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ABSTRACT 

DETERMINING THE PREVALENCE AND DISTRIBUTION OF TICK-BORNE PATHOGENS IN 
SOUTHEASTERN VIRGINIA AND EXPLORING THE TRANSMISSION DYNAMICS OF 

RICKETTSIA PARKERI IN AMBLYOMMA MACULATUM 
 

Chelsea L. Wright Thompson 
Old Dominion University, 2015 

Advisor: Dr. Wayne L. Hynes 
 
 
 

Tick-borne pathogens are an increasing threat to human and animal health 

worldwide. In the United States, cases of Lyme disease, spotted fever rickettsioses, 

ehrlichiosis and anaplasmosis are on the rise. Factors related to emergence include 

appearance of new pathogens, recognition of existing pathogens and environmental 

changes that result in new exposure events. Despite the rise in tick-borne disease 

incidence within many states, including Virginia, there is a paucity of data related to the 

prevalence and distribution of ticks and tick-borne pathogens.  

The first aim of this dissertation research was to determine the tick-borne 

pathogen composition within tick populations in southeastern Virginia. Since 2009, the 

vector ecology laboratory at Old Dominion University has been conducting year-round 

surveillance of tick populations within Hampton Roads. This research explores the 

pathogen composition within these tick populations, with a particular focus on emerging 

pathogens, including Rickettsia parkeri and Ehrlichia chaffeensis.  

The second aim of this research was to determine the transmission dynamics of 

R. parkeri within its vector, Amblyomma maculatum. Although some rickettsiae are 

transovarially transmitted in ticks, little is known about the frequency and efficiency of 



this transmission route, and nothing is known regarding the transmission strategy of R. 

parkeri in A. maculatum. By understanding the dynamics of pathogen transmission 

within the tick, a broader knowledge of the disease system can be attained, and 

mathematical models to explore these dynamics can be parameterized. 

The third aim of this research was to explore the potential for R. parkeri to spill 

over from A. maculatum populations into populations of A. americanum. Amblyomma 

americanum is an aggressive human-biting tick, represents 95% of the ticks encountered 

in southeastern Virginia, and is the most common tick found attached to humans in the 

southeastern and mid-Atlantic United States. Because of its common association with 

humans, A. americanum and the pathogens it transmits are important threats to human 

health in southeastern states. The competence of A. americanum as a vector of R. 

parkeri was also investigated.  
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The journal model for this dissertation is Ticks and Tick-Borne Diseases 

INTRODUCTION AND BACKGROUND 

Vector-borne diseases are an important threat to human health worldwide. 

Diseases such as malaria and the reemergence of dengue fever and yellow fever in 

certain areas have had a major influence on human health, killing over 1.2 million 

people annually (WHO, 2015). Controlling vector-borne diseases poses a daunting task 

to scientists and health officials as many of these diseases operate primarily within a 

sylvatic (non-human) cycle, where humans and domestic animals are merely incidental 

hosts. The enzootic cycles of vector-borne disease agents are often complex, requiring 

both invertebrate vectors and vertebrate hosts, each of which has its own suite of 

ecological specifications required for survival.   

Ticks are hematophagous, ectoparasitic arthropods which rely on multiple 

vertebrate bloodmeals to complete their life cycle and reproduce. In the United States 

ticks are the most common agents of vector-borne pathogens and worldwide are 

second only to mosquitoes as arthropod vectors of pathogens (Goodman et al., 2005). 

Ticks transmit a variety of pathogens including bacteria, viruses and protozoa, and tick-

borne diseases are increasingly being recognized as threats to human health worldwide. 

Lyme disease and tularemia are two severe illnesses caused by tick-transmitted 

pathogens in both the New and Old Worlds (Gubler, 1998). In the United States, Lyme 

disease and spotted fever rickettsioses cases have been on the rise; in addition 

infections such as ehrlichiosis and anaplasmosis, caused by the emerging tick-borne 

pathogens Ehrlichia chaffeensis and Anaplasma phagocytophilum, respectively, have 

also increased (Dahlgren et al., 2011).  Factors affecting emergence of these pathogens
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include the recognition of these organisms as pathogens and environmental changes 

that lead to or result in new exposure events (Lederberg et al., 1992). Ehrlichia 

chaffeensis and Rickettsia parkeri, the bacterial causative agents of ehrlichiosis and 

Tidewater spotted fever, respectively, are two emerging tick-borne pathogens 

associated with human disease in the southeastern United States.  

Ticks also have a long history as significant pests of livestock and pose a severe 

threat to the global cattle industry. The cattle tick, Rhipicephalus sanguineus, is 

estimated to have an annual economic impact of $2 billion on the livestock industry in 

Brazil (Grisi et al., 2002). While ticks parasitizing livestock impose indirect effects, such 

as disease caused by multiple bacterial and parasitic agents, the direct effects of tick 

attachment are also important. The Gulf Coast tick, Amblyomma maculatum Koch, 

which has long been known as a pest of cattle in the United States, inflicts damage to 

the skin during feeding leading to inflammation, edema and secondary infections that 

can have permanent health effects (Williams et al., 1978; Sonenshine et al., 1991; Teel 

et al., 2010). 

In Virginia, ticks associated with human disease include of members of the 

Ixodidae (hard-bodied) family. Most Ixodidae have three life stages in which they 

actively quest for a host: larva, nymph and adult. Ixodidae associated with human 

pathogens in Virginia include Amblyomma americanum (L.), Dermacentor variabilis Say 

and Ixodes scapularis Say. In 2011, populations of other disease-relevant species, A. 

maculatum and Ixodes affinis Neumann, were described in Virginia for the first time 

(Wright et al., 2011; Nadolny et al., 2011). Although I. affinis is not known to feed on
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humans, it is thought to be important in the enzootic maintenance of Borrelia 

burgdorferi sensu stricto, the agent of Lyme disease (Oliver et al., 1996). 

The research presented in this dissertation will primarily focus on bacterial tick-

borne pathogens belonging to the order Rickettsiales. Members of Rickettsiales belong 

to the α-subdivision of the Proteobacteria and include the family rickettsiaceae, in which 

the genus Rickettsia is located. Interestingly, rickettsiae are the closest extant relatives 

of mitochondria and have been the subject of several studies assessing the history of 

organelles (Andersson et al., 1998; Emelyanov, 2001; Fitzpatrick et al., 2006). Another 

family belonging to the Rickettsiales order is Anaplasmataceae, which includes the 

genera Anaplasma, Ehrlichia, Wolbachia and Neorickettsia (Paddock et al., 2003; Dumler 

et al., 2001). A common theme among the Rickettsiales is the necessity for intracellular 

replication (Dumler et al., 2001). 

The Rickettsia genus consists of four groups. The typhus group (TG) includes 

Rickettsia prowazekii, the agent of louse-borne epidemic typhus, and Rickettsia typhi, 

the agent of flea-borne murine typhus. From 1917 to 1923, R. prowazekii is thought to 

have caused nearly 3 million deaths in Russia during the revolutionary war (Zinsser et 

al., 1963) and a century before that, epidemic typhus in soldiers was likely a major 

factor contributing to Napoleon’s defeat in Russia (Raoult et al., 2006). The spotted 

fever group (SFG) contains highly pathogenic members, such as Rickettsia rickettsii, the 

causative agent of Rocky Mountain spotted fever (RMSF), which is capable of causing a 

characteristic spotted rash during human infections.  In 2004, Rocky Mountain spotted 

fever reached its highest incidence in the U.S. (Dumler and Walker, 2005). Although the 
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incidence of RMSF has increased in recent decades, the case fatality rate has 

dramatically decreased; a potential reason for this is that other less-pathogenic SFGR 

are misdiagnosed as RMSF. Both the TG and the SFG rickettsiae are exclusively carried 

by and transmitted by blood-feeding arthropods (Perlman et al., 2006). Two other 

rickettsial groups are the ancestral group and transitional group, formed on the basis of 

present day phylogenetic studies (Gillespie et al., 2007; Sonenshine and Roe, 2013; 

Stothard et al., 1994; Vitorino et al., 2007). In addition to being carried by 

hematophagous arthropods such as ticks, fleas and lice, rickettsiae are also known to 

utilize other hosts, such as beetles, flies and wasps, as well as non-arthropods such as 

leeches and amoebae (Perlman et al., 2006). Rickettsiae often appear to have a long, 

symbiotic history with their hosts; some species also appear to cause reproductive 

manipulation such as male-killing and parthenogenesis (Perlman et al., 2006).  

