
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling & Simulation
Engineering Theses & Dissertations

Computational Modeling & Simulation
Engineering

Fall 2013

Probabilistic Modeling of Erroneous Human Response to In-Probabilistic Modeling of Erroneous Human Response to In-

Vehicle Route Guidance Systems: A Domain Decomposition-Vehicle Route Guidance Systems: A Domain Decomposition-

Based Algorithm Based Algorithm

Abdullah Al Farooq
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Al Farooq, Abdullah. "Probabilistic Modeling of Erroneous Human Response to In-Vehicle Route Guidance
Systems: A Domain Decomposition-Based Algorithm" (2013). Master of Science (MS), Thesis,
Computational Modeling & Simulation Engineering, Old Dominion University, DOI: 10.25777/4wzx-nt29
https://digitalcommons.odu.edu/msve_etds/1

This Thesis is brought to you for free and open access by the Computational Modeling & Simulation Engineering at
ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering
Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please
contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/1?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

PROBABILISTIC MODELING OF ERRONEOUS HUMAN RESPONSE TO IN-

VEHICLE ROUTE GUIDANCE SYSTEMS: A DOMAIN DECOMPOSITION-

BASED ALGORITHM

by

Abdullah Al Farooq

B.Sc. February 2011, Bangladesh University of Engineering & Technology

A Thesis Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY

December 2013

 Approved by:

ManWo Ng (Director)

Duc T. Nguyen (Member)

Jiang Li (Member)

ABSTRACT

PROBABILISTIC MODELING OF ERRONEOUS HUMAN RESPONSE TO IN-

VEHICLE ROUTE GUIDANCE SYSTEM: A DOMAIN DECOMPOSITION-BASED

ALGORITHM

Abdullah Al Farooq

Old Dominion University, 2013

Director: Dr. ManWo Ng

Drivers are generally assumed to follow the shortest route to their destinations

prescribed by in-vehicle route navigation systems without mistake. However, it is not

uncommon that drivers make mistakes when there are complex intersections along the

route to miss turns. Such mistakes would result in following a longer route than the

optimal one. In this thesis, research has been conducted to analyze the effects of the

number of intersections in the shortest routes of different O-D (origin-destination) pairs.

While different formulations can be employed to describe such “driving with error”

model, a Domain Decomposition (DD) partitioning algorithm has been developed for

route guidance systems in order to recommend optimal routes to the drivers. A numerical

comparison among different solution approaches has been conducted in this thesis.

iii

Copyright, 2013, by Abdullah Al Farooq, All Rights Reserved.

iv

This thesis is dedicated to my family.

v

ACKNOWLEDGMENTS

I would like to thank all of the people that have made this thesis possible. First

and foremost, I would like to thank my advisor, Dr. ManWo Ng for letting me enter into

the world of transportation. I am also grateful for his guidance, constant support, and

many suggestions during this research. My gratitude also goes to Dr. Duc T. Nguyen for

continually offering insights and help for this research. I am also thankful to Dr. Jiang Li

for taking interest in this research, serving on my committee, and providing me with

many useful comments and suggestions.

 Outside the committee, I would like to thank Paul Johnson, a Ph.D. student of

Civil Engineering, for providing me with very useful materials and insights for this

research. Last but not least, I would like to acknowledge my wife, Synthia, for her

boundless love and continuous support.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

1. INTRODUCTION ... 1

1.1 MOTIVATION OF THE THESIS ... 1

1.2 SUMMARY OF CONTRIBUTIONS .. 2

1.3 OUTLINE OF THE THESIS ... 3

2. MODEL REVIEW ... 5

2.1 MODEL PROPERTIES ... 5

2.2 MODEL’S IMPLICATION IN REAL WORLD ... 9

3. SOLUTION APPROACH ... 22

3.1 POLICY ITERATION ALGORITHM .. 22

3.2 VALUE ITERATION ALGORITHM ... 27

4. STORAGE SCHEME .. 29

4.1 SPARSE MATRIX REPRESENTATION FOR TRANSPORTATION NETWORK .. 29

4.2 STORING MDP MODEL ... 33

5. ENHANCED POLICY ITERATION .. 35

5.1 DOMAIN DECOMPOSITION SCHEME .. 35

5.2 ENHANCED POLICY ITERATION .. 41

6. PERFORMANCE COMPARISON AND DISCUSSION... 44

7. CONCLUSION .. 56

REFERENCES .. 59

VITA .. 63

vii

LIST OF TABLES

Table Page

1. Performance comparison between VI and PI without applying DD algorithm

(Anaheim network) ... 45

2. Performance comparison of PI after applying DD algorithm (Anaheim Network)

…………………………………………………………………………………...46

3. Performance comparison between VI and PI without applying DD algorithm

(Winnipeg network) .. 47

4. Performance comparison of PI after applying DD algorithm (Winnipeg Network)

 ... 48

5. Performance comparison between VI and PI without applying DD algorithm

(Chicago Sketch network) ... 49

6. Performance comparison of PI after applying DD algorithm (Chicago Sketch

network) .. 50

7. Performance comparison between VI and PI without applying DD algorithm

(Austin network) ... 51

8. Performance comparison of PI after applying DD algorithm (Austin network) .. 53

9. Performance comparison between VI and PI without applying DD algorithm

(Chicago Regional network) ... 54

10. Performance comparison of PI after applying DD algorithm (Chicago Regional

network) .. 55

viii

LIST OF FIGURES

Figure Page

1. Sioux Falls test network with node and link numbers .. 7

2. Travel time difference between proactive and reactive routing

 strategies for O-D pair (18 - 16) of Sioux Falls network 8

3. Travel time difference between proactive and reactive routing

 strategies for O-D pair (295 - 5) of Anaheim network ... 12

4. Travel time difference between proactive and reactive routing

 strategies for O-D pair (209 - 25) of Anaheim network 13

5. Travel time difference between proactive and reactive routing

 strategies for O-D pair (1 - 400) of Anaheim network ... 15

6. Travel time difference between proactive and reactive routing

 strategies for O-D pair (278-6772) of Austin network ... 17

7. Travel time difference between proactive and reactive routing

 strategies for O-D pair (449-6772) of Austin network ... 18

8. Travel time difference between proactive and reactive routing

 strategies for O-D pair (263-6199) of Austin network ... 19

9. Travel time difference between proactive and reactive routing

 strategies for O-D pair (6766-1100) of Austin network 21

10. A network with node numbers and link costs ... 24

11. Policy Iteration (Actor-Critic architecture) ... 27

12. A simple 5 node/ 8 link network ... 30

13. A network with nodal rank and directions for populating sub-domains 37

14. A Node- node adjacency matrix for network representation of Figure 13 37

15. The network, shown in Figure 13 after renumbering ... 39

16. Node-node adjacency matrix after reordering the matrix shown in Figure 14 40

1

CHAPTER 1

INTRODUCTION

In-vehicle route navigation systems are becoming increasingly common in

modern vehicles. An integral component of these navigation systems is the determination

of “optimal” routes (e.g. the fastest) to the desired destination. An implicit assumption

that is fundamental to these in-vehicle navigation systems is that the directions provided

are followed without mistakes. However, it is probably not hard to recall a situation in

which we have missed a turn, despite the directions of a navigation system, especially

when driving in an unfamiliar environment. Recently, Ng and Sathasivan [1] relaxed this

assumption of error-free human response to in-vehicle navigation systems (henceforth

“driving mistake” or “driving error” will be used to denote this type of mistake) and

explicitly model the reality that drivers might miss turns, leading to more robust route

guidance. To model this, they employed a Markov Decision Process (MDP), e.g. see

Puterman [2] and Bertsekas [3]. The resulting MDP was solved as a linear program. The

research, conducted in this thesis, is to solve large scale MDPs formulated from real

world network accurately and efficiently
1
.

1.1 MOTIVATION OF THE THESIS

Whereas the focus in Ng and Sathasivan [1] was on modeling and examining

model properties, no solution algorithm, in particular, was discussed. This is the principal

observation which motivated this thesis. Two different solution approaches, one is value

iteration [4] and the other is policy iteration [2], are presented to solve this problem.

1
 Figures, tables, and references in this thesis were formatted based on the IEEE Transactions and Journals

style.

2

According to the model, described by Ng and Sathasivan [1], as the most interesting – but

perhaps extreme – example, it has been noticed that under certain conditions, it is no

longer optimal to recommend drivers to take the shortest route. Instead, a longer route (in

certain cases even the longest!) becomes optimal. In this thesis, real-world, large scale

transportation networks (i.e. Austin, Chicago Regional) will be used to investigate this

phenomenon. To this end, a specialized solution algorithm will be developed that is able

to solve large-scale instances of the problem.

1.2 SUMMARY OF CONTRIBUTIONS

In this thesis, a robust solution algorithm, a domain decomposition based policy

iteration algorithm, is presented to solve the MDP problem associated with driving error.

Benefits of the model in terms of travel time savings are investigated via several case

studies. A commonly used technique, value iteration, for solving the MDPs and

comparing the solution time among different solution approaches is also discussed.

In addition, specific values for error probabilities were assigned according to a

defined scale which, in turn, shows logical relationship of error probabilities at different

nodes with various numbers of outgoing directions. It should be noted that the goal of this

research is not assigning exact error probabilities associated with intersections of a

network. Rather, the focus is mainly on developing a solution algorithm which is capable

of solving the “driving with error” model with any type of error probabilities.

This thesis seeks to remedy both space inefficiency and time inefficiency for

solving large scale MDPs, by modeling solution to remedy the inefficiencies, and by

incorporating the solution into a unified model. A novel decomposition algorithm is

3

presented to efficiently solve the MDPs. To this end, the domain decomposition (DD)

solver [5] is embedded in direct solution method of policy iteration algorithm to further

increase its efficiency. In addition to the enhanced efficiency, the DD algorithm, framed

in sparse matrix representation, not only reduces excessive resource consumption, but

also facilitates an efficient parallel implementation, which allows the resulting algorithms

to scale far beyond single-machine capabilities.

