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ABSTRACT
PROBABILISTIC MODELING OF ERRONEOUS HUMAN RESPONSE TO IN-
VEHICLE ROUTE GUIDANCE SYSTEM: A DOMAIN DECOMPOSITION-BASED
ALGORITHM
Abdullah Al Farooq

Old Dominion University, 2013
Director: Dr. ManWo Ng

Drivers are generally assumed to follow the shortest route to their destinations
prescribed by in-vehicle route navigation systems without mistake. However, it is not
uncommon that drivers make mistakes when there are complex intersections along the
route to miss turns. Such mistakes would result in following a longer route than the
optimal one. In this thesis, research has been conducted to analyze the effects of the
number of intersections in the shortest routes of different O-D (origin-destination) pairs.
While different formulations can be employed to describe such “driving with error”
model, a Domain Decomposition (DD) partitioning algorithm has been developed for
route guidance systems in order to recommend optimal routes to the drivers. A numerical

comparison among different solution approaches has been conducted in this thesis.
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CHAPTER 1
INTRODUCTION

In-vehicle route navigation systems are becoming increasingly common in
modern vehicles. An integral component of these navigation systems is the determination
of “optimal” routes (e.g. the fastest) to the desired destination. An implicit assumption
that is fundamental to these in-vehicle navigation systems is that the directions provided
are followed without mistakes. However, it is probably not hard to recall a situation in
which we have missed a turn, despite the directions of a navigation system, especially
when driving in an unfamiliar environment. Recently, Ng and Sathasivan [1] relaxed this
assumption of error-free human response to in-vehicle navigation systems (henceforth
“driving mistake” or “driving error” will be used to denote this type of mistake) and
explicitly model the reality that drivers might miss turns, leading to more robust route
guidance. To model this, they employed a Markov Decision Process (MDP), e.g. see
Puterman [2] and Bertsekas [3]. The resulting MDP was solved as a linear program. The
research, conducted in this thesis, is to solve large scale MDPs formulated from real

world network accurately and efficiently”.

1.1 MOTIVATION OF THE THESIS

Whereas the focus in Ng and Sathasivan [1] was on modeling and examining
model properties, no solution algorithm, in particular, was discussed. This is the principal
observation which motivated this thesis. Two different solution approaches, one is value

iteration [4] and the other is policy iteration [2], are presented to solve this problem.

! Figures, tables, and references in this thesis were formatted based on the IEEE Transactions and Journals
style.



According to the model, described by Ng and Sathasivan [1], as the most interesting — but
perhaps extreme — example, it has been noticed that under certain conditions, it is no
longer optimal to recommend drivers to take the shortest route. Instead, a longer route (in
certain cases even the longest!) becomes optimal. In this thesis, real-world, large scale
transportation networks (i.e. Austin, Chicago Regional) will be used to investigate this
phenomenon. To this end, a specialized solution algorithm will be developed that is able

to solve large-scale instances of the problem.

1.2 SUMMARY OF CONTRIBUTIONS

In this thesis, a robust solution algorithm, a domain decomposition based policy
iteration algorithm, is presented to solve the MDP problem associated with driving error.
Benefits of the model in terms of travel time savings are investigated via several case
studies. A commonly used technique, value iteration, for solving the MDPs and
comparing the solution time among different solution approaches is also discussed.

In addition, specific values for error probabilities were assigned according to a
defined scale which, in turn, shows logical relationship of error probabilities at different
nodes with various numbers of outgoing directions. It should be noted that the goal of this
research is not assigning exact error probabilities associated with intersections of a
network. Rather, the focus is mainly on developing a solution algorithm which is capable
of solving the “driving with error” model with any type of error probabilities.

This thesis seeks to remedy both space inefficiency and time inefficiency for
solving large scale MDPs, by modeling solution to remedy the inefficiencies, and by

incorporating the solution into a unified model. A novel decomposition algorithm is



presented to efficiently solve the MDPs. To this end, the domain decomposition (DD)
solver [5] is embedded in direct solution method of policy iteration algorithm to further
increase its efficiency. In addition to the enhanced efficiency, the DD algorithm, framed
in sparse matrix representation, not only reduces excessive resource consumption, but
also facilitates an efficient parallel implementation, which allows the resulting algorithms
to scale far beyond single-machine capabilities.

Although the focus is on devising the solution algorithm for navigation systems, it
should be noticed that the framework developed in this thesis has potential applications in
other domains as well, including the modeling of disobedience to evacuation orders (e.g.
see Ng et al. [6]; Ng and Waller [7]) or traveler information systems (e.g. see Yin and
Yang [8], Szeto and Lo [9], Toledo and Beinhaker [10], Bertini and Lovell [11]).
Moreover, the research conducted in this thesis has implications for travel time reliability
(Higatani et al. [12]; Uno et al. [13], Rakha et al. [14]): Variability in travel time is now
caused by the failure to follow the intended path, unlike in other studies where demand
and supply uncertainties are responsible for travel time unreliability (e.g. see Chen et al.
[15], Lo and Tung [16], Lo et al. [17], Sumalee et al. [18], Ng and Waller [19], Ng et al.
[20]). Finally, the research presented in this thesis has the potential to reduce unsafe
driving behavior (i.e., drivers attempting to make last-minute corrective steering actions),

or even lead to greater sustainability through reduced fuel usage.

1.3 OUTLINE OF THE THESIS
The remainder of this thesis is organized as follows. Chapter 2: MODEL

REVIEW briefly reviews the MDP under consideration and demonstrates its relevance



using by comparing it to the classical shortest path problem [21] using real transportation
networks. In Chapter 3: SOLUTION APPROACH, the basic policy iteration algorithm
and value iteration algorithms are briefly reviewed to solve Markov Decision Process
(MDP) model. Chapter 4: STORAGE SCHEME presents how the transportation network
information and MDP model are stored efficiently. Chapter 5: ENHANCED POLICY
ITERATION briefly reviews Domain Decomposition (DD) algorithm [22, 23] to show
how the algorithm is used to solve the problem. PERFORMANCE COMPARISON AND
DISCUSSION (using two different real world networks: Austin Network, and Chicago
Regional Network) and comparisons between the classical (without using DD
partitioning) approaches, and the approaches, coupled with DD partitioning algorithm,
are presented and discussed in Chapter 6. Finally, Chapter 7, CONCLUSION, concludes
the thesis by summarizing the main contributions of this work and the identification of

potentially worthwhile future research directions.



CHAPTER 2
MODEL REVIEW
This chapter presents introductory materials on how erroneous response to in-
vehicle navigation system was modeled [1] as MDP. Basic model properties are
discussed in this chapter. This chapter also addresses the need of using this model rather
than using the classical one (e.g. classical shortest path algorithm). Numerical examples,

from real world networks, are shown to emphasize the critical importance of the model.

