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ABSTRACT 

PROBABILISTIC MODELING OF ERRONEOUS HUMAN RESPONSE TO IN-

VEHICLE ROUTE GUIDANCE SYSTEM: A DOMAIN DECOMPOSITION-BASED 

ALGORITHM 

 

Abdullah Al Farooq 

Old Dominion University, 2013 

Director: Dr. ManWo Ng  

 

 

Drivers are generally assumed to follow the shortest route to their destinations 

prescribed by in-vehicle route navigation systems without mistake. However, it is not 

uncommon that drivers make mistakes when there are complex intersections along the 

route to miss turns. Such mistakes would result in following a longer route than the 

optimal one. In this thesis, research has been conducted to analyze the effects of the 

number of intersections in the shortest routes of different O-D (origin-destination) pairs. 

While different formulations can be employed to describe such “driving with error” 

model, a Domain Decomposition (DD) partitioning algorithm has been developed for 

route guidance systems in order to recommend optimal routes to the drivers. A numerical 

comparison among different solution approaches has been conducted in this thesis. 
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CHAPTER 1 

INTRODUCTION 

In-vehicle route navigation systems are becoming increasingly common in 

modern vehicles. An integral component of these navigation systems is the determination 

of “optimal” routes (e.g. the fastest) to the desired destination. An implicit assumption 

that is fundamental to these in-vehicle navigation systems is that the directions provided 

are followed without mistakes. However, it is probably not hard to recall a situation in 

which we have missed a turn, despite the directions of a navigation system, especially 

when driving in an unfamiliar environment. Recently, Ng and Sathasivan [1] relaxed this 

assumption of error-free human response to in-vehicle navigation systems (henceforth 

“driving mistake” or “driving error” will be used to denote this type of mistake) and 

explicitly model the reality that drivers might miss turns, leading to more robust route 

guidance. To model this, they employed a Markov Decision Process (MDP), e.g. see 

Puterman [2] and Bertsekas [3]. The resulting MDP was solved as a linear program. The 

research, conducted in this thesis, is to solve large scale MDPs formulated from real 

world network accurately and efficiently
1
. 

 

1.1 MOTIVATION OF THE THESIS 

Whereas the focus in Ng and Sathasivan [1] was on modeling and examining 

model properties, no solution algorithm, in particular, was discussed. This is the principal 

observation which motivated this thesis. Two different solution approaches, one is value 

iteration [4] and the other is policy iteration [2], are presented to solve this problem. 

                                                           
1
 Figures, tables, and references in this thesis were formatted based on the IEEE Transactions and Journals 

style. 
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According to the model, described by Ng and Sathasivan [1], as the most interesting – but 

perhaps extreme – example, it has been noticed that under certain conditions, it is no 

longer optimal to recommend drivers to take the shortest route. Instead, a longer route (in 

certain cases even the longest!) becomes optimal. In this thesis, real-world, large scale 

transportation networks (i.e. Austin, Chicago Regional) will be used to investigate this 

phenomenon. To this end, a specialized solution algorithm will be developed that is able 

to solve large-scale instances of the problem.  

 

1.2 SUMMARY OF CONTRIBUTIONS 

In this thesis, a robust solution algorithm, a domain decomposition based policy 

iteration algorithm, is presented to solve the MDP problem associated with driving error. 

Benefits of the model in terms of travel time savings are investigated via several case 

studies. A commonly used technique, value iteration, for solving the MDPs and 

comparing the solution time among different solution approaches is also discussed.  

In addition, specific values for error probabilities were assigned according to a 

defined scale which, in turn, shows logical relationship of error probabilities at different 

nodes with various numbers of outgoing directions. It should be noted that the goal of this 

research is not assigning exact error probabilities associated with intersections of a 

network. Rather, the focus is mainly on developing a solution algorithm which is capable 

of solving the “driving with error” model with any type of error probabilities. 

This thesis seeks to remedy both space inefficiency and time inefficiency for 

solving large scale MDPs, by modeling solution to remedy the inefficiencies, and by 

incorporating the solution into a unified model. A novel decomposition algorithm is 
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presented to efficiently solve the MDPs. To this end, the domain decomposition (DD) 

solver [5] is embedded in direct solution method of policy iteration algorithm to further 

increase its efficiency. In addition to the enhanced efficiency, the DD algorithm, framed 

in sparse matrix representation, not only reduces excessive resource consumption, but 

also facilitates an efficient parallel implementation, which allows the resulting algorithms 

to scale far beyond single-machine capabilities.  

Although the focus is on devising the solution algorithm for navigation systems, it 

should be noticed that the framework developed in this thesis has potential applications in 

other domains as well, including the modeling of disobedience to evacuation orders (e.g. 

see Ng et al. [6]; Ng and Waller [7]) or traveler information systems (e.g. see Yin and 

Yang [8], Szeto and Lo [9], Toledo and Beinhaker [10], Bertini and Lovell [11]). 

Moreover, the research conducted in this thesis has implications for travel time reliability 

(Higatani et al. [12]; Uno et al. [13], Rakha et al. [14]): Variability in travel time is now 

caused by the failure to follow the intended path, unlike in other studies where demand 

and supply uncertainties are responsible for travel time unreliability (e.g. see Chen et al. 

[15], Lo and Tung [16], Lo et al. [17], Sumalee et al. [18], Ng and Waller [19], Ng et al. 

[20]). Finally, the research presented in this thesis has the potential to reduce unsafe 

driving behavior (i.e., drivers attempting to make last-minute corrective steering actions), 

or even lead to greater sustainability through reduced fuel usage. 

 

1.3 OUTLINE OF THE THESIS 

The remainder of this thesis is organized as follows. Chapter 2: MODEL 

REVIEW briefly reviews the MDP under consideration and demonstrates its relevance 
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using by comparing it to the classical shortest path problem [21] using real transportation 

networks. In Chapter 3: SOLUTION APPROACH, the basic policy iteration algorithm 

and value iteration algorithms are briefly reviewed to solve Markov Decision Process 

(MDP) model. Chapter 4: STORAGE SCHEME presents how the transportation network 

information and MDP model are stored efficiently. Chapter 5: ENHANCED POLICY 

ITERATION briefly reviews Domain Decomposition (DD) algorithm [22, 23] to show 

how the algorithm is used to solve the problem. PERFORMANCE COMPARISON AND 

DISCUSSION (using two different real world networks: Austin Network, and Chicago 

Regional Network) and comparisons between the classical (without using DD 

partitioning) approaches, and the approaches, coupled with DD partitioning algorithm, 

are presented and discussed in Chapter 6.  Finally, Chapter 7, CONCLUSION, concludes 

the thesis by summarizing the main contributions of this work and the identification of 

potentially worthwhile future research directions.  
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CHAPTER 2 

MODEL REVIEW 

This chapter presents introductory materials on how erroneous response to in-

vehicle navigation system was modeled [1] as MDP. Basic model properties are 

discussed in this chapter. This chapter also addresses the need of using this model rather 

than using the classical one (e.g. classical shortest path algorithm). Numerical examples, 

from real world networks, are shown to emphasize the critical importance of the model. 

 

2.1 MODEL PROPERTIES 

Consider a transportation network G( N, A), with node set N and link set A. Each 

link (i, j) has an (expected) travel time.𝑐𝑖𝑗 ≥ 0. Let 𝑈(𝑖) denote the set of all outgoing 

links at node i. In case one allows for the possibility of mistakes, when instructed to 

choose link 𝑢 ∈ 𝑈(𝑖) at node i, a probability distribution 𝑝𝑖𝑗(𝑢) is induced over all nodes 

j with (𝑖, 𝑗) ∈ 𝐴 . (Of course, ∑𝑝𝑖𝑗(𝑢) = 1.) That is, when instructed to go to node j from 

node i, it is possible that one – by mistake – ends up at node 𝑘 ≠ 𝑗, where (𝑖, 𝑘) ∈ 𝐴. (In 

other words, when instructed to turn right at the next intersection, it now becomes 

possible that one misses the turn, and goes straight instead.) The instruction 𝑢 = (𝑖, 𝑗) 

thus induces an immediate expected travel time of 𝐶(𝑖, 𝑢) ≡ ∑ 𝑝𝑖𝑗(𝑢)𝑗 𝑐𝑖𝑗.  

The goal, for a navigation system, is then to choose a set of control strategies 

𝑢 ∈ 𝑈(𝑖)  at each node i so that the destination D is reached within the shortest expected 

travel time. Without loss of generality (as in Ng and Sathasivan [1]), it is assumed that 

the following for the transition probabilities 𝑝𝑖𝑗(𝑢): Suppose that a navigation system 

prescribes us to follow link 𝑢 = (𝑖, 𝑗) at node 𝑖 ≠ 𝐷. The driver is then assumed to follow 
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this recommendation with a probability of 1 − 𝑝𝑖 (0 ≤ 𝑝𝑖 ≤ 1) , whereas the driver 

moves to node 𝑘 ≠ 𝑗 where(𝑖, 𝑘) ∈ 𝑈(𝑖) with probability 
𝑝𝑖

|𝑈(𝑖)|−1
  (here |B| is used to 

denote the cardinality of the set B). That is, when making a mistake, it is assumed that all 

wrong turns are equally likely. For the destination node, we simply define 𝐶(𝐷, 𝑢) =

0, ∀𝑢 ∈ 𝑈(𝐷). 