The primary focus of this research was to explore the distribution and 

transmission dynamics of members of the SFGR, in addition to determining the 

prevalence and distribution of Ehrlichia species present in Virginia tick populations.  

Spotted Fever Group Rickettsiae. The SFGR consists of over 20 distinct species 

and subspecies, some of which cause infections in humans and are distributed 

worldwide. The prototypical SFGR, R. rickettsii, has caused significant mortality over the 

past century (Sonenshine and Roe, 2013). Since the early 1900s, when Howard Ricketts 

first suggested the etiology of RMSF to be tick-borne, improvements in molecular 

techniques for determining phylogeny have resulted in a much broader knowledge of 

the diversity of the SFGR (McDade and Newhouse, 1986). Approximately 75% of human 
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diseases caused by the SFGR were discovered after 1984, highlighting the importance of 

molecular techniques such as PCR in the discovery of these disease-causing agents 

(Parola et al., 2005). 

The SFGR are found on multiple continents and appear to exclusively be 

transmitted by hard ticks (Ixodidae). Although SFGR have occasionally been detected in 

soft ticks (Argasidae), there is no evidence that soft ticks are capable of transmitting 

these pathogenic rickettsiae to humans (Sonenshine and Roe, 2013). In addition to the 

pathogenic members of the SFGR, multiple SFGR species having no established 

pathogenicity to humans have been discovered in the Americas; these include R. 

amblyommii, Candidatus R. andeanae, R. peacockii and R. rhipicephali. Many of these 

organisms of undetermined pathogenicity are found in tick species which frequently 

bite humans (Sonenshine and Roe, 2013).  

An uncommon trait among pathogenic tick-borne bacteria found in the SFGR is 

the ability to be transmitted transovarially within tick populations, from females to 

offspring. Certain SFGR are vertically transmitted, including R. rickettsii (Burgdorfer and 

Brinton, 1975), R. montanensis, and R. rhipicephali (Niebylski et al., 1999). Interestingly, 

each of these organisms has detrimental effects on tick survival and reproduction in 

laboratory colonies. The capacity for transovarial transmission likely stems from the long 

history of Rickettsia as arthropod endosymbionts (Perlman et al., 2006) and may lessen 

the dependence of some SFGR on vertebrate hosts for transmission, thus ensuring their 

persistence in tick populations.  
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The lone star tick, Amblyomma americanum. Commonly known as the lone star 

tick, A. americanum  was first described by Carl Linnaeus in 1758. Amblyomma 

americanum is a three-host, non-nidiculous tick with all three life stages (larva, nymph 

and adult) known to seek out large vertebrate hosts, including humans. Currently, the 

distribution of A. americanum spans much of the southeastern and mid-Atlantic portion 

of United States (Fig. 1) and has been expanding northward, with populations reported 

as far north as New York, Connecticut and Rhode Island (Ginsberg et al., 2002; Ijdo et al., 

2000). During the warmer months A. americanum can be found in various habitat types, 

predominantly in the near vicinity of woodland areas. Habitats that are well-suited for 

white-tailed deer (Odocoileus virginianus) are often areas where A. americanum are  

 
Fig. 1. Distribution of the lone star tick, Amblyomma americanum, in the United States. 
Figure adapted from CDC website (http://www.cdc.gov/ticks/geographic_distribution 
.html, accessed June 10th, 2015).  

http://www.cdc.gov/ticks/geographic_distribution%20.html
http://www.cdc.gov/ticks/geographic_distribution%20.html
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encountered (Semtner et al., 1971), likely due to the proclivity of A. americanum to 

utilize white-tailed deer as a host. These habitat types include areas of woody 

vegetation, particularly along the woods’ edge (Bartlett, 1938), and brushy rangeland 

(Semtner et al., 1971). 

In the southeastern states A. americanum is the most abundant human-biting 

tick encountered (Stromdahl and Hickling, 2012; Merten and Durden, 2000; Nadolny et 

al., 2014), representing approximately 95% of ticks collected on flags in Virginia 

(Nadolny et al., 2014); and 70-95% of ticks collected from humans residing in New 

Jersey, Maryland, Virginia, Kentucky, and South Carolina (Stromdahl and Hickling, 2012). 

Given the high density and aggressive questing behavior of A. americanum it is not 

surprising that this species is commonly found parasitizing humans. 

In the past A. americanum has primarily been considered a nuisance species; this 

tick is now recognized as the primary vector of several pathogenic organisms. Pathogens 

transmitted by A. americanum include Ehrlichia chaffeensis and E. ewingii, which cause 

infections in humans now referred to generally as “ehrlichiosis” (CDC, 2015a). A third 

pathogenic Ehrlichia species associated with A. americanum, Panola Mountain Ehrlichia 

(PME) has recently been described (Loftis et al., 2008). Rickettsia rickettsii, the agent of 

Rocky Mountain spotted fever, and Francisella tularensis, the agent of tularemia, have 

also been found in A. americanum although the infection rates for these pathogens in 

field-collected A. americanum are extremely low (Stromdahl et al., 2011; Eisen et al., 

2007). The Lyme disease-like human illness known as southern tick-associated rash 

illness (STARI) has also been associated with the bite of A. americanum, although the 
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exact etiology of this disease is unclear (Masters et al., 2008). Recently, an emerging 

disease caused by the Heartland virus, a member of the Phlebovirus genus, has caused 

severe illness in two residents of Missouri (McMullan et al., 2012) and has been 

detected in populations of A. americanum (Savage et al., 2013).    

Human monocytic ehrlichiosis, now referred to as “ehrlichiosis”, is an infection 

caused by E. chaffeensis or E. ewingii (Paddock et al., 2003). Ehrlichia chaffeensis and E. 

ewingii are obligate intracellular Gram-negative bacteria transmitted by Amblyomma 

americanum. Ehrlichiosis is reported most commonly from adults over the age of 40, 

with men affected more than women. Occupational and recreational activities involving 

rural locations are documented risk factors for contracting the disease (Paddock et al., 

2003). Most infections with E. chaffeensis are mild and resolve over time, but if left 

untreated E. chaffeensis infections can become severe, leading to serious conditions 

such as meningoencephalitis, acute renal failure, myocarditis and gastrointestinal 

hemorrhage. The risk of these complications are greater in adults over the age of 60 and 

for immunocompromised individuals (Goodman et al., 2005). Newly released 2010 

census data indicate that the 65 and older population grew faster in the last decade 

than previously seen in census history, and at a faster rate than the U.S. population as a 

whole (U.S. Census Bureau). This suggests that a larger proportion of the U.S. population 

may be at risk for contracting ehrlichiosis than ever before.  