2.1 MODEL PROPERTIES

Consider a transportation network G( N, A), with node set N and link set A. Each
link (i, j) has an (expected) travel time.c;; > 0. Let U(i) denote the set of all outgoing
links at node i. In case one allows for the possibility of mistakes, when instructed to
choose link u € U (i) at node i, a probability distribution p;;(u) is induced over all nodes
jwith (i,j) € A. (Of course, Y p;j(u) = 1.) That is, when instructed to go to node j from
node i, it is possible that one — by mistake — ends up at node k # j, where (i, k) € A. (In
other words, when instructed to turn right at the next intersection, it now becomes
possible that one misses the turn, and goes straight instead.) The instruction u = (i, j)
thus induces an immediate expected travel time of C(i,u) = X; p;;j () c;;.

The goal, for a navigation system, is then to choose a set of control strategies
u € U(i) at each node i so that the destination D is reached within the shortest expected
travel time. Without loss of generality (as in Ng and Sathasivan [1]), it is assumed that
the following for the transition probabilities p;;(u): Suppose that a navigation system

prescribes us to follow link u = (i, j) at node i # D. The driver is then assumed to follow



this recommendation with a probability of 1 —p; (0 <p; < 1) , whereas the driver

Di

moves to node k # j where(i, k) € U(i) with probability O]

(here |B| is used to

denote the cardinality of the set B). That is, when making a mistake, it is assumed that all
wrong turns are equally likely. For the destination node, we simply define C(D,u) =
0,Vu € U(D).

Let e(i) = 1,2, ...., n denote the minimum expected travel time from node i to the
destination node. (Note that by definition e(D) = 0, so that the cost label can be omitted
from the analysis.) It can then be shown that e(i) satisfies Bellman’s equations (cf.
Puterman [2]; Bertsekas [3]):

e(i) = mingey(p[ C(0, 1) + 3, pi;(we() | (1)

For more details on this MDP, the reader is referred to Ng and Sathasivan [1].
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Figure 1. Sioux Falls test network with node and link numbers

As a motivating example, to illustrate the importance for solving Eqgn (1), even in
case of relatively small error probabilities, a well-known, medium sized Sioux Falls
Network shall be used, as shown in Figure 1. The link costs data associated with the links
are assumed to be given by the free flow travel times reported in Suwansirikul et al. [24],
multiplied by 100. Without loss of generality, suppose that one is interested in traveling

from node 18 to node 12. The optimal route in the classical shortest path framework



would be 18-16-10-11-12, with an (expected) travel time of 19 minutes (cf. solid bold

arrows in Figure 1).
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Figure 2. Travel time difference between proactive and reactive routing strategies for

O-D pair (18 - 16) of Sioux Falls network

Let us set

pi = (U] - 1Ds )
Here, s is used to scale the probability. For the first experiment, s is set to 0.025 which
makes p;¢ = 0.075, p;, = 0.10, and p;; = 0.075. The optimal route, derived from the

model, remains as same as the classical shortest path with these slight chances of

mistakes. In the next experiment, s is set to 0.033 (That is, p;¢ = 0.10, p;o = 0.13, and



p11 = 0.10). The chances of mistakes, associated with three intermediate nodes, are not
high in this experiment. But the result shows (refer to Figure 2), following the route 18-
20-21-24-13-12, prescribed by the model, optimizes the travel time by 1.17%. The
prescribed route has less complex intersections with less chance of making mistakes on
the intermediate nodes ( p,, = 0.10, p,; = 0.067, p,, = 0.067, p;53 = 0.033). The average
chance of making mistake per intermediate node on the classical shortest route is 1.64
times the average chance of mistakes on the route prescribed by the model. In the next
two experiments, s is increased to 0.042 and 0.050 successively to demonstrate the
efficiency of the model in terms of saving travel time. For s = 0.050, the highest error
probability, associated with intermediate node 20 is 20% which is relatively small. Even
with such small chance of making mistakes, not only optimal route chances, but also
travel time can be saved by nearly 1 minute. This saving in travel time might seem
modest, however, one should bear in mind that a relatively small network has been used.
In the next section, large-scale, real-world transportation networks will be examined to

more thoroughly investigate this issue.

2.2 MODEL’S IMPLICATION IN REAL WORLD

While accounting for the possibility of missing turns is theoretically appealing in
terms of modeling realism, in practice, it is not clear what the expected benefits are in
terms of travel time savings. To this end, the proactive routing strategy resulting from
Eqgn (1) is compared next that explicitly anticipates the possibility of mistakes with the
following commonly used reactive strategy: Determine a shortest route from a user-

specified origin to the desired destination. Every time the driver misses a turn/ deviates
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from the route, a new shortest route will be determined based on the new location the
driver ends up at. Since the expected travel times are minimized in Eqn (1), it is clear that
the above described reactive strategy will always lead to a higher expected travel time.
However, it is not clear how large this difference will be. In the remainder of this section
the Anaheim, CA and Austin, TX road networks will be used to demonstrate that the
differences can be substantial. Intuitively, this difference should be a function of the
number of intersections between an O-D pair, and the error probabilities.

In the first numerical experiment, the effect of the number of intersections
between a given O-D pair on the difference between the expected travel time from a
proactive and reactive routing strategy is investigated. In the first experiment, s = 0.033 is
selected in Eqgn (2). Since the Anaheim network has at most 6 outgoing links for a node,
there is a 16.67% chance of making mistakes on that link. (On average, the Anaheim
network has 2.2 outgoing links per node. Hence the error probability is, on average, 0.04,
a rather small value.). One O-D pair (295 - 5) is then selected at random (the shortest
travel time between this O-D pair is 16.88 minutes). For this O-D pair, the expected
travel times under both routing strategies are then calculated, and starting from each node
along the classical shortest path. Backtracking along this path, starting from the
destination node, a path with increasingly more intersections is then built. Figure 3 shows
the results of this exercise. As can be seen from the upper part in the figure, the absolute
difference between the two routing strategies indeed, as expected, increase (or remains
constant) when the number of intersections increase. For the O-D pair (295 -5), the
classical shortest path recommends to take the route where there is 1 intermediate node

(node 337) with 6 outgoing links, 7 intermediate nodes with 5 outgoing links (node 308,
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node 361, node 378, node 394, node 407, node 406, node 402), and 3 intermediate nodes
(node 405, node 404, node 401) with 4 outgoing links. The driver needs to cross those 11
complex (of total 26 intersections) intersections with higher probability of making
mistakes to reach the destination according to classical shortest path. When the error
probabilities are associated with driving, the travel time on classical shortest route
becomes 21.73 minutes. The solution algorithm recommends an alternate path where
those 11 complex intersections were avoided. Although a route with more intersections
(33 intersections) is prescribed, there is no intersection having more than 3 outgoing
links. The travel time for the O-D pair of the solution algorithm is 17.97 minutes. That is,
the algorithm is able to recommend an alternate route with optimized travel time and less
complex intersections. For the same O-D pair (295-5), the scaling factor is reduced to
0.025 and 0.017. (This corresponds to an error probability of about 0.050 and 0.036
successively on average on the route prescribed by classical shortest path algorithm). The
results are also shown in Figure 3. As can be seen, although the difference becomes
smaller, it remains significant. In other words, these results suggest that it is of critical
importance solve (1), instead of a classical shortest path problem when human error is

possible.
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Figure 3. Travel time difference between proactive and reactive routing strategies for O-