Although the focus is on devising the solution algorithm for navigation systems, it

should be noticed that the framework developed in this thesis has potential applications in

other domains as well, including the modeling of disobedience to evacuation orders (e.g.

see Ng et al. [6]; Ng and Waller [7]) or traveler information systems (e.g. see Yin and

Yang [8], Szeto and Lo [9], Toledo and Beinhaker [10], Bertini and Lovell [11]).

Moreover, the research conducted in this thesis has implications for travel time reliability

(Higatani et al. [12]; Uno et al. [13], Rakha et al. [14]): Variability in travel time is now

caused by the failure to follow the intended path, unlike in other studies where demand

and supply uncertainties are responsible for travel time unreliability (e.g. see Chen et al.

[15], Lo and Tung [16], Lo et al. [17], Sumalee et al. [18], Ng and Waller [19], Ng et al.

[20]). Finally, the research presented in this thesis has the potential to reduce unsafe

driving behavior (i.e., drivers attempting to make last-minute corrective steering actions),

or even lead to greater sustainability through reduced fuel usage.

1.3 OUTLINE OF THE THESIS

The remainder of this thesis is organized as follows. Chapter 2: MODEL

REVIEW briefly reviews the MDP under consideration and demonstrates its relevance

4

using by comparing it to the classical shortest path problem [21] using real transportation

networks. In Chapter 3: SOLUTION APPROACH, the basic policy iteration algorithm

and value iteration algorithms are briefly reviewed to solve Markov Decision Process

(MDP) model. Chapter 4: STORAGE SCHEME presents how the transportation network

information and MDP model are stored efficiently. Chapter 5: ENHANCED POLICY

ITERATION briefly reviews Domain Decomposition (DD) algorithm [22, 23] to show

how the algorithm is used to solve the problem. PERFORMANCE COMPARISON AND

DISCUSSION (using two different real world networks: Austin Network, and Chicago

Regional Network) and comparisons between the classical (without using DD

partitioning) approaches, and the approaches, coupled with DD partitioning algorithm,

are presented and discussed in Chapter 6. Finally, Chapter 7, CONCLUSION, concludes

the thesis by summarizing the main contributions of this work and the identification of

potentially worthwhile future research directions.

5

CHAPTER 2

MODEL REVIEW

This chapter presents introductory materials on how erroneous response to in-

vehicle navigation system was modeled [1] as MDP. Basic model properties are

discussed in this chapter. This chapter also addresses the need of using this model rather

than using the classical one (e.g. classical shortest path algorithm). Numerical examples,

from real world networks, are shown to emphasize the critical importance of the model.

2.1 MODEL PROPERTIES

Consider a transportation network G(N, A), with node set N and link set A. Each

link (i, j) has an (expected) travel time.𝑐𝑖𝑗 ≥ 0. Let 𝑈(𝑖) denote the set of all outgoing

links at node i. In case one allows for the possibility of mistakes, when instructed to

choose link 𝑢 ∈ 𝑈(𝑖) at node i, a probability distribution 𝑝𝑖𝑗(𝑢) is induced over all nodes

j with (𝑖, 𝑗) ∈ 𝐴 . (Of course, ∑𝑝𝑖𝑗(𝑢) = 1.) That is, when instructed to go to node j from

node i, it is possible that one – by mistake – ends up at node 𝑘 ≠ 𝑗, where (𝑖, 𝑘) ∈ 𝐴. (In

other words, when instructed to turn right at the next intersection, it now becomes

possible that one misses the turn, and goes straight instead.) The instruction 𝑢 = (𝑖, 𝑗)

thus induces an immediate expected travel time of 𝐶(𝑖, 𝑢) ≡ ∑ 𝑝𝑖𝑗(𝑢)𝑗 𝑐𝑖𝑗.

The goal, for a navigation system, is then to choose a set of control strategies

𝑢 ∈ 𝑈(𝑖) at each node i so that the destination D is reached within the shortest expected

travel time. Without loss of generality (as in Ng and Sathasivan [1]), it is assumed that

the following for the transition probabilities 𝑝𝑖𝑗(𝑢): Suppose that a navigation system

prescribes us to follow link 𝑢 = (𝑖, 𝑗) at node 𝑖 ≠ 𝐷. The driver is then assumed to follow

6

this recommendation with a probability of 1 − 𝑝𝑖 (0 ≤ 𝑝𝑖 ≤ 1) , whereas the driver

moves to node 𝑘 ≠ 𝑗 where(𝑖, 𝑘) ∈ 𝑈(𝑖) with probability
𝑝𝑖

|𝑈(𝑖)|−1
 (here |B| is used to

denote the cardinality of the set B). That is, when making a mistake, it is assumed that all

wrong turns are equally likely. For the destination node, we simply define 𝐶(𝐷, 𝑢) =

0, ∀𝑢 ∈ 𝑈(𝐷).

Let 𝑒(𝑖) = 1,2, … . , 𝑛 denote the minimum expected travel time from node i to the

destination node. (Note that by definition 𝑒(𝐷) = 0, so that the cost label can be omitted

from the analysis.) It can then be shown that 𝑒(𝑖) satisfies Bellman’s equations (cf.

Puterman [2]; Bertsekas [3]):

𝑒(𝑖) = min𝑢∈𝑈(𝑖)[𝐶(𝑖, 𝑢) + ∑ 𝑝𝑖𝑗(𝑢)𝑒(𝑗)𝑗] (1)

For more details on this MDP, the reader is referred to Ng and Sathasivan [1].

7

Figure 1. Sioux Falls test network with node and link numbers

As a motivating example, to illustrate the importance for solving Eqn (1), even in

case of relatively small error probabilities, a well-known, medium sized Sioux Falls

Network shall be used, as shown in Figure 1. The link costs data associated with the links

are assumed to be given by the free flow travel times reported in Suwansirikul et al. [24],

multiplied by 100. Without loss of generality, suppose that one is interested in traveling

from node 18 to node 12. The optimal route in the classical shortest path framework

8

would be 18-16-10-11-12, with an (expected) travel time of 19 minutes (cf. solid bold

arrows in Figure 1).

Figure 2. Travel time difference between proactive and reactive routing strategies for

O-D pair (18 - 16) of Sioux Falls network

Let us set

 𝑝𝑖 = (|𝑈(𝑖)| − 1)𝑠 (2)

Here, 𝑠 is used to scale the probability. For the first experiment, 𝑠 is set to 0.025 which

makes 𝑝16 = 0.075, 𝑝10 = 0.10, and 𝑝11 = 0.075. The optimal route, derived from the

model, remains as same as the classical shortest path with these slight chances of

mistakes. In the next experiment, 𝑠 is set to 0.033 (That is, 𝑝16 = 0.10, 𝑝10 = 0.13, and

9

𝑝11 = 0.10). The chances of mistakes, associated with three intermediate nodes, are not

high in this experiment. But the result shows (refer to Figure 2), following the route 18-

20-21-24-13-12, prescribed by the model, optimizes the travel time by 1.17%. The

prescribed route has less complex intersections with less chance of making mistakes on

the intermediate nodes (𝑝20 = 0.10, 𝑝21 = 0.067, 𝑝24 = 0.067, 𝑝13 = 0.033). The average

chance of making mistake per intermediate node on the classical shortest route is 1.64

times the average chance of mistakes on the route prescribed by the model. In the next

two experiments, 𝑠 is increased to 0.042 and 0.050 successively to demonstrate the

efficiency of the model in terms of saving travel time. For 𝑠 = 0.050, the highest error

probability, associated with intermediate node 20 is 20% which is relatively small. Even

with such small chance of making mistakes, not only optimal route chances, but also

travel time can be saved by nearly 1 minute. This saving in travel time might seem

modest, however, one should bear in mind that a relatively small network has been used.

In the next section, large-scale, real-world transportation networks will be examined to

more thoroughly investigate this issue.

2.2 MODEL’S IMPLICATION IN REAL WORLD

While accounting for the possibility of missing turns is theoretically appealing in

terms of modeling realism, in practice, it is not clear what the expected benefits are in

terms of travel time savings. To this end, the proactive routing strategy resulting from

Eqn (1) is compared next that explicitly anticipates the possibility of mistakes with the

following commonly used reactive strategy: Determine a shortest route from a user-

specified origin to the desired destination. Every time the driver misses a turn/ deviates

10

from the route, a new shortest route will be determined based on the new location the

driver ends up at. Since the expected travel times are minimized in Eqn (1), it is clear that

the above described reactive strategy will always lead to a higher expected travel time.

However, it is not clear how large this difference will be. In the remainder of this section

the Anaheim, CA and Austin, TX road networks will be used to demonstrate that the

differences can be substantial. Intuitively, this difference should be a function of the

number of intersections between an O-D pair, and the error probabilities.

In the first numerical experiment, the effect of the number of intersections

between a given O-D pair on the difference between the expected travel time from a

proactive and reactive routing strategy is investigated. In the first experiment, s = 0.033 is

selected in Eqn (2). Since the Anaheim network has at most 6 outgoing links for a node,

there is a 16.67% chance of making mistakes on that link. (On average, the Anaheim

network has 2.2 outgoing links per node. Hence the error probability is, on average, 0.04,

a rather small value.). One O-D pair (295 - 5) is then selected at random (the shortest

travel time between this O-D pair is 16.88 minutes). For this O-D pair, the expected

travel times under both routing strategies are then calculated, and starting from each node

along the classical shortest path. Backtracking along this path, starting from the

destination node, a path with increasingly more intersections is then built. Figure 3 shows

the results of this exercise. As can be seen from the upper part in the figure, the absolute

difference between the two routing strategies indeed, as expected, increase (or remains

constant) when the number of intersections increase. For the O-D pair (295 -5), the

classical shortest path recommends to take the route where there is 1 intermediate node

(node 337) with 6 outgoing links, 7 intermediate nodes with 5 outgoing links (node 308,

11

node 361, node 378, node 394, node 407, node 406, node 402), and 3 intermediate nodes

(node 405, node 404, node 401) with 4 outgoing links. The driver needs to cross those 11

complex (of total 26 intersections) intersections with higher probability of making

mistakes to reach the destination according to classical shortest path. When the error

probabilities are associated with driving, the travel time on classical shortest route

becomes 21.73 minutes. The solution algorithm recommends an alternate path where

those 11 complex intersections were avoided. Although a route with more intersections

(33 intersections) is prescribed, there is no intersection having more than 3 outgoing

links. The travel time for the O-D pair of the solution algorithm is 17.97 minutes. That is,

the algorithm is able to recommend an alternate route with optimized travel time and less

complex intersections. For the same O-D pair (295-5), the scaling factor is reduced to

0.025 and 0.017. (This corresponds to an error probability of about 0.050 and 0.036

successively on average on the route prescribed by classical shortest path algorithm). The

results are also shown in Figure 3. As can be seen, although the difference becomes

smaller, it remains significant. In other words, these results suggest that it is of critical

importance solve (1), instead of a classical shortest path problem when human error is

possible.