  The Gulf Coast tick, Amblyomma maculatum. Amblyomma maculatum, 

commonly known as the Gulf Coast tick, is increasingly recognized as an arthropod of 

not only economic and veterinary interest but also of medical importance. Native to the 
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Western Hemisphere, populations of A. maculatum are found in North, South and 

Central America. In the United States, A. maculatum is reported in southeastern states 

(Fig. 2), including Alabama, Florida, Georgia, Mississippi, South Carolina, Arkansas, 

Oklahoma, Kentucky, Tennessee, Texas, and Kansas (Paddock et al., 2004, Merten and 

Durden, 2000, Goddard and Norment, 1983). Populations of A. maculatum in the mid-

1900s were described as being within 150 miles of the coast (Bishopp and Hixson, 1936; 

Cooley and Kohls, 1944; Bishopp and Trembley; 1945). In 1973, inland populations were 

reported in Oklahoma, likely introduced through the importation of livestock (Semtner  

Fig. 2. Distribution of the Gulf Coast tick, Amblyomma maculatum, in the United States. 
Figure adapted from CDC website (http://www.cdc.gov/ticks/geographic_distribution. 
html, accessed June 10th, 2015). 
 

 

http://www.cdc.gov/ticks/geographic_distribution.%20html
http://www.cdc.gov/ticks/geographic_distribution.%20html
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and Hair, 1973). In the U.S., A. maculatum are commonly associated with coastal upland 

and tall-grass prairie habitats (Bishopp and Hixson, 1936; Hixson, 1940; Semtner and 

Hair, 1973; Fleetwood, 1985; Teel et al., 1998). Larvae and nymphs feed primarily on 

birds and rodents, whereas adults commonly seek larger hosts, such as carnivores and 

ungulates, including white-tailed deer and cattle (Teel et al., 2010). 

In the United States, A. maculatum serves as the principal vector of R. parkeri, 

the agent of Tidewater spotted fever (also known as R. parkeri rickettsiosis or American 

Boutoneusse fever) (Paddock et al., 2010). Although human infections with R. parkeri 

have been associated only with A. maculatum (Paddock et al., 2010), R. parkeri has been 

detected in A. americanum collected from Tennessee and Georgia (Cohen et al., 2009). 

Rickettsia parkeri is an obligate intracellular α-proteobacterium belonging to the 

spotted fever group of rickettsiae (SFGR). Although the organism was first described in 

1937 (Parker et al., 1939) it was not known to be pathogenic to humans until 2002, 

when R. parkeri was isolated from a resident of southeastern Virginia (Paddock et al., 

2004). Since then over 37 confirmed human cases of infection caused by R. parkeri have 

been described, mostly from the southeastern United States (Paddock & Goddard, 

2015). The infection caused by R. parkeri, Tidewater spotted fever, is generally less 

severe than Rocky Mountain spotted fever (RMSF). Symptoms associated with 

Tidewater spotted fever include fever, headache, an occasional rash and an eschar at 

the site of tick attachment (Paddock et al., 2003; Whitman et al., 2007; Romer et al., 

2011). As of 2010, the Centers for Disease Control and Prevention (CDC) no longer 

reports RMSF cases as such; instead, a broader category, “Spotted Fever Rickettsiosis”, 
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has taken its place. This change occurred because of a lack of ability to serologically 

differentiate between human cases caused by R. rickettsii, R. parkeri and other 

potentially pathogenic SFGR (CDC, 2015b). 

The American dog tick, Dermacentor variabilis. Dermacentor variabilis, 

commonly referred to as the American dog tick, is widely distributed throughout the 

United States (Fig. 3), extending north into Canada and south into Mexico (Bishopp and 

Trembley 1945). Larvae and nymphs are commonly found parasitizing small mammals; 

in Virginia, Sonenshine et al. (1966) reported nearly 98% of D. variabilis larvae and 

nymphs were found on two species, the white-footed mouse (Peromyscus leucopus) and 

the meadow vole (Microplus pennsylvanicus). Vertebrate hosts for adult D. variabilis  

Fig. 3. Distribution of the American dog tick, Dermacentor variabilis, in the United 

States. Figure adapted from CDC website (http://www.cdc.gov/ticks/geographic_ 

distribution.html, accessed June 10, 2015).  

http://www.cdc.gov/ticks/geographic_%20distribution.html
http://www.cdc.gov/ticks/geographic_%20distribution.html
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include domestic and wild medium-sized mammals, such as dogs, cats, horses, raccoons,  

Virginia opossums and squirrels (Anderson & Magnarelli, 1980). The most important 

vegetative types for finding D. variabilis adults are low, deciduous grass (Sonenshine et 

al., 1966). Incidentally, the density of P. leucopus and M. pennsylvanicus are highest in 

this class of vegetation (Sonenshine et al., 1966). 

Dermacentor variabilis has historically played an important role as the primary 

vector of R. rickettsii, the agent of Rocky Mountain spotted fever. Although this tick has 

long been associated with R. rickettsii in the U.S., present-day surveys indicate a very 

low prevalence of R. rickettsii in D. variabilis populations (Moncayo et al., 2010; 

Stromdahl et al., 2011; Nadolny et al., 2014). The rickettsial endosymbiont, Rickettsia 

montanensis, is more commonly found in D. variabilis, albeit in low numbers (<5%) 

(Carmichael et al., 2010; Stromdahl et al., 2011). Although R. montanensis was not 

believed to be pathogenic, a recent report of febrile illness has been associated with a 

bite of a R. montanensis-infected D. variabilis (McQuiston et al., 2012). This tick is also 

known to be a competent vector of Francisella tularensis, the causative agent of 

tularemia (Reese et al., 2011). Although prevalence of this pathogen in field-collected D. 

variabilis is quite low (<0.1%) (Hopla, 1953; Calhoun and Alford 1955), the efficiency and 

speed at which F. tularensis can be transmitted suggests that D. variabilis may be an 

important source of tularemia infections (Reese et al., 2011).  

The blacklegged tick, Ixodes scapularis. Ixodes scapularis, commonly referred to 

as the blacklegged tick, is the primary eastern U.S. vector of Borrelia burgdorferi sensu 
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strico, the agent of Lyme disease, and is arguably the most significant arthropod vector 

within the United States. In the western U.S., the primary vector of B.  

burgdorferi s.s. is Ixodes pacificus. The range distribution of I. scapularis includes the 

eastern seaboard, the upper-Midwest and several southeastern states (Fig. 4). Ixodes 

scapularis utilizes a wide variety of vertebrate hosts. Adult I. scapularis feed primarily on 

medium to large mammals, including white-tailed deer (Anderson and Magnarelli 1980; 

Schulze et al., 1986). Immature I. scapularis feed on smaller animals, including 

mammalian, avian and reptilian hosts. Mice and skinks are particularly important hosts 

for larvae and nymphs (Keirans et al., 1996).  

 

Fig. 4. Distribution of the blacklegged tick, Ixodes scapularis, in the United States. Figure 

adapted from CDC website (http://www.cdc.gov/ticks/geographic_distribution.html, 

accessed June 10, 2015). 

http://www.cdc.gov/ticks/geographic_distribution.html
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Other pathogens transmitted by I. scapularis include Anaplasma phagocytophilum, 

the agent of anaplasmosis, and Babesia microti, the agent of babesiosis, although these 

species are usually only associated with the northern populations of I. scapularis in the 

U.S. (Stromdahl et al., 2011).  

Ticks and Tick-borne Diseases of Virginia. Currently the most commonly reported 

tick-borne disease in Virginia is Lyme disease, followed by spotted fever group 

rickettsioses (formerly reported as Rocky Mountain spotted fever) and 

ehrlichiosis/anaplasmosis (reported together). Ten-year trends (2004 to 2013) indicate a 

general increase in reported cases of tick-borne diseases in Virginia, with the exception 

of tularemia (Fig. 5).  

