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ABSTRACT 

ASSESSING THE EFFECTIVENESS OF AN INTERVAL ESTIMATION AND A 

VISUAL-SPATIAL SECONDARY TASK AS MEASURES OF MENTAL 

WORKLOAD DURING LAPAROSCOPY 

 

Levi P. Warvel 

B.A. Psychology, December 2008, Gannon University 

Old Dominion University, 2012 

Director: Dr. Mark W. Scerbo  

 

 

The goal of the present study was to compare two secondary workload tasks, 

specifically a time interval estimation and visual-spatial task, to determine which of these 

is most appropriate for the assessment of laparoscopic mental workload. Participants 

performed a peg transfer task in two conditions: a normal camera angle and a 90° camera 

angle intended to increase mental workload. Based on multiple resource theory, it was 

predicted the visual-spatial task would be more sensitive to the workload manipulation 

than the time estimation task because it draws upon the specific, as opposed to more 

general, attentional resources required by laparoscopy. Primary task results demonstrated 

that manipulation of camera angle did change workload levels. Secondary task results 

showed that the visual-spatial task possessed greater sensitivity and diagnosticity than the 

interval estimation task. However, interval estimation demonstrated a global sensitivity to 

workload changes. The findings suggest that a visual-spatial secondary task is an 

effective method to assess workload experienced during laparoscopy. 
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CHAPTER I 

INTRODUCTION 

 

 Laparoscopy, also known as minimally invasive surgery or endoscopic surgery, 

is an alternative to traditional open surgery. Laparoscopic surgery is performed with the 

use of long handled instruments that are inserted into a patient via a small fixed incision. 

The image of the operation site is obtained by a small camera inserted into one of these 

incisions and displayed on a monitor that is viewed by the surgeon. 

The laparoscopic technique typically results in quicker recovery times and shorter 

hospital stays for patients as well as a reduced likelihood of postsurgical complications 

(Aziz et al., 2006; Braga et al., 2005; King et al., 2005; Milsom et al., 1998). Due to these 

advantages over traditional open surgery, laparoscopy can often be beneficial to the 

patient and may be preferred to other surgical options. However, these benefits come at a 

cost. Laparoscopic surgery is significantly more difficult for the surgeon (Berguer, Smith, 

& Chung, 2001). Because this increase in difficulty may also increase the risk of surgical 

error, it is important to develop methods to assess surgeons’ readiness for the procedure. 

The present study sought to compare two secondary workload tasks to determine which 

of these is more appropriate for the assessment of laparoscopic mental workload which 

can then be used in assessment of laparoscopic surgical ability. 

The first aspect of laparoscopic surgery that contributes to the difficulty of the 

procedure is the reduced tactile feedback experienced by the surgeon. Traditional open 

surgery allows the surgeon semi-direct contact with the internal structures of the patient. 

Although this is not direct contact as surgeons wear gloves, they can still determine the 
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general structure, shape, and temperature of the tissues and organs (Westebring-van der 

Putten, Goossens, Jakimowicz, & Dankelman, 2008). Tactile feedback can help the 

surgeon determine if a sufficient amount of force is being applied to tissues to secure 

them for the procedure without causing damage. Laparoscopy can still be successfully 

performed without this feedback, but losing this source of information can be detrimental 

(Mohr et al., 2001).  

Another aspect of the procedure that increases its difficulty is the loss of natural 

depth cues. In traditional open surgery, the surgeon is able to look directly at the 

operating site with all visual cues available. In laparoscopic surgery, the view of the 

operating site is projected onto a flat monitor, replacing the three-dimensional view with 

a two-dimensional view. This results in a loss of binocular vision, forcing the surgeon to 

rely on monocular depth cues to navigate the operating site. Monocular depth cues are 

generally useful in determining the distance and location of objects in the operating site 

but the use of a flat display often degrades these cues. These visual distortions may lead 

to misinterpretations of the anatomy of the patient, reduced surgical performance, longer 

operation times, and mental fatigue (Cuschieri, 1995, 2006; Tendick, Bhoyrul, & Way, 

1997; Way et al., 2003), which is particularly important in light of research suggesting 

that an overwhelming number of injuries to patients during laparoscopic surgery were the 

result of degraded visual information. In an analysis of 252 cases of laparoscopic bile 

duct injuries, Way et al. (2003) found that 97% of injuries were the result of visual 

illusions caused by the degradation of depth cues with the remaining 3% being due to 

failures in technical skill. Further, these errors were attributable to experienced surgeons, 

not residents or novices. 
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A potential solution to the problems caused by degraded depth information is the 

use of stereoscopic displays that enable binocular depth cues. Unfortunately, these 

displays do not seem to be effective at enhancing laparoscopic performance. For 

example, several researchers have found that although surgeons may prefer stereoscopic 

displays to flat two-dimensional displays their performance does not differ between 

display types (Bittner, Hathaway, & Brown, 2008; Hanna & Cuschieri, 2000; Tendick, 

Bhoyrul, & Way, 1997). 

The third factor that contributes to the increased difficulty of laparoscopic surgery 

is the misalignment of the surgeon’s point of view. Open surgery preserves depth cues 

and also the relation between the visual axis and the forearm-instrument motor axis 

(Gallagher, Al-Akash, Seymour, & Satava, 2009; van Det, Meijerink, Hoff, Totte, & 

Pierie, 2009). The movements of the surgical instruments are natural as well, with 

forearm movements in any given direction resulting in instrument movements in the same 

direction. In contrast, laparoscopic surgery does not preserve the natural viewpoint found 

in open surgery. The angle in which the camera is inserted into the abdominal cavity is 

determined by an array of factors, such as the position of the patient, type of procedure, 

and arrangement of viewing monitors (Van Det et al, 2009). The camera’s line of sight 

differs from the surgeon’s line of sight. As the degree of separation between the 

surgeon’s view and the camera’s view increases, the procedure becomes more difficult 

(Conrad et al., 2006; Gallagher et al., 2009; Klein, Warm, Riley, Matthews, & Parsons, 

2004).  

Another related characteristic of laparoscopic surgery that can reduce 

performance is the fulcrum effect (Gallagher, McClure, McGuigan, Ritchie, & Sheehy, 
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1998). The phenomenon is a result of the long handled tools used to perform the 

procedure and the fixed points of entry into the operation site. Unlike open surgery, 

movement in laparoscopy is largely restricted to pivoting instruments about the incision 

point, which creates an inversion of motion compared to the more natural movements of 

open surgery. The visual-motor perceptual distortion created by the fulcrum effect can 

increase the surgeon’s workload and reduce performance (Gallagher et al., 2009).  

Since laparoscopic surgery is more difficult than traditional surgery, it is 

important to develop methods to train and evaluate performance (Tendick et al., 2000). 

Training and assessment tools, such as the Fundamentals of Laparoscopic Surgery (FLS) 

modules (www.flsprogram.org), offer methods to teach skills and measure performance 

through simulated surgical tasks. However, some surgical training programs do not 

utilize such methods, instead opting for a nonstandardized and subjective observation 

approach to assessment (Alkhayal et al., 2012). Training with simulation has been shown 

to have positive benefits in genuine operating settings (Dawe, Windsor, Broeders, 

Cregan, Hewitt, & Maddern, 2013) but some researchers have found that such training is 

not always superior to traditional training methods (Mansour et al., 2012). One possibility 

as to why simulated training may not successfully transfer may be the lack of 

standardized measures of the cognitive demands experienced by surgeons.  Since the 

characteristics that result in increased difficulty in laparoscopy are perceptual and 

cognitive in nature, attention must also be paid to the mental workload experienced by 

surgeons if the demands of laparoscopy are to be fully understood. The purpose of the 

current research is to compare two methods of quantifying the cognitive demands of 

laparoscopy to determine which is a more accurate measurement of differences in mental 

http://www.flsprogram.org/
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workload. By doing so, assessment techniques may be developed to determine when 

residents are sufficiently qualified to move from simulation to supervised laparoscopy, 

allowing instructors to ensure patient safety and providing a more complete index of 

student progress. However, before such advanced training tools can be implemented, the 

nature of mental demands in laparoscopy must be studied further. 
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CHAPTER II 

MENTAL WORKLOAD 

 

Historical Background 

Workload refers to the relationship between the amount of one’s mental 

processing capacity and the demands required for a task (Hart & Staveland, 1988). 

Workload can be differentiated by the cognitive and physical components of a task. The 

cognitive component of workload, or mental workload, describes the processing of 

information and formulation of plans and responses. The concept of mental workload as a 

finite resource began with Moray (1967) who proposed that the human operator was a 

“limited capacity processor.” Until this point, it was generally believed that any task 

requiring attention was processed via a single attentional channel. Additional tasks would 

need to be completed sequentially before any other attentionally demanding tasks could 

be initiated (Broadbent, 1958). However, Cherry (1953) argued that some tasks could be 

processed in parallel to a limited degree, such as the tendency for people to be able to 

differentiate two numbers presented auditorily at the same time. Subsequent modification 

to the attentional channel model described this limit as a single pool of mental resources 

(Kahneman, 1973). Processing of information is limited by the amount of resources 

available to the operator at any given time and difficulty affects the proportion of the 

resources needed to perform a task (Kahneman, 1973; Norman & Bobrow, 1975).  

However, subsequent evidence was inconsistent with the Kahneman (1973) model of 

mental resources and suggested that there was not one single pool of attentional resources 
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but many (Navon & Gopher, 1979; Wickens, 1980, 2002, 2008), though they were still 

considered limited. 

Of these models, one of the most influential in the domain of workload research is 

Multiple Resource Theory (MRT). Wickens (1980) performed a meta-analysis on 

multitask experiments in an attempt to account for variance in time-sharing performance. 

He considered the processing structure for the tasks and the degree to which tasks using 

separate processing structures failed to affect one another. The results indicated the 

existence of three orthogonal dimensions, each comprised of limited resources. 

 The first dimension of this model is the information processing stage dichotomy. 