Let 𝑒(𝑖) = 1,2, … . , 𝑛 denote the minimum expected travel time from node i to the 

destination node. (Note that by definition 𝑒(𝐷) = 0, so that the cost label can be omitted 

from the analysis.) It can then be shown that 𝑒(𝑖) satisfies Bellman’s equations (cf. 

Puterman [2]; Bertsekas [3]): 

𝑒(𝑖) = min𝑢∈𝑈(𝑖)[ 𝐶(𝑖, 𝑢) + ∑ 𝑝𝑖𝑗(𝑢)𝑒(𝑗)𝑗 ]                               (1) 

For more details on this MDP, the reader is referred to Ng and Sathasivan [1]. 
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Figure 1.  Sioux Falls test network with node and link numbers 

 

 

As a motivating example, to illustrate the importance for solving Eqn (1), even in 

case of relatively small error probabilities, a well-known, medium sized Sioux Falls 

Network shall be used, as shown in Figure 1. The link costs data associated with the links 

are assumed to be given by the free flow travel times reported in Suwansirikul et al. [24], 

multiplied by 100. Without loss of generality, suppose that one is interested in traveling 

from node 18 to node 12. The optimal route in the classical shortest path framework 
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would be 18-16-10-11-12, with an (expected) travel time of 19 minutes (cf. solid bold 

arrows in Figure 1).  

 

 

 

Figure 2.  Travel time difference between proactive and reactive routing strategies for   

O-D pair (18 - 16) of Sioux Falls network 

 

 

Let us set 

 𝑝𝑖 = (|𝑈(𝑖)| − 1)𝑠                                               (2) 

Here, 𝑠 is used to scale the probability. For the first experiment, 𝑠 is set to 0.025 which 

makes  𝑝16 = 0.075, 𝑝10 = 0.10, and 𝑝11 = 0.075. The optimal route, derived from the 

model, remains as same as the classical shortest path with these slight chances of 

mistakes. In the next experiment, 𝑠 is set to 0.033 (That is, 𝑝16 = 0.10, 𝑝10 = 0.13, and 
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𝑝11 = 0.10). The chances of mistakes, associated with three intermediate nodes, are not 

high in this experiment. But the result shows (refer to Figure 2), following the route 18-

20-21-24-13-12, prescribed by the model, optimizes the travel time by 1.17%. The 

prescribed route has less complex intersections with less chance of making mistakes on 

the intermediate nodes (𝑝20 = 0.10, 𝑝21 = 0.067, 𝑝24 = 0.067, 𝑝13 = 0.033). The average 

chance of making mistake per intermediate node on the classical shortest route is 1.64 

times the average chance of mistakes on the route prescribed by the model. In the next 

two experiments, 𝑠 is increased to 0.042 and 0.050 successively to demonstrate the 

efficiency of the model in terms of saving travel time. For 𝑠 = 0.050, the highest error 

probability, associated with intermediate node 20 is 20% which is relatively small. Even 

with such small chance of making mistakes, not only optimal route chances, but also 

travel time can be saved by nearly 1 minute. This saving in travel time might seem 

modest, however, one should bear in mind that a relatively small network has been used. 

In the next section, large-scale, real-world transportation networks will be examined to 

more thoroughly investigate this issue. 

 

2.2 MODEL’S IMPLICATION IN REAL WORLD 

While accounting for the possibility of missing turns is theoretically appealing in 

terms of modeling realism, in practice, it is not clear what the expected benefits are in 

terms of travel time savings. To this end, the proactive routing strategy resulting from 

Eqn (1) is compared next that explicitly anticipates the possibility of mistakes with the 

following commonly used reactive strategy: Determine a shortest route from a user-

specified origin to the desired destination. Every time the driver misses a turn/ deviates 
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from the route, a new shortest route will be determined based on the new location the 

driver ends up at. Since the expected travel times are minimized in Eqn (1), it is clear that 

the above described reactive strategy will always lead to a higher expected travel time. 

However, it is not clear how large this difference will be. In the remainder of this section 

the Anaheim, CA and Austin, TX road networks will be used to demonstrate that the 

differences can be substantial. Intuitively, this difference should be a function of the 

number of intersections between an O-D pair, and the error probabilities.  

In the first numerical experiment, the effect of the number of intersections 

between a given O-D pair on the difference between the expected travel time from a 

proactive and reactive routing strategy is investigated. In the first experiment, s = 0.033 is 

selected in Eqn (2). Since the Anaheim network has at most 6 outgoing links for a node, 

there is a 16.67% chance of making mistakes on that link. (On average, the Anaheim 

network has 2.2 outgoing links per node. Hence the error probability is, on average, 0.04, 

a rather small value.). One O-D pair (295 - 5) is then selected at random (the shortest 

travel time between this O-D pair is 16.88 minutes). For this O-D pair, the expected 

travel times under both routing strategies are then calculated, and starting from each node 

along the classical shortest path. Backtracking along this path, starting from the 

destination node, a path with increasingly more intersections is then built. Figure 3 shows 

the results of this exercise. As can be seen from the upper part in the figure, the absolute 

difference between the two routing strategies indeed, as expected, increase (or remains 

constant) when the number of intersections increase. For the O-D pair (295 -5), the 

classical shortest path recommends to take the route where there is 1 intermediate node 

(node 337) with 6 outgoing links, 7 intermediate nodes with 5 outgoing links (node 308, 
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node 361, node 378, node 394, node 407, node 406, node 402), and 3 intermediate nodes 

(node 405, node 404, node 401) with 4 outgoing links. The driver needs to cross those 11 

complex (of total 26 intersections) intersections with higher probability of making 

mistakes to reach the destination according to classical shortest path. When the error 

probabilities are associated with driving, the travel time on classical shortest route 

becomes 21.73 minutes. The solution algorithm recommends an alternate path where 

those 11 complex intersections were avoided. Although a route with more intersections 

(33 intersections) is prescribed, there is no intersection having more than 3 outgoing 

links. The travel time for the O-D pair of the solution algorithm is 17.97 minutes. That is, 

the algorithm is able to recommend an alternate route with optimized travel time and less 

complex intersections. For the same O-D pair (295-5), the scaling factor is reduced to 

0.025 and 0.017. (This corresponds to an error probability of about 0.050 and 0.036 

successively on average on the route prescribed by classical shortest path algorithm). The 

results are also shown in Figure 3. As can be seen, although the difference becomes 

smaller, it remains significant. In other words, these results suggest that it is of critical 

importance solve (1), instead of a classical shortest path problem when human error is 

possible. 
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Figure 3.  Travel time difference between proactive and reactive routing strategies for O-

D pair (295 - 5) of Anaheim network 

 

 

In the second numerical example, it is shown how the number of complex 

intersections affect travel time even when the travel time between an O-D pair is not that 

significant. In this example, an O-D pair (209-25) of Anaheim network is chosen 

randomly. The shortest travel time between the O-D pair is 9.68 minutes with 20 

intersections in between. The interesting incidence about this O-D pair is that, there are 7 

intersections which have more than 4 outgoing links in their classical shortest route (node 

394, node 378, node 361, node 337, node 308, node 273, and node 269). The solution 

algorithm recommends an alternate route with 21 intersections avoiding 6 of these 

complex intersections. The absolute difference and relative difference between two 
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routing strategies are shown in Figure 4, with different scale factors. When 𝑠 is set to 

0.033, we have 𝑝𝑖≤ 0.13 on this shortest route (on average, the probability of mistakes is 

0.08), which is rather a small value. But when error in driving is accounted for, the 

absolute difference can be more than 2 minutes even if the route is comparatively 

smaller. Even the relative difference between the routing strategies can be more than 20% 

(shown in lower part of Figure 4). In the next two experiments, the scaling factor is 

reduced to 0.025 and 0.017. As can be seen from the Figure 4, even with a very small 

scale factor 0.017 (This corresponds to an average error probability of about 0.039 for the 

intersections of the O-D pair), the relative difference between two routing strategies can 

be more than 10%. 