D pair (295 - 5) of Anaheim network

In the second numerical example, it is shown how the number of complex
intersections affect travel time even when the travel time between an O-D pair is not that
significant. In this example, an O-D pair (209-25) of Anaheim network is chosen
randomly. The shortest travel time between the O-D pair is 9.68 minutes with 20
intersections in between. The interesting incidence about this O-D pair is that, there are 7
intersections which have more than 4 outgoing links in their classical shortest route (node
394, node 378, node 361, node 337, node 308, node 273, and node 269). The solution
algorithm recommends an alternate route with 21 intersections avoiding 6 of these

complex intersections. The absolute difference and relative difference between two
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routing strategies are shown in Figure 4, with different scale factors. When s is set to
0.033, we have p;< 0.13 on this shortest route (on average, the probability of mistakes is
0.08), which is rather a small value. But when error in driving is accounted for, the
absolute difference can be more than 2 minutes even if the route is comparatively
smaller. Even the relative difference between the routing strategies can be more than 20%
(shown in lower part of Figure 4). In the next two experiments, the scaling factor is
reduced to 0.025 and 0.017. As can be seen from the Figure 4, even with a very small
scale factor 0.017 (This corresponds to an average error probability of about 0.039 for the
intersections of the O-D pair), the relative difference between two routing strategies can

be more than 10%.
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Figure 4. Travel time difference between proactive and reactive routing strategies for

O-D pair (209 - 25) of Anaheim network
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In the next example, an O-D pair (1-400) of Anaheim network is chosen which
has 33 intersections in its classical shortest route. The route, prescribed by classical
shortest path algorithm, does not have any intersection more than three outgoing links
(there are 1.47 outgoing links on average on the classical shortest route which results in
the error probabilities of 0.015 on average for the intermediate nodes). The effect of the
absence of complex intersections is investigated on the shortest route with three different
scale factors (0.033, 0.025, and 0.017). It can be seen from Figure 5 that with the highest
scaling factor 0.033 (which results in the error probabilities 0.016 on average on the
classical shortest route), however, the maximum absolute difference between the routing
strategies does not exceed half a minute. Even the maximum relative difference is less
than 1% (shown in lower part of Figure 5). Although the algorithm recommends an
alternate optimized route with more intersections (34 intersections), the differences
between the routing strategies are not significant because of the absence of complex

intersections on the shortest route.
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Figure 5. Travel time difference between proactive and reactive routing strategies for O-

D pair (1 - 400) of Anaheim network

At this point, for demonstrating the importance of solving (1) rather than solving
classical shortest path, a large scale network named Austin, TX (7388 nodes, 18961
links) shall be used.

An O-D pair (278-6772) of Austin network was chosen randomly which has 107
intermediate nodes in its classical shortest route. In the first experiment the scaling factor
was set to be 0.033 (this sets the average probability of 0.07 for the nodes of the classical
shortest route). It is to be noted that this O-D pair does not have any intermediate nodes
more than 4 outgoing links (average number of outgoing links per intermediate node is
3.09). Having 4 outgoing links (including the outgoing link back to its predecessor node

which corresponds to a U turn in for an intersection) for an intersection is a very common



16

kind of intersection as can be seen in real life. The classical shortest travel time between
the O-D pair is 128.90 time unit (since it is not mentioned in BarGera [25] whether the
time unit for Austin network is minute or hour). When mistakes in driving are considered
with the scale factor s = 0.033, the travel time on the shortest route becomes 156.62
unit. The developed solution algorithm recommends an alternate route with 159
intermediate nodes which is able to optimize the travel time to 144.97 unit. The
difference between the routing strategies goes up to nearly 12 unit (shown in upper part
of Figure 6) for some nodes to reach the destination node. This example demonstrates
that the cumulative effect of the error is significant with the increasing number of

intersections between an O-D pair even when the intersections are not that complex.
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Figure 6. Travel time difference between proactive and reactive routing strategies for O-

D pair (278-6772) of Austin network

Another O-D pair (449-6772) of Austin network has been chosen randomly to
show the importance of solving (1) rather than solving the classical shortest path
algorithm. This O-D pair has 85 intersections, in its classical shortest route. In the first
experiment, the scaling factor s is set to be 0.033. Once the path is built after
backtracking from the destination node to the source node, it is clearly seen from Figure
7, that the model is able to minimize around 10 time unit for nearly 20 intermediate nodes
to reach the destination node 6772. The solution algorithm has more than twice as many
numbers of intersections as the classical shortest algorithm has. Despite the fact that the

solution algorithm recommends an alternate route with 172 intersections, it is able to
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minimize 5 time unit expected travel time for some intermediate nodes of the O-D pair

(449-6772) at the lowest scale factor s = 0.017 of this exercise.

Time Units

Percentage

Absolute Difference
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Figure 7. Travel time difference between proactive and reactive routing strategies for O-

D pair (449-6772) of Austin network

The case study, as shown in Figure 8, an O-D pair (263-6199) of Austin network

with 227 intermediate nodes is chosen. The simulation was run with three different values

of scaling factor. Surprisingly, the expected travel time from each intersection to the

destination is not minimized significantly, although there is relatively large number of

intersections between the O-D pair in the classical shortest route. More insight was

investigated to find the reason behind such incidence. There is no intersection in the
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shortest route which has more than 4 outgoing links. Even the intersections having 4

outgoing links is very few in number on the route. Moreover the average number of

outgoing links per node is 2.16. Even wit

h the highest scaling factor (s = 0.033) used for

the experiment, we have 3.87% chance of making mistakes on average per intersections.
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Figure 8. Travel time difference between proactive and reactive routing strategies for O-

D pair (263-6199) of Austin network

The numerical example, shown

in Figure 9, demonstrates how the change in

probability of mistakes affects the difference between two routing strategies. In the first

two experiments the scaling factor s was set to be 0.017. Both absolute difference and

relative difference do not become significant. In the next experiment, the scaling factor
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was increased to 0.025, which sets 5.25% chance of making mistakes on average per
node while following the shortest route. With this small chance of making mistakes, the
model can not minimize the expected travel time for most of the intermediate nodes on
the shortest route to reach the destination node. When setting the scaling factor s to be
0.033, as can be seen from both upper and lower part of Figure 9, there are sudden
significant changes in the difference of expected travel time for some intermediate nodes
under both routing strategies. This result is quite different from the experiment conducted
for the O-D pair (263-6199), as shown in Figure 8. Although the O-D pair (6766-1100)
has relatively small number of intersections compared to the O-D pair (263-6199), the
average number of links per nodes on the classical shortest route between O-D par (6766-
1100) is 3.10, a rather larger value than the average number of outgoing links ( average is

2.16) per intermediate nodes between the O-D pair (263-6199).



