% probability of adding 6.75 weeks and 25% probability of adding 9 

weeks to the project completion time if there are two variations during project progression. 

  

Figure 6.12. Cumulative Distribution of the Variation Impact for One 

Variation on Precedence Matrix A vs. B 

Figure 6.13. Variation Impact for Two Variations on Precedence Matrix A vs. B  



  74 

 

 

 

 

 

 

 

 

 

 

 

The cumulative density results show 100% probability shifting from 9 weeks to 13.55 weeks 

added to completion time when comparing precedent matrix A to matrix B for two variations.  

 

 

 

 

 

 

 

 

 

 
Figure 6.14. Cumulative Distribution of the Variation Impact for Two Variations on 

Precedence Matrix A vs. B 

Figure 6.13. Variation Impact for Two Variations on Precedence Matrix A vs. B  
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Examining the Monte Carlo results for three variations, adding the constraint increases 

the variation impact as illustrated in figures 6.15 and 6.16 below. The constraint in precedent 

matrix A gives 33% probability of adding 6.8 weeks and 51% probability of adding 3.2 weeks to 

the project completion time if there are four variations during project progression. The constraint 

in precedent matrix B gives 33% probability of adding 10.2 weeks and 13.6 weeks to the project 

completion time if there are three variations during project progression. 

 

 

 

 

 

 

 

 

 

 
 
 
The cumulative density results show 100% probability shifting from 13.6 weeks to 17 weeks 

added to completion time when comparing precedent matrix A to matrix B for 3 variations.  

  

Figure 6.15. Variation Impact for Three Variations on Precedence Matrix A vs. B  
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Examining the Monte Carlo results for four variations, adding the constraint increases the 

variation impact illustrated in figures 6.17 and 6.18 below. The constraint in precedent matrix A 

gives 30% probability of adding 9 weeks and 60% probability of adding 13.5 weeks to the 

project completion time if there are four variations during project progression. The constraint in 

precedent matrix B gives 38% probability of adding 13.5 weeks and 37% probability of adding 

18 weeks to the project completion time if there are four variations during project progression. 

  

Figure 6.16. Cumulative Distribution of the Variation Impact for Three 

Variations on Precedence Matrix A vs. B 
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The cumulative density results show 100% probability shifting from 18 weeks to 22.5 weeks 

added to completion time when comparing precedent matrix A to matrix B for four variations.  

 
 
 

 

 

 

 

 

 

 

Figure 6.17. Variation Impact for Four Variations on Precedence 

Matrix A vs. B  

Figure 6.18. Cumulative Distribution of the Variation Impact for Four 

Variations on Precedence Matrix A vs. B 
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6.5 Results 

Figures 6.12, 6.14, 6.16, and 6.18 illustrate how the added constraint increases the 

probability of a higher variation impact. Intuitively, these results are consistent with the 

expectation of having a longer completion time for projects with an increasingly rigid plan of 

events. One benefit of quantifying the probability of numerous scenarios is that the figures can 

be used to manage performance and cost issues. Another positive attribute of having a magnitude 

assigned to the variation impact, in this case the number of weeks the project will be extended, is 

that it allows contingency plans to be made for mitigating or avoiding unnecessary consequences 

as a result of the variation or unplanned event.  

6.6 More Complex Situations 

The bridge and pump illustrations are simple projects used to explain the fundamental 

equations and concepts for calculating the impact variation has on a project. Figure 6.19 shows 

how the methods and formulas derived are general and flexible enough to be used on any number 

of parallel coupled sequences of events needed to complete a large scale project. For example, if 

a project has 10 different variation types and 1000 parallel sequences, each having 1000 events, 

for each variation, equation 3.1b, derived earlier, 

 [e]n + [CM]n = [E]n Eq. 3.1b 

 

can be used with equation 3.7, where K= 10 and the column vector [e] will have 1000 events. 

 Δn =∑   
        

 ⦁   
  }] ◦ [s]n Eq. 3.7 

The binomial μk  is used to determine which types belong to each variation in equation 3.8 where 

Tk is the relative ranking of the 10 types of variation. 