These resources are differentiated by the perceptual/cognitive processing stage and 

response processing stage. Perceptual/cognitive resources are consumed through thought 

processes and the organization of information. Response resources are consumed in 

executing actions. The second dimension is the processing code dichotomy, distinguished 

by spatial and verbal resources. Spatial resources are consumed by processes needed for 

object location or distance judgments. Verbal resources are consumed by language 

processes.  The third dimension is processing modality. These resources are separated 

into auditory and visual channels. Additionally, there is a differentiation between focal 

and ambient visual processing within the visual processing modality pool (Wickens, 

2002). Focal visual processing is typically foveal and related to the pattern recognition 

and discrimination of details, while ambient visual processing is largely peripheral and 

related to movement detection and environmental changes outside the fovea.   

Although MRT is a widely accepted theory of workload, there are others that 

should be noted. Boles and Law (1998) have proposed that the degree to which 
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processing structures affect one another may be due to both structural and attentional 

resources. In this expanded multiple resource theory, resources are considered from a 

more general view of association with processes instead of structural or attentional 

models. The modeling of the resources is not through dichotomous dimensions as 

specified in MRT but rather through independent process-specific resources (Boles, 

2010). For example, visual-spatial resources are consumed during the spatial processing 

of visual stimuli whereas visual-verbal resources are consumed during the verbal 

processing or visual stimuli. These are considered separate resource channels instead of 

two processing coding channels sharing input from the same processing modality 

channel. Although a promising as an extension of MRT, there is a limited amount of 

research using this model at present. 

Workload assessment methodology 

Multiple resource theory is useful in assessing mental workload because it 

provides a model from which predictions of an operator’s ability to multitask can be 

made. Specifically, the degree of similarity between the demands imposed by two tasks 

should determine the ability to complete both tasks. If the task demands are similar, they 

may compete for resources from the same pool and increase the level of mental 

workload. If the tasks are dissimilar, they may draw upon different pools of resources and 

therefore may have minimal or no effect on mental workload. Understanding this 

relationship allows researchers to assess the workload associated with different tasks.  

There are a variety of methods that can be used to measure workload (O’Donnell 

& Eggemeier, 1986). Workload measurement techniques can vary greatly and should be 

selected based on five main criteria (Carswell, Clarke, & Seales, 2005; O’Donnell & 
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Eggmeier, 1986). The first criterion is sensitivity and refers to the ability of a measure to 

reflect differences in operator workload. For a measurement technique to be effective, it 

must be able to distinguish between variations in workload imposed by tasks and be 

resistant to the effects of extraneous influences. The degree of task sensitivity should be 

matched to the objectives of research being performed. For example, if one is interested 

in singling out occurrences of extreme workload in a task, a measure with less sensitivity 

may be sufficient. On the other hand, if the goal is to detect more subtle changes in 

workload, a greater amount of sensitivity is necessary. A second characteristic, 

diagnosticity, is the degree to which a measure reflects the demands imposed on a 

particular resource. Further, there is a differentiation between global and specific 

diagnostic measures (Carswell et al., 2005). Some measures are intended to be more 

sensitive to a specific type of resource that affects workload (e.g., visual-spatial 

processing versus auditory processing). Others may be less sensitive to an individual 

resource and instead target workload in general. Similar to sensitivity, the degree of 

diagnosticity of a measure should be determined by the purpose of the research. If the 

intent is to assess workload changes in a task that imposes on several resources, a global 

measure is satisfactory. If a task places high demands on a particular resource or set of 

resources, the measure should be sensitive to these dimensions alone. A third 

characteristic is intrusiveness, which refers to how a measure interferes with the task of 

interest. Implementation requirements generate practical concerns. For example, the need 

to implement a measure, the cost of a measure, and potential training requirements for an 

operator to use a measure are all factors related to implementation requirements. The last 

criterion is operator acceptance and refers to the willingness of an individual to use the 
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measure as instructed and comply with the requests of the researcher (Carswell et al., 

2005; O’Donnell & Eggemeier, 1986; Wierwille & Eggemeier, 1993).   

Although each of the selection criteria for a workload assessment technique is 

important, the level of each should be determined by the domain or system being 

researched. In the example of laparoscopy, the perception of the operating area is 

primarily visual, the coding of this information is spatial, and the response modality is 

motor (Cuschieri, 1995, 2006; Klein et al., 2004). As such, an ideal measure for 

laparoscopy would be one with a high amount of sensitivity and diagnosticity in the 

visual, spatial, and motor dimensions. Additionally, it should have a low level of 

intrusion as well as a sufficient level of compliance to ensure that the performance 

measured is representative of the actual abilities of the operator. Once the criteria for the 

optimal measure of a task are known, an appropriate workload measure should to be 

selected to ensure that all criteria are satisfied. 

Workload measures fall into three categories: subjective, physiological, and 

performance. Subjective measures require operators to report their perceived experience 

of workload, typically through a survey or rating scales. Subjective measures are 

categorized by the dimensions of workload that they assess (O’Donnell & Eggemeier, 

1986). Unidimensional measures require the respondent to give a single, global judgment 

of workload. An example of a unidimensional measure would be an index that asked the 

respondent to rate the perceived demand associated with a task on a single Likert scale. 

Alternatively, multidimensional measures require the respondent to provide ratings on a 

number of subscales. In essence, multidimensional measures are comprised of a number 

of unidimensional scales, each assessing workload in relation to a different task 
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characteristic. Unidimensional measures often allow for simpler data analyses but possess 

less diagnosticity than multidimensional measures.  In contrast, multidimensional 

measures have a higher degree of diagnosticity but can be more time-consuming and 

difficult to analyze (Young & Stanton, 2004). Generally, subjective measures are 

advantageous due to being inexpensive and quick to use, non-intrusive, flexible, and 

largely generalizable across different tasks (Stanton, Salmon, Walker, Baber, & Jenkins, 

2005). However, there are some disadvantages to subjective measures. The ability of an 

operator to self-assess is limited and most data are collected after the fact, leading to 

potential decay of memory during periods of high workload (Carswell et al., 2005). 

Subjective measures can also correlate with performance, resulting in high levels of 

workload reported by individuals who perform poorly and low levels reported by better 

performers (Stanton et al., 2005).  

Many subjective measures of mental workload are available but two of the more 

frequently used instruments are the Subjective Workload Assessment Technique (SWAT; 

Reid & Nygren, 1988) and the National Aeronautics and Space Administration Task 

Load Index (NASA-TLX; Hart & Staveland, 1988). The SWAT procedure requires 

respondents to rank 27 possible combinations of three workload dimensions (time load, 

mental load, and stress load) on a scale of 1 to 3. The responses to these combinations 

determine how each dimension is weighted. The NASA-TLX also requires respondents 

complete a weighing procedure by presenting 15 pairwise comparisons of its six 

subscales (mental demand, physical demand, temporal demand, effort, performance, and 

frustration level). Each subscale is selected based on how much it contributed to the 

workload of the task. The number of times each subscale is selected is tallied and 
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summed, leading to values ranging from 0 to 5. Following this, ratings are provided on an 

interval scale from 1 to 20. Finally, the interval ratings are multiplied by their respective 

weights and divided by the sum of the weights.  Both of these measures require little time 

to apply and require minimal training to use compared to other multidimensional 

measures (Stanton et al., 2005). 

In contrast to subjective measures which are dependent on the respondent’s ability 

to report perceived mental workload, physiological measures reflect an operator’s 

autonomic activity in response to workload. Options for physiological measures are 

numerous and varied but some cardiac measures, heart rate variability in particular, have 

shown reasonably good validity (Young & Stanton, 2004). These techniques tend to be 

minimally intrusive to the primary task. However, implementation can require expensive 

equipment and past research has demonstrated inconsistency regarding their sensitivity 

(O’Donnell & Eggemeier, 1986; Wierwille & Connor, 1983; Young & Stanton, 2004). 

Requiring users to be connected to or physically restricted by the recording devices can 

also affect user acceptance and may make the use of such a technique difficult in real 

world scenarios. Many of these measures can also vary in their reliability, demonstrating 

low sensitivity to changes in task demands. Due to these reliability issues, they are often 

used as complementary measures with other more reliable measures of mental workload. 

The last category includes performance-based measures. Performance measures 

are classified into two subcategories. The first are primary task measures which record 

the performance of an operator on the task of interest. Primary task performance 

measures are gathered in most workload studies and are critical for measuring operator 

workload (Wierwille & Eggemeier, 1993). Two fundamental metrics of primary task 
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performance are often speed and accuracy. Performance is expected to decline as 

resource demands exceed the availability of cognitive resources necessary for unimpaired 

performance (Wierwille & Eggemeier, 1993). However, this is not always the case. If the 

primary task is too easy, the operator may be underloaded. In this case, the operator will 

have sufficient resources available to complete the primary task and the measure will be 

insensitive to the workload change (O’Donnell & Eggemeier, 1986; Wierwille & 

Eggemeier, 1993). Conversely, an operator may be overloaded with task demands, 

leading to very poor performance (O’Donnell & Eggemeier, 1986). Primary measures of 

task performance are valuable in that they are a direct index of performance on the task of 

interest and can be crosschecked with other workload measurements to assess validity 

(Lysaght et al., 1989; O’Donnell & Eggemeier, 1986). 

Secondary task performance measures are often paired with those gathered from 

primary task performance. Secondary tasks reflect the operator’s ability to perform an 

additional task in tandem with the primary task. Secondary tasks can be categorized in 

one of two ways. The loading task method requires the operator to maintain secondary 

task performance regardless of its effect on the primary task. On the other hand, 

subsidiary tasks require the operator to maintain primary task performance regardless of 

impact on the secondary task (O’Donnell & Eggemeier, 1986). Additionally, secondary 

tasks can be independent of the primary task or embedded into it (Wierwille & 

Eggemeier, 1993). An independent secondary task is characterized as not being part of 

the normal procedure associated with the primary task. For example, performing a mental 

arithmetic task while in a driving simulator would be considered independent from the 

typical operations associated with driving. Embedded secondary tasks differ in that the 
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secondary task is actually part of the normal operations or procedure used in for the 

primary task. The embedded secondary task can be advantageous in that it minimizes 

primary task intrusions. Further, the secondary task should already occupy an accepted 

role within the system being assessed. However, embedded tasks do not always satisfy 

sensitivity and diagnosticity requirements necessary for workload measures. In this case, 

an independent secondary task may be a better option as they can be designed to be 

sufficiently sensitive and diagnostic of mental workload changes in the task of interest.  