12

Figure 3. Travel time difference between proactive and reactive routing strategies for O-

D pair (295 - 5) of Anaheim network

In the second numerical example, it is shown how the number of complex

intersections affect travel time even when the travel time between an O-D pair is not that

significant. In this example, an O-D pair (209-25) of Anaheim network is chosen

randomly. The shortest travel time between the O-D pair is 9.68 minutes with 20

intersections in between. The interesting incidence about this O-D pair is that, there are 7

intersections which have more than 4 outgoing links in their classical shortest route (node

394, node 378, node 361, node 337, node 308, node 273, and node 269). The solution

algorithm recommends an alternate route with 21 intersections avoiding 6 of these

complex intersections. The absolute difference and relative difference between two

13

routing strategies are shown in Figure 4, with different scale factors. When 𝑠 is set to

0.033, we have 𝑝𝑖≤ 0.13 on this shortest route (on average, the probability of mistakes is

0.08), which is rather a small value. But when error in driving is accounted for, the

absolute difference can be more than 2 minutes even if the route is comparatively

smaller. Even the relative difference between the routing strategies can be more than 20%

(shown in lower part of Figure 4). In the next two experiments, the scaling factor is

reduced to 0.025 and 0.017. As can be seen from the Figure 4, even with a very small

scale factor 0.017 (This corresponds to an average error probability of about 0.039 for the

intersections of the O-D pair), the relative difference between two routing strategies can

be more than 10%.

Figure 4. Travel time difference between proactive and reactive routing strategies for

O-D pair (209 - 25) of Anaheim network

14

In the next example, an O-D pair (1-400) of Anaheim network is chosen which

has 33 intersections in its classical shortest route. The route, prescribed by classical

shortest path algorithm, does not have any intersection more than three outgoing links

(there are 1.47 outgoing links on average on the classical shortest route which results in

the error probabilities of 0.015 on average for the intermediate nodes). The effect of the

absence of complex intersections is investigated on the shortest route with three different

scale factors (0.033, 0.025, and 0.017). It can be seen from Figure 5 that with the highest

scaling factor 0.033 (which results in the error probabilities 0.016 on average on the

classical shortest route), however, the maximum absolute difference between the routing

strategies does not exceed half a minute. Even the maximum relative difference is less

than 1% (shown in lower part of Figure 5). Although the algorithm recommends an

alternate optimized route with more intersections (34 intersections), the differences

between the routing strategies are not significant because of the absence of complex

intersections on the shortest route.

15

Figure 5. Travel time difference between proactive and reactive routing strategies for O-

D pair (1 - 400) of Anaheim network

At this point, for demonstrating the importance of solving (1) rather than solving

classical shortest path, a large scale network named Austin, TX (7388 nodes, 18961

links) shall be used.

An O-D pair (278-6772) of Austin network was chosen randomly which has 107

intermediate nodes in its classical shortest route. In the first experiment the scaling factor

was set to be 0.033 (this sets the average probability of 0.07 for the nodes of the classical

shortest route). It is to be noted that this O-D pair does not have any intermediate nodes

more than 4 outgoing links (average number of outgoing links per intermediate node is

3.09). Having 4 outgoing links (including the outgoing link back to its predecessor node

which corresponds to a U turn in for an intersection) for an intersection is a very common

16

kind of intersection as can be seen in real life. The classical shortest travel time between

the O-D pair is 128.90 time unit (since it is not mentioned in BarGera [25] whether the

time unit for Austin network is minute or hour). When mistakes in driving are considered

with the scale factor 𝑠 = 0.033, the travel time on the shortest route becomes 156.62

unit. The developed solution algorithm recommends an alternate route with 159

intermediate nodes which is able to optimize the travel time to 144.97 unit. The

difference between the routing strategies goes up to nearly 12 unit (shown in upper part

of Figure 6) for some nodes to reach the destination node. This example demonstrates

that the cumulative effect of the error is significant with the increasing number of

intersections between an O-D pair even when the intersections are not that complex.

17

Figure 6. Travel time difference between proactive and reactive routing strategies for O-

D pair (278-6772) of Austin network

Another O-D pair (449-6772) of Austin network has been chosen randomly to

show the importance of solving (1) rather than solving the classical shortest path

algorithm. This O-D pair has 85 intersections, in its classical shortest route. In the first

experiment, the scaling factor 𝑠 is set to be 0.033. Once the path is built after

backtracking from the destination node to the source node, it is clearly seen from Figure

7, that the model is able to minimize around 10 time unit for nearly 20 intermediate nodes

to reach the destination node 6772. The solution algorithm has more than twice as many

numbers of intersections as the classical shortest algorithm has. Despite the fact that the

solution algorithm recommends an alternate route with 172 intersections, it is able to

18

minimize 5 time unit expected travel time for some intermediate nodes of the O-D pair

(449-6772) at the lowest scale factor 𝑠 = 0.017 of this exercise.

Figure 7. Travel time difference between proactive and reactive routing strategies for O-

D pair (449-6772) of Austin network

The case study, as shown in Figure 8, an O-D pair (263-6199) of Austin network

with 227 intermediate nodes is chosen. The simulation was run with three different values

of scaling factor. Surprisingly, the expected travel time from each intersection to the

destination is not minimized significantly, although there is relatively large number of

intersections between the O-D pair in the classical shortest route. More insight was

investigated to find the reason behind such incidence. There is no intersection in the

19

shortest route which has more than 4 outgoing links. Even the intersections having 4

outgoing links is very few in number on the route. Moreover the average number of

outgoing links per node is 2.16. Even with the highest scaling factor (𝑠 = 0.033) used for

the experiment, we have 3.87% chance of making mistakes on average per intersections.

Figure 8. Travel time difference between proactive and reactive routing strategies for O-

D pair (263-6199) of Austin network

The numerical example, shown in Figure 9, demonstrates how the change in

probability of mistakes affects the difference between two routing strategies. In the first

two experiments the scaling factor s was set to be 0.017. Both absolute difference and

relative difference do not become significant. In the next experiment, the scaling factor

20

was increased to 0.025, which sets 5.25% chance of making mistakes on average per

node while following the shortest route. With this small chance of making mistakes, the

model can not minimize the expected travel time for most of the intermediate nodes on

the shortest route to reach the destination node. When setting the scaling factor 𝑠 to be

0.033, as can be seen from both upper and lower part of Figure 9, there are sudden

significant changes in the difference of expected travel time for some intermediate nodes

under both routing strategies. This result is quite different from the experiment conducted

for the O-D pair (263-6199), as shown in Figure 8. Although the O-D pair (6766-1100)

has relatively small number of intersections compared to the O-D pair (263-6199), the

average number of links per nodes on the classical shortest route between O-D par (6766-

1100) is 3.10, a rather larger value than the average number of outgoing links (average is

2.16) per intermediate nodes between the O-D pair (263-6199).

21

Figure 9. Travel time difference between proactive and reactive routing strategies for O-

D pair (6766-1100) of Austin network

22

CHAPTER 3

SOLUTION APPROACH

There are lots of traditional algorithms which are capable of minimizing the

expected travel time by selecting the best action possible at each node. The goal (of a

navigation system) is to choose a set of control strategies 𝑢 ∈ 𝑈(𝑖) at each node 𝑖 (taking

into account the possibility that the directions provided might not be followed), so that

the destination is reached within the shortest possible time (in expected value It should be

noted that truly large scale MDPs demand efficient implementation of solution algorithm.

Hence a well-known solution approach, policy iteration algorithm (e.g. see Puterman

[2]), has been adapted to improve its efficiency. Moreover the value iteration [4]

algorithm was implemented because of its space efficiency and also for validating the

result found from policy iteration. They are described step by step in this chapter along

with the convergence criteria we have used for experiments.

3.1 POLICY ITERATION ALGORITHM

Policy iteration (PI) is an iterative procedure in the space of deterministic policies

where it discovers the optimal policy by generating a sequence of monotonically

improving policies. One of the main contributions of the thesis is the development of an

enhancement which we make to standard policy iteration. Hence, the basic policy

iteration is briefly reviewed in this section. The steps in policy iteration can be

summarized as follows:

 Step 1 (Initialization): Initialize by choosing an initial policy 𝑢(𝑖) for all nodes

𝑖 ≠ 𝐷. In this research, we initialize by finding the classical shortest path for each

23

node to the destination node. The algorithm for finding initial policy is briefly

discussed below:

 Algorithm:

 for each node 𝑖 ≠ 𝐷 to the destination node 𝐷

find shortest path from 𝑖 to 𝐷 following basic label correcting

algorithm.

select the successor node 𝑓 of node 𝑖 to reach destination node 𝐷 as the

chosen action to take from node 𝑖. That is, 𝑢(𝑖) ← 𝑓.

 end for

To illustrate this step, consider Figure 10 where the numbers on the links denote the

associate travel time (in minutes). The shortest path from node 1 to node 6 is 1-2-5-6.

After following the algorithm mentioned above, 𝑢(1) = 2. Similarly, 𝑢(2) = 5, 𝑢(3)

= 2, 𝑢(4) = 6, 𝑢(5) = 6. A vector of control strategies �̅�𝑙 is introduced to store the

control strategies 𝑢 ∈ 𝑈(𝑖) for all nodes𝑖 ≠ 𝐷. Here 𝑙 denotes the number of

iteration. For initialization step, 𝑙 = 0.