 Fk = 
  

∑   
    

  
 Tk Eq.  3.8 
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and ρp is used to determine if event p belongs to the variation in equation 3.9, where p will go 

from 1 to 1000.   

 Mk = 
 

∑   
    

  
    

   [ρ]k ◦ [R]k  Eq. 3.9  

The precedent matrix would be a 1000 x 1000 element matrix defining the constraints each 

sequence of events has with one another. Then, substituting the [e]n from Eq. 3.64 into Eq. 3.2 

and equation 3.66 gives the change in completion time 
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Figure 6.19. Expanding the Precedence Matrix 
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CHAPTER 7 

CONCLUSION 
 

Managing projects consists of a complex and integrated array of decisions, actions, and 

communications necessary to complete projects successfully. Identifying and quantifying the 

relationships between project changes and an initial project plan is vitally important to a large 

scale project. Project changes continue to challenge areas such as accounting, finance, planning, 

and production. This dissertation formulates and illustrates a method for quantifying the impact 

that variation has on the progression of a large project. It first formulates a way to calculate the 

variation impact on a single series of events. It further expounds the formula by deriving a general 

expression for calculating the dynamic impact of variation for a series of coupled parallel events. 

The general equation used to annotate this method can be fitted to a wide variety of situations. 

One key aspect of this proposed methodology is its ability to conform to a wide range of 

applications by using types of variations within each variation allowing it to conform to the actual 

project situation. The resulting formula can have as many variations as are expected to occur 

during project progression. The equation uses a convention for assigning multipliers to adjust an 

initial root timeline accounting for the type of variation and the specific influence the variation 

has on each event. The formula is used with a set of representative data to show that variation 

mostly impacts events that are partially or fully completed. Of the many options available, AHP is 

used to illustrate one method of assigning values to the multipliers. A precedence matrix is used 

to couple a series of events using constraints. This technique provides a method for representing a 

large project timeline. Monte Carlo methods are used to generate frequency plots and probability 

plots to show the likelihood of different impacts. The results illustrated in cumulative density 
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curves show how the added constraint increases the probability of a higher variation impact. 

These results are consistent with the expectation of having a longer completion time for projects 

with an increasingly rigid plan of events. Quantifying the probability of numerous scenarios 

provides a tool for managing performance and cost issues. The proposed method also assigns a 

magnitude to the variation impact allowing contingency plans to be made to avoid unnecessary 

consequences caused by the variation or unplanned event.  
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APPENDIX A  

Solving for the Pairwise Matrices Right Principal Eigenvector 

 

  



  87 

 

 



  88 

 

Programs such as Mat Lab can also be used to solve for Eigen vector as shown below. 
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APPENDIX B 
 

Pairwise Comparison Consistency Ratio 

 

Note: Inconsistencies may be encountered when performing pairwise comparisons.  
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APPENDIX C 

 

Monte Carlo Excel Calculations 

 

 
Recall the pump illustration and our AHP analysis. The variation type and timing are determined 

by using a random number generator to assign values between 0 and 1 for columns A–H.  
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Recall the Gantt chart for the bridge illustration (figure 3.4) copied below for convenience. The 

timing of the variation is determined by the random number in columns B, D, F, and H. A 

binomial value is assigned to the impacted events (columns V-AK) to be used as a multiplier for 

calculating the impact value. All variations occur at a time greater than zero, so e1 is assigned a 

value of 1 because every variation will impact at least some of the first event. The other equations 

shown below assign the binomial a value of 0 if the variation occurs before the event and a value 

of 1 if the variation occurs during or after the event.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Recall from the AHP analysis, T1 = .5472, T2 = .2631 , T3 = .1897 

Figure 3.4 Two Parallel Coupled Sequential Events 
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and    [R]1 =   

    
    
    
        

   [R]2 =   

    
    
    
         

    and    [R]3 =   

    
    
    
         

.  