The most recent surveys of the Virginia tick population were conducted in the 1970s 

by Sonenshine (1979) and Garrett and Sonenshine (1979), who determined the 

composition and relative densities of human-biting ticks by flagging vegetation. These 

surveys revealed the most commonly encountered tick to be the American dog tick, D. 

variabilis, followed by smaller yet well-established populations of A. americanum and I. 

scapularis (Sonenshine, 1979; Garrett and Sonenshine, 1979). At the time these surveys 

were conducted, the only reportable tick-borne disease in Virginia was Rocky Mountain 

spotted fever; there were 90 cases reported in the state in 1979 (VDH). The RMSF case 

fatality rate at that time was approximately 5% (CDC); however, since 2000, the RMSF 

case fatality rate has steadily decreased and is now approaching 0% (CDC). 
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Fig. 5. Tick-borne disease cases per 100,000 people per year from 2004 – 2013 in 
Virginia. In 2010, the case definition of RMSF changed to “spotted fever group 
rickettsioses”. Figure adapted from the Virginia Department of Health 
(http://www.vdh.virginia.gov/Epidemiology/Surveillance/SurveillanceData/ReportableDi
sease/Tables/table2a_trend13.pdf, accessed June 10, 2015). 

 

 

 

 

 

 

 

 

 

 

 

0

500

1000

1500

2000

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

C
as

es
 p

er
 1

0
0

,0
0

0

Lyme Disease RMSF Ehrlichiosis/Anaplasmosis Tularemia

http://www.vdh.virginia.gov/Epidemiology/Surveillance/SurveillanceData/ReportableDisease/Tables/table2a_trend13.pdf
http://www.vdh.virginia.gov/Epidemiology/Surveillance/SurveillanceData/ReportableDisease/Tables/table2a_trend13.pdf


16 
 

 

RESEARCH OBJECTIVES 

The purpose of this dissertation research was to determine the composition and 

prevalence of tick-borne pathogens present in tick populations within southeastern 

Virginia. Of primary interest are spotted fever group rickettsiae (SFGR) and ehrlichiae 

present in commonly-encountered, human biting ticks. Furthermore, this research 

aimed to expand our knowledge of the ecology and evolutionary history of tick-borne 

diseases by exploring the transmission dynamics of R. parkeri within the newly-

established, highly-infected A. maculatum populations in Virginia. 

The final research objective is to explore the potential of A. americanum to serve 

as a secondary vector of R. parkeri, potentially increasing the risk of exposure of this 

pathogen to humans. By pairing pathogen prevalence data derived from field 

investigations with transmission dynamics derived from laboratory procedures, new 

insights could be made about the nature of the relationship between rickettsial 

organisms and ticks. This research provides useful information about the nature of tick-

pathogen dynamics, thus increasing our understanding of and potential to control tick-

borne disease. 
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H.D., Hynes W.L., 2011. Emerg. Infect. Dis. 17, 896–898. 

CHAPTER 1 

 RICKETTSIA PARKERI IN GULF COAST TICKS, SOUTHEASTERN VIRGINIA, 

USA 

 

INTRODUCTION 

Rickettsia parkeri is a gram negative, obligate intracellular bacterium belonging 

to the spotted fever group rickettsiae (SFGR). First isolated from Amblyomma 

maculatum Koch in 1937 (Parker et al., 1939), R. parkeri was not considered to be 

pathogenic to humans until 2002, when it was isolated from a man residing in the 

Tidewater region of Virginia presenting with signs and symptoms of a spotted fever-like 

illness (Paddock et al., 2004). Since then, three cases have been reported from 

southeastern Virginia (Paddock et al., 2004; Whitman et al., 2007; Wright et al., 

unpublished), and over 37 human infections caused by R. parkeri have been reported 

from the United States, primarily in southeastern states (Paddock & Goddard, 2015). 

Infection with R. parkeri, referred to either as Tidewater spotted fever or R. parkeri 

rickettsiosis, is clinically very similar to Rocky Mountain spotted fever and cannot 

reliably be differentiated based on serological assays. Because of the inability to 

differentiate illnesses caused by SFGR, Rocky Mountain spotted fever and other closely-

related infections are now simply reported as “spotted fever rickettsioses”. 

The Gulf Coast tick, A. maculatum, is distributed throughout many of the 

southeastern states in the U.S. and is the primary vector of R. parkeri. The Gulf Coast
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tick has been found in multiple states, including Alabama, Arkansas, Delaware, Florida, 

Georgia, Kansas, Kentucky, Maryland, Mississippi, Missouri, Oklahoma, North Carolina, 

South Carolina, Tennessee, and Texas (Varela-Stokes et al., 2011; Paddock et al., 2004; 

Merten and Durden, 2000; Goddard and Norment, 1983, Florin et al. 2014, Brown et al. 

2011). The reported prevalence of R. parkeri in A. maculatum ranges from 5 – 35% in A. 

maculatum populations (Cohen et al., 2009; Sumner et al., 2007; Trout et al., 2010; 

Varela-Stokes et al., 2011). 

Isolated A. maculatum have in the past been reported from Virginia on occasion 

(Sonenshine et al., 1965; Levine et al., 1991) but these collections were attributed to 

drop off events from migratory birds rather than from established populations. The 

purpose of this research was to determine whether A. maculatum is now established in 

southeastern Virginia and to find the proportion of ticks infected with R. parkeri.  
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MATERIALS AND METHODS 

Multiple locations in southeastern Virginia were sampled on a weekly or bi-

weekly basis from 2010 – 2013 (Fig. 6). Questing ticks were sampled from a variety of 

transects within each field site in order to represent different habitat types, including 

grassland, closed-canopy forest and forest edge. Ticks were collected by flagging each 

established transect, ranging in length from 100 – 2000 m, using white denim flags 

attached to denim rods as described by Ginsberg and Ewing (1989). Ticks were identified 

to species based on morphological features (Kierans and Litwak, 1989) and confirmed as 

necessary by molecular identification based on sequencing of the 16S gene (Nadolny et 

al., 2011). Ticks were stored, without ethanol, at -80 °C until DNA extraction. Each adult 

tick was bisected longitudinally using a sterile scalpel blade. One half was saved at -80 °C 

and the other was used for DNA extraction and molecular analysis. Prior to DNA 

extraction, each tick was subjected to bead-beating using an equal mixture of 1mm and 

5mm glass beads for 30 – 60 seconds on a mini bead-beater (BioSpec Products, Inc., 

Bartlesville, OK). DNA was extracted from individual adult halves using the Qiagen 

DNeasy Blood and Tissue kit (Qiagen, Inc., Valencia, CA), following the manufacturer’s 

instructions, and stored at -20°C prior to processing. 

DNA samples were tested for R. parkeri DNA by real-time PCR using a 

MiniOpticon Real-Time PCR System (Bio-Rad, Hercules, CA, USA). Testing for R. parkeri 

DNA was by amplification and detection of a fragment of the ompB gene by using 

Rpa129F and Rpa224R primers and Rpa188 as the probe (p. 108). Samples negative  

 



20 
 

 

Fig. 6. Locations where Amblyomma maculatum were collected between 2010 and 2013. 

 

 

for R. parkeri DNA were tested for Rickettsia spp. by amplifying a 111-bp fragment of 

the 17-kDa antigen gene (p. 108). 

Three representative A. maculatum samples positive for R. parkeri by real-time 

PCR were confirmed by sequencing of a 540-bp fragment of the ompA gene. The 

fragments were amplified on an iCycler (Bio-Rad) using primers 190-FN1 and 190-RN1 

(p. 108). Samples positive for Rickettsia spp. but negative for R. parkeri had their ompB 

gene amplified and sequenced using primers RompB11F and RompB1902R (p. 108). All 

PCR products for sequencing were purified using Wizard PCR Preps DNA Purification 
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System (Promega, Madison, WI, USA), and sequencing reactions were performed using 

the BigDye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, 

USA) as described by the manufacturer and using appropriate primers (p. 108). 