The ability to successfully perform the secondary task is thought to reflect excess 

resource capacity after the necessary resources demanded by the primary task are 

allocated (Ogden, Levine, & Eisner, 1979). Secondary tasks are usually more sensitive to 

changes in available resources and can be highly diagnostic (O’Donnell & Eggemeier, 

1986). However, selection of an appropriate secondary task is paramount in retaining a 

high degree of diagnosticity. An effective secondary task should be sensitive to changes 

in primary task demand by competing for the same mental resources as the primary task 

(Carswell et al., 2005; O’Donnell & Eggemeier, 1986; Wickens, 1984, 2008; Wierwille 

& Eggemeier, 1993). If the secondary task fails to do so, it may not be sensitive enough 

to detect changes in mental workload. For example, Young and Stanton (2004) sought to 

assess workload changes in simulated driving tasks. Given that the driving task 

demanded visual-spatial processing resources, a secondary target identification task was 

developed in which the participant had to determine if a rotated figure was identical to 

the example provided. Both the primary and secondary tasks required visual processing 

of information and spatial coding for determining distance or rotation. As such, the target 

identification task should compete for the same attentional mental resources as the 
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driving task and be sufficiently diagnostic. Results indicated that secondary task 

performance was poorer in the more demanding manual driving conditions compared to 

less difficult automated driving conditions, indicating that the secondary task was 

sensitive to changes primary task workload and selectively diagnostic of visual-spatial 

resource demands. 

Although resource overlap is necessary for an effective secondary task, it can 

increase the possibility that the secondary task will intrude upon the performance of the 

primary task. If the secondary task demands overload the operator or performance of the 

secondary task requires the primary task to be discontinued, the amount of available 

resources for the primary task are reduced and may artificially decrease performance 

(Carswell et al., 2005; O’Donnell & Eggemeier, 1986; Wierwille & Eggemeier, 1993). 

Although this balance between sufficient resource overlap and reducing intrusiveness can 

be troublesome, it is important to recognize that primary and secondary tasks that draw 

upon the same resource pools will create a degree of intrusion in any case. Multiple 

resource theory would predict that if two tasks are performed together and utilize the 

same processing resources, they will interfere with the processing of each other to some 

degree (Wickens, 2002; 2008). As such, an optimal secondary task may not avoid 

intrusion all together but should minimize intrusion while maximizing resource overlap. 

Selection of an appropriate secondary task class can help ensure a balance between 

primary task intrusion and resource overlap.  

As an example, consider choice reaction time, a classification task in which the 

participant is presented with two or more stimuli and required to respond differently to 

each. The method of presentation can be visual (e.g., target identification) or auditory 
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(e.g., tonal discrimination) and response modalities can be verbal or motor in nature 

(O’Donnell & Eggemeier, 1986). When used to assess residual workload, secondary tasks 

of this nature are typically designed to demand the same resources as the primary task. 

An example of a choice reaction time task is the previously mentioned rotating figure 

task developed by Young and Stanton (2004).  

Another class is interval production, which requires participants to produce a 

response whenever they believe that a set interval of time has transpired. This method is 

based on the attentional-gate control model of prospective duration judgment (Thomas & 

Weaver, 1975; Zakay, 1989; Zakay & Block, 1997; Zakay & Shub, 1998). According to 

this model, non-calculated temporal judgments are made via a mental accumulator that 

gathers pulses. These pulses are emitted at a constant rate and represent conceptual units 

of time. The contents of the accumulator are compared to a reference in memory 

containing a representation of past accumulated pulses. A cognitive mechanism then 

compares the present accumulated pulses with the reference memory to determine the 

amount of time that has passed. The pulse accumulator is operated by a switch that is 

related to mental workload capacity and is thus proposed to be a sufficient secondary task 

since the time estimation task and the primary task should be competing for resources 

(Brown, 1997). When primary task demand is high, the accumulator should take longer to 

store a sufficient number of pulses and the result is an overestimation of the interval 

duration (Zakay & Shub, 1998). Interval duration has been used in a number of workload 

studies and seems to be effective as a secondary task in many cases. Baldauf, Burgard, 

and Wittmann (2009) found that the length of intervals produced did increase as 

simulated driving tasks became more complex with no significant effects on primary task 
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performance. Zakay and Shub (1998) found a similar effect in card sorting tasks, Stroop 

tests, and flight simulation as did Liu and Wickens (1994) using a customer assignment 

task. However, Zakay and Shub (1998) caution that time estimation secondary tasks, 

while apparently non-invasive and sensitive to changes in mental workload, are not 

appropriate for all primary tasks. For example, Wierwille, Rahimi, & Casali (1985) found 

that the interval production secondary task intruded on one of the primary tasks during 

flight navigation task. Pilots in this study demonstrated a much higher error rate in 

relation to answering navigation-based questions when the primary task was paired with 

the time estimation secondary task. Of 16 measures of workload assessed in their study, 

interval production was the only workload measure that demonstrated this effect. The 

inexplicable invasiveness of the task in this study seems to suggest that, despite previous 

successes, interval production tasks may not be ideal in all domains. 
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CHAPTER III 

WORKLOAD IN LAPAROSCOPY 

 

 The workload experienced during laparoscopy has received some attention in the 

past (Cuschieri, 1995; Tendick & Cavusoglu, 1997; van Det et al., 2009). However, many 

of the methods used to assess laparoscopic workload have not been designed to the 

standards recommended by past literature (O’Donnell & Eggemeier, 1986; Wierwille & 

Eggemeier, 1993). Much of the research lacks the inclusion of a secondary task utilizing 

the same resources as the laparoscopic primary task, relying instead on physiological 

(Berguer, Smith, & Chung, 2001) or subjective measures (Klein et al., 2004; Klein et al., 

2008). Of the research studies that employ a secondary task, some are difficult to define 

and may not be the ideal measure of laparoscopic workload. For example, Zheng, 

Cassera, Martinec, Spaun, and Swanstrom (2010) used a visual secondary task to 

measure residual workload during a laparoscopic simulation task. However, participants 

were required to respond verbally to the task which may not be similar enough to a motor 

response.  

The past success of interval production as a secondary task suggests that it 

possesses sensitivity and some researchers have begun to recommend using the method 

for measuring workload experienced by surgeons (Grant, 2010; Grant, Carswell, Lio, & 

Seales, 2013; Lio et al., 2006; Lio et al., 2007). Carswell et al. (2005) have indicated that 

time estimation may already be embedded into laparoscopy due to the need to monitor 

the passage of time during surgery, providing the measure greater operator acceptance 

compared to other methods, as well as easy implementation through a variety of response 
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modalities. Indeed, research using interval production has found the task to be sensitive 

to changes in workload when paired with simulated laparoscopic tasks (Grant, 2010). 

However, the degree to which interval estimation shares the same resources as 

laparoscopy is unknown and, due to the lack of knowledge on how the accumulator 

mechanism functions in attentional-gate control, multiple resource theory makes no 

predictions regarding the resource demand. As a result, levels of diagnosticity or 

invasiveness of interval estimation are difficult to identify. Thus, it is possible that time 

estimation may simply be a global measure of mental workload and may not actually 

require the same resources as laparoscopy.  

In addition, the presumption that time estimation, as it is described in prior 

research (Block & Zakay, 1997; Zakay & Block, 2004; Zakay & Shub, 1998), is already 

embedded into surgical simulation is debatable. The metacognitive study on which this 

argument is founded at no point suggests that surgeons do monitor time via this 

mechanism (Dominguez, 2001). Rather, Dominguez (2001) conducted a field study in 

which twenty surgeons were asked to watch a video of a laparoscopic cholecystectomy 

featuring significant amounts of blood and bile distorting the visual field and obscuring 

an exposed artery. At seven different points through the procedure, they were asked if 

they would convert to open surgery or continue laparoscopy and measures of comfort 

were taken. At no point was a cognitive estimation of time cited as a reason for 

conversion. Thus, the validity of time estimation as a sufficient secondary task in 

laparoscopic workload research may be questionable.  

Since laparoscopy is highly demanding of visual and spatial resources (Berguer, 

Smith, & Chung, 2001; Cuschieri, 1995; Klein et al., 2004), a potentially superior 
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secondary task may be one specifically designed to draw from visual and spatial resource 

pools. To address this issue, Stefanidis, Scerbo, Korndorffer, & Scott (2007) developed a 

visual-spatial secondary task that required participants to monitor a series of squares that 

would appear randomly on either side of the display. Participants were asked to press a 

foot pedal whenever three squares appeared in succession on the right side of the screen. 

In addition, participants were instructed to give priority to the primary suturing task and 

attend to the secondary task on a separate monitor whenever they were able. The use of a 

visual-spatial secondary task such as the squares task not only allowed for the demands 

on attentional resources to overlap but also provided an additional metric of performance 

to complement the more traditional measures of time and errors. Results indicated that all 

participants were able to perform the secondary task perfectly by itself, but significantly 

worse when paired with the laparoscopic suturing task. These findings indicate that the 

visual-spatial secondary task appears to be sufficiently sensitive and diagnostic, 

satisfying two of the requirements of a satisfactory workload measure. However, it was 

found that large numbers of participants did not or were unable to attend to secondary 

task in the dual task condition at the start of the session or just after beginning. One 

problem with using a second monitor for the squares task is that it forced participants to 

redirect their gaze from the primary task display to attend to the secondary task. Given 

that participants were instructed to prioritize the primary task, they may have been 

hesitant to divert attention away from the suturing display to monitor the squares. 

Kennedy (2010) used a visual-spatial task that differed from the Stefanidis et al. 

(2007) sequential squares task in a few important ways. First, the task was no longer a 

sequential identification task with two-dimensional squares but rather a set of four 
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multicolored balls presented within a simulated tunnel conveying depth. The balls in their 

standard orientation were located at the 3, 6, 9, and 12 o’clock positions in the tunnel. 

Depending on condition, one of the four balls could either rotate clockwise or 

counterclockwise on the same plane or move closer or further down the tunnel. 