 

 

 

Figure 4.  Travel time difference between proactive and reactive routing strategies for   

O-D pair (209 - 25) of Anaheim network 
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In the next example, an O-D pair (1-400) of Anaheim network is chosen which 

has 33 intersections in its classical shortest route. The route, prescribed by classical 

shortest path algorithm, does not have any intersection more than three outgoing links 

(there are 1.47 outgoing links on average on the classical shortest route which results in 

the error probabilities of 0.015 on average for the intermediate nodes). The effect of the 

absence of complex intersections is investigated on the shortest route with three different 

scale factors (0.033, 0.025, and 0.017). It can be seen from Figure 5 that with the highest 

scaling factor 0.033 (which results in the error probabilities 0.016 on average on the 

classical shortest route), however, the maximum absolute difference between the routing 

strategies does not exceed half a minute. Even the maximum relative difference is less 

than 1% (shown in lower part of Figure 5). Although the algorithm recommends an 

alternate optimized route with more intersections (34 intersections), the differences 

between the routing strategies are not significant because of the absence of complex 

intersections on the shortest route. 
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Figure 5.  Travel time difference between proactive and reactive routing strategies for O-

D pair (1 - 400) of Anaheim network 

 

 

At this point, for demonstrating the importance of solving (1) rather than solving 

classical shortest path, a large scale network named Austin, TX (7388 nodes, 18961 

links) shall be used. 

An O-D pair (278-6772) of Austin network was chosen randomly which has 107 

intermediate nodes in its classical shortest route. In the first experiment the scaling factor 

was set to be 0.033 (this sets the average probability of 0.07 for the nodes of the classical 

shortest route). It is to be noted that this O-D pair does not have any intermediate nodes 

more than 4 outgoing links (average number of outgoing links per intermediate node is 

3.09). Having 4 outgoing links (including the outgoing link back to its predecessor node 

which corresponds to a U turn in for an intersection) for an intersection is a very common 
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kind of intersection as can be seen in real life. The classical shortest travel time between 

the O-D pair is 128.90 time unit (since it is not mentioned in BarGera [25] whether the 

time unit for Austin network is minute or hour). When mistakes in driving are considered 

with the scale factor 𝑠 = 0.033, the travel time on the shortest route becomes 156.62 

unit. The developed solution algorithm recommends an alternate route with 159 

intermediate nodes which is able to optimize the travel time to 144.97 unit. The 

difference between the routing strategies goes up to nearly 12 unit (shown in upper part 

of Figure 6) for some nodes to reach the destination node. This example demonstrates 

that the cumulative effect of the error is significant with the increasing number of 

intersections between an O-D pair even when the intersections are not that complex. 
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Figure 6.  Travel time difference between proactive and reactive routing strategies for O-

D pair (278-6772) of Austin network 

 

 

Another O-D pair (449-6772) of Austin network has been chosen randomly to 

show the importance of solving (1) rather than solving the classical shortest path 

algorithm. This O-D pair has 85 intersections, in its classical shortest route. In the first 

experiment, the scaling factor 𝑠 is set to be 0.033. Once the path is built after 

backtracking from the destination node to the source node, it is clearly seen from Figure 

7, that the model is able to minimize around 10 time unit for nearly 20 intermediate nodes 

to reach the destination node 6772. The solution algorithm has more than twice as many 

numbers of intersections as the classical shortest algorithm has. Despite the fact that the 

solution algorithm recommends an alternate route with 172 intersections, it is able to 
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minimize 5 time unit expected travel time for some intermediate nodes of the O-D pair 

(449-6772) at the lowest scale factor 𝑠 = 0.017 of this exercise. 

 

 

 

Figure 7.  Travel time difference between proactive and reactive routing strategies for O-

D pair (449-6772) of Austin network 

 

 

The case study, as shown in Figure 8, an O-D pair (263-6199) of Austin network 

with 227 intermediate nodes is chosen. The simulation was run with three different values 

of scaling factor. Surprisingly, the expected travel time from each intersection to the 

destination is not minimized significantly, although there is relatively large number of 

intersections between the O-D pair in the classical shortest route. More insight was 

investigated to find the reason behind such incidence. There is no intersection in the 
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shortest route which has more than 4 outgoing links. Even the intersections having 4 

outgoing links is very few in number on the route. Moreover the average number of 

outgoing links per node is 2.16. Even with the highest scaling factor (𝑠 = 0.033) used for 

the experiment, we have 3.87% chance of making mistakes on average per intersections. 

 

 

 

Figure 8.  Travel time difference between proactive and reactive routing strategies for O-

D pair (263-6199) of Austin network 

 

 

The numerical example, shown in Figure 9, demonstrates how the change in 

probability of mistakes affects the difference between two routing strategies. In the first 

two experiments the scaling factor s was set to be 0.017. Both absolute difference and 

relative difference do not become significant. In the next experiment, the scaling factor 
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was increased to 0.025, which sets 5.25% chance of making mistakes on average per 

node while following the shortest route. With this small chance of making mistakes, the 

model can not minimize the expected travel time for most of the intermediate nodes on 

the shortest route to reach the destination node. When setting the scaling factor 𝑠 to be 

0.033, as can be seen from both upper and lower part of Figure 9, there are sudden 

significant changes in the difference of expected travel time for some intermediate nodes 

under both routing strategies. This result is quite different from the experiment conducted 

for the O-D pair (263-6199), as shown in Figure 8. Although the O-D pair (6766-1100) 

has relatively small number of intersections compared to the O-D pair (263-6199), the 

average number of links per nodes on the classical shortest route between O-D par (6766-

1100) is 3.10, a rather larger value than the average number of outgoing links ( average is 

2.16) per intermediate nodes between the O-D pair (263-6199). 
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Figure 9.  Travel time difference between proactive and reactive routing strategies for O-

D pair (6766-1100) of Austin network 
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CHAPTER 3 

SOLUTION APPROACH 

There are lots of traditional algorithms which are capable of minimizing the 

expected travel time by selecting the best action possible at each node. The goal (of a 

navigation system) is to choose a set of control strategies 𝑢 ∈ 𝑈(𝑖) at each node 𝑖 (taking 

into account the possibility that the directions provided might not be followed), so that 

the destination is reached within the shortest possible time (in expected value It should be 

noted that truly large scale MDPs demand efficient implementation of solution algorithm. 

Hence a well-known solution approach, policy iteration algorithm (e.g. see Puterman 

[2]), has been adapted to improve its efficiency. Moreover the value iteration [4] 

algorithm was implemented because of its space efficiency and also for validating the 

result found from policy iteration. They are described step by step in this chapter along 

with the convergence criteria we have used for experiments. 

 

3.1 POLICY ITERATION ALGORITHM 

Policy iteration (PI) is an iterative procedure in the space of deterministic policies 

where it discovers the optimal policy by generating a sequence of monotonically 

improving policies. One of the main contributions of the thesis is the development of an 

enhancement which we make to standard policy iteration. Hence, the basic policy 

iteration is briefly reviewed in this section. The steps in policy iteration can be 

summarized as follows: 

 Step 1 (Initialization): Initialize by choosing an initial policy 𝑢(𝑖) for all nodes 

𝑖 ≠ 𝐷. In this research, we initialize by finding the classical shortest path for each 



23 

 

node to the destination node. The algorithm for finding initial policy is briefly 

discussed below: 

 

 Algorithm: 

     for each node 𝑖 ≠ 𝐷 to the destination node 𝐷 

find shortest path from 𝑖 to 𝐷 following basic label correcting                       

algorithm. 

select the successor node 𝑓 of node 𝑖 to reach destination node 𝐷 as the  

chosen action to take from node 𝑖.  That is, 𝑢(𝑖) ← 𝑓. 

     end for 

 

To illustrate this step, consider Figure 10 where the numbers on the links denote the 

associate travel time (in minutes). The shortest path from node 1 to node 6 is 1-2-5-6. 

After following the algorithm mentioned above, 𝑢(1) = 2. Similarly, 𝑢(2) = 5, 𝑢(3) 

= 2, 𝑢(4) = 6, 𝑢(5) = 6. A vector of control strategies �̅�𝑙 is introduced to store the 

control strategies 𝑢 ∈ 𝑈(𝑖) for all nodes𝑖 ≠ 𝐷. Here 𝑙 denotes the number of 

iteration. For initialization step, 𝑙 = 0. 
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Figure 10.  A network with node numbers and link costs 

 

 

From the Bellman’s equation, mentioned in Eqn (1), it is clear that the solution to this 

set of equations depends directly on the choice of action in each state. Since the 

chosen states from all states from the initial control strategies are known, the chances 

of mistakes for all nodes are put back to Eqn (1) in order to obtain the labels 𝑒(𝑖). 