Sequence similarities were identified by a BLAST search (http://blast.ncbi.nlm.nih.gov). 
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RESULTS 

From 2010 – 2013, a total of 346 adult and 10 nymphal A. maculatum were 

collected on flags from nine locations in southeastern Virginia (Fig. 6). A total of 67 A. 

maculatum were collected in 2010, 97 in 2011, 139 in 2012 and in 2013, 53 were 

collected (Table 1). A. maculatum were found from April to September, with peak 

collections occurring during June in 2010, 2011 and 2012 and July of 2013 (Fig. 7). 

Overall prevalence of R. parkeri during 2010-2013 was 49.1% in adults (n=346) 

and 0% in nymphs (n=10). Prevalence in adults ranged from 30.2% in 2013 to 55.7% in 

2011 (Table 1). Prevalence varied by location, ranging from 0% at some locations to 

100% (n=1) at others (Table 2). A single A. maculatum adult collected from the 

Portsmouth site in 2010 tested negative for R. parkeri but positive for Rickettsia spp. by 

real-time PCR. Sequencing of a fragment of the ompB gene revealed this isolate to 

contain DNA with a 100% match to Candidatus Rickettsia andeanae isolate T163 

(GenBank accession no. GU395297.1), a rickettsia initially found in Peru (Jiang et al., 

2005.) 
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Table 1  
Prevalence of Rickettsia parkeri in Amblyomma maculatum nymphs and adults collected 
from southeastern Virginia from 2010-2013. 

Year Life Stage Number positive Number tested Prevalence 

2010 Adult 28 65 43.1 
 Nymph 0 2 0.0 
2011 Adult 54 97 55.7 
 Nymph 0 0 0.0 
2012 Adult 73 131 55.7 
 Nymph 0 8 0.0 
2013 Adult 16 53 30.2 
 Nymph 0 0 0.0 

Total Adult 171 346 49.4 
 Nymph 0 10 0.0 

 

 

 
Table 2  
Prevalence of Rickettsia parkeri in Amblyomma maculatum (nymphs and adults) from 
multiple locations in southeastern Virginia. 
 

Year Site County 
Number 
Positive 

Number 
Tested 

Prevalence 
(%) 

2010 VB1 Virginia Beach 0 10 0.0 
 PC1 Portsmouth 1 3 33.3 
 CC1 Chesapeake 27 54 50.0 
2011 VB1 Virginia Beach 1 5 33.3 
 YC1 James City 1 1 100.0 
 VB3 Virginia Beach 0 1 0.0 
 HC1 Hampton 1 2 50.0 
 VB2 Virginia Beach 0 1 0.0 
 CC1 Chesapeake 51 87 58.6 
2012 VB1 Virginia Beach 11 36 30.6 
 YC1 James City 6 13 46.2 
 NH1  Northampton 0 1 0.0 
 HC1 Hampton 1 2 50.0 
 CC1 Chesapeake 55 87 63.2 
2013 VB1 Virginia Beach 8 31 25.8 
 SF1 Suffolk 0 6 0.0 
 CC1 Chesapeake 8 16 50.0 

2010 – 2013 All All 171 356 48.0 
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 Fig. 7. Phenology of adult Amblyomma maculatum collected from southeastern Virginia 
from 2010 to 2013. 
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DISCUSSION 

Discovery of the numbers and life stages of A.maculatum ticks in widely 

dispersed locations indicates that they are now established in southeastern Virginia. 

Finding adult A. maculatum ticks at the Portsmouth site was unexpected because this is 

a site devoid of white-tailed deer, a major host for adult ticks (Scrifres et al., 1988; 

Barker et al., 2004). The R. parkeri prevalence of 30.2 – 55.7% in adult A. maculatum 

ticks collected from southeastern Virginia differs from reported prevalences of R. 

parkeri in A. maculatum ticks elsewhere in the United States. R. parkeri prevalence in A. 

maculatum collected from Florida and Mississippi from 2005 to 2007 was 21.9% and 

38.6%, respectively (Paddock et al. 2010), while the average prevalence in A. maculatum 

collected from Florida, Kentucky, Mississippi and South Carolina from 1996 to 2005 was 

11.5% (Sumner et al., 2007). For A. maculatum collected from Georgia, a prevalence of 

5%–11.5% has been reported (Cohen et al., 2009). In Arkansas, only 3 of 207 A. 

maculatum ticks contained R. parkeri (Trout et al., 2010). Despite the high percentage of 

R. parkeri in the southeastern Virginia ticks, 141 of 244 positive samples from 2010 – 

2013 came from one collection site in Chesapeake, VA. One explanation could be that R. 

parkeri is transovarially transmitted. Currently, there is no evidence that R. parkeri is 

transmitted transovarially by A. maculatum ticks, although transovarial transmission of 

R. parkeri has been shown in A. americanum (Goddard, 2003) and Amblyomma triste 

ticks (Nieri-Bastos et al., 2013) under laboratory conditions. 

A single A. maculatum tick was also found to contain Candidatus Rickettsia 

andeanae, which has rarely been reported in the United States (Paddock et al., 2010). 
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Whether Candidatus Rickettsia andeanae is pathogenic to humans is unknown, although 

it has been suspected to cause infections in persons in Peru (Jiang et al., 2005). Further 

research is still needed to identify the potential vertebrate reservoir or amplifier host(s) 

of R. parkeri. This information could be useful for controlling the transmission of R. 

parkeri to and from the vector, as well as predicting where R. parkeri may be present. 

Studies relating to transovarial and transstadial transmission of R. parkeri in A. 

maculatum ticks would also be useful for predicting the spread of infections. Because R. 

parkeri is known to cause infection in humans, the presence of this pathogen in 

southeastern Virginia should be a health concern to persons in this region. 
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CHAPTER 2 

 TICKS AND SPOTTED FEVER GROUP RICKETTSIAE OF SOUTHEASTERN 

VIRGINIA 

 

INTRODUCTION 

Ticks are ectoparasitic vectors of disease-causing microorganisms with complex 

life histories that are intimately tied to their hosts and the habitats in which they are 

found. Each species of human-biting tick is a vector for a different suite of infectious 

agents. There is great variation in the dominant tick species in different regions of the 

United States (Merten and Durden, 2000; Stromdahl and Hickling, 2012). Much of the 

recent work on the ecology of ticks and their associated pathogens has been done in the 

northeastern United States, where Lyme disease has become a major human health 

threat in recent decades (Ostfeld et al., 1995; LoGiudice et al., 2003). However, recent 

increases in rickettsial infections such as those caused by Rickettsia parkeri and related 

organisms such as Ehrlichia chaffeensis and Anaplasma phagocytophilum have drawn 

the focus of some research to the southeastern United States. The community of 

human-biting ticks in the southeast is dramatically different than that of the northeast. 

In the southeast, Amblyomma americanum, the lone star tick, is the primary human-

biting tick, while in the northeast, the blacklegged tick, Ixodes scapularis, and the 

American dog tick, Dermacentor variabilis, are the predominant human-biting ticks 

(Merten and Durden, 2000; Stromdahl and Hickling, 2012). 
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Although differences in the dominant human-biting ticks have been noted, there 

is a dearth of long-term surveillance on the tick communities in the southeast, the 

pathogens that questing southeastern ticks carry, and how these numbers are changing 

over time. The range expansion of tick populations from the southeast into the mid-

Atlantic region has had a serious impact on human cases of tick-borne diseases. Perhaps 

the most dramatic change has been the increase in numbers of A. americanum and its 

associated pathogens during the past several decades (Childs and Paddock, 2003; 

Paddock and Yabsley, 2007). Increased white-tailed deer (Odocoileus virginianus) 

populations and expanded forested habitat have led to the increase in A. americanum 

ticks and an expansion of their range (Paddock and Yabsley, 2007). Since 2010, 2 new 

species of tick have established permanent populations in southeastern Virginia. The 

Gulf Coast tick, Amblyomma maculatum, has established several populations in 

southeastern Virginia and brought with it R. parkeri, the agent of Tidewater spotted 

fever (also known as “Rickettsia parkeri rickettsiosis”) (Wright et al., 2011). In addition, 

Ixodes affinis, a known sylvatic vector for Borrelia burgdorferi s.s., the causative agent of 

Lyme disease, has also established populations throughout southeastern Virginia 

(Nadolny et al., 2011). The addition of 2 new species to a tick community has 

unpredictable impacts on pathogen prevalence and tick species community structure. 