Participants were asked to indicate a change in position by pressing one foot pedal or that 

the orientation of the balls had remained the same by pressing a different pedal allowing 

for measures of both target and non target identification. By doing so, it was now 

possible to identify cases in which the participant was not attending to the task. Second, 

the visual-spatial secondary task was presented on the same screen as the primary task. 

By integrating the secondary task onto the same display as the primary task, participants 

would not need to divert their eyes away from the primary task as was the case in the 

Stefanidis et al. study. Additionally, both tasks would now demand the same visual 

resources (i.e., focal), further enhancing the diagnostic quality of the secondary task. 

Results suggested that secondary task performance declined in dual-task conditions as 

compared to completion of the ball-and-tunnel task alone, showing that the secondary 

task was sensitive to changes in mental resources in relation to the laparoscopic 

simulation task.  

More recent research using the ball-and-tunnel task has examined its effectiveness 

in detecting workload differences between laparoscopic tasks of varying difficulty levels 

and individual ability. Prytz et al. (2012) asked a group of novices to perform three 

different simulated laparoscopic primary tasks: peg transfer, circle cutting, and suturing. 

The ball-and-tunnel task was first completed by itself and then together with each of the 

laparoscopic tasks. The results indicated that secondary task performance declined when 
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paired with any primary task. However, it was also found that secondary task 

performance fell to lower levels when performed concurrently with the most demanding 

laparoscopic procedures, indicating that the ball-and-tunnel task was sensitive enough to 

detect changes in workload as the primary task increased in difficulty. In a related study, 

Scerbo et al. (2013) tested the ability of the ball-and-tunnel task to discriminate between 

participants with varying levels of surgical expertise. To do so, a peg transfer primary 

task was paired with the ball-and-tunnel task and participants were asked to first perform 

the ball-and-tunnel task followed by both tasks together. Participants were classified as 

novices, intermediates, or experts. Results revealed that ball-and-tunnel performance 

again declined when performed with the primary task. More importantly, it was found 

that novices were significantly poorer at the ball-and-tunnel task than were the 

intermediates and experts, demonstrating the technique did possess some ability to 

differentiate between levels of expertise. 
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 CHAPTER IV 

PRESENT STUDY 

 

 The results obtained using the ball-and-tunnel task seem to indicate that it may be 

more valid than interval production for assessing mental workload in laparoscopy as the 

ball-and-tunnel task share common resource demands with laparoscopic procedures. 

However, additional research comparing the two methods must be undertaken to 

determine if one is superior to the other. The present study was designed to determine 

which of these secondary tasks is better for assessing of mental workload in relation to 

laparoscopic surgical simulation. To do so, a 2x3 mixed-model design was employed. 

The between-groups factor was the use of either a time estimation task or the ball-and-

tunnel task as secondary measure of performance. The within-groups factor was the level 

of workload. Split-plot analyses of variance were used to test differences in each measure 

of workload. 

To create varying levels of workload, the camera angle was manipulated. 

Research indicates that as the camera angle moves away from a frontal view, workload 

experienced by the operator becomes much higher (Conrad et al., 2006; Hanna, Shimi, & 

Cuschieri, 1998; Klein et al., 2004, 2008).  By changing the angle from a normal frontal 

view of 0° to a 90° view during dual task conditions, the demand on visual-spatial 

resources should increase and result in higher levels of workload experienced. 

Additionally, a single task pretest was included to provide a measure of secondary task 

performance in the absence of primary task demands. 
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Hypotheses 

For a secondary task measure to be sensitive and diagnostic, it must require the 

same resources as the primary task. If laparoscopy is visual and spatial in nature, then a 

secondary task that is visual and spatial in design should require the same resources and 

provide a better indication of residual resource availability than a secondary task that 

does not. As such, the first hypothesis was that ball-and-tunnel task performance will 

decline more than the time estimation task in the 90° condition. The second hypothesis 

was that the interval estimates will not significantly differ between the 0° and 90° camera 

angle conditions. Because time estimation does not appear to share an identifiable 

common resource with the highly visual-spatial demands of laparoscopy, the increase in 

mental workload caused by an increase in camera angle should have a negligible to non-

existent effect on such a measure. The third and final hypothesis was that subjective 

reports of workload as measured by the NASA-TLX will reflect the manipulations on 

camera angle and demonstrate increases in perceived workload. 
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CHAPTER V 

METHOD 

 

Participants 

A power analysis was conducted in G*Power to determine the appropriate 

number of participants necessary to achieve the same effect size as had been found in 

previous studies (Kennedy, 2011; Scerbo et al., 2013; partial η2  = .347). The results 

suggested a sample size of 24. Sample recruitment exceeded 24 to ensure the detection of 

more moderate effects. A total of 37 Old Dominion University undergraduate students 

participated in the study to fulfill a course requirement or to receive extra credit. All 

participants were at least 18 years of age, with a mean age of 24. Twenty-two participants 

were female (62.86%) and thirteen were male (37.14%). All participants had normal or 

corrected to normal vision. Twenty-one participants (60%) reported playing video games 

with a reported average of 2.17 hours of gameplay per week. 

Material and Equipment 

A laparoscopic trainer box was used in all conditions. The trainer was constructed 

of a plastic box with a drawer approximately 42 cm x 36 cm x 25 cm. The trainer box 

was used to obscure the participant’s direct vision of the primary tasks. A Mircosoft 

LifeCam VX-5000 USB video camera was adhered to the inside of the box at fixed 

locations (0° and 90° respectively) and used to project images from inside the box to an 

Alienware OPTX AW2210 monitor placed on top of the box. Dell desktops were used to 

run the ball-and-tunnel task. Separate Toshiba and Alienware laptops were used to run 

the interval production task. 
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Figure 1. Laparoscopic box trainer. 

 

 

Primary Task 

The primary laparoscopic task was the peg transfer task from the Fundamentals of 

Laparoscopic Surgery (FLS) training and assessment module. The task was performed 

with two Johnson & Johnson Ethicon dissector/graspers, a pegboard, and a set of six 

rubber ring objects. The board was placed on a Velco® strip in the center of the 

laparoscopic box trainer. The peg transfer task required the participant to lift each rubber 

ring object with their non-dominant hand, transfer the object in mid-air to the dominant 

hand, and then place the rubber ring on a peg on the opposite side of the board. No 

importance was placed on the color of the object, the order of movements, or where the 

peg was placed. Once all six objects had been transferred, the process was reversed by 

lifting the rubber ring objects with the dominant hand, transferring each one to the non-

dominant hand, and placing them on the original side of the board. The timing of the 
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exercise began when the first rubber ring object was grasped and ended when the last 

object was placed. The transfer had to take place in mid-air. If a rubber ring object was 

dropped out of view of the camera, it was left alone and not counted in the total number 

of movements. Every instance of a rubber ring object being dropped was recorded.  

Secondary Task 

The ball-and-tunnel task presented an image of four spheres in a representation of 

a 3D tunnel displayed at 50% transparency. Depth perspective was conveyed in the 

tunnel using small dots that decrease in size and relative distance toward the center of the 

image. Images were presented every 2 to 4 s with a mean of 3 s. In the standard 

configuration, balls were located at the 12, 3, 6, and 9 o’clock positions. Participants 

were asked to attend to successive images to determine if any of the balls have “moved” 

from a standard configuration. A change from the standard configuration consisted of one 

ball appearing to move either closer or farther in the tunnel. Depth changes were 

represented by a change in the ball’s diameter and shift in location. The diameter of the 

balls in the standard position was 26 mm. If a ball moved closer, the diameter increased 

to 53 mm and shifted 53 mm from the center. If a ball moved further, the diameter 

decreased to 11mm and shifted 11mm from the center. Only one of the four balls changed 

position at any given time, while the other three remained in their standard positions. The 

average visual angle of the ball-and-tunnel display was 37.25°. Performance in the ball-

and-tunnel task was assessed by response time (RT), the proportion of correct responses, 

and the proportion of false alarms. All measures were recorded by the ball-and-tunnel 

software.  
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Figure 2. Two images from the ball-and-tunnel task. The top image (a) is the standard 

configuration to which each test image is compared. The bottom image (b) is an example 

of a change from the standard orientation, with the leftmost ball changing in depth. 

 

a 

b 
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The time estimation task required the participant to indicate every time they 

believed a 21 s interval had elapsed. The 21 s interval was selected based upon 

suggestions offered by Grant et al (2013). Some research has suggested that intervals as 

brief as 3 s may provide adequate sensitivity (Grant, 2010). However, a longer interval 

was adopted to minimize the possibility that participants would maintain intervals by 

using a simple counting strategy. The time estimation task began at the beginning of the 

primary task. Participants pushed a foot pedal to begin the trial. Time estimation 

performance was assessed using percent absolute error (PAE) and coefficient of variation 

(COV). PAE was calculated as MD/TI, where TI was the target interval of 21 s and MD 

was the mean absolute difference of the actual produced intervals and the TI. COV was 

calculated as SDPI/MPI, where MPI was the mean of produced intervals and SDPI was the 

standard deviation of produced intervals. Intervals were recorded by computer software. 

Subjective Measures 

The NASA-TLX (Hart & Staveland, 1988) required participants to report their 

perceived levels of mental demand, physical demand, temporal demand, performance, 

effort, and frustration on an interval scale from 1 to 20. The NASA-TLX has been 

validated in past studies (Hart & Staveland, 1988; Rubio, Díaz, Martín, & Puente, 2004) 

and has been indicated to possess greater sensitivity to changes in workload compared to 

other methods, such as the SWAT (Nygren, 1991; Luximon & Goonetilleke, 2001). The 

TLX has also been demonstrated to possess a higher degree of concurrent validity (Rubio 

et al., 2004) and more consistent estimates of workload (Reid & Nygren, 1988) than its 

counterparts, as well as greater resolution within its scales (Hill et al., 1992). 

Additionally, the TLX technique has been shown to have lower between-rater variability 
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than other methods (Hart & Staveland, 1988). The version of the NASA-TLX used in the 

present research was adapted from the original version (see Appendix C). 