24

Figure 10. A network with node numbers and link costs

From the Bellman’s equation, mentioned in Eqn (1), it is clear that the solution to this

set of equations depends directly on the choice of action in each state. Since the

chosen states from all states from the initial control strategies are known, the chances

of mistakes for all nodes are put back to Eqn (1) in order to obtain the labels 𝑒(𝑖).

That is the following system of linear equations needs to be solved:

𝑒(1) = (1 − 𝑝1)(3 + 𝑒(2)) + 𝑝1(2 + 𝑒(3))

𝑜𝑟, 𝑒(1) − (1 − 𝑝1)𝑒(2) − 𝑝1𝑒(3) = 1 − 𝑝1 (3)

𝑒(2) = 𝑝2(10 + 𝑒(4)) + (1 − 𝑝2)(1 + 𝑒(5))

𝑜𝑟, 𝑒(2) − (1 − 𝑝2)𝑒(5) − 𝑝2𝑒(4) = 1 + 9𝑝2 (4)

25

𝑒(3) = 8 + 𝑒(2)

𝑜𝑟, 𝑒(3) − 𝑒(2) = 8 (5)

𝑒(4) = 5 (6)

𝑒(5) =
𝑝5

2
(5 + 𝑒(3)) +

𝑝5

2
(2 + 𝑒(4)) + (1 − 𝑝5)5

𝑜𝑟,𝑒(5) −
𝑝5

2
𝑒(3) −

𝑝5

2
𝑒(4) = 5 −

3𝑝5

2
 (7)

The above system can be formulated as (𝐼 − 𝑃(�̅�0)). 𝑒
𝑢0 = 𝐶, where (𝐼 − 𝑃(�̅�0)) is

the co-efficient matrix of the system, 𝐼 is the identity matrix, and 𝐶 is a vector with

elements 𝐶(𝑖, �̅�0) . 𝑒𝑢0 is the vector of expected travel times from each node to the

destination node when the classical shortest path has been chosen as the control

strategy.

𝐼 − 𝑃(�̅�0) =

[

1 −(1 − 𝑝1) −𝑝1 0 0

0 1 0 −𝑝2 −(1 − 𝑝2)
0 −1 1 0 0
0 0 0 1 0

0 0 −
𝑝5

2
−

𝑝5

2
1]

, and

𝐶 =

(

1 − 𝑝1

1 + 9𝑝2

8
5

5 −
3𝑝5

2)

 Step 2 (Policy Evaluation): Solve the system of linear equation (𝐼 − 𝑃(�̅�𝑙)). 𝑒
𝑢𝑙 = 𝐶

where . 𝑒𝑢𝑙 is the vector of expected travel times from each node to the destination

node, when the vector of control strategies �̅�𝑙 has been in use at 𝑙th
 iteration. 𝐼 is the

identity matrix, and 𝐶 is a vector with elements 𝐶(𝑖, �̅�𝑙). To simplify notation, in the

following chapters 𝐾 will be used to denote the matrix 𝐼 − 𝑃(�̅�𝑙).

26

 Step 3 (Policy Improvement): Solve Bellman’s equation (cf. Puterman [2];

Bertsekas [3]) to obtain the next set of control strategy u , i.e.:

𝑒𝑢𝑙(𝑖) = min𝑢∈𝑈(𝑖)[𝐶(𝑖, �̅�𝑙) +∑𝑝𝑖𝑗(�̅�𝑙) . 𝑒𝑢𝑙(𝑗)] (8)

This set of control strategy is at least as good as the previous one for getting optimal

solution, if not better.

 Step 4 (Convergence Test): Repeat the above steps from Step 2 until the difference

in 𝑒𝑢𝑙 in subsequent iterations is smaller than a prescribed error tolerance. The

stopping criteria |𝑒𝑢𝑙(𝑖) − 𝑒𝑢𝑙−1(𝑖)| <∈ will be used, where ∈ denotes the error

tolerance.

The algorithm, described above, can also be referred to as actor-critic

architectures [26]. Figure 11 shows a block diagram of policy iteration (or an actor-critic

architecture) and the dependencies among the various components. Policy improvement

is also known as the actor and policy evaluation is known as the critic, because the actor

is responsible for the way the model acts following the given policy and the critic is

responsible for criticizing the way the model acts.

27

Figure 11. Policy Iteration (Actor-Critic architecture)

3.2 VALUE ITERATION ALGORITHM

Value Iteration (VI) is an algorithm which successively approximates the value

function, starting from an arbitrary initial estimate. It is a robust and well-known

algorithm for solving an MDP, but not considered viable because of its slow convergence

nature for large scale problems. Although throughout the thesis, this algorithm is not the

subject for enhancement, it is reviewed because of its space efficiency for some networks.

Also, the optimal solution of this approach was used to validate the results found after

solving both normal and enhanced policy iteration. The steps for the algorithm are given

28

below:

 Step 1: Initialize by guessing an initial expected travel time𝑒(𝑖) for all nodes 𝑖 ≠ 𝐷.

 Step 2: Solve Bellman’s equation (cf. Puterman [2]; Bertsekas [3]) to obtain the next

set of minimized expected travel time 𝑒(𝑖) for all nodes 𝑖 ≠ 𝐷, i.e.:

𝑒(𝑖) = min𝑢∈𝑈(𝑖)[𝐶(𝑖, 𝑢) + ∑ 𝑝𝑖𝑗(𝑢)𝑒(𝑗)𝑗] (9)

 Step 3: Repeat the above step until the difference in 𝑒(𝑖) = 1,2, … . , 𝑛 in subsequent

iterations is smaller than a prescribed error tolerance (∈). ∈ denotes the error

tolerance for finding the optimized travel time for each node to the destination node.

The algorithm iterates over every state, and updates the value of that state

according to Equation 3.2. Value iteration can therefore be viewed as generating all one-

step optimal policies, then two-step optimal policies, etc., and is generally considered a

form of dynamic programming which opts to approximate the expected travel time from

each source node to the destination node within some error tolerance.

29

CHAPTER 4

STORAGE SCHEME

 This work is about the efficient storage scheme that has been used while

developing the solution algorithm and conducting numerical experiments with real world

large scale data. This chapter discusses how the large scale transportation data are stored

into sparse matrix storage framework.

4.1 SPARSE MATRIX REPRESENTATION FOR TRANSPORTATION

NETWORK

In this thesis, the popular and highly efficient “sparse matrix” storage scheme,

used by the “sparse equations solver” research community for handling large-scale

transportation network applications was adapted. In general, the travel time for each link

is stored in a 𝑛x𝑛 node-node adjacency matrix. But this kind of storage is prohibitively

expensive. As for example, each row of such matrix of Austin, TX network contains

around 3 non-zero values, on average, only among all 7,388 elements. An efficient sparse

matrix storage scheme for large scale transportation network was adapted from Lawson et

al. [27]. For a more detailed discussion, the reader is referred to Nguyen [5].

In actual computer implementation, the sparse matrix representation of node-node

adjacency matrix demands more in order to find optimal routes efficiently from a network

where all links are not bidirectional. In addition to the sparse storage scheme of Nguyen

[5], a new sparse storage scheme for storing incoming link information is introduced. The

network partitioning step of Domain Decomposition algorithm needs to know which

nodes are connected to a node when it is being explored in order to be a member of a

subdomain. This step considers all neighboring nodes with any nature of the connectivity

30

(e.g. outgoing or incoming). To our knowledge, most of the real world networks found

from Bar-Gera [25] are not bidirectional. This additional storage scheme, used mainly in

Domain Decomposition algorithm, helps to keep the basic sparse matrix representation

[5] unchanged all throughout the developed solution algorithm. To illustrate the sparse

matrix representation scheme, a network which contains 5 nodes and 8 links is used, see

Figure 12.

Figure 12. A simple 5 node/ 8 link network [27]

The node-node incidence type matrix of this network is the 5x5 matrix A.

𝐴 =

[

0 25 35 0 0
0 0 0 15 0
0 45 0 0 0
0 0 15 0 45
0 0 25 35 0]

31

This matrix 𝐴 can be stored in a sparse format using user-defined arrays NZ, IA, JA and

𝐶. Arrays IA and JA are used to index outgoing nodes associated with the link cost values

stored in A. By following the sparse matrix representation scheme of Lawson et al. [27],

for the network shown in Figure 12 we have

𝑁𝑍 =

(

2
1
1
2
2)

 , 𝐽𝐴 =

(

2
3
4
2
3
5
3
4)

 , 𝐼𝐴 =

(

1
1 + 2
3 + 1
4 + 1
5 + 2
7 + 2)

 =

(

1
3
4
5
7
9)

 , 𝐶 =

(

25
35
15
45
15
45
25
35)

Three new user-defined vectors NZ_I, XA, KA were introduced for indexing

incoming nodes associated with the same link cost values of C. For instance, for the

above network, we have:

NZ_I =

(

0
2
3
2
1)

For example, NZ_I(1)=0 tells us that there are no incoming links to node 1, and so on.

The array can then be easily computed by recursively adding the vector NZ to the vector

XA. By definition, to initialize, the first entry in XA is set equal to 1. (The length of XA is

the number of nodes plus 1.) For instance, for the above network, we have:

32

XA =

(

1
1 + 0
1 + 2
3 + 3
6 + 2
8 + 1)

=

(

1
1
3
6
8
9)

That is, in order to calculate XA(i), we have added NZ_I(i-1) to XA(i-1). Based on XA we

can, for example, easily recover the number of non-zeros in column 5 of A by the

substraction XA(6)- XA(5) = 1, and so on. In conjunction with XA, one also needs to

define the row number of the non-zero terms in C. In the example, we have for KA:

KA =

(

1
3
1
4
5
2
5
4)

That is, there is no incoming link for node 1 as XA(2)- XA(1)= 0 (no non zero values in

the first column of A). KA(1)=1: the first link comes to node 2 from node 1, and KA(2)=3:

the first link comes to node 2 from node 3 (note that from XA one knows that the number

of non-zeros in the second column of A is equal to 2; hence, one knows that the first two

entries in KA corresponds to node 2 and so on). The final task is to store the link cost in

vector 𝐶_𝐼, with same dimension as KA.