That is the following system of linear equations needs to be solved: 

𝑒(1) =  (1 − 𝑝1)(3 + 𝑒(2)) + 𝑝1(2 + 𝑒(3)) 

𝑜𝑟, 𝑒(1) − (1 − 𝑝1)𝑒(2) − 𝑝1𝑒(3) = 1 − 𝑝1                              (3) 

 

𝑒(2) = 𝑝2(10 + 𝑒(4)) + (1 − 𝑝2)(1 + 𝑒(5)) 

𝑜𝑟, 𝑒(2) − (1 − 𝑝2)𝑒(5) − 𝑝2𝑒(4) = 1 + 9𝑝2                              (4) 
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𝑒(3) = 8 + 𝑒(2) 

𝑜𝑟, 𝑒(3) − 𝑒(2) = 8                                               (5) 

𝑒(4) = 5                                                       (6) 

𝑒(5) = 
𝑝5

2
(5 + 𝑒(3)) +

𝑝5

2
(2 + 𝑒(4)) + (1 − 𝑝5)5 

𝑜𝑟,𝑒(5) −
𝑝5

2
𝑒(3) −

𝑝5

2
𝑒(4) = 5 −

3𝑝5

2
                                 (7) 

The above system can be formulated as (𝐼 − 𝑃(�̅�0)). 𝑒
𝑢0 = 𝐶, where (𝐼 − 𝑃(�̅�0)) is 

the co-efficient matrix of the system, 𝐼 is the identity matrix, and 𝐶 is a vector with 

elements 𝐶(𝑖, �̅�0) . 𝑒𝑢0 is the vector of expected travel times from each node to the 

destination node when the classical shortest path has been chosen as the control 

strategy. 

𝐼 − 𝑃(�̅�0) =  

[
 
 
 
 
 
1 −(1 − 𝑝1) −𝑝1 0 0

0 1 0 −𝑝2 −(1 − 𝑝2)
0 −1 1 0 0
0 0 0 1 0

0 0 −
𝑝5

2
−

𝑝5

2
1 ]

 
 
 
 
 

, and 

 

𝐶 = 

(

  
 

1 − 𝑝1

1 + 9𝑝2

8
5

5 −
3𝑝5

2 )

  
 

 

 Step 2 (Policy Evaluation): Solve the system of linear equation (𝐼 − 𝑃(�̅�𝑙)). 𝑒
𝑢𝑙 = 𝐶 

where . 𝑒𝑢𝑙 is the vector of expected travel times from each node to the destination 

node, when the vector of control strategies �̅�𝑙 has been in use at 𝑙th
  iteration. 𝐼 is the 

identity matrix, and 𝐶 is a vector with elements 𝐶(𝑖, �̅�𝑙). To simplify notation, in the 

following chapters 𝐾 will be used to denote the matrix 𝐼 − 𝑃(�̅�𝑙). 
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 Step 3 (Policy Improvement): Solve Bellman’s equation (cf. Puterman [2]; 

Bertsekas [3]) to obtain the next set of control strategy u , i.e.: 

𝑒𝑢𝑙(𝑖) = min𝑢∈𝑈(𝑖)[𝐶(𝑖, �̅�𝑙) +∑𝑝𝑖𝑗(�̅�𝑙) . 𝑒𝑢𝑙(𝑗)]                    (8) 

This set of control strategy is at least as good as the previous one for getting optimal 

solution, if not better. 

 Step 4 (Convergence Test): Repeat the above steps from Step 2 until the difference 

in 𝑒𝑢𝑙 in subsequent iterations is smaller than a prescribed error tolerance. The 

stopping criteria |𝑒𝑢𝑙(𝑖) − 𝑒𝑢𝑙−1(𝑖)| <∈ will be used, where ∈ denotes the error 

tolerance. 

The algorithm, described above, can also be referred to as actor-critic 

architectures [26]. Figure 11 shows a block diagram of policy iteration (or an actor-critic 

architecture) and the dependencies among the various components. Policy improvement 

is also known as the actor and policy evaluation is known as the critic, because the actor 

is responsible for the way the model acts following the given policy and the critic is 

responsible for criticizing the way the model acts. 
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Figure 11.  Policy Iteration (Actor-Critic architecture) 

 

 

3.2 VALUE ITERATION ALGORITHM 

Value Iteration (VI) is an algorithm which successively approximates the value 

function, starting from an arbitrary initial estimate. It is a robust and well-known 

algorithm for solving an MDP, but not considered viable because of its slow convergence 

nature for large scale problems. Although throughout the thesis, this algorithm is not the 

subject for enhancement, it is reviewed because of its space efficiency for some networks. 

Also, the optimal solution of this approach was used to validate the results found after 

solving both normal and enhanced policy iteration. The steps for the algorithm are given 
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below: 

 Step 1: Initialize by guessing an initial expected travel time𝑒(𝑖) for all nodes 𝑖 ≠ 𝐷.  

 Step 2: Solve Bellman’s equation (cf. Puterman [2]; Bertsekas [3]) to obtain the next 

set of minimized expected travel time 𝑒(𝑖) for all nodes 𝑖 ≠ 𝐷, i.e.: 

𝑒(𝑖) = min𝑢∈𝑈(𝑖)[ 𝐶(𝑖, 𝑢) + ∑ 𝑝𝑖𝑗(𝑢)𝑒(𝑗)𝑗 ]                            (9) 

 Step 3: Repeat the above step until the difference in 𝑒(𝑖) = 1,2, … . , 𝑛 in subsequent 

iterations is smaller than a prescribed error tolerance (∈). ∈ denotes the error 

tolerance for finding the optimized travel time for each node to the destination node. 

The algorithm iterates over every state, and updates the value of that state 

according to Equation 3.2. Value iteration can therefore be viewed as generating all one-

step optimal policies, then two-step optimal policies, etc., and is generally considered a 

form of dynamic programming which opts to approximate the expected travel time from 

each source node to the destination node within some error tolerance. 
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CHAPTER 4 

STORAGE SCHEME 

 This work is about the efficient storage scheme that has been used while 

developing the solution algorithm and conducting numerical experiments with real world 

large scale data. This chapter discusses how the large scale transportation data are stored 

into sparse matrix storage framework.  

 

4.1 SPARSE MATRIX REPRESENTATION FOR TRANSPORTATION 

NETWORK 

In this thesis, the popular and highly efficient “sparse matrix” storage scheme, 

used by the “sparse equations solver” research community for handling large-scale 

transportation network applications was adapted. In general, the travel time for each link 

is stored in a 𝑛x𝑛 node-node adjacency matrix. But this kind of storage is prohibitively 

expensive. As for example, each row of such matrix of Austin, TX network contains 

around 3 non-zero values, on average, only among all 7,388 elements. An efficient sparse 

matrix storage scheme for large scale transportation network was adapted from Lawson et 

al. [27]. For a more detailed discussion, the reader is referred to Nguyen [5]. 

In actual computer implementation, the sparse matrix representation of node-node 

adjacency matrix demands more in order to find optimal routes efficiently from a network 

where all links are not bidirectional. In addition to the sparse storage scheme of Nguyen 

[5], a new sparse storage scheme for storing incoming link information is introduced. The 

network partitioning step of Domain Decomposition algorithm needs to know which 

nodes are connected to a node when it is being explored in order to be a member of a 

subdomain. This step considers all neighboring nodes with any nature of the connectivity 
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(e.g. outgoing or incoming). To our knowledge, most of the real world networks found 

from Bar-Gera [25] are not bidirectional. This additional storage scheme, used mainly in 

Domain Decomposition algorithm, helps to keep the basic sparse matrix representation 

[5] unchanged all throughout the developed solution algorithm. To illustrate the sparse 

matrix representation scheme, a network which contains 5 nodes and 8 links is used, see 

Figure 12. 

 

 

 

Figure 12.  A simple 5 node/ 8 link network [27] 

 

 

The node-node incidence type matrix of this network is the 5x5 matrix A. 

𝐴 = 

[
 
 
 
 
0 25 35 0 0
0 0 0 15 0
0 45 0 0 0
0 0 15 0 45
0 0 25 35 0 ]
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This matrix 𝐴 can be stored in a sparse format using user-defined arrays NZ, IA, JA and 

𝐶. Arrays IA and JA are used to index outgoing nodes associated with the link cost values 

stored in A. By following the sparse matrix representation scheme of Lawson et al. [27], 

for the network shown in Figure 12 we have 

 

𝑁𝑍 = 

(

 
 

2
1
1
2
2)

 
 

   , 𝐽𝐴 =

(

 
 
 
 
 

2
3
4
2
3
5
3
4)

 
 
 
 
 

  , 𝐼𝐴 = 

(

  
 

1
1 + 2
3 + 1
4 + 1
5 + 2
7 + 2)

  
 

 = 

(

  
 

1
3
4
5
7
9)

  
 

  , 𝐶 = 

(

 
 
 
 
 

25
35
15
45
15
45
25
35)

 
 
 
 
 

 

 

Three new user-defined vectors NZ_I, XA, KA were introduced for indexing 

incoming nodes associated with the same link cost values of C. For instance, for the 

above network, we have:  

NZ_I = 

(

 
 

0
2
3
2
1)

 
 

 

 

For example, NZ_I(1)=0 tells us that there are no incoming links to node 1, and so on. 