Procedure 

Participants first read and signed a consent form (see Appendix A) and completed 

a demographic survey (see Appendix B). Following this, they were randomly assigned to 

either the interval estimation task or ball-and-tunnel task conditions and completed a 

baseline measure of secondary task performance. This served as a single-task pretest 

measure that was compared to dual-task measures gathered in the later trials. Participants 

completed the NASA-TLX (see Appendix C) after performing the baseline task. 

Participants were given 10 minutes to practice the peg transfer task during which 

they were permitted to ask questions, receive feedback, and familiarize themselves with 

the procedure. Once completed, no further feedback on performance was be provided.  

Once participants were familiar with the both the primary and secondary tasks, 

they performed the experimental trials. The peg transfer task was completed in both the 

0° and 90° angle conditions. The order of conditions was counterbalanced. In each trial, 

participants were instructed to perform both the peg transfer and secondary task to the 

best of their abilities, giving greater priority to the peg transfer task. Participants 

performed each set of tasks for a total of 300 s. Each trial was followed by the completion 

of the NASA-TLX measure. After completing all trials, participants were debriefed and 

thanked for their time. Each session took ~50 minutes. No sessions exceeded one hour. 
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CHAPTER VI 

RESULTS 

 

 Thirty-seven undergraduate students took part in the study. Two participants 

were incapable of completing all three conditions. Their data were excluded from the 

analysis, leaving a total of thirty-five participants (18 participants in the ball-and-tunnel 

condition and 17 participants in the interval production condition). Additionally, three 

participants in the interval production condition were found to have data deviating 

significantly from the mean (3 standard deviations or greater). All of the data from these 

participants was removed and replaced with data obtained from three new participants. 

To assess secondary task performance, a repeated-measure analysis of variance 

(ANOVA) was performed for each secondary task. The dependent measures for the ball-

and-tunnel task performance were proportion of correct responses (hits), proportion of 

incorrect responses (false alarms), and response time. The dependent measures for the 

interval production task were comprised of percent absolute error (PAE) and coefficient 

of variation (COV). 

Post hoc analyses were used to analyze significant results. Simple main effects 

were complimented with pairwise comparisons of the mean differences and analyzed 

with Bonferroni-corrected degrees of freedom. Statistical significance was assessed at the 

.05 level unless otherwise noted.  
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Primary Task Performance Results 

An ANOVA was performed to assess primary task performance between the 

levels of dual task conditions and secondary task type. The results from the analysis can 

be seen in Table 1.  

 

 

 

Table 1 

Results of the Analysis of Variance for Primary Task Performance 

       

 SS df MS F p partial 

η2   

       

       

Moves       

       

Workload 516.446 1 516.446 42.554 .000* .563 

       

Workload x 

Task 

25.703 1 25.703 2.118 .155 .060 

       

Error 400.497 33 12.136    

       

       

Drops       

       

Workload 7.695 1 7.695 2.787 .104 .078 

       

Workload x 

Task 

.838 1 .838 .304 .585 .009 

       

Error 91.105 33 91.105    

       

Note. *p < .001 
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Peg Transfer Moves. On average, each participant moved 7.80 rubber rings per 

trial. The analysis revealed a main effect for number of moves between workload levels, 

F(1, 33) = 42.55, p < .001, partial η2 = .563. Post hoc comparisons indicated that 

significantly more rings were moved in the 0° visual condition than in the 90° visual 

condition (see Table 2).  

Peg Transfer Drops. The average number of drops per trial for each participant 

was found to be 1.91. No significant difference was found for drops between workload 

levels (see Table 1). 

 

 

 

Table 2 

Means, Standard Errors, and Confidence Intervals for Primary Task Performance 

Measures by Task Type 

      

  Mean Std. Error 95% Confidence 

Interval 

    Lower Upper 

      

      

Ball-and-

Tunnel 

     

      

 Moves     

      

 0° 9.444 1.055 7.299 11.590 

 90° 5.222 .923 3.344 7.100 

 Average 7.333 .803 5.700 8.967 

      

 Drops     

      

 0° 1.944 .573 .778 3.111 

 90° 1.500 .354 .780 2.220 

 Average 1.722 .388 .934 2.511 
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Table 2 Continued 
      

  Mean Std. Error 95% Confidence 

Interval 

    Lower Upper 

      

      
Interval 

Production 

     

      

 Moves     

 0° 11.588 1.085 9.381 13.796 

  90° 4.941 .950 3.009 6.873 

 Average 8.265 .826 6.584 9.946 

      

 Drops     

      

 0° 2.529 .590 1.329 3.729 

  90° 1.647 .364 .906 2.388 

 Average 2.088 .399 1.277 2.900 

      

 

 

 

Ball-and-Tunnel Secondary Task Results 

 

 Proportion of Correct Detections. The mean proportion of correct detections per 

trial for all conditions was .60. A repeated measures ANOVA indicated the proportion of 

correct detections was significantly lower in more demanding conditions than in less 

demanding conditions, F(2, 32) = 63.38, p < .001, partial η2 = .798. See Table 3 for all 

ball-and-tunnel ANOVA results.  
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Table 3 

Results of the Analysis of Variance for Ball-and-Tunnel Proportion of Correct Detections 

       

 SS df MS F p partial η2   

       

       

P(Correct 

Detections) 

2.635 2 1.137 63.378 .000* .798 

       

Error(Correct 

Detections) 

.665 32 .021    

       

Note. *p < .001 

 

 

 

 Pairwise comparisons were performed to indicate which workload levels differed. 

The results indicated that the proportion of correct detections was significantly higher 

during the pretest than in either the 0° or 90° angle visual conditions. The proportion of 

correct detections was also found to be significantly higher in the 0° visual condition than 

in the 90° condition (see Table 4).  

Proportion of False Alarms. The mean proportion of false alarms per trial for all 

conditions was .19. No significant differences were found among workload levels (see 

Table 4 for descriptive statistics; see Table 5 for ANOVA results). 

Response Time. The mean response time per trial for all conditions was 0.92. The 

repeated measures ANOVA revealed a significant difference between workload 

conditions, F(2, 32) = 24.11, p < .001, partial η2 = .601. See Table 6 for results of 

ANOVA. 
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Table 4 

Means, Standard Errors, and Confidence Intervals for Ball-and-Tunnel Dependent 

Measures 

     
     

 Mean Std. Error 95% Confidence Interval 

   Lower Upper 

     

     

P(Correct 

Detections) 

    

     

Pretest .902 .028 .843 .961 

     

0° .534 .038 .453 .615 

     

90° .356 .063 .222 .490 

     

P(False Alarm)     

     

Pretest .223 .047 .123 .324 

     

0° .173 .042 .084 .263 

     

90° .177 .050 .070 .284 

     

Response Time     

     

Pretest .728 .035 .654 .801 

     

0° .980 .043 .889 1.070 

     

90° 1.063 .066 .924 1.203 
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Table 5 

Results of the Analysis of Variance for Ball-and-Tunnel Proportion of False Alarms 

       

 SS df MS F p partial 

η2   

       

       

P(False Alarm) .260 2 .013 1.460 .247 .084 

       

Error(False 

Alarm) 

.289 32 .009    

       

 

 

 

Table 6 

Results of the Analysis of Variance for Ball-and-Tunnel Response Time 

       

 SS df MS F p partial 

η2   

       

       

Response 

Time 

1.039 2 .520 24.114 .000* .601 

       

Error .689 32 .022    

       

Note. *p < .001 

 Pairwise comparisons revealed a significantly faster response times in the pretest 

condition than in either the 0° or 90° visual angle conditions (see Table 4). No significant 

difference was found between the 0° and 90° conditions.  
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Interval Production Secondary Task Results 

 Percent Absolute Error. The mean PAE per trial across all interval estimation 

conditions was .46. No significant difference was found for PAE between workload 

levels. See Table 7 for all interval production ANOVA results. 

 

 

Table 7 

Results of the Analysis of Variance for Interval Production Percent Absolute Error 

       

       

 SS df MS F p partial 

η2   

       

       

PAE .324 1.478** .219 1.251 .294 .073 

       

Error(PAE) 4.139 23.650** .175    

       

** Greenhouse-Geisser Corrected  

 

 

Coefficient of Variation. The mean COV per trial for all workload conditions was 

0.230. Results indicated that a significant effect for COV across workload levels, F(2, 32) 

= 8.54, p = .001., partial η2  = .348.  See Table 9 for ANOVA results. 

Follow up comparisons indicated significantly higher COV in the pretest 

condition than in the 0° and 90° dual task conditions. No difference observed between the 

0° and 90° degree conditions (see Table 8). 
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Table 8 

Means, Standard Errors, and Confidence Intervals for Interval Production Dependent 

Measures 

     

     

 Mean Std. Error 95% Confidence Interval 

   Lower Upper 

     

     

PAE     

     

Pretest .385 .098 .177 .593 

     

0° .431 .085 .250 .611 

     

90° .572 .109 .342 .803 

     

COV     

     

Pretest .157 .022 .111 .203 

     

0° .246 .021 .202 .291 

     

90° .285 .027 .229 .342 

     

 

 

 

Table 9 

Results of the Analysis of Variance for Interval Production Coefficient of Variation 

       

       

 SS df MS F p partial η2   

       

       

COV .147 2 .073 8.535 .001* .348 

       

Error 134.489 32 4.203    

       

Note. *p < .001 
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NASA-TLX Score Results 

An ANOVA was conducted to assess subjective workload scores under different 

workload levels and secondary task types. The mean total workload score per trial for all 

conditions was 70.54. The analysis revealed that total TLX scores were significantly 

different between workload levels, F(2, 66) = 90.72, p < .001, partial η2 = .733. See Table 

10 for ANOVA results. 

Follow up tests showed significantly higher total scores in both the 0°and 90° 

visual conditions comparable to the pretest as well as a significantly higher total scores 

for the 90° compared to the 0°condition (see Table 11).  