21

Absolute Difference
E T T T T T T T T
- — -0 pair, s=0017 :
"é 4L ———0-D pair, s =0.025 _.-'-
= 0-0 pair, s =0.033 _-'|.
2
g 2r
H ........................... e lll'_
0
0 1 1 1 ] 1 —_—t = — -
] g 10 15 20 28 a0 358 40 45
Eelative Difference
8 T T T T T T T T
— 0-D pair, s = 0017 |
%er | ———0D pair, s =0.025 7
| | 0-0 pair, s = 0.033
g4f rat. B
= )
—
P i
a2k T e
_ !
0 L ! ! ! I .--'.»--'—————'-————r——a-'ll
] 5 10 15 20 25 30 35 40 45

Mumber of Intersections

Figure 9. Travel time difference between proactive and reactive routing strategies for O-

D pair (6766-1100) of Austin network
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CHAPTER 3
SOLUTION APPROACH

There are lots of traditional algorithms which are capable of minimizing the
expected travel time by selecting the best action possible at each node. The goal (of a
navigation system) is to choose a set of control strategies u € U(i) at each node i (taking
into account the possibility that the directions provided might not be followed), so that
the destination is reached within the shortest possible time (in expected value It should be
noted that truly large scale MDPs demand efficient implementation of solution algorithm.
Hence a well-known solution approach, policy iteration algorithm (e.g. see Puterman
[2]), has been adapted to improve its efficiency. Moreover the value iteration [4]
algorithm was implemented because of its space efficiency and also for validating the
result found from policy iteration. They are described step by step in this chapter along

with the convergence criteria we have used for experiments.

3.1 POLICY ITERATION ALGORITHM

Policy iteration (PI) is an iterative procedure in the space of deterministic policies
where it discovers the optimal policy by generating a sequence of monotonically
improving policies. One of the main contributions of the thesis is the development of an
enhancement which we make to standard policy iteration. Hence, the basic policy
iteration is briefly reviewed in this section. The steps in policy iteration can be
summarized as follows:
e Step 1 (Initialization): Initialize by choosing an initial policy u(i) for all nodes

i # D. In this research, we initialize by finding the classical shortest path for each
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node to the destination node. The algorithm for finding initial policy is briefly

discussed below:

Algorithm:
for each node i # D to the destination node D
find shortest path from i to D following basic label correcting
algorithm.
select the successor node f of node i to reach destination node D as the
chosen action to take from node i. That is, u(i) « f.

end for

To illustrate this step, consider Figure 10 where the numbers on the links denote the
associate travel time (in minutes). The shortest path from node 1 to node 6 is 1-2-5-6.
After following the algorithm mentioned above, u(1) = 2. Similarly, u(2) =5, u(3)
=2, u(4) =6, u(5) = 6. A vector of control strategies u; is introduced to store the
control strategies u € U(i) for all nodesi # D. Here [ denotes the number of

iteration. For initialization step, [ = 0.
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2

Figure 10. A network with node numbers and link costs

From the Bellman’s equation, mentioned in Eqn (1), it is clear that the solution to this
set of equations depends directly on the choice of action in each state. Since the
chosen states from all states from the initial control strategies are known, the chances
of mistakes for all nodes are put back to Eqn (1) in order to obtain the labels e(i).
That is the following system of linear equations needs to be solved:

e() = A—-p)(3+e(@) +p(2+e3))

or, e(1) = (1 —=p1)e(2) —p1e(d) = 1—py (3)

e(2) =p,(10+e(®) + (1 —py)(1 +e(5))

or,e(2) — (1 —=pz)e(5) —pze(4) =1+ 9p; (4)



25
e(3) =8+e(2)
or,e(3) —e(2) =8 (5)
e(4)=5 (6)
Ps Ps
e(5) = 7(5 +e(3)) + 7(2 +e(®)+(1—ps)5
or, e(5) —Ze(3) —Ze(4) = 5 - L= @)
The above system can be formulated as (I — P (i) ).e® = C, where (I — P(i,)) is
the co-efficient matrix of the system, I is the identity matrix, and C is a vector with

elements C(i,1,) .e% is the vector of expected travel times from each node to the

destination node when the classical shortest path has been chosen as the control

strategy.
1 —-A-p) -p 0 0 1
IO 1 0 -p, —-(1 _pz)l
I—P(ip) = |0 -1 1 0 0 |, and
0 0 0 1 0
0 0 I~ 1 J
2 2
1-p:
1+ 9p2
C= 8
5
5 _ 3P

2
Step 2 (Policy Evaluation): Solve the system of linear equation (I — P(ﬁl)). et =C
where .e™ is the vector of expected travel times from each node to the destination
node, when the vector of control strategies @, has been in use at I" iteration. I is the
identity matrix, and C is a vector with elements C (i, &;). To simplify notation, in the

following chapters K will be used to denote the matrix I — P(i;).
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e Step 3 (Policy Improvement): Solve Bellman’s equation (cf. Puterman [2];

Bertsekas [3]) to obtain the next set of control strategy u, i.e.:

e™i(i) = minyeyy [C(LT) + X pij (). e™() ] (8)
This set of control strategy is at least as good as the previous one for getting optimal
solution, if not better.

e Step 4 (Convergence Test): Repeat the above steps from Step 2 until the difference
in e¥ in subsequent iterations is smaller than a prescribed error tolerance. The
stopping criteria |e® (i) — e%-1(i)| < € will be used, where € denotes the error
tolerance.

The algorithm, described above, can also be referred to as actor-critic
architectures [26]. Figure 11 shows a block diagram of policy iteration (or an actor-critic
architecture) and the dependencies among the various components. Policy improvement
is also known as the actor and policy evaluation is known as the critic, because the actor
is responsible for the way the model acts following the given policy and the critic is

responsible for criticizing the way the model acts.
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Value
Function
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Policy Evaluation Policy Improvement
(Critic) (Actor)
d
Policy i

Figure 11. Policy Iteration (Actor-Critic architecture)

3.2 VALUE ITERATION ALGORITHM

Value Iteration (VI) is an algorithm which successively approximates the value
function, starting from an arbitrary initial estimate. It is a robust and well-known
algorithm for solving an MDP, but not considered viable because of its slow convergence
nature for large scale problems. Although throughout the thesis, this algorithm is not the
subject for enhancement, it is reviewed because of its space efficiency for some networks.
Also, the optimal solution of this approach was used to validate the results found after

solving both normal and enhanced policy iteration. The steps for the algorithm are given
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below:
e Step 1: Initialize by guessing an initial expected travel time e(i) for all nodes i # D.
e Step 2: Solve Bellman’s equation (cf. Puterman [2]; Bertsekas [3]) to obtain the next
set of minimized expected travel time e (i) for all nodes i # D, i.e.:
e(i) = minyeyp [ CGLw) + Xjpij(we()) ] 9)
e Step 3: Repeat the above step until the difference in e(i) = 1,2, ....,n in subsequent
iterations is smaller than a prescribed error tolerance (€). € denotes the error
tolerance for finding the optimized travel time for each node to the destination node.
The algorithm iterates over every state, and updates the value of that state
according to Equation 3.2. Value iteration can therefore be viewed as generating all one-
step optimal policies, then two-step optimal policies, etc., and is generally considered a
form of dynamic programming which opts to approximate the expected travel time from

each source node to the destination node within some error tolerance.
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CHAPTER 4
STORAGE SCHEME
This work is about the efficient storage scheme that has been used while
developing the solution algorithm and conducting numerical experiments with real world
large scale data. This chapter discusses how the large scale transportation data are stored

into sparse matrix storage framework.