The array can then be easily computed by recursively adding the vector NZ to the vector 

XA. By definition, to initialize, the first entry in XA is set equal to 1. (The length of XA is 

the number of nodes plus 1.) For instance, for the above network, we have: 
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XA = 

(

  
 

1
1 + 0
1 + 2
3 + 3
6 + 2
8 + 1)

  
 

= 

(

  
 

1
1
3
6
8
9)

  
 

 

 

That is, in order to calculate XA(i), we have added NZ_I(i-1) to XA(i-1). Based on XA we 

can, for example, easily recover the number of non-zeros in column 5 of A by the 

substraction XA(6)- XA(5) = 1, and so on. In conjunction with XA, one also needs to 

define the row number of the non-zero terms in C. In the example, we have for KA: 

 

KA =

(

 
 
 
 
 

1
3
1
4
5
2
5
4)

 
 
 
 
 

 

 

That is, there is no incoming link for node 1 as XA(2)- XA(1)= 0 (no non zero values in 

the first column of A). KA(1)=1: the first link comes to node 2 from node 1, and KA(2)=3: 

the first link comes to node 2 from node 3 (note that from XA one knows that the number 

of non-zeros in the second column of A is equal to 2; hence, one knows that the first two 

entries in KA corresponds to node 2 and so on).  The final task is to store the link cost in 

vector 𝐶_𝐼, with same dimension as KA. 
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𝐶_𝐼 = 

(

 
 
 
 
 

25
45
35
15
25
15
35
45)

 
 
 
 
 

 

 

 Thus instead of using a 𝑛x𝑛 node-node adjacency square matrix, the whole 

network can be represented using these NZ (𝑛x1), IA (𝑛 + 1x1), JA (𝑚x1),𝐶(𝑚x1), 

NZ_I (𝑛x1), XA (𝑛 + 1x1), KA(𝑚x1), and 𝐶_𝐼(𝑚x1)vectors only.  

 

4.2 STORING MDP MODEL 

In this section, a discussion on how the co-efficient matrix is filled up for one 

iteration only is provided. Hence the subscript 𝑙 is dropped, which denotes the iteration 

count index, for better readability.  In the policy evaluation step of policy iteration 

algorithm, a system of linear equations (𝐼 − 𝑃(�̅�)). 𝑒𝑢 = 𝐶 is solved. This is too 

expensive in terms memory to store𝐼 and 𝑃(�̅�) since both of the matrix will be of 𝑛𝑥𝑛 

dimension. Rather, a framework is proposed to calculate the co-efficient matrix, resulting 

from (𝐼 − 𝑃(�̅�)). The implicit assumption for making mistakes in driving, made by Ng 

and Sathasivan [1], is that all wrong turns are equally likely. Based on this assumption, a 

vector �̅� of dimension 𝑛𝑥1 is enough to store 𝑝𝑖 for all nodes 𝑖 ≠ 𝐷. This vector stores 

the error probabilities associated with each node. The co-efficient matrix 𝐾, for each 

iteration 𝑙, is filled up according to the model described below. Note that 𝐾𝑖,𝑖 = 1 for all 

nodes 𝑖 ≠ 𝐷. 
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𝐾𝑖,𝑗|𝑗∈𝑈(𝑖) = {
−(1 − 𝑝𝑖), 𝑖𝑓𝑛𝑜𝑑𝑒𝑗𝑖𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑙𝑖𝑐𝑦

−
𝑝𝑖

|𝑈(𝑖)| − 1
,𝑒𝑙𝑠𝑒
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CHAPTER 5 

ENHANCED POLICY ITERATION 

In this chapter, a novel solution algorithm is presented to solve the MDP model 

described in Chapter 2. The Domain Decomposition (DD) algorithm of Johnson et al. 

[22, 23] is used to decompose the transportation network in such a way that a system of 

linear equations (i.e., in Step 2 of the policy iteration algorithm) can be reduced to several 

smaller, decoupled systems of equations. A simplified variation of the domain 

decomposition scheme is employed. The reader is encouraged to refer to Johnson et al. 

[22, 23] for the most recent research into the subject. The chapter is concluded after 

presenting how this thesis make use of the DD algorithm to solve a system of linear 

equation with respect to a given policy. 

 

5.1 DOMAIN DECOMPOSITION SCHEME 

In this section, the domain decomposition scheme is briefly reviewed. To 

facilitate this discussion, the partitioning algorithm will be applied to the example 

problem given by Figure 13. Further, the assumption is made to partition the network into 

three sub-domains. It is important to note that the actual link cost is not needed, and for 

this algorithm the cost for every link is one. Lastly, as mentioned in Chapter 4, the sparse 

matrix storage scheme is able to handle any kind of link directionality, it does not matter 

if the network partitioned, is bi-directional or uni-directional. The effort is to identify 

nodes which are adjacent to, or alternatively, far from other nodes. 
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The major objective in all domain decomposition algorithms is to minimize the 

total number of system boundary nodes, and to have sub-domains of approximately equal 

size (with the former having more priority than the latter). The first requirement ensures 

that the communication time between sub-domains will be minimized, while the second 

criterion ensures an (approximately) equal workload for each sub-domain. The steps 

involved during the domain partitioning phase can be summarized as follows: 

Step 1:  The transportation network topology (shown in Figure 13) can be represented by 

the matrix notation shown in Figure 14. In actual computer implementation, this matrix 

will be efficiently stored in the popular sparse storage scheme [5].  

Step 2:  Rank (R) or Degree of a node is a number which represents how many 

neighboring nodes a node has. R can be found by the connectivity information stored in 

IA, JA, XA, and KA. R is found by the UNION set operation on the number of 

occurrences a given node found as both incoming node and outgoing node. For example, 

in Figure 12, the set of outgoing nodes from node 4 is {3, 5}, and the set of nodes from 

where the links come to node 4 is {2, 5}. The UNION set operation is used to get {2, 3, 

5} as the neighbors of node 4. Thus R = 3 for node 4. 
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Figure 13.  A network with nodal rank and directions for populating sub-domains 

 

 

 

Figure 14.  Node-node adjacency matrix for network representation of Figure 13 

 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 X X X 0 0 0 0 0 0 0 0 0 0 0 0

2 X X X X 0 0 0 0 0 0 0 0 0 0 0

3 X X X X X 0 0 0 0 0 0 0 0 0 0

4 0 X X X X 0 0 0 0 0 0 0 0 0 0

5 0 0 X X X 0 0 X 0 0 0 X 0 0 0

6 0 0 0 0 0 X X X 0 0 0 0 0 0 0

7 0 0 0 0 0 X X X X 0 0 0 0 0 0

8 0 0 0 0 X X X X X X 0 X 0 0 0

9 0 0 0 0 0 0 X X X X 0 0 0 0 0

10 0 0 0 0 0 0 0 X X X 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 X X X 0 0

12 0 0 0 0 X 0 0 X 0 0 X X X X 0

13 0 0 0 0 0 0 0 0 0 0 X X X X X

14 0 0 0 0 0 0 0 0 0 0 0 X X X X

15 0 0 0 0 0 0 0 0 0 0 0 0 X X X
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Step 3:  Upon examination of Figure 13, it is seen there are 5 nodes (1, 6, 10, 11, 15) 

which have the same (lowest) rank; one arbitrarily selects the smallest node number 

(node 1) of these low ranking nodes as the starting (interior) node for sub-domain 1. 

Performing the Label Correcting Algorithm (LCA) with the source node as node 1 (to 

find the shortest path from the source node to all other nodes in the system) will reveal 

that node 15 is “very far” from node 1. Hence, node 15 is used as the starting (interior) 

node for the second sub-domain.  Performing the LCA with the source node 15 will 

reveal that nodes 6, 9 and 10 are “far away” from both nodes 1 and 15. Because nodes 6 

and 10 have a lower rank than node 9 they will be considered for the final starting 

(interior) node. Node 6 is arbitrarily selected (note that if node 10 were selected, the 

results would remain unchanged) as the starting (interior) node for the third (last) sub-

domain (refer to Figure 13). 

Step 4: Each sub-domain will be “sequentially” populated from the remaining nodes, 

based on the simple heuristic rule: the next j-th node to be added to a k-th sub-domain 

will be the node which has the lowest rank which shares a direct connection between 

either the source node or any other node in the populated sub-domain. Figure 13 shows 

the order in which the sub-domains are populated. (It should be noted that a more 

efficient partitioning can be achieved, in larger examples, if one were to modify the rule 

above by first searching for the node which is closest to the source node and then, as a 

tiebreaker, examine the rank of the node as described above). 



39 

 

 

Figure 15.  The network, shown in Figure 13 after renumbering 

 

 

Step 5: System boundary nodes (and sub-domains’ interior nodes) can be identified by 

considering each link of the network based on the following simple rule: If the nodes 

which define a link belong to the same sub-domain, then these two nodes are considered 

interior nodes, however, if these nodes belong to two different sub-domains, then both 

nodes must be considered system boundary nodes. The determination of system boundary 

nodes is imperative for the next step. 