Also recall that the pump illustration uses T1, T2, and T3 for the first as well as the second 

sequence of events. It also uses [R]1, [R]2, and [R]3 for e1 through e4 as well as e5 through e6, and 

[e0] is given below for the two coupled sequence of events where e4 must be completed before e8.  
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 The Excel spreadsheet below is equations 2, 3, and 4 from page 30 copied for convenience. The 

calculation for Δe1 is shown in cell AL11 below; similar calculations are made for Δe2 through 

Δe8. 
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The summation of each event is copied to columns EM through EP for convenience and summed 

in column EQ. Similar conventions are used for Δe5 through Δe8. 

 

 

 
 

The precedence matrix [PM], initial event matrix [e0], cumulative matrix [CM] and the resulting 

final event completion time [E]j are in cells shown below.  

 

 
 

 

 

 

 
The new event matrix [e]1 is calculated. 
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The matrix [E]1 is updated to account for the variation.  Excel avoids the circular reference error 

because the [CMi] matrix fills its column with the [Ej] element where j is the row above the 

corresponding element CMi.  

  

 

 

 

[CM] is calculated from the formula below.  

          0 if i = 1 

 [CMi] =     Max   IF(PMij = 1, Ej, 0)    if i ≠ 1   Eq. 3.2

 j=1,2,3….i-1   
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APPENDIX D 

 

Parallel Sequences with Constraints Located in the Upper Triangle of the 

Precedence Matrix 
 

 

Below are three parallel uncoupled sequences of events. 

 

 
 

The largest element in the column matrix [E] is 12, so the completion for the project above is 12 

weeks.  
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Next, consider constraining the parallel events by requiring e1 to be completed before e4. Note 

the 1 in the precedence matrix located in row e4, column e1. 

 

  
 

The largest element in the column matrix [E] is 12, so the completion for the project above is 12 

weeks, but the second sequence of events requires 11 weeks for completion instead of the 10 

weeks as shown in the uncoupled scenario. 
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Next, consider adding another constraint to the parallel events by not only requiring e1 to be 

completed before e4, but also e4 must be completed before e9. Note the 1 in the precedence 

matrix located in row e4, column e1 and in row e9 column e4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The largest element in the column matrix [E] is 14, so the completion for the project above is 14 

weeks. 
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In the examples above, the constraints fell in the lower half of the precedence matrix because the 

sequence of events are ordered from left to right, and the constraints are arranged in order from 

top to bottom. If a constraint is arranged from bottom to top, the 1 falls in the upper triangle of the 

precedence matrix, and the formula results in a circular error reference. To avoid this error, the 

following convention is used. 

Equation  

 

 [e] + [CM] =[E]  Eq. 3.1 

 

can be modified as  

 

 [e] + MAX{[CM]L, [CM]U} =[E]  Eq. D.1 

   

 

where [CM]L =  

  0 if i= 1 

 [CM]L =  Max  IF(PMij = 1, Ej, 0)   if i ≠ 1  Eq. 3.2 

    j = 1,2,3…i-1  

 

and [CM]U =  

  0 if i= q 

 [CM]U =  Max  IF(PMij = 1, Ej, 0)   if i ≠ q  Eq. D.2 

    j = i+1, i+2..q 

 

where q is the size of the precedence matrix.  
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This convention yields the same results as equation 3.2 in the uncoupled and one constraint 

situation above, but if e8 is required to be completed before starting e5, the 1 falls in the upper 

half of the precedence matrix, and this convention yields the same results as equation 3.2 but 

considers the 8 and 6 in row e5 using the larger of the two to calculate [E].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the next page is a situation where a 1 located in the upper half of the precedence matrix is the 

determining factor for final completion time. 
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Consider constraining the events by requiring e1 to be completed before e4, but if e8 is required 

to be completed before starting e3, the 1 falls in the upper half of the precedence matrix, and this 

convention yields a different result than equation 3.2 because it considers the 1 and 6 in row e3 

using the larger of the two to calculate [E]. 

 

 

 

 

 

 

 

 

 

 

 

The largest element in the column matrix [E] is 15, so the completion for the project above is 15 

weeks. 
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