The spotted fever group rickettsiae (SFGR) consist of multiple species ranging from 

nonpathogenic organisms such as Rickettsia amblyommii to potentially lethal pathogens 

such as Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever. 

Rickettsia amblyommii is found primarily in A. americanum, and reported prevalence is 
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variable, ranging from 0% to 84% in the United States (Childs and Paddock, 2003; 

Mixson et al., 2006; Moncayo et al., 2010; Smith et al., 2010). Although it is has not been 

conclusively established that R. amblyommii is pathogenic to humans, there is some 

evidence suggesting that it is capable of causing human infection (Apperson et al., 2008; 

Billeter et al., 2007). Another SFGR, R. montanensis, is associated with D. variabilis. 

Although generally considered to be nonpathogenic, R. montanensis was recently 

associated with an afebrile rash illness (McQuiston et al., 2012). Reported prevalence of 

R. montanensis in D. variabilis is generally low, ranging from 3.2% in D. variabilis 

collected from humans (Stromdahl et al., 2011) and 3.8% in D. variabilis from Maryland 

(Ammerman et al., 2004) to 10% in D. variabilis from Tennessee (Moncayo et al., 2010). 

Rickettsia parkeri is a pathogenic SFGR primarily transmitted by A. maculatum. Reported 

prevalence of R. parkeri in A. maculatum ranges from 1.4% to 43.1% (Paddock et al., 

2010; Sumner et al., 2007; Cohen et al., 2009; Jiang et al., 2012; Trout et al., 2010; 

Wright et al., 2011; Fornadel et al., 2011; Varela-Stokes et al., 2011; Ferrari et al., 2012). 

Also found in A. maculatum is Candidatus Rickettsia andeanae, a SFGR of unknown 

pathogenicity. Reported prevalence of Candidatus R. andeanae in ticks varies from 0.6% 

to 10% (Fornadel et al., 2011; Jiang et al., 2012; Varela-Stokes et al., 2011; Wright et al., 

2011; Ferrari et al., 2012; Sumner et al., 2007; Paddock et al., 2010). We have been 

conducting active tick surveillance through-out southeastern Virginia since 2009, with 

intensive year-round surveillance since 2010. The purpose of our surveillance has been 

to describe the tick and tick-borne disease-causing pathogen populations in 

southeastern Virginia, determine which species are the most abundant, and document 
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changes in species composition overtime. Ticks collected from the region have been 

tested for several members of the SFGR. All of this information will be used to develop 

and parameterize predictive mathematical models assessing the risk of human disease 

in this region. Here, we describe the results of our surveillance and the rates of SFGR 

infection found in the ticks of southeastern Virginia. 
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MATERIALS AND METHODS 

Questing ticks were collected from 13 sites in 8 counties and cities throughout 

southeastern Virginia, comprising a mix of habitats and degrees of human disturbance 

(Fig. 8). Sites were selected across the region to provide a variety of landscapes 

including 3 urban parks, 4 government installations, 4 state parks/preserves, a National 

Wildlife Refuge, and a Nature Conservancy site. The majority of the sites were chosen to 

parallel studies conducted in the region by Sonenshine and others from the 1960s 

through the 1980s (Sonenshine et al., 1966, 1995; Sonenshine, 1979). Additional sites 

were added to so that there was a sampling site in every county and city in the region. 

Each site was composed of one or more transects ranging from100 m to 800 m long, 

with one 2000 m long transect through the Nature Conservancy site in a late secondary 

successional tract. Each individual transect is confined to one particular habitat for a 

total of approximately 1500 m of grass-dominated, 1800 m of edge, and 3000 m of 

wooded habitat. The number of transects at each site was determined by the variety of 

habitats present with the goal of having one grass-dominated habitat, one closed 

canopy wooded habitat, and one edge habitat. The same transects have been flagged 

each time the site was visited, resulting in a consistent area being sampled during each 

collection trip. Sampling was conducted at 10 sites comprising 24 transects in 2010, 13 

sites comprising 33 transects in 2011, and 12 sites comprising 29 transects in 2012. Each 

site was sampled monthly during the winter months when tick density was low, but was 

sampled weekly or bi-weekly when tick densities are high from May through October   

(Table 3). Questing ticks were collected using flags constructed from 1 m2 white denim 



32 
 

 
 

      Fig. 8. Map of collection sites throughout southeastern Virginia. 
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squares attached to dowel rods and swept through low vegetation and along the ground 

as described previously (Ginsberg and Ewing, 1989). Flags were inspected for ticks every 

few meters; careful training was provided to ensure consistency of collection. Adult and 

nymphal ticks were collected from the flag with forceps, while larvae were collected 

immediately with masking tape before being placed in vials and brought back to the lab 

for morphological identification. Flags were carefully checked between transects and 

washed between sites to ensure collection of all ticks and prevent contamination of the 

next sample. Each tick was morphologically identified to species (Keirans and Clifford, 

1978; Keirans and Litwak, 1989; Oliver et al., 1987) and then frozen at −20°C until 

processed for pathogen testing. Amblyomma americanum and D. variabilis adults were 

pooled in groups of up to 10 for DNA extraction and pathogen testing; A. americanum 

nymphs were grouped in pools of up to 25 for testing. Pools were restricted to ticks 

collected from the same transect on the same day. All other ticks were individually 

extracted and tested. Every adult tick was cut in half; one half used for analysis, the 

other half stored at −80°C for future analyses or validations. DNA was extracted using 

the DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, CA) according to the 

manufacturer’s protocol and stored at −20°C until analyzed. DNA samples were tested 

for rickettsial DNA by real-time PCR using a MiniOpticon Real-Time PCR System (BioRad 

Laboratories, Hercules, CA). Samples were tested for Rickettsia spp., R. amblyommii, R. 

montanensis, R. parkeri, or Candidatus R. andeanae DNA using quantitative PCR (qPCR) 

(p. 108). Reactions were carried out using EconoTaq PLUS 2X Master Mix (Lucigen Corp., 

Middleton, WI), 0.5–0.7 µM of each primer, 0.4–0.5 µM probe, 5–8 mM MgCl2, and 2–5 
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µL DNA template in a final reaction volume of 20 µL. The PCR protocol for all reactions 

consisted of 50°C for 2 min, 95°C for 2 min, and then 45 cycles of 95°C for 15 s and 60°C 

for 30 s. A select number of positive samples were periodically sampled and Rickettsia 

species confirmed by DNA sequencing. 

 

 

Table 3  
The number of sites sampled and total transect sampling events during 2010 – 2012. 
Also reported are the total number of ticks collected and the average number of ticks 
collected per sampling event each year. 

 
 

 

 

 

 

 

 

 

 

 

 2010 2011 2012 

Sites sampled 10 13 12 
Transect sampling events 840 968 1921 
Total ticks collected 13263 17055 34216 
Average ticks/sampling event 15.8 17.6 17.8 
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Because A. americanum and D. variabilis tick DNA was extracted in pools, a 

maximum likelihood estimation (MLE) was used to approximate true infection rate of R. 

amblyommii and R. montanensis, respectively. The software used to perform MLE was 

developed by Brad Biggerstaff and acquired from the Centers for Disease Control and 

Prevention website (CDC, 2013a). 