 

 

 

Table 10 

Results of the Analysis of Variance for NASA-TLX Subscale and Total Scores 

       

 SS df MS F P partial 

η2   

       

       

Total       

       

Workload 33838.579 2 16919.289 90.720 .000** .733 

       

Workload x 

Task 

1684.217 2 842.108 4.515 .015* .120 

       

Error 12309.002 66 186.500    

       

Mental       

       

Workload  1333.132 1.478*** 902.018 70.518 .000** .681 

       

Workload x 

Task 

70.465 1.478*** 47.678 3.727 .043* .101 
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Table 10 Continued 

       

 SS df MS F P partial 

η2   

       

       
Error 623.858 48.772*** 12.791    

       

Physical       

       

Workload 2381.313 1.677*** 1420.094 106.862 .000** .764 

       

Workload x 

Task 

41.427 1.677*** 24.705 1.859 .171 .053 

       

Error 735.373 55.337*** 13.289    

       

Temporal       

       

Workload 239.483 2 119.742 9.285 .000** .220 

       

Workload x 

Task 

222.264 2 111.132 8.618 .000** .207 

       
Error 851.126 66 12.896    

       

Performance       

       

Workload 456.582 2 228.291 13.795 .000** .295 

       

Workload x 

Task 

14.067 2 7.034 .425 .656 .013 

       

Error 1092.237 66 16.549    
       

Effort       

       

Workload 1198.170 2 599.085 43.462 .000** .568 

       

Workload x 

Task 

33.522 2 16.761 1.216 .303 .036 

       

Error 909.754 66 13.784    

       

Frustration       
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Table 10 Continued 

       

 SS df MS F P partial 

η2   

       

       
Workload 1044.177 2 522.089 38.900 .000** .541 

       

Workload x 

Task 

105.663 2 52.831 3.936 .024* .107 

       
Error 885.804 66 13.421    

       

Note. * p <.05, **p < .001; *** Greenhouse-Geisser Corrected 

 

 

NASA-TLX Subscale Results. Each TLX subscale was found to be significant at 

the .01 level or lower (see Table 10 for details). Follow up comparisons indicated that 

mental demand, physical demand, and frustration scores were all found to be significantly 

different between conditions, with scores significantly lower in the pretest condition than 

in either the 0° or 90° visual conditions and with lower scores in the 0° condition 

compared to the 90° condition. Both temporal demand and performance score were found 

to be significantly higher in the 90° condition than in either the pretest or 0° conditions 

but no difference was found between the pretest and 0° condition scores. Effort scores 

were significantly lower in the pretest than in either the 0° or 90° conditions but scores 

did not differ between the two dual task conditions (See Table 11 for all means and 

descriptives). 
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Table 11 

Means, Standard Errors, and Confidence Intervals for NASA-TLX Subscale and Total 

Scores by Task Type 

     

  Mean Std. Error 95% Confidence Interval 

    Lower Upper 

      

      

Ball-and-

Tunnel 

     

 Total     

      

 Pretest 54.167 4.997 44.000 64.333 

 0° 74.389 5.162 63.887 84.891 

 90° 88.500 4.192 79.971 97.029 

      

 Mental     

      

 Pretest 9.333 1.350 6.587 12.079 

 0° 13.167 1.118 10.892 15.441 

 90° 16.278 .834 14.580 17.975 

      

 Physical     

      

 Pretest 4.333 .767 2.772 5.895 

 0° 12.667 1.267 10.090 15.244 

 90° 13.667 1.203 11.219 16.114 

      

 Temporal     

      

 Pretest 13.111 1.163 10.746 15.476 

 0° 12.500 1.184 10.092 14.908 

 90° 13.611 .978 11.621 15.601 

      

 Performance     
      

 Pretest 8.556 1.090 6.338 10.774 
 0° 10.056 1.089 7.841 12.270 
 90° 13.500 1.081 11.302 15.698 
      

 Effort     
      

 Pretest 9.611 1.249 7.070 12.152 
 0° 14.444 .998 12.414 16.474 
 90° 16.889 1.025 14.804 18.973 
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Table 11 Continued 

     
  Mean Std. Error 95% Confidence Interval 
    Lower Upper 
      

      
 Frustration     
      

 Pretest 9.222 1.232 6.716 11.728 
 0° 11.556 1.128 9.260 13.851 
 90° 14.556 1.192 12.130 16.981 

      
Interval 

Production 
     

 Total     
      
 Pretest 39.294 5.142 28.833 49.755 
 0° 75.176 5.311 64.370 85.983 
 90° 91.706 4.314 82.929 100.483 
      

 Mental     
      
 Pretest 7.412 1.389 4.586 10.237 
 0° 14.882 1.150 12.542 17.223 
 90° 17.647 .859 15.900 19.394 
      
 Physical     
      
 Pretest 2.882 .790 1.276 4.489 
 0° 12.765 1.303 10.113 15.416 
 90° 15.294 1.238 12.776 17.812 

      
 Temporal     

      

 Pretest 7.235 1.196 4.801 9.669 

 0° 12.706 1.218 10.228 15.184 

 90° 14.000 1.006 11.952 16.048 

      

 Performance     

      

 Pretest 9.294 1.122 7.012 11.576 

 0° 9.059 1.120 6.780 11.338 

 90° 13.765 1.112 11.503 16.027 

      

 Effort     
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Table 11 Continued 

     

  Mean Std. Error 95% Confidence Interval 

    Lower Upper 

      

      
 Pretest 7.471 1.285 4.856 10.085 

 0° 15.059 1.027 12.970 17.148 

 90° 15.882 1.054 13.737 18.027 

      

 Frustration     

      
 Pretest 5.000 1.267 2.421 7.579 

 0° 10.706 1.161 8.344 13.068 

 90° 15.118 1.227 12.622 17.613 
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CHAPTER VII 

DISCUSSION 

 

 The purpose of the current study was to compare two secondary tasks used to 

measure laparoscopic workload and determine which demonstrated greater sensitivity to 

changes in mental workload. More specifically, a visual-spatial and an interval 

production secondary task were used to measure spare attentional capacity during a 

laparoscopic peg transfer task. Each participant performed one of the secondary tasks 

alone and in dual task conditions at both 0° and 90° visual angles. The different visual 

angles were implemented to manipulate workload levels, with the 90° visual condition 

intended to create higher workload than the 0° visual condition.  

Primary Task 

Results indicated that participants moved significantly fewer pegs in the 90° 

visual condition than in the 0° condition, supporting the assumption that workload was 

higher in the 90° condition. Additionally, there were slightly fewer drops in the 90° 

condition than in the 0° condition, but this difference was not significant. However, the 

lower number of drops in the higher workload condition was likely due to participants 

making fewer moves altogether which subsequently limited the number of opportunities 

for drops.  

Secondary Task 

A good secondary task measure of residual workload should address the same 

resource demands as the primary task to be both sensitive to changes in workload and be 
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diagnostic of the resources allocated during periods of higher workload (O’Donnell & 

Eggemeier, 1986; Carswell, Clarke, & Seales, 2005). The first goal of the study was to 

examine the sensitivity of a visual-spatial and an interval production secondary task to 

determine changes in workload. Specifically, it was predicted that secondary task 

performance would be significantly worse in the 90° condition for the ball-and-tunnel 

task as compared to the interval production task, because the ball-and-tunnel task requires 

resources that are more similar to those needed for the laparoscopic task than the interval 

production task. According to Multiple Resource Theory (MRT, Wickens, 1980, 1984, 

2002, 2008), two tasks that demand the same mental resources will interfere with one 

another. As it has been suggested that laparoscopy is primarily visual and spatial in 

nature (Cuschieri, 1995, 2006; Tendick, Bhoyrul, & Way, 1997; Way et al., 2003), a 

secondary task that demands similar resources should demonstrate a greater level of 

diagnosticity over a different secondary task drawing from a different pool of resources. 

The results supported this hypothesis. Regarding the ball-and-tunnel task, participants 

were significantly less accurate and slower to respond in the 90° dual task condition than 

in either the single task pretest or the 0° dual task conditions, reflecting sensitivity to 

workload changes. The effect sizes observed for both the proportion of hits and response 

times were large with a partial η2 of .80 and .60, respectively. 

A significant result for the COV indicated that interval productions were also 

sensitive to changes in workload, with the consistency of productions declining in the 

dual-task conditions compared to the single-task pretest. However, no significant 

difference was observed between the 90° and 0° dual-task conditions, demonstrating an 

inability of time estimation to detect a change in resource demands between the visual 
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angles. Additionally, the effect size observed for COV was moderate at .35 and much 

smaller than that of the ball-and-tunnel measures. Since the magnitude of difference 

between ball-and-tunnel measures was larger than those of the interval production task, 

the hypothesis that the ball-and-tunnel task would be more sensitive in high workload 

situations was supported. Ball-and-tunnel performance did become less accurate than 

interval production performance in the 90° visual condition as compared to the single 

task pretest. 

The second goal of the study was to determine if the interval production method 

was capable of distinguishing lower and higher levels of mental workload. Specifically, it 

was hypothesized that interval estimate measures would not differ significantly between 

the 0° and 90° visual conditions. Since the interval production task does not share 

common resources with laparoscopy, it was believed that a temporally-based secondary 

task would not be sensitive to small changes in mental workload. This hypothesis was 

also supported. Neither PAE nor COV were able to detect differences between the 0° and 

90° visual conditions, indicating a lack of discriminability between less extreme shifts in 

mental workload. However, COV was able to discriminate between the single-task 

pretest and the dual-task conditions, suggesting some sensitivity to workload changes.  

It is important to remember that a critical difference between the ball-and-tunnel 

and interval production tasks was observed. In the ball-and-tunnel condition, each 

successive increase in task demand resulted in a significant difference. For example, the 

proportion of hits was significantly higher and mean response time was significantly 

lower in the single task pretest than in the 0° visual dual task condition. Similarly, the 

proportion of hits was higher and mean response time were lower in the 0° dual task 
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condition than in the 90° dual task condition. Such was not the case for the interval 

production task measured by COV. MRT (Wickens, 1980, 1984, 2002, 2008) would 

predict a secondary task measure with high sensitivity and diagnosticity would be able to 

differentiate between all changes in workload due to the resource demands common to 

both the primary and secondary tasks. When workload increases and demands for a 

specific set of resources grows, sensitive and diagnostic measures should reflect the 

change regardless of the magnitude of change (O’Donnell & Eggemeier, 1986). Interval 

production did not demonstrate these characteristics. More specifically, the interval 

production task seemed to be sensitive only to extreme changes in workload, such as 

those between the pretest and dual-task conditions, and not to more moderate changes, 

such as that between the 0° and the 90° conditions. On the other hand, the ball-and-tunnel 

task demonstrated sensitivity and was able to differentiate between workload levels in all 

conditions. The increased sensitivity of the ball-and-tunnel task to changes in workload 

over the interval production task may be due a higher degree of diagnosticity. Unlike the 

interval production task, the ball-and-tunnel task was able to detect the difference 

between visual angles during visual-spatial tasks. Thus, it is reasonable to conclude that 

the ball-and-tunnel task specifically addressed differences in visual and spatial resource 

demands.  