33

𝐶_𝐼 =

(

25
45
35
15
25
15
35
45)

 Thus instead of using a 𝑛x𝑛 node-node adjacency square matrix, the whole

network can be represented using these NZ (𝑛x1), IA (𝑛 + 1x1), JA (𝑚x1),𝐶(𝑚x1),

NZ_I (𝑛x1), XA (𝑛 + 1x1), KA(𝑚x1), and 𝐶_𝐼(𝑚x1)vectors only.

4.2 STORING MDP MODEL

In this section, a discussion on how the co-efficient matrix is filled up for one

iteration only is provided. Hence the subscript 𝑙 is dropped, which denotes the iteration

count index, for better readability. In the policy evaluation step of policy iteration

algorithm, a system of linear equations (𝐼 − 𝑃(�̅�)). 𝑒𝑢 = 𝐶 is solved. This is too

expensive in terms memory to store𝐼 and 𝑃(�̅�) since both of the matrix will be of 𝑛𝑥𝑛

dimension. Rather, a framework is proposed to calculate the co-efficient matrix, resulting

from (𝐼 − 𝑃(�̅�)). The implicit assumption for making mistakes in driving, made by Ng

and Sathasivan [1], is that all wrong turns are equally likely. Based on this assumption, a

vector �̅� of dimension 𝑛𝑥1 is enough to store 𝑝𝑖 for all nodes 𝑖 ≠ 𝐷. This vector stores

the error probabilities associated with each node. The co-efficient matrix 𝐾, for each

iteration 𝑙, is filled up according to the model described below. Note that 𝐾𝑖,𝑖 = 1 for all

nodes 𝑖 ≠ 𝐷.

34

𝐾𝑖,𝑗|𝑗∈𝑈(𝑖) = {
−(1 − 𝑝𝑖), 𝑖𝑓𝑛𝑜𝑑𝑒𝑗𝑖𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑙𝑖𝑐𝑦

−
𝑝𝑖

|𝑈(𝑖)| − 1
,𝑒𝑙𝑠𝑒

35

CHAPTER 5

ENHANCED POLICY ITERATION

In this chapter, a novel solution algorithm is presented to solve the MDP model

described in Chapter 2. The Domain Decomposition (DD) algorithm of Johnson et al.

[22, 23] is used to decompose the transportation network in such a way that a system of

linear equations (i.e., in Step 2 of the policy iteration algorithm) can be reduced to several

smaller, decoupled systems of equations. A simplified variation of the domain

decomposition scheme is employed. The reader is encouraged to refer to Johnson et al.

[22, 23] for the most recent research into the subject. The chapter is concluded after

presenting how this thesis make use of the DD algorithm to solve a system of linear

equation with respect to a given policy.

5.1 DOMAIN DECOMPOSITION SCHEME

In this section, the domain decomposition scheme is briefly reviewed. To

facilitate this discussion, the partitioning algorithm will be applied to the example

problem given by Figure 13. Further, the assumption is made to partition the network into

three sub-domains. It is important to note that the actual link cost is not needed, and for

this algorithm the cost for every link is one. Lastly, as mentioned in Chapter 4, the sparse

matrix storage scheme is able to handle any kind of link directionality, it does not matter

if the network partitioned, is bi-directional or uni-directional. The effort is to identify

nodes which are adjacent to, or alternatively, far from other nodes.

36

The major objective in all domain decomposition algorithms is to minimize the

total number of system boundary nodes, and to have sub-domains of approximately equal

size (with the former having more priority than the latter). The first requirement ensures

that the communication time between sub-domains will be minimized, while the second

criterion ensures an (approximately) equal workload for each sub-domain. The steps

involved during the domain partitioning phase can be summarized as follows:

Step 1: The transportation network topology (shown in Figure 13) can be represented by

the matrix notation shown in Figure 14. In actual computer implementation, this matrix

will be efficiently stored in the popular sparse storage scheme [5].

Step 2: Rank (R) or Degree of a node is a number which represents how many

neighboring nodes a node has. R can be found by the connectivity information stored in

IA, JA, XA, and KA. R is found by the UNION set operation on the number of

occurrences a given node found as both incoming node and outgoing node. For example,

in Figure 12, the set of outgoing nodes from node 4 is {3, 5}, and the set of nodes from

where the links come to node 4 is {2, 5}. The UNION set operation is used to get {2, 3,

5} as the neighbors of node 4. Thus R = 3 for node 4.

37

Figure 13. A network with nodal rank and directions for populating sub-domains

Figure 14. Node-node adjacency matrix for network representation of Figure 13

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 X X X 0 0 0 0 0 0 0 0 0 0 0 0

2 X X X X 0 0 0 0 0 0 0 0 0 0 0

3 X X X X X 0 0 0 0 0 0 0 0 0 0

4 0 X X X X 0 0 0 0 0 0 0 0 0 0

5 0 0 X X X 0 0 X 0 0 0 X 0 0 0

6 0 0 0 0 0 X X X 0 0 0 0 0 0 0

7 0 0 0 0 0 X X X X 0 0 0 0 0 0

8 0 0 0 0 X X X X X X 0 X 0 0 0

9 0 0 0 0 0 0 X X X X 0 0 0 0 0

10 0 0 0 0 0 0 0 X X X 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 X X X 0 0

12 0 0 0 0 X 0 0 X 0 0 X X X X 0

13 0 0 0 0 0 0 0 0 0 0 X X X X X

14 0 0 0 0 0 0 0 0 0 0 0 X X X X

15 0 0 0 0 0 0 0 0 0 0 0 0 X X X

38

Step 3: Upon examination of Figure 13, it is seen there are 5 nodes (1, 6, 10, 11, 15)

which have the same (lowest) rank; one arbitrarily selects the smallest node number

(node 1) of these low ranking nodes as the starting (interior) node for sub-domain 1.

Performing the Label Correcting Algorithm (LCA) with the source node as node 1 (to

find the shortest path from the source node to all other nodes in the system) will reveal

that node 15 is “very far” from node 1. Hence, node 15 is used as the starting (interior)

node for the second sub-domain. Performing the LCA with the source node 15 will

reveal that nodes 6, 9 and 10 are “far away” from both nodes 1 and 15. Because nodes 6

and 10 have a lower rank than node 9 they will be considered for the final starting

(interior) node. Node 6 is arbitrarily selected (note that if node 10 were selected, the

results would remain unchanged) as the starting (interior) node for the third (last) sub-

domain (refer to Figure 13).

Step 4: Each sub-domain will be “sequentially” populated from the remaining nodes,

based on the simple heuristic rule: the next j-th node to be added to a k-th sub-domain

will be the node which has the lowest rank which shares a direct connection between

either the source node or any other node in the populated sub-domain. Figure 13 shows

the order in which the sub-domains are populated. (It should be noted that a more

efficient partitioning can be achieved, in larger examples, if one were to modify the rule

above by first searching for the node which is closest to the source node and then, as a

tiebreaker, examine the rank of the node as described above).

39

Figure 15. The network, shown in Figure 13 after renumbering

Step 5: System boundary nodes (and sub-domains’ interior nodes) can be identified by

considering each link of the network based on the following simple rule: If the nodes

which define a link belong to the same sub-domain, then these two nodes are considered

interior nodes, however, if these nodes belong to two different sub-domains, then both

nodes must be considered system boundary nodes. The determination of system boundary

nodes is imperative for the next step.

Step 6: Finally, the nodes in the system were renumbered. Starting with sub-domain 1,

The nodes which belong to each sub-domain were numbered sequentially, however,

ignoring the boundary nodes. Once all of the interior nodes have been renumbered, the

boundary nodes were numbered as the last nodes in the set as shown as by Figures 15 and

16.

40

Figure 16. Node-node adjacency matrix after reordering the matrix shown in Figure 14

Now that the re-numbering of the nodes has been performed, a new node-node adjacency

matrix can be created (for Figure 14). This is shown in Figure 5.4. As can be seen, after

reordering the model (per Step 6 of the algorithm outlined above), described in Section 2,

the adjacency matrix has been decomposed effectively into sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 ,

𝐾𝐵𝐵. 𝐾𝐼𝐼
𝑟 simply represents the adjacency matrix of the smaller, sub-structured systems.

Sub-matrices 𝐾𝐼𝐵
𝑟 , 𝐾𝐵𝐼

𝑟 , and 𝐾𝐵𝐵 represents the coupling effects among sub-domains. The

matrix in Figure 16 gets decoupled after discarding rows and column 13, 14, and 15 (as

node 13, 14, and 15 are the boundary nodes for the network in Figure 15). For a more

detailed discussion, the authors refer the reader to Nguyen [5]. Vector 𝑒 and 𝐶 will be

reordered according to the new numbering of the nodes; 𝑒 will be found as 𝑒𝐼
𝑟(𝑟 =

1, 2, 3…𝑁𝑆, where NS denotes the number of sub domains) and 𝑒𝐵 and 𝐶 will be found

as 𝐶𝐼
𝑟 and 𝐶𝐵.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 X X 0 X 0 0 0 0 0 0 0 0 0 0 0
2 X X X X 0 0 0 0 0 0 0 0 0 0 0
3 0 X X X 0 0 0 0 0 0 0 0 X 0 0
4 X X X X 0 0 0 0 0 0 0 0 X 0 0
5 0 0 0 0 X X X 0 0 0 0 0 0 0 0
6 0 0 0 0 X X X 0 0 0 0 0 0 X 0
7 0 0 0 0 X X X X 0 0 0 0 0 X 0
8 0 0 0 0 0 0 X X 0 0 0 0 0 X 0
9 0 0 0 0 0 0 0 0 X X 0 0 0 0 X
10 0 0 0 0 0 0 0 0 X X X 0 0 0 X
11 0 0 0 0 0 0 0 0 0 X X X 0 0 X
12 0 0 0 0 0 0 0 0 0 0 X X 0 0 X
13 0 0 X X 0 0 0 0 0 0 0 0 X X X
14 0 0 0 0 0 X X X 0 0 0 0 X X X
15 0 0 0 0 0 0 0 0 X X X X X X X

K BI
r = 1

K II
r = 2 K II

r = 3

K IB
r = 1

K BI
r = 2 K BI

r = 3 K BB
r

K II
r = 1

K IB
r = 2

K IB
r = 3

41

5.2 ENHANCED POLICY ITERATION

This section describes how the system of linear equation 𝐾. 𝑒 = 𝐶 is solved. It is

described in Step 2 of Section 3.1 with the help of sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 , and 𝐾𝐵𝐵. It

should be noted that this system is solved with respect to a policy at one iteration only.