Step 6: Finally, the nodes in the system were renumbered. Starting with sub-domain 1, 

The nodes which belong to each sub-domain were numbered sequentially, however, 

ignoring the boundary nodes. Once all of the interior nodes have been renumbered, the 

boundary nodes were numbered as the last nodes in the set as shown as by Figures 15 and 

16. 
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Figure 16.  Node-node adjacency matrix after reordering the matrix shown in Figure 14  

 

 

Now that the re-numbering of the nodes has been performed, a new node-node adjacency 

matrix can be created (for Figure 14). This is shown in Figure 5.4. As can be seen, after 

reordering the model (per Step 6 of the algorithm outlined above), described in Section 2, 

the adjacency matrix has been decomposed effectively into sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 ,  

𝐾𝐵𝐵.  𝐾𝐼𝐼
𝑟  simply represents the adjacency matrix of the smaller, sub-structured systems. 

Sub-matrices 𝐾𝐼𝐵
𝑟 , 𝐾𝐵𝐼

𝑟 , and  𝐾𝐵𝐵 represents the coupling effects among sub-domains. The 

matrix in Figure 16 gets decoupled after discarding rows and column 13, 14, and 15 (as 

node 13, 14, and 15 are the boundary nodes for the network in Figure 15).  For a more 

detailed discussion, the authors refer the reader to Nguyen [5]. Vector 𝑒 and 𝐶 will be 

reordered according to the new numbering of the nodes; 𝑒 will be found as 𝑒𝐼
𝑟(𝑟 =

1, 2, 3…𝑁𝑆, where NS denotes the number of sub domains) and 𝑒𝐵 and 𝐶 will be found 

as 𝐶𝐼
𝑟 and 𝐶𝐵. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 X X 0 X 0 0 0 0 0 0 0 0 0 0 0 
2 X X X X 0 0 0 0 0 0 0 0 0 0 0 
3 0 X X X 0 0 0 0 0 0 0 0 X 0 0 
4 X X X X 0 0 0 0 0 0 0 0 X 0 0 
5 0 0 0 0 X X X 0 0 0 0 0 0 0 0 
6 0 0 0 0 X X X 0 0 0 0 0 0 X 0 
7 0 0 0 0 X X X X 0 0 0 0 0 X 0 
8 0 0 0 0 0 0 X X 0 0 0 0 0 X 0 
9 0 0 0 0 0 0 0 0 X X 0 0 0 0 X 
10 0 0 0 0 0 0 0 0 X X X 0 0 0 X 
11 0 0 0 0 0 0 0 0 0 X X X 0 0 X 
12 0 0 0 0 0 0 0 0 0 0 X X 0 0 X 
13 0 0 X X 0 0 0 0 0 0 0 0 X X X 
14 0 0 0 0 0 X X X 0 0 0 0 X X X 
15 0 0 0 0 0 0 0 0 X X X X X X X 

K BI 
r = 1 

K II 
r = 2 K II 

r = 3 

K IB 
r = 1 

K BI 
r = 2 K BI 

r = 3 K BB 
r 

K II 
r = 1 

K IB 
r = 2 

K IB 
r = 3 
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5.2 ENHANCED POLICY ITERATION 

This section describes how the system of linear equation 𝐾. 𝑒 = 𝐶 is solved. It is 

described in Step 2 of Section 3.1 with the help of sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 , and 𝐾𝐵𝐵. It 

should be noted that this system is solved with respect to a policy at one iteration only. 

To increase readability the superscript �̅�𝑙 will be dropped, as mentioned in Chapter 3, 0all 

throughout this chapter, which denotes the policy (or control strategy) to get the optimal 

solution at each iteration of the model. The derivation is given below: 

(

  
 

𝐾𝐼𝐼
1 ⋯ ⋯ ⋯ 𝐾𝐼𝐵

1

⋮ 𝐾𝐼𝐼
2 ⋯ ⋯ 𝐾𝐼𝐵

1

⋮ ⋮ ⋱ ⋯ ⋮
⋮ ⋮ ⋮ 𝐾𝐼𝐼

𝑁𝑆 𝐾𝐼𝐵
𝑁𝑆

𝐾𝐵𝐼
1 𝐾𝐵𝐼

2 ⋯ 𝐾𝐵𝐼
𝑁𝑆 𝐾𝐵𝐵 )

  
 

(

 
 

𝑒𝐼
1

𝑒𝐼
2

⋮
𝑒𝐼

𝑁𝑆

𝑒𝐵 )

 
 

=

(

  
 

𝐶𝐼
1

𝐶𝐼
2

⋮
𝐶𝐼

𝑁𝑆

𝐶𝐵 )

  
 

 

The above matrix notation, except for the last row, can be broken down into a system of 

linear equations, as shown below: 

𝐾𝐼𝐼
1. 𝑒𝐼

1 + 𝐾𝐼𝐵
1. 𝑒𝐵 = 𝐶𝐼

1
 

𝐾𝐼𝐼
2. 𝑒𝐼

2 + 𝐾𝐼𝐵
2. 𝑒𝐵 = 𝐶𝐼

2
 

⋮ 

𝐾𝐼𝐼
𝑁𝑆. 𝑒𝐼

𝑁𝑆 + 𝐾𝐼𝐵
𝑁𝑆. 𝑒𝐵 = 𝐶𝐼

𝑁𝑆 

The set of equations, mentioned above, can be re-written as following with 𝑟 =

1, 2, … ,𝑁𝑆: 

𝐾𝐼𝐼
𝑟 . 𝑒𝐼

𝑟 + 𝐾𝐼𝐵
𝑟 . 𝑒𝐵 = 𝐶𝐼

𝑟
                                              (10)  

From the last row of the matrix , the following linear equation is obtained: 

𝐾𝐵𝐼
1. 𝑒𝐼

1 + 𝐾𝐵𝐼
2. 𝑒𝐼

2 + ⋯+ 𝐾𝐵𝐼
𝑁𝑆. 𝑒𝐼

𝑁𝑆 +𝐾𝐵𝐵. 𝑒𝐵 = 𝐶𝐵 

∑ (𝐾𝐵𝐼
𝑟 . 𝑒𝐼

𝑟)𝑁𝑆
𝑟=1 + 𝐾𝐵𝐵. 𝑒𝐵 = 𝐶𝐵                                     (11)  



42 

 

 

It is seen that the above matrix notation is broken down into two linear equations, as 

shown in Eqn (10) and Eqn (11). 

From Eqn (10), 𝑒𝐼 can be solved as follows: 

𝑒𝐼
𝑟 = (𝐾𝐼𝐼

𝑟)−1(𝐶𝐼
𝑟 − 𝐾𝐼𝐵

𝑟 . 𝑒𝐵)                                           (12) 

Substituting Eqn (12) into Eqn (11) we obtain: 

∑ (𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1(𝐶𝐼
𝑟 − 𝐾𝐼𝐵

𝑟 . 𝑒𝐵))𝑁𝑆
𝑟=1 + 𝐾𝐵𝐵. 𝑒𝐵 = 𝐶𝐵  

The above equation can be re-written as:      

(𝐾𝐵𝐵 − ∑ 𝐾𝐵𝐼
𝑟(𝐾𝐼𝐼

𝑟)−1𝐾𝐼𝐵
𝑟). 𝑒𝐵 =𝑁𝑆

𝑟=1 𝐶𝐵 − ∑ 𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1. 𝐶𝐼
𝑟𝑁𝑆

𝑟=1       (13)                   

Eqn (13) can now be simplified as: 

�̅�𝐵𝐵. 𝑒𝐵 =𝐶�̅�𝐵                                                     (14) 

where: 

�̅�𝐵𝐵 =𝐾𝐵𝐵 − ∑ 𝐾𝐵𝐼
𝑟(𝐾𝐼𝐼

𝑟)−1𝐾𝐼𝐵
𝑟𝑁𝑆

𝑟=1                                (15) 

𝐶�̅�𝐵 = 𝐶𝐵 − ∑ 𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1. 𝐶𝐼
𝑟𝑁𝑆

𝑟=1                                   (16) 

Eqn (15) and Eqn (16) are substituted into Eqn (14) and solve for 𝑒𝐵. Now 𝑒𝐵 can be 

inserted back into Eqn (12). 

Thus 𝑒𝐼
𝑟 (for r = 1, 2, … , NS) and 𝑒𝐵 are obtained as our solution. For a more 

detailed discussion about the computation from the decomposed sub-matrices, the reader 

is referred to Nguyen [5]. To this end, a direct solution method is used for solving the 

large scale system. This is the method for solving a large linear system with the exact 

solution 𝑒 within a finite number of steps, provided that all arithmetic operations are 

exact. Direct solution methods are attractive because of their generality, reliability, and 

efficiency. The choice of an appropriate solution method depends on the main goal, 
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which is to run the application as fast as possible. Moreover, running the application at all 

given computer resources (disk space, and memory space) is another important concern. 