 On the contrary, interval production likely possesses a lesser degree of 

diagnosticity to visual-spatial resource demands. Still, since the interval production task 

demonstrated the ability to differentiate between more exaggerated shifts in task 

demands, it is clearly sensitive to changes in workload but on a global level. Possessing 

sensitivity to workload changes gives interval production some value as a workload 
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measure. However, it is important to note that the resource demands of laparoscopy are 

largely visual and spatial (Cuschieri, 1995, 2006; Tendick, Bhoyrul, & Way, 1997; Way 

et al., 2003). As such, a secondary task that measures resource pools shared by the 

primary task should produce a keener estimate of residual resource availability. Indeed, 

such an effect was observed between ball-and-tunnel and interval estimation 

performance. Ball-and-tunnel performance measures resulted in a much larger magnitude 

of change between workload levels than did interval production. 

The difference between the two workload measures is important. As Carswell, 

Clarke, and Seales (2005) indicate, a relatively small change in workload may have dire 

consequences regarding successful performance on surgical tasks. Any method of 

measuring mental workload in the domain of laparoscopy would need to possess the 

ability to capture minute shifts resource demand to be considered an effective choice. As 

such, the ball-and-tunnel task is likely a more appropriate secondary task for mental 

workload assessment in the domain of laparoscopy. 

Subjective Workload 

 The third hypothesis was that NASA-TLX scores would reflect the 

workload differences between the single task pretest, 0° visual dual task condition, and 

the 90° visual dual task condition, corroborating that workload differed among 

conditions. This hypothesis was supported. The total workload scores were found to be 

sensitive to changes in workload in all conditions and possessed a large partial η2 of .73. 

Each subscale was also sensitive to the workload conditions. Differences were found 

between each workload level for the mental demand, physical demand, and frustration 

subscales. Both the temporal demand and performance subscales were found to have 



51 

 

significantly higher scores in the 90° condition than in the 0° condition, but no such 

difference was observed between the 0° condition and the pretest. The effort subscale 

score was found to be significantly lower in the pretest than in the 0° condition, but no 

difference was found between the 0° and 90° conditions.  

The lack of differences for temporal demand and performance scores between the 

pretest and the 0° conditions suggest that progressing from the single to dual task 

situation did not make participants feel more rushed or less able to perform the task. It is 

also possible that the lack of differences between the pretest and 0° dual task condition 

may be have been due to experimental design. All participants completed the pretest first, 

after which they moved on to the 0° or 90° conditions. The relative ease of the 0° degree 

condition after experiencing the demands of the 90° condition may have biased 

participant responses to the temporal demand and performance scales. Additionally, the 

time allotted for the pretest was 90 s compared to 300 s for the dual task conditions. The 

greater amount of time given for the dual task conditions may have also affected the way 

participants responded to these subscales.  On the other hand, the lack of a significant 

difference for effort between the 0° and 90° conditions indicates that participants did not 

feel they needed to expend any additional effort to complete the tasks. These results are 

somewhat unexpected. Since participants had indicated that mental and physical demands 

were greater as they progressed from the single task pretest to the dual task conditions 

and from the 0° visual to the 90° visual, it would stand to reason that the effort 

experienced would increase as well. However, increasing the demands of a task does not 

necessitate an increase in effort in the part of the participant.  Indeed, the results obtained 

suggest that participants did not produce a greater amount of effort between the dual task 
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conditions or, at least, believed the effort expended was equal. Overall, the differences 

found would seem to indicate that workload did, in fact, increase from single task to dual 

task and from 0° to 90° visual conditions.  

Interestingly, an interaction effect was found for the temporal demand subscale 

score between workload level and task type. Follow up tests indicated that the effect was 

due to a large difference between temporal demand scores in the pretest, with the ball-

and-tunnel task scoring significantly higher than the interval estimation task. Although 

this was not an anticipated result, one might reasonably assume that a time-based 

secondary task would be perceptually more temporally demanding than a visual-spatial 

task, yet this did not appear to be the case. 

Theoretical Implications 

The current experimental findings are consistent with the predictions made by 

Multiple Resource Theory (Wickens, 1980, 1984, 2002, 2008). The difference between 

workload conditions was more pronounced when measured with a visual-spatial 

secondary task than an interval estimation secondary task. The mean proportion of hits 

for the ball-and-tunnel tasks dropped from .90 in the single task pretest to .53 in the dual 

task 0° visual condition. Similarly, the mean proportion of hits dropped from .53 in the 0° 

condition to .36 in the 90° dual task condition. This result would seem to indicate 

resource demands between the two tasks were similar and, as more resources were 

allocated for the primary task, less were available for the ball-and-tunnel task, leading to 

poorer performance and demonstrating that a visual-spatial task is a sufficiently sensitive 

and diagnostic measure of residual workload in laparoscopy.  

However, interval production measures were not expected to differ between 



53 

 

conditions. Although interval production failed to detect more subtle changes in 

workload, the results indicated the interval production task possessed sufficient 

sensitivity to detect changes in workload between the lowest workload level and the 

higher two. This effect suggests that prospective interval production may be an 

acceptable secondary task to measure workload in some cases, specifically in domains 

where the resource demands are more globally distributed over multiple resource pools 

rather than isolated to specific resource types.  However, as the task demonstrated less 

sensitivity than that of the ball-and-tunnel task, it does not appear to be a more superior 

measure for the domain of laparoscopic surgery.  

Still, interval production demonstrated a level of sensitivity that was unexpected, 

implying that a temporally-based secondary task shares some degree of resource demand 

with a highly visual and spatial task such as laparoscopy. One possible explanation for 

this result may relate to Expanded Multiple Resource Theory (EMRT). Boles and his 

colleagues (Boles & Law, 1998; Boles, 2010) propose that mental resources are 

orthogonal resulting from orthogonal mental processes. For example, MRT would predict 

that a reading task and a target identification task would interfere with each other as 

visual resources must be expended to attend to both tasks. However, EMRT would 

predict the tasks would require separate resources, as the reading task is a visual-lexical 

process task and the target identification task is spatial-positional. EMRT has found some 

support for a visual-temporal process pool of resources, which may explain why some 

degree of sensitivity may exist between a visual-spatial primary task and an interval 

estimation secondary task. However, it is difficult to determine if this can explain the 

interval production results observed in the present study as additional research into 
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EMRT would be necessary to determine if this is the case.  

Another possible explanation for the unexpected results observed may be in the 

design of the interval estimation task itself. For example, the ball-and-tunnel task is a 

forced-choice task based on signal detection wherein participants have a limited amount 

of time to make a decision on whether the standard configuration was present. If they do 

not respond, it is either a correct rejection or a miss. There is no ambiguity regarding the 

presentation of a target, only in the perception of the target. On the other hand, 

prospective interval production is not amenable to signal detection analysis since a person 

cannot perceive the passage of time without actively tracking it. Interval estimation 

requires constant awareness of time and maintaining this awareness is a demand of the 

task in its own right. Maintenance of this awareness may require the use of the central 

executive function (Baddeley & Hitch, 1974; Baddeley, 1996), which coordinates 

performance on multiple tasks and selection of attended stimuli. As participants are asked 

to attend to the absence of a stimuli instead of their presence, the central executive is 

more likely to be overtasked, leading to the inability of the participant to successfully 

estimate a more accurate interval. Indeed, the central executive function has been 

proposed to be similar to an individual’s resource allocation policy (Wickens, 2008). 

Limitations 

One possible limitation in the present study may have been the time allotted for 

the pretest. The pretest measurement for each secondary task was limited to 90 s. 

Although this did not appear to impact the ball-and-tunnel measure, this may not have 

been an adequate amount of time on which to base the interval production baseline 

measure since participants were able to only produce 3 to 4 intervals in this time. Some 
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recommendations have suggested that at least 5 to 8 productions are necessary to produce 

sufficient estimates of performance (Carswell et al., 2013). As a result, the baseline 

measures for the interval production tasks may have been too short to produce stable 

single task estimates of estimation performance. Additionally, past researchers have 

given participants 90 s practice trials through which to familiarize themselves with the 

task, followed by feedback and dual task practice (Carswell et al., 2013). Practice effects 

may explain differences in findings between the present experiment and past interval 

production studies.  However, participants received no additional practice or instruction 

on the ball-and-tunnel task and were instructed on how to perform each task until they 

had indicated that they were comfortable enough to begin. Additionally, the COV is 

resistant to individual differences in interval variations so such an effect might be 

negligible if not irrelevant. Further research assessing the effects of practice on both tasks 

may be needed.  

Future Work 

A possible direction for future work might be to create a version of the time 

estimation task that is more similar to the ball-and-tunnel task so that the two might be 

more easily compared to each other. Although it is possible to compare the results of the 

two tasks statistically, they are qualitatively different. Creating a version of the time 

estimation task that can cue an individual to indicate if the target interval had passed may 

make comparing the two tasks possible. If the attentional-gate control model of duration 

judgment (Thomas & Weaver, 1975; Zakay, 1989; Zakay & Block, 1997; Zakay & Shub, 

1998) is accurate, then it should be possible to ask participants to judge whether a cue 

occurs in concert with the target interval as an alternative measure of interval estimation. 
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The completion of such a task would still require the use of the mental accumulator and 

temporal reference memories but would allow the experimenter to use the same 

dependent measures for both the visual-spatial and interval production tasks, and directly 

compare hits and response times in both tasks. 
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CHAPTER VIII 

CONCLUSION 

 

 In the present study, a laparoscopic peg transfer task was coupled with both a 

visual-spatial and temporal secondary task to compare sensitivity to changes in mental 

workload. Errors committed during laparoscopy can be largely attributed to visual and 

spatial distortions, indicating that the task is predominately visual and spatial in resource 

demand. Because laparoscopic surgery is visual and spatial in nature, assessing residual 

resource availability as a metric of mental workload requires a measure that is both 

diagnostic of the visual and spatial pools of resources and sensitive to the changes in 

resource availability within each. The ball-and-tunnel task was hypothesized to be an a 

superior measure of mental workload compared to interval production since it addresses 

the same resources as laparoscopy. The results supported this hypothesis, indicating that 

the ball-and-tunnel task was sensitive to both moderate and extreme changes in workload.  