To increase readability the superscript �̅�𝑙 will be dropped, as mentioned in Chapter 3, 0all

throughout this chapter, which denotes the policy (or control strategy) to get the optimal

solution at each iteration of the model. The derivation is given below:

(

𝐾𝐼𝐼
1 ⋯ ⋯ ⋯ 𝐾𝐼𝐵

1

⋮ 𝐾𝐼𝐼
2 ⋯ ⋯ 𝐾𝐼𝐵

1

⋮ ⋮ ⋱ ⋯ ⋮
⋮ ⋮ ⋮ 𝐾𝐼𝐼

𝑁𝑆 𝐾𝐼𝐵
𝑁𝑆

𝐾𝐵𝐼
1 𝐾𝐵𝐼

2 ⋯ 𝐾𝐵𝐼
𝑁𝑆 𝐾𝐵𝐵)

(

𝑒𝐼
1

𝑒𝐼
2

⋮
𝑒𝐼

𝑁𝑆

𝑒𝐵)

=

(

𝐶𝐼
1

𝐶𝐼
2

⋮
𝐶𝐼

𝑁𝑆

𝐶𝐵)

The above matrix notation, except for the last row, can be broken down into a system of

linear equations, as shown below:

𝐾𝐼𝐼
1. 𝑒𝐼

1 + 𝐾𝐼𝐵
1. 𝑒𝐵 = 𝐶𝐼

1

𝐾𝐼𝐼
2. 𝑒𝐼

2 + 𝐾𝐼𝐵
2. 𝑒𝐵 = 𝐶𝐼

2

⋮

𝐾𝐼𝐼
𝑁𝑆. 𝑒𝐼

𝑁𝑆 + 𝐾𝐼𝐵
𝑁𝑆. 𝑒𝐵 = 𝐶𝐼

𝑁𝑆

The set of equations, mentioned above, can be re-written as following with 𝑟 =

1, 2, … ,𝑁𝑆:

𝐾𝐼𝐼
𝑟 . 𝑒𝐼

𝑟 + 𝐾𝐼𝐵
𝑟 . 𝑒𝐵 = 𝐶𝐼

𝑟
 (10)

From the last row of the matrix , the following linear equation is obtained:

𝐾𝐵𝐼
1. 𝑒𝐼

1 + 𝐾𝐵𝐼
2. 𝑒𝐼

2 + ⋯+ 𝐾𝐵𝐼
𝑁𝑆. 𝑒𝐼

𝑁𝑆 +𝐾𝐵𝐵. 𝑒𝐵 = 𝐶𝐵

∑ (𝐾𝐵𝐼
𝑟 . 𝑒𝐼

𝑟)𝑁𝑆
𝑟=1 + 𝐾𝐵𝐵. 𝑒𝐵 = 𝐶𝐵 (11)

42

It is seen that the above matrix notation is broken down into two linear equations, as

shown in Eqn (10) and Eqn (11).

From Eqn (10), 𝑒𝐼 can be solved as follows:

𝑒𝐼
𝑟 = (𝐾𝐼𝐼

𝑟)−1(𝐶𝐼
𝑟 − 𝐾𝐼𝐵

𝑟 . 𝑒𝐵) (12)

Substituting Eqn (12) into Eqn (11) we obtain:

∑ (𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1(𝐶𝐼
𝑟 − 𝐾𝐼𝐵

𝑟 . 𝑒𝐵))𝑁𝑆
𝑟=1 + 𝐾𝐵𝐵. 𝑒𝐵 = 𝐶𝐵

The above equation can be re-written as:

(𝐾𝐵𝐵 − ∑ 𝐾𝐵𝐼
𝑟(𝐾𝐼𝐼

𝑟)−1𝐾𝐼𝐵
𝑟). 𝑒𝐵 =𝑁𝑆

𝑟=1 𝐶𝐵 − ∑ 𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1. 𝐶𝐼
𝑟𝑁𝑆

𝑟=1 (13)

Eqn (13) can now be simplified as:

�̅�𝐵𝐵. 𝑒𝐵 =𝐶�̅�𝐵 (14)

where:

�̅�𝐵𝐵 =𝐾𝐵𝐵 − ∑ 𝐾𝐵𝐼
𝑟(𝐾𝐼𝐼

𝑟)−1𝐾𝐼𝐵
𝑟𝑁𝑆

𝑟=1 (15)

𝐶�̅�𝐵 = 𝐶𝐵 − ∑ 𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1. 𝐶𝐼
𝑟𝑁𝑆

𝑟=1 (16)

Eqn (15) and Eqn (16) are substituted into Eqn (14) and solve for 𝑒𝐵. Now 𝑒𝐵 can be

inserted back into Eqn (12).

Thus 𝑒𝐼
𝑟 (for r = 1, 2, … , NS) and 𝑒𝐵 are obtained as our solution. For a more

detailed discussion about the computation from the decomposed sub-matrices, the reader

is referred to Nguyen [5]. To this end, a direct solution method is used for solving the

large scale system. This is the method for solving a large linear system with the exact

solution 𝑒 within a finite number of steps, provided that all arithmetic operations are

exact. Direct solution methods are attractive because of their generality, reliability, and

efficiency. The choice of an appropriate solution method depends on the main goal,

43

which is to run the application as fast as possible. Moreover, running the application at all

given computer resources (disk space, and memory space) is another important concern.

In this section, a very basic form of direct solution approach will be discussed. Note that

the linear system, to be solved, is unsymmetrical most of the cases. This limits us in using

some well-known direct methods for solving the system. Since the co-efficient matrix,

formulated from transportation network, is sparse, a built in function of Matlab named

“sparse()” has been invoked on each of the sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 , and 𝐾𝐵𝐵 before

operations.

 Step 1: Calculate �̅�𝐵 from the equation �̅�𝐵 = ∑ (𝐾𝐵𝐼
𝑟 .(𝐾𝐼𝐼

𝑟)−1. 𝐾𝐼𝐵
𝑟𝑁𝑆

𝑟=1).

 Step 2: Using the matrix �̅�𝐵, calculate �̅�𝐵𝐵 from the equation �̅�𝐵𝐵 = 𝐾𝐵𝐵 − �̅�𝐵.

 Step 3: Calculate 𝐶�̅� from the equation 𝐶�̅�=∑ (𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1. 𝐶𝐼
𝑟𝑁𝑆

𝑟=1).

 Step 4: Using the vector 𝐶�̅�, calculate 𝐶�̅�𝐵 from the equation 𝐶�̅�𝐵 = 𝐶𝐵 − 𝐶�̅�.

 Step 5: Solve system of linear equations �̅�𝐵𝐵. 𝑒𝐵 =𝐶�̅�𝐵

 Step 6: Calculate 𝑒𝐼
𝑟from the formula 𝑒𝐼

𝑟 =(𝐾𝐼𝐼
𝑟)−1. (𝐶𝐼

𝑟 - 𝐾𝐼𝐵
𝑟 .𝑒𝐵). for 𝑟 =

1, 2, 3, … . 𝑁𝑆.

It is important to retain the mapping between the previous node numbering and

new node numbering, such that the optimized travel time from each source node to the

destination node can be obtained for the original problem.

44

 CHAPTER 6

PERFORMANCE COMPARISON AND DISCUSSION

This chapter deals mainly with the comparison of solution time needed to obtain

the optimized travel time following different solution approaches. To validate the

research conducted in this thesis, 5 networks (Anaheim, Winnipeg, Chicago Sketch,

Austin, Chicago Regional) are used from Bar-Gera [25]. The code which generated all

the results, shown in this chapter, was written in MATLAB. The performance data were

found using a computer with an Intel(R) Core(TM) 2 Quad CPU Q9300 @ 2.50 GHz

processor and 8 GB of RAM.

For each of the networks, some destination nodes were randomly selected for

getting the expected travel time needed to reach those destination nodes from all source

nodes using different solution approaches. The solving time and iteration counts were

recorded for each of the solution approaches for each destination node separately without

applying DD partitioning algorithm. At first, the performance of value iteration (VI) with

policy iteration (PI) is compared. Then in the next table, the developed “enhanced policy

iteration” that helps to speed up the solution time is shown. Direct solution method

includes a basic linear system solving approach under the column “PI”. Note that all

matrices and sub-matrices are used after invoking built-in “sparse()” before operations.

The direct solver employs LAPACK with optimized BLAS, developed by Greg Henry of

the University of Tennessee and Intel Corp. (Moler, 2000), for solving system of linear

equation. It should also be noted that the workspace, used for all simulation runs has 4

processors. Although the results are shown for upto 8 smaller subdomains, the solving

time, shown in the tables, has used maximum of 4 processors.

45

Table 1 shows the results of three simulation runs (with three randomly chosen

destination nodes) of Anaheim network (416 nodes). For this network, policy iteration

shows better results than value iteration in terms of both iteration count and solving time.

Table 1. Performance comparison between VI and PI without applying DD algorithm

(Anaheim network)

Destination

Node

VI PI

Iteration Count Solving Time

(seconds)

Iteration

Count

 Solving Time

(Seconds)

5 78 0.4457 4 0.2318

50 69 0.4294 3 0.1759

400 80 0.4922 5 0.2967

280 88 0.5267 4 0.2680

In Table 2, the comparison of solving time of enhanced policy iteration with

different solution approaches is shown after using the sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 , and

𝐾𝐵𝐵 following DD partitioning algorithm, in order to get the solution with the same

destinations. The simulations were run using single processor and multicore processors.