4.1 SPARSE MATRIX REPRESENTATION FOR TRANSPORTATION
NETWORK

In this thesis, the popular and highly efficient “sparse matrix” storage scheme,
used by the “sparse equations solver” research community for handling large-scale
transportation network applications was adapted. In general, the travel time for each link
is stored in a n x n node-node adjacency matrix. But this kind of storage is prohibitively
expensive. As for example, each row of such matrix of Austin, TX network contains
around 3 non-zero values, on average, only among all 7,388 elements. An efficient sparse
matrix storage scheme for large scale transportation network was adapted from Lawson et
al. [27]. For a more detailed discussion, the reader is referred to Nguyen [5].

In actual computer implementation, the sparse matrix representation of node-node
adjacency matrix demands more in order to find optimal routes efficiently from a network
where all links are not bidirectional. In addition to the sparse storage scheme of Nguyen
[5], a new sparse storage scheme for storing incoming link information is introduced. The
network partitioning step of Domain Decomposition algorithm needs to know which
nodes are connected to a node when it is being explored in order to be a member of a

subdomain. This step considers all neighboring nodes with any nature of the connectivity
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(e.g. outgoing or incoming). To our knowledge, most of the real world networks found
from Bar-Gera [25] are not bidirectional. This additional storage scheme, used mainly in
Domain Decomposition algorithm, helps to keep the basic sparse matrix representation
[5] unchanged all throughout the developed solution algorithm. To illustrate the sparse
matrix representation scheme, a network which contains 5 nodes and 8 links is used, see

Figure 12.

15
—
o
N N
15
45 45 35

oo

Figure 12. A simple 5 node/ 8 link network [27]

The node-node incidence type matrix of this network is the 5x5 matrix A.
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This matrix A can be stored in a sparse format using user-defined arrays NZ, 14, JA and
C. Arrays 14 and JA are used to index outgoing nodes associated with the link cost values
stored in 4. By following the sparse matrix representation scheme of Lawson et al. [27],

for the network shown in Figure 12 we have

2 25
, 3 1 1 35

/1\ 4 /1+2\ /3\ 15

2 13411 | 4] 45

NZK;' JA= g A= 41 T s | ¢ 15
. 5 5+2/ \7/ 45

3 7+2/ \g 25

4 35

Three new user-defined vectors NZ I, X4, KA were introduced for indexing
incoming nodes associated with the same link cost values of C. For instance, for the

above network, we have:
0
2

NZI=|3
2
1

For example, NZ I(1)=0 tells us that there are no incoming links to node 1, and so on.
The array can then be easily computed by recursively adding the vector NZ to the vector
XA. By definition, to initialize, the first entry in X4 is set equal to 1. (The length of X4 is

the number of nodes plus 1.) For instance, for the above network, we have:
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1
1+0 /
I

1 1+2 ]
XA = 3+3]
\6 + 2 8 /
8+1 9
That is, in order to calculate XA(7), we have added NZ I(i-1) to XA(i-1). Based on X4 we
can, for example, easily recover the number of non-zeros in column 5 of A by the

substraction XA4(6)- XA(5) = 1, and so on. In conjunction with X4, one also needs to

define the row number of the non-zero terms in C. In the example, we have for K4:

BSUTN UL W

That is, there is no incoming link for node 1 as XA(2)- X4(1)= 0 (no non zero values in
the first column of 4). KA(1)=1: the first link comes to node 2 from node 1, and K4(2)=3:
the first link comes to node 2 from node 3 (note that from X4 one knows that the number
of non-zeros in the second column of 4 is equal to 2; hence, one knows that the first two
entries in KA corresponds to node 2 and so on). The final task is to store the link cost in

vector C_I, with same dimension as KA.
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25
45
35
15
25
15
35
45

Thus instead of using a nxn node-node adjacency square matrix, the whole
network can be represented using these NZ (nx1),/IA (n+1x1),J4 (mx1),C(mx 1),

NZI(nx1),XA(n+1x1), KA (mx1),and C_I(m x 1)vectors only.

4.2 STORING MDP MODEL

In this section, a discussion on how the co-efficient matrix is filled up for one
iteration only is provided. Hence the subscript [ is dropped, which denotes the iteration
count index, for better readability. In the policy evaluation step of policy iteration
algorithm, a system of linear equations (I — P(ﬁ)). e = C is solved. This is too
expensive in terms memory to store I and P(u) since both of the matrix will be of nxn
dimension. Rather, a framework is proposed to calculate the co-efficient matrix, resulting
from (I - P(ﬁ)). The implicit assumption for making mistakes in driving, made by Ng
and Sathasivan [1], is that all wrong turns are equally likely. Based on this assumption, a
vector p of dimension nx1 is enough to store p; for all nodes i # D. This vector stores
the error probabilities associated with each node. The co-efficient matrix K, for each
iteration [, is filled up according to the model described below. Note that K;; = 1 for all

nodes i # D.
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CHAPTER 5
ENHANCED POLICY ITERATION

In this chapter, a novel solution algorithm is presented to solve the MDP model
described in Chapter 2. The Domain Decomposition (DD) algorithm of Johnson et al.
[22, 23] is used to decompose the transportation network in such a way that a system of
linear equations (i.e., in Step 2 of the policy iteration algorithm) can be reduced to several
smaller, decoupled systems of equations. A simplified variation of the domain
decomposition scheme is employed. The reader is encouraged to refer to Johnson et al.
[22, 23] for the most recent research into the subject. The chapter is concluded after
presenting how this thesis make use of the DD algorithm to solve a system of linear

equation with respect to a given policy.

5.1 DOMAIN DECOMPOSITION SCHEME

In this section, the domain decomposition scheme is briefly reviewed. To
facilitate this discussion, the partitioning algorithm will be applied to the example
problem given by Figure 13. Further, the assumption is made to partition the network into
three sub-domains. It is important to note that the actual link cost is not needed, and for
this algorithm the cost for every link is one. Lastly, as mentioned in Chapter 4, the sparse
matrix storage scheme is able to handle any kind of link directionality, it does not matter
if the network partitioned, is bi-directional or uni-directional. The effort is to identify

nodes which are adjacent to, or alternatively, far from other nodes.
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The major objective in all domain decomposition algorithms is to minimize the
total number of system boundary nodes, and to have sub-domains of approximately equal
size (with the former having more priority than the latter). The first requirement ensures
that the communication time between sub-domains will be minimized, while the second
criterion ensures an (approximately) equal workload for each sub-domain. The steps
involved during the domain partitioning phase can be summarized as follows:

Step 1: The transportation network topology (shown in Figure 13) can be represented by
the matrix notation shown in Figure 14. In actual computer implementation, this matrix
will be efficiently stored in the popular sparse storage scheme [5].