In this section, a very basic form of direct solution approach will be discussed. Note that 

the linear system, to be solved, is unsymmetrical most of the cases. This limits us in using 

some well-known direct methods for solving the system. Since the co-efficient matrix, 

formulated from transportation network, is sparse, a built in function of Matlab named 

“sparse()” has been invoked on each of the sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 , and  𝐾𝐵𝐵 before 

operations.  

 Step 1: Calculate �̅�𝐵 from the equation �̅�𝐵 = ∑ (𝐾𝐵𝐼
𝑟 .(𝐾𝐼𝐼

𝑟)−1. 𝐾𝐼𝐵
𝑟𝑁𝑆

𝑟=1 ). 

 Step 2: Using the matrix �̅�𝐵, calculate �̅�𝐵𝐵 from the equation  �̅�𝐵𝐵 = 𝐾𝐵𝐵 − �̅�𝐵. 

 Step 3: Calculate 𝐶�̅� from the equation 𝐶�̅�=∑ (𝐾𝐵𝐼
𝑟 . (𝐾𝐼𝐼

𝑟)−1. 𝐶𝐼
𝑟𝑁𝑆

𝑟=1 ). 

 Step 4: Using the vector 𝐶�̅�, calculate 𝐶�̅�𝐵 from the equation 𝐶�̅�𝐵 = 𝐶𝐵 − 𝐶�̅�. 

 Step 5: Solve system of linear equations  �̅�𝐵𝐵. 𝑒𝐵 =𝐶�̅�𝐵  

 Step 6: Calculate 𝑒𝐼
𝑟from the formula 𝑒𝐼

𝑟 =(𝐾𝐼𝐼
𝑟)−1. (𝐶𝐼

𝑟 - 𝐾𝐼𝐵
𝑟 .𝑒𝐵). for 𝑟 =

1, 2, 3, … . 𝑁𝑆. 

It is important to retain the mapping between the previous node numbering and 

new node numbering, such that the optimized travel time from each source node to the 

destination node can be obtained for the original problem.  
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     CHAPTER 6 

PERFORMANCE COMPARISON AND DISCUSSION 

This chapter deals mainly with the comparison of  solution time needed to obtain 

the optimized travel time following different solution approaches. To validate the 

research conducted in this thesis, 5 networks (Anaheim, Winnipeg, Chicago Sketch, 

Austin, Chicago Regional) are used from Bar-Gera [25].  The code which generated all 

the results, shown in this chapter, was written in MATLAB. The performance data were 

found using a computer with an Intel(R) Core(TM) 2 Quad CPU Q9300 @ 2.50 GHz 

processor and 8 GB of RAM.  

For each of the networks, some destination nodes were randomly selected for 

getting the expected travel time needed to reach those destination nodes from all source 

nodes using different solution approaches. The solving time and iteration counts were 

recorded for each of the solution approaches for each destination node separately without 

applying DD partitioning algorithm. At first, the performance of value iteration (VI) with 

policy iteration (PI) is compared. Then in the next table, the developed “enhanced policy 

iteration” that helps to speed up the solution time is shown. Direct solution method 

includes a basic linear system solving approach under the column “PI”. Note that all 

matrices and sub-matrices are used after invoking built-in “sparse()” before operations. 

The direct solver employs LAPACK with optimized BLAS, developed by Greg Henry of 

the University of Tennessee and Intel Corp. (Moler, 2000), for solving system of linear 

equation. It should also be noted that the workspace, used for all simulation runs has 4 

processors. Although the results are shown for upto 8 smaller subdomains, the solving 

time, shown in the tables, has used maximum of 4 processors. 
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Table 1 shows the results of three simulation runs (with three randomly chosen 

destination nodes) of Anaheim network (416 nodes). For this network, policy iteration 

shows better results than value iteration in terms of both iteration count and solving time.  

 

 

Table 1. Performance comparison between VI and PI without applying DD algorithm 

(Anaheim network) 

Destination 

Node 

VI PI 

Iteration Count Solving Time 

(seconds) 

Iteration 

Count 

 Solving Time 

(Seconds) 

 

5 78 0.4457 4 0.2318 

50 69 0.4294 3 0.1759 

400 80 0.4922 5 0.2967 

280 88 0.5267 4 0.2680 

 

 

In Table 2, the comparison of solving time of enhanced policy iteration with 

different solution approaches is shown after using the sub-matrices 𝐾𝐼𝐼
𝑟 , 𝐾𝐼𝐵

𝑟 , 𝐾𝐵𝐼
𝑟 , and 

𝐾𝐵𝐵  following DD partitioning algorithm, in order to get the solution with the same 

destinations. The simulations were run using single processor and multicore processors. 

As can be seen from the table, DD partitioning algorithm minimizes the solving time for 

some simulation runs while using single processor. The parallel implementation does not 

speed up the solution time for Anaheim network because the solving time at each 

iteration for this network is relatively small. The communication time among the 
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processors adds extra noise to the performance for parallel implementation of the 

developed solution approach.  

 

 

 

Table 2. Performance comparison of PI after applying DD partitioning algorithm 

(Anaheim network) 

Destination 

Node 

# Sub-Domains PI 

(Seconds) 

Serial Parallel 

 

 

 

5 

2 0.2361 0.5835 

3 0.1818 0.5740 

4 0.1652 0.6196 

5 0.1478 0.6512 

6 0.1496 0.6005 

7 0.1369 0.6321 

8 0.1666 0.6283 

 

 

 

50 

2 0.1697 0.4842 

3 0.1386 0.4838 

4 0.1133 0.5325 

5 0.1134 0.5904 

6 0.1143 0.5533 

7 0.0978 0.5358 

8 0.1136 0.5594 

 

 

 

400 

2 0.2843 0.7203 

3 0.2338 0.7021 

4 0.1734 0.7172 

5 0.1634 0.7541 

6 0.1602 0.7545 

7 0.1645 0.7403 

8 0.1729 0.7952 

 

 

 

280 

2 0.2338 0.5729 

3 0.1856 0.5972 

4 0.1425 0.6267 

5 0.1351 0.6674 

6 0.1400 0.6753 

7 0.1398 0.6471 

8 0.1527 0.8503 

 



47 

 

Next, all the solution approaches were tested with two medium size networks, 

collected from Bar-Gera [25], named Winnipeg (1,052 nodes) and Chicago Sketch (933 

nodes). The results, obtained from several simulation runs, agree with the results obtained 

by testing Anaheim network. The results are shown in Table 3, Table 4, Table 5, and 

Table 6 respectively. As can be seen, parallel implementation using multicore processors 

yields worse performance than using a single processor for the solution approach. For the 

parallel implementation, Matlab’s built-in “Parallel Computing Toolbox” has been used 

as a black-box. Such implementation could not tell us more about the reasons behind 

such slow performance. Moreover, operations on small and medium sized matrices 

happen so fast that the computational time is hard to measure accurately. Hence, all the 

solution approaches were tested with two large scale network, Austin (7,388 nodes) and 

Chicago Regional (12,982 nodes). 

 

 

Table 3. Performance comparison between VI and PI without applying DD algorithm 

(Winnipeg network) 

Destination 

Node 

VI PI 

Iteration Count Solving Time 

(seconds) 

Iteration 

Count 

 Solving Time 

(Seconds) 

 

35 492 7.1010 4 1.3116 

250 550 8.7738 3 1.0501 

1000 333 4.8067 5 1.6312 

550 673 7.6547 5 1.6395 
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Table 4. Performance comparison among different solution approaches of PI after 

applying DD partitioning algorithm (Winnipeg network) 

Destination 

Node 

# Sub-Domains PI 

(Seconds) 

Serial Parallel 

 

 

 

35 

2 1.6606 1.8303 

3 1.1234 1.3121 

4 0.8604 1.2220 

5 0.7679 1.2138 

6 0.8193 1.3425 

7 0.7570 1.3443 

8 0.7150 1.3326 

 

 

 

250 

2 1.2715 1.3742 

3 0.8511 1.0218 

4 0.6439 0.9724 

5 0.5737 0.9582 

6 0.5807 1.0124 

7 0.5650 1.0334 

8 0.5359 0.9831 

 

 

 

1000 

2 2.0941 2.1618 

3 1.3775 1.6379 

4 1.0408 1.5570 

5 0.9855 1.5630 

6 0.9707 1.5963 

7 0.9508 1.5676 

8 0.9116 1.6587 

 

 

 

550 

2 2.0749 2.6094 

3 1.4183 2.2596 

4 1.0632 1.9574 

5 0.9573 1.9902 

6 0.9543 2.0603 

7 0.9441 2.0935 

8 0.8982 2.1202 
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Table 5. Performance comparison between VI and PI without applying DD algorithm 

(Chicago Sketch network) 