 

 

Table 4  
Number of questing ticks collected each year (excluding Amblyomma americanum 
larvae). 

Tick Species 2010 2011 2012 Total Percentage of Total 

I. brunneus 0 0 3 3 0.02% 

I. scapularis 104 208 231 513 2.7% 

D. variabilis 280 326 416 1022 5.5% 

A. maculatum 74 116 145 335 1.8% 

I. affinis 81 152 177 410 2.2% 

A. americanum 3250 5450 7731 16431 87.8% 

H. leporispalustris 2 4 5 11 0.06% 

Total 3789 6238 8698 18725 100.0% 
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RESULTS 

From 2010 to 2012, 66,590 questing ticks (37,450 ticks, excluding A. americanum 

larvae) were collected from southeastern Virginia. Amblyomma americanum comprised 

96.5% of all ticks collected. The majority of the A. americanum were larvae collected 

during the late summer, comprising 76.5% of the A. americanum collected. Excluding 

larvae, A. americanum adults and nymphs still accounted for more than 87% of ticks 

collected (Table 4). Four other species of ticks were commonly collected using flags, 

including D. variabilis, I. scapularis, and A. maculatum, as well as I. affinis (Table 4). 

These trends were similar for grass, edge, and wooded sampling sites. The one site 

undergoing late secondary succession had higher percentages of D. variabilis and A. 

maculatum, but was still dominated by A. americanum. 

There was an increase in the total number of ticks collected each year (Table 4), 

which can be explained by the addition of transects in 2011 and an increase in transect 

sampling events each year. Sites that were sampled monthly or bi-weekly in 2010 and 

2011 were increased to weekly sampling in 2012. However, even with the increase in 

collections in 2012, the average number of ticks collected per sampling trip remained 

roughly the same between 2011 and 2012.  

Rickettsia amblyommii was detected in over 72.5% of A. americanum pools 

tested (Table 5). Maximum likelihood estimates showed R. amblyommii present at an 

average prevalence (adults and nymphs) of 26.9% in 2010 and 54.9% in 2011. Rickettsia 

montanensis was found in 5.6–6.9% of D. variabilis pools tested. Maximum likelihood 

estimates showed R. montanensis prevalence to be 1.5% in 2010 and 2.0% in 2011. All 
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D. variabilis pools were initially tested for Rickettsia spp. DNA with positive samples 

being tested for R. montanensis. All samples positive for Rickettsia spp. were positive for 

R. montanensis. No evidence of R. rickettsii, the causative agent of Rocky Mountain 

spotted fever, was found. Rickettsia parkeri prevalence in A. maculatum ranged from 

43.1–55.7%. In 2010, one A. maculatum adult was found to be positive for Candidatus 

Rickettsia andeanae (Table 5). 

 
 
 
 
Table 5  
Prevalence of SFGR in ticks collected from southeastern Virginia, 2010-2012.  

Year Organism Tick Species 
Life 

Stage 
# Positive/ 

# Tested 
# 

Individuals 

Positive 
Pools 
(%) 

MLE 
Prevalence 

(%) 

2010 R. montanensis D. variabilis Adult 4/71 268 5.6 1.5 

        
 R.  amblyommii A.  

americanum 
All 265/326 2509 81.3 26.9 

   Adult 163/195 1191 83.6 33.4 

   Nymph 102/131 1318 77.9 19.6 

        
 R.  parkeri A.  

maculatum 
All 28/67 67 41.8 N/A 

   Adult 28/65 65 43.1 N/A  

   Nymph 0/2 2 0.0 N/A  

        
 Candidatus R.  

andeanae 
A. 
maculatum 

All 1/67 67 1.5 N/A  

   Adult 1/65 65 1.5 N/A  

   Nymph 0/2 2 0.0 N/A  

        

      

      

      



38 
 

 
 

Table 5. Continued.      

Year Organism Tick Species 
Life 

Stage 
# Positive/ 

# Tested 
# 

Individuals 

Positive 
Pools 
(%) 

MLE 
Prevalence 

(%) 

2011 R.  montanensis D.  variabilis Adult 5/72 254 6.9 2.0 

        
 R.  amblyommii A.  

americanum 
All 65/82 252 79.3 54.9 

   Adult 29/40 127 72.5 44.3 

   Nymph 36/42 125 85.7 67.3 

        
 R.  parkeri A.  

maculatum 
All 54/97 97 55.7 N/A  

   Adult 54/97 97 55.7 N/A  

   Nymph 0/0 0 - -  

        
 Candidatus R.  

andeanae 
A.  
maculatum 

All 0/95 95 0.0 N/A  

   Adult 0/95 95 0.0 N/A  

   Nymph 0/0 0 - - 

2012 R.  parkeri A.  
maculatum 

All 72/139 139 51.8 N/A  

   Adult 72/131 131 55.0 N/A  

   Nymph 0/8 8 0.0 N/A  

 Candidatus R. 
andeanae 

A.  
maculatum 

All 0/139 139 0.0 N/A  

   Adult 0 131 0.0 N/A  

   Nymph 0 8 0.0 N/A  
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DISCUSSION 

We conclude that the tick community in southeastern Virginia is overwhelmingly 

dominated by A. americanum, with smaller but well-established populations of D. 

variabilis, I. scapularis, A. maculatum, and I. affinis. While populations of A. 

americanum, D. variabilis, and I. scapularis were expected in southeastern Virginia, 

populations of I. affinis and A. maculatum were unexpected when this surveillance 

project began. These five tick species are ones a large host, e.g., white-tailed deer, are 

likely to encounter. Ixodes brunneus and Haemaphysalis leporispalustris were collected 

only incidentally by flagging, but it is likely that host-targeted collections of birds would 

yield substantial numbers of these ticks. The sheer numbers of A. americanum make it 

difficult to encounter anything other than this species during the times of year and in 

the habitats where they are abundant. This “lone star effect” swamps out the other 

species, especially during larval season and makes it impossible to assume that anything 

that might be true for tick population ecology in the northeast is applicable to tick 

communities in the southeast. The results of our survey may be a more accurate 

representation of tick communities in other areas of the southeast, particularly along 

the coastal plain. 

Rickettsia amblyommii and R. parkeri are the dominant SFGR found in 

Amblyomma spp. ticks in southeastern Virginia. Although it has not been established 

that R. amblyommii is pathogenic to humans, R. parkeri is a known pathogen, and its 

high prevalence in A. maculatum in southeastern Virginia (43–55%) indicates that this 

tick may be an important disease vector in the region. Other reports of R. parkeri 
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prevalence in southern states have generally been lower, ranging from 1.5% (Trout et 

al., 2010) to 33% (Varela-Stokes et al., 2011). Rickettsia parkeri prevalence in northern 

Virginia (Fornadel et al., 2011) was found to be comparable (41.4%) to rates reported in 

this study, indicating that R. parkeri prevalence in Virginia is higher than in other states 

to the south and west.  

Interestingly, no R. rickettsii was found in D. variabilis collected in 2010 and 

2011. The absence of R. rickettsii and low prevalence of R. montanensis have also been 

observed in ticks collected from Tennessee in 2007 and 2008 (Moncayo et al., 2010) and 

from D. variabilis collected off of humans from 1997 to 2009 (Stromdahl et al., 2011). 