Step 2: Rank (R) or Degree of a node is a number which represents how many
neighboring nodes a node has. R can be found by the connectivity information stored in
14, JA, XA, and KA. R is found by the UNION set operation on the number of
occurrences a given node found as both incoming node and outgoing node. For example,
in Figure 12, the set of outgoing nodes from node 4 is {3, 5}, and the set of nodes from
where the links come to node 4 is {2, 5}. The UNION set operation is used to get {2, 3,

5} as the neighbors of node 4. Thus R = 3 for node 4.
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Figure 13. A network with nodal rank and directions for populating sub-domains

11 12 13 14 15

10

1

Node

10
11
12
13
14
15

Figure 14. Node-node adjacency matrix for network representation of Figure 13
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Step 3: Upon examination of Figure 13, it is seen there are 5 nodes (1, 6, 10, 11, 15)
which have the same (lowest) rank; one arbitrarily selects the smallest node number
(node 1) of these low ranking nodes as the starting (interior) node for sub-domain 1.
Performing the Label Correcting Algorithm (LCA) with the source node as node 1 (to
find the shortest path from the source node to all other nodes in the system) will reveal
that node 15 is “very far” from node 1. Hence, node 15 is used as the starting (interior)
node for the second sub-domain. Performing the LCA with the source node 15 will
reveal that nodes 6, 9 and 10 are “far away” from both nodes 1 and 15. Because nodes 6
and 10 have a lower rank than node 9 they will be considered for the final starting
(interior) node. Node 6 is arbitrarily selected (note that if node 10 were selected, the
results would remain unchanged) as the starting (interior) node for the third (last) sub-
domain (refer to Figure 13).

Step 4: Each sub-domain will be “sequentially” populated from the remaining nodes,
based on the simple heuristic rule: the next j-th node to be added to a k-th sub-domain
will be the node which has the lowest rank which shares a direct connection between
either the source node or any other node in the populated sub-domain. Figure 13 shows
the order in which the sub-domains are populated. (It should be noted that a more
efficient partitioning can be achieved, in larger examples, if one were to modify the rule
above by first searching for the node which is closest to the source node and then, as a

tiebreaker, examine the rank of the node as described above).
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A\ND\CATES SYSTEM BOUNDARY NODE

Figure 15. The network, shown in Figure 13 after renumbering

Step 5: System boundary nodes (and sub-domains’ interior nodes) can be identified by
considering each link of the network based on the following simple rule: If the nodes
which define a link belong to the same sub-domain, then these two nodes are considered
interior nodes, however, if these nodes belong to two different sub-domains, then both
nodes must be considered system boundary nodes. The determination of system boundary
nodes is imperative for the next step.

Step 6: Finally, the nodes in the system were renumbered. Starting with sub-domain 1,
The nodes which belong to each sub-domain were numbered sequentially, however,
ignoring the boundary nodes. Once all of the interior nodes have been renumbered, the
boundary nodes were numbered as the last nodes in the set as shown as by Figures 15 and

16.
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Figure 16. Node-node adjacency matrix after reordering the matrix shown in Figure 14

Now that the re-numbering of the nodes has been performed, a new node-node adjacency
matrix can be created (for Figure 14). This is shown in Figure 5.4. As can be seen, after
reordering the model (per Step 6 of the algorithm outlined above), described in Section 2,
the adjacency matrix has been decomposed effectively into sub-matrices K;,, K/, Kg;,
Kgg. K, simply represents the adjacency matrix of the smaller, sub-structured systems.
Sub-matrices Kz, Ki;, and Kgg represents the coupling effects among sub-domains. The
matrix in Figure 16 gets decoupled after discarding rows and column 13, 14, and 15 (as
node 13, 14, and 15 are the boundary nodes for the network in Figure 15). For a more
detailed discussion, the authors refer the reader to Nguyen [5]. Vector e and C will be
reordered according to the new numbering of the nodes; e will be found as e/ (r =
1,2,3...NS, where NS denotes the number of sub domains) and ez and C will be found

as C; and Cg.
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5.2 ENHANCED POLICY ITERATION

This section describes how the system of linear equation K.e = C is solved. It is
described in Step 2 of Section 3.1 with the help of sub-matrices K};, K[z, Kg;, and Kgp. It
should be noted that this system is solved with respect to a policy at one iteration only.
To increase readability the superscript &; will be dropped, as mentioned in Chapter 3, Oall
throughout this chapter, which denotes the policy (or control strategy) to get the optimal
solution at each iteration of the model. The derivation is given below:

(% o iﬁi\/ \ (&)

| : : -
Kei' Kgi® - Kg'™®

The above matrix notation, except for the last row, can be broken down into a system of
linear equations, as shown below:
1 1 1
K” .611 +KIB .egp = C]

2 2 2 _ 2

K" eV + KMo ep = N
The set of equations, mentioned above, can be re-written as following with r =
1,2,..,NS:
K, e, + K .eg =C;" (10)
From the last row of the matrix , the following linear equation is obtained:
Kgit.e;t + Kg2oe)? + 4+ Kg, V. e,NS + Kgg.ep = Cp

YN (Kpi"-e/") + Kpp.eg = Cp (11)
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It is seen that the above matrix notation is broken down into two linear equations, as
shown in Eqn (10) and Eqn (11).
From Eqn (10), e; can be solved as follows:
e/” = (K" )7 (C" — Ki"-ep) (12)
Substituting Eqn (12) into Eqn (11) we obtain:
Yo (K" (K" )TNCT — K" ep)) + Kpp.ep = Cp

The above equation can be re-written as:

(K — 2r21 Ker" (Ki' ) 7' Kig").ep = Cp — X051 Kgy " (K )™R G (13)

Eqgn (13) can now be simplified as:

Kgp.ep = Cgp (14)

where:
Kgs = Kpp — 2021 K" (K" ) ™" Kig" (15)
C_‘BB =(p— ZIrV=S1 Kgi" (Kur)_l- C (16)

Eqn (15) and Eqn (16) are substituted into Eqn (14) and solve for egz. Now ep can be
inserted back into Eqn (12).

Thus e/ (forr=1, 2, ..., NS) and ep are obtained as our solution. For a more
detailed discussion about the computation from the decomposed sub-matrices, the reader
is referred to Nguyen [5]. To this end, a direct solution method is used for solving the
large scale system. This is the method for solving a large linear system with the exact
solution e within a finite number of steps, provided that all arithmetic operations are
exact. Direct solution methods are attractive because of their generality, reliability, and

efficiency. The choice of an appropriate solution method depends on the main goal,
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which is to run the application as fast as possible. Moreover, running the application at all

given computer resources (disk space, and memory space) is another important concern.

In this section, a very basic form of direct solution approach will be discussed. Note that

the linear system, to be solved, is unsymmetrical most of the cases. This limits us in using

some well-known direct methods for solving the system. Since the co-efficient matrix,

formulated from transportation network, is sparse, a built in function of Matlab named

“sparse()” has been invoked on each of the sub-matrices KJ,, K[z, Kg;, and Kgp before

operations.

Step 1: Calculate K from the equation Kz = Y.¥5, (K%, . (K;;') Y. K}p).

Step 2: Using the matrix K, calculate Kzp from the equation Kzp = Kgp — Kp.
Step 3: Calculate Cy from the equation Cx=Y.">, (K}, . (K;;")~.CD).

Step 4: Using the vector Cg, calculate Cgp from the equation Cgg = Cz — Cp.
Step 5: Solve system of linear equations Kpgp.epz = Cpp

Step 6: Calculate e]from the formula e/ =(K;;")t. (C/ - Klz.eg). for r =
1,2,3,....NS.