The temporally-based interval estimation task also demonstrated sensitivity but to 

a lesser extent. While the results did not indicate that interval estimation was as sensitive 

to changes in workload as the ball-and-tunnel task, time estimation may be sensitive to 

more extreme variations in workload distributed over a greater number of resource types. 

However, since laparoscopy is highly demanding on visual and spatial resource pools, 

interval estimation may be less suitable than the ball-and-tunnel task.  

Subjective workload measures and number of pegs transfered in the primary task 

reflected changes in workload between conditions where predicted, lending support to the 

assumption that workload increased from single task to 0° dual task conditions and 0° to 
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90° dual task conditions. Since ball-and-tunnel task performance more closely matched 

the subjective reports, the hypothesis that visual-spatial secondary tasks are better 

measures of mental workload is supported further.  

In general, the results indicate that mental workload in laparoscopy can be 

measured accurately through the use of a visual-spatial task. Current simulator-based 

methods of training laparoscopic skill have shown an ability to transfer to the actual 

surgical environment (Dawe et al., 2013). However, novices trained with these methods 

do not always perform as well in real surgery as those with more experience (Korndoffer 

et al., 2005). Other researchers have indicated that laparoscopic simulation is not as 

effective as traditional surgical training methods (Mansour et al., 2012). The disparity of 

results within the laparoscopic training literature seems to indicate that a deeper 

understanding of the demands placed on surgeons is necessary to assure that they are 

fully prepared for actual surgery. Measuring residual mental workload with a secondary 

task similar to the ball-and-tunnel task demonstrated here may ultimately prove to be a 

useful method for decreasing surgical error and improving patient outcomes for novice 

surgeons in shorter periods of time.  
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APPENDIX A 

INFORMED CONSENT FORM 

 

PROJECT TITLE:  Assessment of Mental Workload during Laparoscopic Skill 
Acquisition on a Virtual Reality Simulator 
 
RESEARCHERS: 

Mark W. Scerbo, Ph.D., Responsible Project Investigator, Associate Professor, 
College of Sciences, Psychology Department  

 
Co-investigators: 

Rebecca A. Kennedy, Graduate Student, College of Sciences, Psychology 
Department  

     Erik G. Prytz, Graduate Student, College of Sciences, Psychology Department  
     Michael Montano, Graduate Student, College of Sciences, Psychology Department  
     Levi Warvel, Graduate Student, College of Sciences, Psychology Department 
 
DESCRIPTION OF RESEARCH STUDY 
Laparoscopic surgery is a type of surgery that is performed by inserting a small camera 
and surgical instruments through small incisions in the body. This technique is generally 
safer for the patient, but often more difficult for the surgeon to perform. Therefore, 
computer-based simulators are now being used to help surgeons acquire laparoscopic 
skills.   
 
If you decide to participate, then you will be one of approximately 80 undergraduate 
students involved in a study designed to improve current methods for training future 
laparoscopic surgeons using a computer-based simulator. You will be instructed in how to 
perform several simulated surgical tasks on the computer using simulated surgical tools 
and a foot pedal and then given time to practice those tasks. In addition, you will be asked 
to perform another task that requires you to identify different targets in different areas of 
your display. Afterward, you will also be asked to complete two brief questionnaires that 
ask you to rate the ease or difficulty of the tasks.  The total amount of time for participation 
is approximately one hour.  
 
EXCLUSIONARY CRITERIA: 
To participate in this study, you must be an undergraduate student at ODU. You must be 
18 years of age or older. You also must have normal or corrected-to-normal vision. If you 
wear contacts or glasses, you must have these with you when you participate 
 
In addition, in order to participate in this study you should not have any problems with 
your ability to physically use your right leg and right foot to press a foot pedal 
periodically. You should also not have any problem physically using both your right and 
left hands to interact with the simulated surgical instruments  
 
RISKS: 
If you decide to participate in this study, then you may face a risk of slight physical fatigue.  
Both your arms and hands may become tired from interacting with the simulator instrument 
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device.  The researchers have tried to reduce these risks by incorporating frequent breaks 
and resting periods.  And, as with any research, there is some possibility that you may be 
subject to risks that have not yet been identified. 
 
BENEFITS:   
There are no direct benefits for participation. However, you will have the opportunity to 
learn how a surgical simulator is used for developing basic laparoscopic skills.  
 
COSTS AND PAYMENTS: 
If you decide to participate in the study, you will receive 1 Psychology department research 
credit, which may be applied to course requirements or extra credit in certain Psychology 
courses. Equivalent credits may be obtained in other ways, such as conducting library 
reports and online surveys. You do not have to participate in this study, or any Psychology 
Department study, in order to obtain this credit.  
 
CONFIDENTIALITY: 
The researchers will take reasonable steps to keep private information, such as 
questionnaires and laboratory performance and findings confidential.  The researchers will 
remove all identifying information from questionnaires and store all data in a locked filing 
cabinet prior to its processing.  The results of this study may be used in reports, 
presentations, and publications; but the researcher will not identify you. Of course, your 
records may be subpoenaed by court order or inspected by government bodies with 
oversight authority. 
 
WITHDRAWAL PRIVILEGE: 
It is OK for you to say NO.  Even if you say YES now, you are free to say NO later, and 
walk away or withdraw from the study – at any time. The researchers reserve the right to 
withdraw your participation in this study, at any time, if they observe potential problems 
with your continued participation. If at any point during the study you wish to stop, simply 
tell the researcher and you will not be penalized in any way. Any data that has already 
been collected will be destroyed and will not be included in the final analysis.  
 
COMPENSATION FOR ILLNESS AND INJURY: 
If you say YES, then your consent in this document does not waive any of your legal rights.  
However, in the event of injury, or illness arising from this study, neither Old Dominion 
University nor the researchers are able to give you any money, insurance coverage, free 
medical care, or any other compensation for such injury.  In the event that you suffer injury 
as a result of participation in any research project, you may contact the Faculty research 
advisor, and responsible principle investigator Dr. Mark W. Scerbo at 757-683-4217 or Dr. 
George Maihafer the current IRB chair at 757-683-4520 at Old Dominion University, who 
will be glad to review the matter with you. 
 
VOLUNTARY CONSENT: 
By signing this form, you are saying several things.  You are saying that you have read 
this form or have had it read to you, that you are satisfied that you understand this form, 
the research study, and its risks and benefits.  The researchers should have answered 
any questions you may have had about the research.  If you have any questions later 
on, then the researchers should be able to answer them:  
 
Dr. Mark W. Scerbo, mscerbo@odu.edu, (757) 683-4217 
Rebecca A. Kennedy, rkenn014@odu.edu 

mailto:rkenn014@odu.edu
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Erik G. Prytz, erik.prytz@gmail.com 
Michael Montano, mmont033@odu.edu 
Levi Warvel, lwarv001@odu.edu 
 
If at any time you feel pressured to participate, or if you have any questions about your 
rights or this form, then you should call Dr. George Maihafer, the current IRB chair, at 
(757) 683-4520, or the Old Dominion University Office of Research, at 757-683-3460.  
 
And importantly, by signing below, you are telling the researcher YES, that you agree to 
participate in this study. The researcher should give you a copy of this form for your 
records.  
 
 
------------------------------------     -----------------------------------  ---------  
Participant’s Name      Participant’s Signature  Date  
 
INVESTIGATOR’S STATEMENT  
 
I certify that I have explained to this subject the nature and purpose of this research, 
including benefits, risks, costs, and any experimental procedures. I have described the 
rights and protections afforded to human subjects and have done nothing to pressure, 
coerce, or falsely entice this subject into participating. I am aware of my obligations 
under state and federal laws, and promise compliance. I have answered the subject's 
questions and have encouraged him/her to ask additional questions at any time during 
the course of this study. I have witnessed the above signature(s) on this consent form.  
 
 
------------------------------------     -----------------------------------  ---------  
Investigator’s Name      Investigator’s Signature  Date 

  

  

mailto:erik.prytz@gmail.com
mailto:mmont033@odu.edu
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APPENDIX B 

PARTICIPANT BACKGROUN INFORMATION FORM 

 

 Participant #:_____  Group:_____  Date:_____  Time:_____ 

The purpose of this questionnaire is to obtain background information on the participant 

that will be used for research purposes only. 

1. Age______ 

2. Gender______ 

 0 = Female 

 1 = Male 

 

3. Ethnicity______ 

 

 0 = Black, Non-Hispanic 

 1 = Hispanic 

 2 = Native American/Alaskan 

 3 = Asian/Pacific Islander 

 4 = Caucasian, Non-Hispanic 

 5 = Other/Unknown 

 

4. Do you have normal or corrected-to-normal vision?_____ 

 

 0 = Yes 

 1 = No 

 

5. What is your dominant hand?_____ 

 

 0 = Right 

 1 = Left 

 2 = Ambidextrous 

 

6. Do you play video games?_____ 

 

 0 = Yes 

 1 = No 

 

 If yes: how many hours, on average, do you play each week?____  
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APPENDIX C 

NASA-TLX WORKLOAD QUESTIONNAIRE 

 

 Participant #:______ Group:______ 

 

 

 NASA-TASK LOAD INDEX (TLX) WORKLOAD QUESTIONNAIRE 

(Hart & Staveland, 1988) 

 

MENTAL DEMAND 

Low                High 

  | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 

 

 

PHYSICAL DEMAND 

Low                High 

  | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 

 

 

TEMPORAL DEMAND 

Low                High 

  | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 

 

 

PERFORMANCE 

Low                High 

  | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 

 

 

EFFORT 

Low                High 

  | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 

 

 

FRUSTRATION 

Low                High 

  | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 
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