As can be seen from the table, DD partitioning algorithm minimizes the solving time for

some simulation runs while using single processor. The parallel implementation does not

speed up the solution time for Anaheim network because the solving time at each

iteration for this network is relatively small. The communication time among the

46

processors adds extra noise to the performance for parallel implementation of the

developed solution approach.

Table 2. Performance comparison of PI after applying DD partitioning algorithm

(Anaheim network)

Destination

Node

Sub-Domains PI

(Seconds)

Serial Parallel

5

2 0.2361 0.5835

3 0.1818 0.5740

4 0.1652 0.6196

5 0.1478 0.6512

6 0.1496 0.6005

7 0.1369 0.6321

8 0.1666 0.6283

50

2 0.1697 0.4842

3 0.1386 0.4838

4 0.1133 0.5325

5 0.1134 0.5904

6 0.1143 0.5533

7 0.0978 0.5358

8 0.1136 0.5594

400

2 0.2843 0.7203

3 0.2338 0.7021

4 0.1734 0.7172

5 0.1634 0.7541

6 0.1602 0.7545

7 0.1645 0.7403

8 0.1729 0.7952

280

2 0.2338 0.5729

3 0.1856 0.5972

4 0.1425 0.6267

5 0.1351 0.6674

6 0.1400 0.6753

7 0.1398 0.6471

8 0.1527 0.8503

47

Next, all the solution approaches were tested with two medium size networks,

collected from Bar-Gera [25], named Winnipeg (1,052 nodes) and Chicago Sketch (933

nodes). The results, obtained from several simulation runs, agree with the results obtained

by testing Anaheim network. The results are shown in Table 3, Table 4, Table 5, and

Table 6 respectively. As can be seen, parallel implementation using multicore processors

yields worse performance than using a single processor for the solution approach. For the

parallel implementation, Matlab’s built-in “Parallel Computing Toolbox” has been used

as a black-box. Such implementation could not tell us more about the reasons behind

such slow performance. Moreover, operations on small and medium sized matrices

happen so fast that the computational time is hard to measure accurately. Hence, all the

solution approaches were tested with two large scale network, Austin (7,388 nodes) and

Chicago Regional (12,982 nodes).

Table 3. Performance comparison between VI and PI without applying DD algorithm

(Winnipeg network)

Destination

Node

VI PI

Iteration Count Solving Time

(seconds)

Iteration

Count

 Solving Time

(Seconds)

35 492 7.1010 4 1.3116

250 550 8.7738 3 1.0501

1000 333 4.8067 5 1.6312

550 673 7.6547 5 1.6395

48

Table 4. Performance comparison among different solution approaches of PI after

applying DD partitioning algorithm (Winnipeg network)

Destination

Node

Sub-Domains PI

(Seconds)

Serial Parallel

35

2 1.6606 1.8303

3 1.1234 1.3121

4 0.8604 1.2220

5 0.7679 1.2138

6 0.8193 1.3425

7 0.7570 1.3443

8 0.7150 1.3326

250

2 1.2715 1.3742

3 0.8511 1.0218

4 0.6439 0.9724

5 0.5737 0.9582

6 0.5807 1.0124

7 0.5650 1.0334

8 0.5359 0.9831

1000

2 2.0941 2.1618

3 1.3775 1.6379

4 1.0408 1.5570

5 0.9855 1.5630

6 0.9707 1.5963

7 0.9508 1.5676

8 0.9116 1.6587

550

2 2.0749 2.6094

3 1.4183 2.2596

4 1.0632 1.9574

5 0.9573 1.9902

6 0.9543 2.0603

7 0.9441 2.0935

8 0.8982 2.1202

49

Table 5. Performance comparison between VI and PI without applying DD algorithm

(Chicago Sketch network)

Destination

Node

VI PI

Iteration Count Solving Time

(seconds)

Iteration

Count

 Solving Time

(Seconds)

333 3189 44.2296 4 1.0778

654 2904 39.3855 3 0.9761

831 3189 42.8940 4 1.0666

920 5809 48.1724 3 0.8947

50

Table 6. Performance comparison among different solution approaches of PI after

applying DD partitioning algorithm (Chicago Sketch network)

Destination

Node

Sub-Domains PI

(Seconds)

Serial Parallel

333

2 1.0637 1.3237

3 0.7801 1.0914

4 0.7121 1.1519

5 0.6513 1.1889

6 0.5844 1.1334

7 0.5328 1.1743

8 0.7276 1.6493

654

2 0.7904 1.0645

3 0.5651 0.8322

4 0.5279 1.0358

5 0.5038 0.9531

6 0.4479 0.8768

7 0.4142 1.0385

8 0.5597 1.0523

831

2 1.0637 1.3237

3 0.7801 1.0914

4 0.7121 1.1519

5 0.6513 1.1889

6 0.5844 1.1334

7 0.5328 1.1743

8 0.7276 1.6493

920

2 0.7896 1.0418

3 0.5703 0.8678

4 0.5175 0.8954

5 0.5050 0.9559

6 0.4517 0.9898

7 0.3917 0.8978

8 0.5436 1.0810

It is surprising to observe that for Austin and Chicago Regional networks (see

Table 7 and Table 9 respectively), VI algorithm solves the problem faster than PI

algorithm. The larger the size of a network is, the slower the solving time gets for policy

51

iteration compared to value iteration. Partitioning the domain into several numbers of

subdomains helps the PI running faster in serial processor implementation although it

does not outperform the value iteration algorithm. The solving time is getting closer with

the increase in the number of subdomain.

Table 7. Performance comparison between VI and PI without applying DD algorithm

(Austin network)

Destination

Node

VI PI

Iteration Count Solving Time

(seconds)

Iteration

Count

 Solving Time

(Seconds)

5 2013 105.13 27 453.65

2345 1681 90.92 14 236.65

4200 2021 106.41 20 333.68

6432 2212 118.46 13 238.91

Unlike the three networks (Anaheim, Winnipeg, and Chicago Sketch), as shown

in Table 8 and Table 10, the parallel implementations of the solution approach with 4

processors catch the solving time of basic PI (without DD partitioning algorithm), even

sometimes perform better than the single processor implementation. This result is

inspiring in the sense that more processors will be able to solve the model with less

amount of time if the network is partitioned efficiently into more number of subdomains.

The less the number of boundary nodes, the more efficient the partitioning algorithm is.

In that case a smaller system needs to be solved as shown in Eqn (14). Moreover the

52

architecture of the workspace, used for all simulation runs, might cause the slower

performance in communication time for parallel implementation. After recording the

computational time associated with each subdomain separately, it is clear that parallel

implementation adds huge noise as the communication time between processors in such

computations and thus results in surprisingly slow performance.

53

Table 8. Performance comparison among different solution approaches of PI after

applying DD algorithm (Austin network)

Destination

Node

Sub-Domains PI

(Seconds)

Serial Parallel

5

2 555.96 448.27

3 359.02 295.75

4 299.89 262.47

5 245.15 224.42

6 194.87 193.07

7 196.73 193.63

8 196.31 210.08

2345

2 289.72 236.33

3 186.54 160.47

4 158.28 165.87

5 127.21 135.87

6 100.14 96.20

7 101.91 118.97

8 100.94 114.73

4200

2 425.57 343.15

3 274.80 233.11

4 233.32 208.15

5 182.05 178.93

6 144.22 138.58

7 152.67 170.91

8 149.66 164.46

6432

2 271.05 238.74

3 175.77 141.09

4 146.44 139.58

5 119.62 109.49

6 96.94 109.39

7 96.84 95.26

8 94.34 97.42

54

Table 9. Performance comparison between VI and PI without applying DD algorithm

(Chicago Regional network)

Destination

Node

VI PI

Iteration Count Solving Time

(seconds)

Iteration

Count

 Solving Time

(Seconds)

1111 1433 318.63 11 871.33

8568 3705 340.13 10 964.18

400 1915 185.34 8 733.34

12150 1917 178.81 8 801.81

55

Table 10. Performance comparison among different solution approaches of PI after

applying DD algorithm (Chicago Regional network)

Destination

Node

Sub-Domains PI

(Seconds)

Serial Parallel

1111

2 798.05 721.79

3 670.32 689.34

4 582.41 739.92

5 475.76 689.53

6 427.21 666.89

7 488.79 611.19

8 438.48 570.28

8568

2 848.19 732.74

3 573.44 526.23

4 579.69 581.25

5 499.14 537.06

6 474.98 526.98

7 436.31 516.18

8 430.91 504.70

400

2 643.99 613.06

3 455.67 420.77

4 450.56 448.27

5 387.60 411.00

6 368.73 420.06

7 336.09 409.92

8 331.38 396.17

12150

2 725.06 604.14

3 452.90 420.01

4 446.09 464.25

5 380.80 421.94

6 372.01 409.23

7 332.44 395.87

8 325.03 407.87

56

CHAPTER 7

CONCLUSION

Algorithms (i.e., shortest path algorithm) in navigation systems assume that

drivers are able to follow the directions without mistakes. However, this is not always the

case, especially when the drivers are passing through complex intersections and the

graphical interface design of navigation systems is poor. Using real-world transportation

network, it has been shown that this is indeed the case and that the “classical” shortest

routes do not remain optimal anymore

The focus of the research conducted in the thesis is to develop a robust, reliable,

and efficient algorithm to solve “driving with error” models. Through real-world

transportation network examples (such as Anaheim, Austin, Winnipeg, Chicago Sketch,

and Chicago Regional), it has been demonstrated that the proposed solving algorithm,

coupled with DD partitioning, significantly reduces the computational time (as compared

to the traditional algorithm, which operates directly on the entire large network) for the

basic policy iteration algorithm.

Various aspects of the mentioned problem have still been left unexplored, and

hence, can be considered in future works. For example, it was intended to devise discrete

choice models to estimate the error probability as a function of intersection and personal

characteristics of the driver. It was also intended to develop models that are robust to the

misspecification of the error likelihoods.

A more principled approach to network partitioning is necessary to ensure the

minimization of system boundary node count which is responsible for adding overhead to

the computation cost. Partitioning the network into as many subdomains as possible,

57

following a more efficient partitioning algorithm [22, 23], and distributing the

subdomains to the processors of a supercomputer (with 32 or 64 processors) for solving

the model could show more exciting results.