It is important to retain the mapping between the previous node numbering and

new node numbering, such that the optimized travel time from each source node to the

destination node can be obtained for the original problem.
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CHAPTER 6
PERFORMANCE COMPARISON AND DISCUSSION

This chapter deals mainly with the comparison of solution time needed to obtain
the optimized travel time following different solution approaches. To validate the
research conducted in this thesis, 5 networks (Anaheim, Winnipeg, Chicago Sketch,
Austin, Chicago Regional) are used from Bar-Gera [25]. The code which generated all
the results, shown in this chapter, was written in MATLAB. The performance data were
found using a computer with an Intel(R) Core(TM) 2 Quad CPU Q9300 @ 2.50 GHz
processor and 8 GB of RAM.

For each of the networks, some destination nodes were randomly selected for
getting the expected travel time needed to reach those destination nodes from all source
nodes using different solution approaches. The solving time and iteration counts were
recorded for each of the solution approaches for each destination node separately without
applying DD partitioning algorithm. At first, the performance of value iteration (VI) with
policy iteration (PI) is compared. Then in the next table, the developed “enhanced policy
iteration” that helps to speed up the solution time is shown. Direct solution method
includes a basic linear system solving approach under the column “PI”. Note that all
matrices and sub-matrices are used after invoking built-in “sparse()” before operations.
The direct solver employs LAPACK with optimized BLAS, developed by Greg Henry of
the University of Tennessee and Intel Corp. (Moler, 2000), for solving system of linear
equation. It should also be noted that the workspace, used for all simulation runs has 4
processors. Although the results are shown for upto 8 smaller subdomains, the solving

time, shown in the tables, has used maximum of 4 processors.
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Table 1 shows the results of three simulation runs (with three randomly chosen

destination nodes) of Anaheim network (416 nodes). For this network, policy iteration

shows better results than value iteration in terms of both iteration count and solving time.

Table 1. Performance comparison between VI and PI without applying DD algorithm

(Anaheim network)

Destination VI Pl
Node
Iteration Count Solving Time Iteration Solving Time
(seconds) Count (Seconds)

5 78 0.4457 4 0.2318

50 69 0.4294 3 0.1759
400 80 0.4922 5 0.2967
280 88 0.5267 4 0.2680

In Table 2, the comparison of solving time of enhanced policy iteration with

different solution approaches is shown after using the sub-matrices Kj;, K/z, Kg;, and

Kgg following DD partitioning algorithm, in order to get the solution with the same

destinations. The simulations were run using single processor and multicore processors.

As can be seen from the table, DD partitioning algorithm minimizes the solving time for

some simulation runs while using single processor. The parallel implementation does not

speed up the solution time for Anaheim network because the solving time at each

iteration for this network is relatively small. The communication time among the
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processors adds extra noise to the performance for parallel implementation of the

developed solution approach.

Table 2. Performance comparison of PI after applying DD partitioning algorithm

(Anaheim network)

Destination # Sub-Domains Pl
Node (Seconds)
Serial Parallel
2 0.2361 0.5835
3 0.1818 0.5740
4 0.1652 0.6196
5 5 0.1478 0.6512
6 0.1496 0.6005
7 0.1369 0.6321
8 0.1666 0.6283
2 0.1697 0.4842
3 0.1386 0.4838
4 0.1133 0.5325
50 5 0.1134 0.5904
6 0.1143 0.5533
7 0.0978 0.5358
8 0.1136 0.5594
2 0.2843 0.7203
3 0.2338 0.7021
4 0.1734 0.7172
400 5 0.1634 0.7541
6 0.1602 0.7545
7 0.1645 0.7403
8 0.1729 0.7952
2 0.2338 0.5729
3 0.1856 0.5972
4 0.1425 0.6267
280 5 0.1351 0.6674
6 0.1400 0.6753
7 0.1398 0.6471
8 0.1527 0.8503
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Next, all the solution approaches were tested with two medium size networks,
collected from Bar-Gera [25], named Winnipeg (1,052 nodes) and Chicago Sketch (933
nodes). The results, obtained from several simulation runs, agree with the results obtained
by testing Anaheim network. The results are shown in Table 3, Table 4, Table 5, and
Table 6 respectively. As can be seen, parallel implementation using multicore processors
yields worse performance than using a single processor for the solution approach. For the
parallel implementation, Matlab’s built-in “Parallel Computing Toolbox has been used
as a black-box. Such implementation could not tell us more about the reasons behind
such slow performance. Moreover, operations on small and medium sized matrices
happen so fast that the computational time is hard to measure accurately. Hence, all the
solution approaches were tested with two large scale network, Austin (7,388 nodes) and

Chicago Regional (12,982 nodes).

Table 3. Performance comparison between VI and PI without applying DD algorithm

(Winnipeg network)

Destination VI Pl
Node

Iteration Count Solving Time Iteration Solving Time
(seconds) Count (Seconds)
35 492 7.1010 4 1.3116

250 550 8.7738 3 1.0501
1000 333 4.8067 5 1.6312
550 673 7.6547 5 1.6395
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Table 4. Performance comparison among different solution approaches of PI after

applying DD partitioning algorithm (Winnipeg network)

Destination # Sub-Domains Pl
Node (Seconds)
Serial Parallel
2 1.6606 1.8303
3 1.1234 1.3121
4 0.8604 1.2220
35 5 0.7679 1.2138
6 0.8193 1.3425
7 0.7570 1.3443
8 0.7150 1.3326
2 1.2715 1.3742
3 0.8511 1.0218
4 0.6439 0.9724
250 5 0.5737 0.9582
6 0.5807 1.0124
7 0.5650 1.0334
8 0.5359 0.9831
2 2.0941 2.1618
3 1.3775 1.6379
4 1.0408 1.5570
1000 5 0.9855 1.5630
6 0.9707 1.5963
7 0.9508 1.5676
8 0.9116 1.6587
2 2.0749 2.6094
3 1.4183 2.2596
4 1.0632 1.9574
550 5 0.9573 1.9902
6 0.9543 2.0603
7 0.9441 2.0935
8 0.8982 2.1202
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Table 5. Performance comparison between VI and PI without applying DD algorithm

(Chicago Sketch network)

Destination VI Pl
Node
Iteration Count Solving Time Iteration Solving Time
(seconds) Count (Seconds)

333 3189 44,2296 4 1.0778
654 2904 39.3855 3 0.9761
831 3189 42.8940 4 1.0666
920 5809 48.1724 3 0.8947
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Table 6. Performance comparison among different solution approaches of PI after

applying DD partitioning algorithm (Chicago Sketch network)

Destination # Sub-Domains Pl
Node (Seconds)

Serial Parallel

2 1.0637 1.3237

3 0.7801 1.0914

4 0.7121 1.1519

333 5 0.6513 1.1889
6 0.5844 1.1334

7 0.5328 1.1743

8 0.7276 1.6493

2 0.7904 1.0645

3 0.5651 0.8322

4 0.5279 1.0358

654 5 0.5038 0.9531
6 0.4479 0.8768

7 0.4142 1.0385

8 0.5597 1.0523

2 1.0637 1.3237

3 0.7801 1.0914

4 0.7121 1.1519

831 5 0.6513 1.1889
6 0.5844 1.1334

7 0.5328 1.1743

8 0.7276 1.6493

2 0.7896 1.0418

3 0.5703 0.8678

4 0.5175 0.8954

920 5 0.5050 0.9559
6 0.4517 0.9898

7 0.3917 0.8978

8 0.5436 1.0810

It is surprising to observe that for Austin and Chicago Regional networks (see
Table 7 and Table 9 respectively), VI algorithm solves the problem faster than PI

algorithm. The larger the size of a network is, the slower the solving time gets for policy
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iteration compared to value iteration. Partitioning the domain into several numbers of
subdomains helps the PI running faster in serial processor implementation although it
does not outperform the value iteration algorithm. The solving time is getting closer with

the increase in the number of subdomain.