Destination 

Node 

VI PI 

Iteration Count Solving Time 

(seconds) 

Iteration 

Count 

 Solving Time 

(Seconds) 

 

333 3189 44.2296 4 1.0778 

654 2904 39.3855 3 0.9761 

831 3189 42.8940 4 1.0666 

920 5809 48.1724 3 0.8947 
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Table 6. Performance comparison among different solution approaches of PI after 

applying DD partitioning algorithm (Chicago Sketch network) 

Destination 

Node 

# Sub-Domains PI 

(Seconds) 

Serial Parallel 

 

 

 

333 

2 1.0637 1.3237 

3 0.7801 1.0914 

4 0.7121 1.1519 

5 0.6513 1.1889 

6 0.5844 1.1334 

7 0.5328 1.1743 

8 0.7276 1.6493 

 

 

 

654 

2 0.7904 1.0645 

3 0.5651 0.8322 

4 0.5279 1.0358 

5 0.5038 0.9531 

6 0.4479 0.8768 

7 0.4142 1.0385 

8 0.5597 1.0523 

 

 

 

831 

2 1.0637 1.3237 

3 0.7801 1.0914 

4 0.7121 1.1519 

5 0.6513 1.1889 

6 0.5844 1.1334 

7 0.5328 1.1743 

8 0.7276 1.6493 

 

 

 

920 

2 0.7896 1.0418 

3 0.5703 0.8678 

4 0.5175 0.8954 

5 0.5050 0.9559 

6 0.4517 0.9898 

7 0.3917 0.8978 

8 0.5436 1.0810 

 

 

It is surprising to observe that for Austin and Chicago Regional networks (see 

Table 7 and Table 9 respectively), VI algorithm solves the problem faster than PI 

algorithm. The larger the size of a network is, the slower the solving time gets for policy 
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iteration compared to value iteration. Partitioning the domain into several numbers of 

subdomains helps the PI running faster in serial processor implementation although it 

does not outperform the value iteration algorithm. The solving time is getting closer with 

the increase in the number of subdomain. 

 

 

Table 7. Performance comparison between VI and PI without applying DD algorithm 

(Austin network) 

Destination 

Node 

VI PI 

Iteration Count Solving Time 

(seconds) 

Iteration 

Count 

 Solving Time 

(Seconds) 

 

5 2013 105.13 27 453.65 

2345 1681 90.92 14 236.65 

4200 2021 106.41 20 333.68 

6432 2212 118.46 13 238.91 

 

 

Unlike the three networks (Anaheim, Winnipeg, and Chicago Sketch), as shown 

in Table 8 and Table 10, the parallel implementations of the solution approach with 4 

processors catch the solving time of basic PI (without DD partitioning algorithm), even 

sometimes perform better than the single processor implementation. This result is 

inspiring in the sense that more processors will be able to solve the model with less 

amount of time if the network is partitioned efficiently into more number of subdomains. 

The less the number of boundary nodes, the more efficient the partitioning algorithm is. 

In that case a smaller system needs to be solved as shown in Eqn (14). Moreover the 
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architecture of the workspace, used for all simulation runs, might cause the slower 

performance in communication time for parallel implementation. After recording the 

computational time associated with each subdomain separately, it is clear that parallel 

implementation adds huge noise as the communication time between processors in such 

computations and thus results in surprisingly slow performance. 
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Table 8. Performance comparison among different solution approaches of PI after 

applying DD algorithm (Austin network) 

Destination 

Node 

# Sub-Domains PI 

(Seconds) 

Serial Parallel 

 

 

 

5 

2 555.96 448.27 

3 359.02 295.75 

4 299.89 262.47 

5 245.15 224.42 

6 194.87 193.07 

7 196.73 193.63 

8 196.31 210.08 

 

 

 

2345 

2 289.72 236.33 

3 186.54 160.47 

4 158.28 165.87 

5 127.21 135.87 

6 100.14 96.20 

7 101.91 118.97 

8 100.94 114.73 

 

 

 

4200 

2 425.57 343.15 

3 274.80 233.11 

4 233.32 208.15 

5 182.05 178.93 

6 144.22 138.58 

7 152.67 170.91 

8 149.66 164.46 

6432 

2 271.05 238.74 

3 175.77 141.09 

4 146.44 139.58 

5 119.62 109.49 

6 96.94 109.39 

7 96.84 95.26 

8 94.34 97.42 
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Table 9. Performance comparison between VI and PI without applying DD algorithm 

(Chicago Regional network) 

Destination 

Node 

VI PI 

Iteration Count Solving Time 

(seconds) 

Iteration 

Count 

 Solving Time 

(Seconds) 

 

1111 1433 318.63 11 871.33 

8568 3705 340.13 10 964.18 

400 1915 185.34 8 733.34 

12150 1917 178.81 8 801.81 
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Table 10. Performance comparison among different solution approaches of PI after 

applying DD algorithm (Chicago Regional network) 

Destination 

Node 

# Sub-Domains PI 

(Seconds) 

Serial Parallel 

 

 

 

1111 

2 798.05 721.79 

3 670.32 689.34 

4 582.41 739.92 

5 475.76 689.53 

6 427.21 666.89 

7 488.79 611.19 

8 438.48 570.28 

 

 

8568 

 

2 848.19 732.74 

3 573.44 526.23 

4 579.69 581.25 

5 499.14 537.06 

6 474.98 526.98 

7 436.31 516.18 

8 430.91 504.70 

 

 

 

400 

2 643.99 613.06 

3 455.67 420.77 

4 450.56 448.27 

5 387.60 411.00 

6 368.73 420.06 

7 336.09 409.92 

8 331.38 396.17 

 

 

 

12150 

2 725.06 604.14 

3 452.90 420.01 

4 446.09 464.25 

5 380.80 421.94 

6 372.01 409.23 

7 332.44 395.87 

8 325.03 407.87 
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CHAPTER 7 

CONCLUSION 

Algorithms (i.e., shortest path algorithm) in navigation systems assume that 

drivers are able to follow the directions without mistakes. However, this is not always the 

case, especially when the drivers are passing through complex intersections and the 

graphical interface design of navigation systems is poor. Using real-world transportation 

network, it has been shown that this is indeed the case and that the “classical” shortest 

routes do not remain optimal anymore 

The focus of the research conducted in the thesis is to develop a robust, reliable, 

and efficient algorithm to solve “driving with error” models. Through real-world 

transportation network examples (such as Anaheim, Austin, Winnipeg, Chicago Sketch, 

and Chicago Regional), it has been demonstrated that the proposed solving algorithm, 

coupled with DD partitioning, significantly reduces the computational time (as compared 

to the traditional algorithm, which operates directly on the entire large network) for the 

basic policy iteration algorithm. 

Various aspects of the mentioned problem have still been left unexplored, and 

hence, can be considered in future works. For example, it was intended to devise discrete 

choice models to estimate the error probability as a function of intersection and personal 

characteristics of the driver. It was also intended to develop models that are robust to the 

misspecification of the error likelihoods.  

A more principled approach to network partitioning is necessary to ensure the 

minimization of system boundary node count which is responsible for adding overhead to 

the computation cost. Partitioning the network into as many subdomains as possible, 
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following a more efficient partitioning algorithm [22, 23], and distributing the 

subdomains to the processors of a supercomputer (with 32 or 64 processors) for solving 

the model could show more exciting results. 

Moreover, the parallel implementation tasks were left totally to Matlab’s “Parallel 

Computing Toolbox”. Such implementation should be done carefully and efficiently after 

investigating which portions of the code segments take more time while using multicore 

processors.  

It was also observed that for a transportation network, the average number of links 

per node is almost same regardless the size of the network. That is, the bigger networks 

have more sparse system than the smaller ones compared to the size of network. A multi-

frontal method (i.e., Davis [28], Davis [29], Davis, [30]), or a hybrid multi-frontal 

method (i.e., Amestoy et al. [31], Amestoy et al. [32], Xia et al. [33], Raju et al. [34]) 

coupled with DD partitioning algorithm can be developed to take the advantage of such 

sparsity for better performance. UMFPACK library [28], used by “Backlash” operator, 

takes way more advantage of a sparse system by using multi-frontal method. Since the 

source code for this library is open for all, it can be embedded in the DD framework for 

taking more advantage of the sparse sub-matrices obtained from DD partitioning 

algorithm. 

In this thesis, a direct solution method coupled with DD framework was 

implemented. An efficient iterative solution method, a hybrid of BI-CG and BI-CGSTAB 

(Van der Vorst [35]) algorithm, named IBI-CGSTAB (Yang and Brent [36]), could be 

employed which reduces the global communication cost of the parallel performance 

significantly. Moreover, constructing appropriate preconditioned matrix using parallel 
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and multilevel methods, discussed in Saad and Van Der Vorst [37], for obtaining super-

linear convergence for iterative solvers, could be an interesting future research direction.  
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