Moreover, the parallel implementation tasks were left totally to Matlab’s “Parallel

Computing Toolbox”. Such implementation should be done carefully and efficiently after

investigating which portions of the code segments take more time while using multicore

processors.

It was also observed that for a transportation network, the average number of links

per node is almost same regardless the size of the network. That is, the bigger networks

have more sparse system than the smaller ones compared to the size of network. A multi-

frontal method (i.e., Davis [28], Davis [29], Davis, [30]), or a hybrid multi-frontal

method (i.e., Amestoy et al. [31], Amestoy et al. [32], Xia et al. [33], Raju et al. [34])

coupled with DD partitioning algorithm can be developed to take the advantage of such

sparsity for better performance. UMFPACK library [28], used by “Backlash” operator,

takes way more advantage of a sparse system by using multi-frontal method. Since the

source code for this library is open for all, it can be embedded in the DD framework for

taking more advantage of the sparse sub-matrices obtained from DD partitioning

algorithm.

In this thesis, a direct solution method coupled with DD framework was

implemented. An efficient iterative solution method, a hybrid of BI-CG and BI-CGSTAB

(Van der Vorst [35]) algorithm, named IBI-CGSTAB (Yang and Brent [36]), could be

employed which reduces the global communication cost of the parallel performance

significantly. Moreover, constructing appropriate preconditioned matrix using parallel

58

and multilevel methods, discussed in Saad and Van Der Vorst [37], for obtaining super-

linear convergence for iterative solvers, could be an interesting future research direction.

59

REFERENCES

[1] M. W. Ng and K. Sathasivan, "Probabilistic Modeling of Erroneous Human

Response to In-Vehicle Route Guidance Systems: A First Look," Journal of

Intelligent Transportation Systems, 2013.

[2] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming vol. 414: Wiley.com, 2009.

[3] D. P. Bertsekas, Dynamic programming and optimal control vol. 1: Athena

Scientific Belmont, 1995.

[4] R. Bellman, Dynamic Programming: Princeton University Press, 1957.

[5] D. T. Nguyen, Finite Element Methods: Parallel-Sparse Statics and Eigen-

Solutions: Springer, 2006.

[6] M. Ng, J. Park, and S. T. Waller, "A hybrid bilevel model for the optimal shelter

assignment in emergency evacuations," Computer‐Aided Civil and Infrastructure

Engineering, vol. 25, pp. 547-556, 2010.

[7] M. Ng and S. T. Waller, "Reliable evacuation planning via demand inflation and

supply deflation," Transportation Research Part E: Logistics and Transportation

Review, vol. 46, pp. 1086-1094, 2010.

[8] Y. Yin and H. Yang, "Simultaneous determination of the equilibrium market

penetration and compliance rate of advanced traveler information systems,"

Transportation Research Part A: Policy and Practice, vol. 37, pp. 165-181, 2003.

[9] W. Szeto and H. K. LO, "The impact of advanced traveler information services on

travel time and schedule delay costs," in Intelligent Transportation Systems, 2005,

pp. 47-55.

[10] T. Toledo and R. Beinhaker, "Evaluation of the potential benefits of advanced

traveler information systems," Journal of Intelligent Transportation Systems, vol.

10, pp. 173-183, 2006.

[11] R. L. Bertini and D. J. Lovell, "Impacts of sensor spacing on accurate freeway

travel time estimation for traveler information," Journal of Intelligent

Transportation Systems, vol. 13, pp. 97-110, 2009.

[12] A. Higatani, T. Kitazawa, J. Tanabe, Y. Suga, R. Sekhar, and Y. Asakura,

"Empirical analysis of travel time reliability measures in Hanshin expressway

network," Journal of Intelligent Transportation Systems, vol. 13, pp. 28-38, 2009.

60

[13] N. Uno, F. Kurauchi, H. Tamura, and Y. Iida, "Using bus probe data for analysis

of travel time variability," Journal of Intelligent Transportation Systems, vol. 13,

pp. 2-15, 2009.

[14] H. Rakha, I. El-Shawarby, and M. Arafeh, "Trip travel-time reliability: issues and

proposed solutions," Journal of Intelligent Transportation Systems, vol. 14, pp.

232-250, 2010.

[15] A. Chen, H. Yang, H. K. Lo, and W. H. Tang, "Capacity reliability of a road

network: an assessment methodology and numerical results," Transportation

Research Part B: Methodological, vol. 36, pp. 225-252, 2002.

[16] H. K. Lo and Y.-K. Tung, "Network with degradable links: capacity analysis and

design," Transportation Research Part B: Methodological, vol. 37, pp. 345-363,

2003.

[17] H. K. Lo, X. Luo, and B. W. Siu, "Degradable transport network: travel time

budget of travelers with heterogeneous risk aversion," Transportation Research

Part B: Methodological, vol. 40, pp. 792-806, 2006.

[18] A. Sumalee, D. P. Watling, and S. Nakayama, "Reliable network design problem:

case with uncertain demand and total travel time reliability," Transportation

Research Record: Journal of the Transportation Research Board, vol. 1964, pp.

81-90, 2006.

[19] M. Ng and S. T. Waller, "A computationally efficient methodology to

characterize travel time reliability using the fast Fourier transform,"

Transportation Research Part B: Methodological, vol. 44, pp. 1202-1219, 2010.

[20] M. Ng, W. Szeto, and S. Travis Waller, "Distribution-free travel time reliability

assessment with probability inequalities," Transportation Research Part B:

Methodological, vol. 45, pp. 852-866, 2011.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, "Network flows: theory, algorithms,

and applications," 1993..

[22] P. Johnson, D.T. Nguyen, and M. Ng, “A New Shortest Distance Domain

Partitioning Algorithm for Large-Scale Transportation Network Problems”,

Structures Research Technical Note No. 07-26-2013, CEE Department, 135

KAUF, Old Dominion University, Norfolk, VA 23529, 2013.

[23] P. Johnson, D.T. Nguyen, and M. Ng, “A New Shortest Distance Domain

Partitioning Algorithm for Large-Scale Transportation Network Problems”,

submitted to the TRB’2014 Conference, Washington, D.C, 2014.

61

[24] C. Suwansirikul, T. L. Friesz, and R. L. Tobin, "Equilibrium decomposed

optimization: a heuristic for the continuous equilibrium network design problem,"

Transportation Science, vol. 21, pp. 254-263, 1987.

[25] H. Bar-Gera, "Transportation network test problems," ed, 2012. Available:

http://www.bgu.ac.il/~bargera/tntp/.

[26] A. G. Barto, R. S. Sutton, and C. W. Anderson, "Neuronlike adaptive elements

that can solve difficult learning control problems," Systems, Man and Cybernetics,

IEEE Transactions on, pp. 834-846, 1983.

[27] G. Lawson, S. Allen, G. Rose, D. Nguyen, and M. Ng, "Parallel Label Correcting

Algorithms for Large-Scale Static and Dynamic Transportation Networks On

Laptop Personal Computers," in Proceedings of the Transportation Research

Board's 92nd Annual Meeting, 2013.

[28] T. A. Davis, "Umfpack version 5.6.2 user guide," Department of Computer and

Information Science and Engineering, University of Florida, Gainesville, FL,

2013.

[29] T. A. Davis, "Algorithm 832: UMFPACK V4. 3---an unsymmetric-pattern

multifrontal method," ACM Transactions on Mathematical Software (TOMS), vol.

30, pp. 196-199, 2004.

[30] T. A. Davis, "A column pre-ordering strategy for the unsymmetric-pattern

multifrontal method," ACM Transactions on Mathematical Software (TOMS), vol.

30, pp. 165-195, 2004.

[31] P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, "A fully asynchronous

multifrontal solver using distributed dynamic scheduling," SIAM Journal on

Matrix Analysis and Applications, vol. 23, pp. 15-41, 2001.

[32] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, "Hybrid

scheduling for the parallel solution of linear systems," Parallel computing, vol.

32, pp. 136-156, 2006.

[33] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, "Superfast multifrontal method

for large structured linear systems of equations," SIAM Journal on Matrix

Analysis and Applications, vol. 31, pp. 1382-1411, 2009.

[34] M. P. Raju and S. Khaitan, "Domain decomposition based high performance

parallel computing," arXiv preprint arXiv:0911.0910, 2009.

http://www.bgu.ac.il/~bargera/tntp/

62

[35] H. A. Van der Vorst, "Bi-CGSTAB: A fast and smoothly converging variant of

Bi-CG for the solution of nonsymmetric linear systems," SIAM Journal on

scientific and Statistical Computing, vol. 13, pp. 631-644, 1992.

[36] L. T. Yang and R. P. Brent, "The improved BiCGStab method for large and

sparse unsymmetric linear systems on parallel distributed memory architectures,"

in Algorithms and Architectures for Parallel Processing, 2002. Proceedings. Fifth

International Conference on, 2002, pp. 324-328.

[37] Y. Saad and H. A. Van Der Vorst, "Iterative solution of linear systems in the 20th

century," Journal of Computational and Applied Mathematics, vol. 123, pp. 1-33,

2000.

63

VITA

Abdullah Al Farooq

Department of Modeling, Simulation and Visualization Engineering

1300 E. V. Williams Engineering and Computational Sciences Building

Norfolk, VA 23529

Abdullah Al Farooq has an undergraduate-level background in Computer Science and

Engineering from Bangladesh University of Engineering and Technology, Dhaka,

Bangladesh, with an emphasis on artificial intelligence. He has completed a Masters

degree in Modeling and Simulation at the Department of Modeling, Simulation and

Visualization Engineering (MSVE) at Old Dominion University, Norfolk, VA. Abdullah

has worked as a graduate assistant for the MSVE department from Fall 2012 to Fall 2013.

DEGREES

Bachelor of Science, Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka, Bangladesh.

Master of Science, Modeling and Simulation, Old Dominion University, Norfolk, VA

23529.

	Probabilistic Modeling of Erroneous Human Response to In-Vehicle Route Guidance Systems: A Domain Decomposition-Based Algorithm
	Recommended Citation

	[Click here and type THESIS TITLE]