Table 7. Performance comparison between VI and PI without applying DD algorithm

(Austin network)

Destination VI Pl
Node
Iteration Count Solving Time Iteration Solving Time
(seconds) Count (Seconds)

5 2013 105.13 27 453.65
2345 1681 90.92 14 236.65
4200 2021 106.41 20 333.68
6432 2212 118.46 13 238.91

Unlike the three networks (Anaheim, Winnipeg, and Chicago Sketch), as shown
in Table 8 and Table 10, the parallel implementations of the solution approach with 4
processors catch the solving time of basic Pl (without DD partitioning algorithm), even
sometimes perform better than the single processor implementation. This result is
inspiring in the sense that more processors will be able to solve the model with less
amount of time if the network is partitioned efficiently into more number of subdomains.
The less the number of boundary nodes, the more efficient the partitioning algorithm is.

In that case a smaller system needs to be solved as shown in Eqn (14). Moreover the
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architecture of the workspace, used for all simulation runs, might cause the slower
performance in communication time for parallel implementation. After recording the
computational time associated with each subdomain separately, it is clear that parallel
implementation adds huge noise as the communication time between processors in such

computations and thus results in surprisingly slow performance.
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Table 8. Performance comparison among different solution approaches of PI after

applying DD algorithm (Austin network)

Destination # Sub-Domains Pl
Node (Seconds)
Serial Parallel
2 555.96 448.27
3 359.02 295.75
4 299.89 262.47
S 5 245.15 224.42
6 194.87 193.07
7 196.73 193.63
8 196.31 210.08
2 289.72 236.33
3 186.54 160.47
4 158.28 165.87
2345 5 127.21 135.87
6 100.14 96.20
7 101.91 118.97
8 100.94 114.73
2 425.57 343.15
3 274.80 233.11
4 233.32 208.15
4200 5 182.05 178.93
6 144.22 138.58
7 152.67 170.91
8 149.66 164.46
2 271.05 238.74
3 175.77 141.09
4 146.44 139.58
6432 5 119.62 109.49
6 96.94 109.39
7 96.84 95.26
8 94.34 97.42




Table 9. Performance comparison between VI and PI without applying DD algorithm

(Chicago Regional network)

Destination VI Pl
Node
Iteration Count Solving Time Iteration Solving Time
(seconds) Count (Seconds)

1111 1433 318.63 11 871.33
8568 3705 340.13 10 964.18

400 1915 185.34 8 733.34
12150 1917 178.81 8 801.81
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Table 10. Performance comparison among different solution approaches of PI after

applying DD algorithm (Chicago Regional network)

Destination # Sub-Domains Pl
Node (Seconds)
Serial Parallel
2 798.05 721.79
3 670.32 689.34
4 582.41 739.92
1111 5 475.76 689.53
6 427.21 666.89
7 488.79 611.19
8 438.48 570.28
2 848.19 732.74
3 573.44 526.23
8568 4 579.69 581.25
5 499.14 537.06
6 474.98 526.98
7 436.31 516.18
8 430.91 504.70
2 643.99 613.06
3 455.67 420.77
4 450.56 448.27
400 5 387.60 411.00
6 368.73 420.06
7 336.09 409.92
8 331.38 396.17
2 725.06 604.14
3 452.90 420.01
4 446.09 464.25
12150 5 380.80 421.94
6 372.01 409.23
7 332.44 395.87
8 325.03 407.87
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CHAPTER 7
CONCLUSION

Algorithms (i.e., shortest path algorithm) in navigation systems assume that
drivers are able to follow the directions without mistakes. However, this is not always the
case, especially when the drivers are passing through complex intersections and the
graphical interface design of navigation systems is poor. Using real-world transportation
network, it has been shown that this is indeed the case and that the “classical” shortest
routes do not remain optimal anymore

The focus of the research conducted in the thesis is to develop a robust, reliable,
and efficient algorithm to solve “driving with error” models. Through real-world
transportation network examples (such as Anaheim, Austin, Winnipeg, Chicago Sketch,
and Chicago Regional), it has been demonstrated that the proposed solving algorithm,
coupled with DD partitioning, significantly reduces the computational time (as compared
to the traditional algorithm, which operates directly on the entire large network) for the
basic policy iteration algorithm.

Various aspects of the mentioned problem have still been left unexplored, and
hence, can be considered in future works. For example, it was intended to devise discrete
choice models to estimate the error probability as a function of intersection and personal
characteristics of the driver. It was also intended to develop models that are robust to the
misspecification of the error likelihoods.

A more principled approach to network partitioning is necessary to ensure the
minimization of system boundary node count which is responsible for adding overhead to

the computation cost. Partitioning the network into as many subdomains as possible,
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following a more efficient partitioning algorithm [22, 23], and distributing the
subdomains to the processors of a supercomputer (with 32 or 64 processors) for solving
the model could show more exciting results.

Moreover, the parallel implementation tasks were left totally to Matlab’s “Parallel
Computing Toolbox”. Such implementation should be done carefully and efficiently after
investigating which portions of the code segments take more time while using multicore
processors.

It was also observed that for a transportation network, the average number of links
per node is almost same regardless the size of the network. That is, the bigger networks
have more sparse system than the smaller ones compared to the size of network. A multi-
frontal method (i.e., Davis [28], Davis [29], Davis, [30]), or a hybrid multi-frontal
method (i.e., Amestoy et al. [31], Amestoy et al. [32], Xia et al. [33], Raju et al. [34])
coupled with DD partitioning algorithm can be developed to take the advantage of such
sparsity for better performance. UMFPACK library [28], used by “Backlash” operator,
takes way more advantage of a sparse system by using multi-frontal method. Since the
source code for this library is open for all, it can be embedded in the DD framework for
taking more advantage of the sparse sub-matrices obtained from DD partitioning
algorithm.

In this thesis, a direct solution method coupled with DD framework was
implemented. An efficient iterative solution method, a hybrid of BI-CG and BI-CGSTAB
(Van der Vorst [35]) algorithm, named IBI-CGSTAB (Yang and Brent [36]), could be
employed which reduces the global communication cost of the parallel performance

significantly. Moreover, constructing appropriate preconditioned matrix using parallel
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and multilevel methods, discussed in Saad and Van Der Vorst [37], for obtaining super-

linear convergence for iterative solvers, could be an interesting future research direction.
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