Despite the lack of R. rickettsii detected in this and other studies, reported cases of 

spotted fever group rickettsiosis continue to rise in Virginia. From 2002 to 2010 there 

was a 3-fold increase in the number of RMSF cases in Virginia (VDH, 2013); in 2011, 

RMSF cases were no longer reported as such by the CDC and were instead reported as a 

“spotted fever group rickettsiosis” (VDH, 2013). From 2010 to 2011, there was a 1.5-fold 

increase in the number of SFGR cases reported in Virginia with nearly a 3-fold increase 

in the eastern region of Virginia (VDH, 2013). Furthermore, the case fatality rate of 

Rocky Mountain spotted fever nationwide has decreased from 28% in 1944 to <1% 

beginning in 2001 (CDC, 2013b). Our study reports no R. rickettsii in 522 questing D. 

variabilis tested from 2010 and 2011, which supports data from the Army Public Health 

Command’s Human Tick Test Kit Program. They reported no ticks positive for R. rickettsii 

out of 106 ticks biting military personnel at Ft. Eustis, Virginia, from 1997 through 2012 

(Stromdahl, pers. communication). Given the lack of R. rickettsii found in ticks in Virginia 
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and other states, we suggest that this organism is no longer the primary cause of human 

infection diagnosed as spotted fever group rickettsiosis. Given the high prevalence of 

other SFGR, including R. parkeri, in southeastern Virginia, it is likely that these organisms 

have contributed to human cases reported as RMSF. It has also been suggested that 

Ehrlichia chaffeensis, a closely related species transmitted by A. americanum which 

causes acute symptoms similar to RMSF, may contribute to this misdiagnosis (Stromdahl 

et al., 2011).  

In conclusion, A. americanum is by far the most commonly encountered human-

biting tick in southeastern Virginia, harboring a high prevalence of R. amblyommii. The 

composition of the tick community is undergoing changes as two invading species, A. 

maculatum and I. affinis, now have established populations in this region. The SFGR 

populations have also undergone changes with the absence of R. rickettsii and the influx 

of R. parkeri-infected A. maculatum, posing a new health threat to humans. It remains 

to be seen how the dynamic ecology of human-biting ticks and their associated SFGR 

will impact human health in the mid-Atlantic region in coming decades. Information 

about tick and SFGR ecology collected in this study will help parameterize models that 

will be used to predict the risk of tick-borne infections. 
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Chapter adapted from Wright, C.L., Gaff, H.D., Hynes, W.L. 2014. Ticks Tick Borne Dis. 5, 978-
982. 

CHAPTER 3 

 PREVALENCE OF EHRLICHIA CHAFFEENSIS AND EHRLICHIA EWINGII IN 

AMBLYOMMA AMERICANUM AND DERMACENTOR VARIABILIS 

COLLECTED FROM SOUTHEASTERN VIRGINIA, 2010-2011 

 

INTRODUCTION 

The lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae), is found 

throughout the southeastern United States with populations extending west to central 

Texas and north to Iowa (Childs and Paddock, 2003). The eastern range of A. 

americanum extends through the mid-Atlantic region, with populations intermittently 

reported in New England states including Maine (Kierans and Lacombe, 1998), 

Connecticut and Rhode Island (Ijdo et al., 2000). Amblyomma americanum is the most 

commonly reported tick species collected from humans in the southeastern and mid-

Atlantic U.S., representing over 60% of ticks collected from humans from New Jersey, 

Maryland, Virginia, Kentucky and South Carolina from 2004-2010 (Stromdahl and 

Hickling, 2012). In southeastern Virginia, A. americanum is the most commonly 

encountered human-biting tick, constituting over 95% of questing ticks collected from 

2010-2012 (Nadolny et al., 2014). Because of the abundance of this tick in the 

southeastern U.S. and its propensity to feed on humans, pathogens transmitted by A. 

americanum pose an important threat to human health.  
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Ehrlichia chaffeensis and Ehrlichia ewingii are the causative agents of human 

ehrlichiosis and are transmitted to humans and animals by infected A. americanum 

(Anziania et al., 1990 and Ewing et al., 1995). These Ehrlichia spp. have also been found 

in the American dog tick, Dermacentor variabilis (Say) (Murphy et al., 1998; Steiert and 

Gilfoy, 2002), although it is unclear whether D. variabilis is capable of transmitting these 

pathogens. Here we describe the prevalence of Ehrlichia chaffeensis and Ehrlichia 

ewingii in ticks collected from southeastern Virginia. 
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MATERIALS AND METHODS 

Questing adult and nymphal A. americanum and adult D. variabilis were 

collected on flags from April through September of 2010 and 2011 from multiple 

locations representing 11 independent cities and counties in southeastern Virginia (Fig. 

9). Nine sites were sampled on a weekly basis in 2010 and 12 sites were sampled on a 

weekly basis in 2011 (Nadolny et al., 2014). Within each site, the area of each transect 

was recorded so that density of host-seeking ticks encountered during each sampling 

event could be determined. Ticks were identified to species morphologically (Keirans 

and Litwak, 1989; Keirans and Durden, 1998) and individuals were pooled prior to DNA 

extraction. Adult A. americanum and D. variabilis collected at the same location in the 

same week were morphologically identified and then pooled into groups of up to 10. 

Amblyomma americanum nymphs were pooled into groups of up to 25. Prior to 

extraction all adult ticks were cut in half, one half was used for DNA extraction and the 

other stored at -80°C for future use. All ticks were homogenized by bead-beating with 1 

mm glass beads. DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen, Inc. 

Valencia, CA) following the manufacturer’s protocol and stored at -20°C.  

Samples were tested separately for E. chaffeensis and E. ewingii DNA using real-

time quantitative PCR (qPCR) assays specific to each species. Both species were 

detected using TaqMan qPCR assays targeting the 16S rRNA gene (p. 108). The E. 

chaffeensis assay used 200nM of forward primer, 800nM of reverse primer, 100nM 

probe and 3µM MgCl2. The E. ewingii assay used 800nM of forward and reverse primers, 

100nM probe and 5µM MgCl2. Thermocycling conditions for both assays consisted of  
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Fig. 9. Map of southeastern Virginia showing the location of the sites where ticks were 
collected in 2010 and 2011.  
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95°C for 10 min followed by 40 cycles of 95°C for 15s and 57°C for 60s.  

A subset of qPCR-positive samples were confirmed by using a nested PCR assay 

to sequence either the groEL gene of E. chaffeensis (Tabara et al., 2007) or the p28 gene 

of E. ewingii (Gusa et al., 2001). A total of 38 E. chaffeensis positive samples and 6 E. 

ewingii positive samples were sequence-confirmed. Sequences were analyzed by 

performing a BLAST search on GenBank (Altschul et al., 1990).  

Because A. americanum samples were pooled prior to extraction, a maximum 

likelihood estimation (MLE) was used to approximate the true prevalence of E. 

chaffeensis and E. ewingii in the tick population. The software used to perform MLE 

(Biggerstaff, 2008) was acquired from the Centers for Disease Control and Prevention 

website (CDC). 
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RESULTS 

A total of 605 D. variabilis adults and 8700 A. americanum adults and nymphs 

were collected during 2010 and 2011. The highest numbers of both species were 

collected in May and June in both years (Fig. 10). Although both E. chaffeensis and E. 

ewingii were detected in A. americanum, no evidence of either pathogen was found in 

the D. variabilis tested. Sequence confirmation of 44 positive samples showed either 

≥99% match to E. chaffeensis or 100% match to E. ewingii in a BLAST search. A total of 

967 and 981 A. americanum pools were tested for E. chaffeensis and E. ewingii, 

respectively. Because testing for each pathogen was performed at different times, not 

every sample was available for testing in both assays. Overall prevalence based on the 

MLE of E. chaffeensis in A. americanum adults and nymphs was 0.9% in 2010 and 0.6% 

in 2011; E. ewingii prevalence was 1.5% and 1.3% in 2010 and 2011, respectively (Table 

6). A higher prevalence of both Ehrlichia spp. was found in adults than in nymphs, with 

adults having an approximate ten-fold greater prevalence of both pathogens (Table 6). 

In adults, prevalence of E. chaffeensis varied by location (Table 7), ranging from 0 to 

4.3% (mean = 1.6 ± 1.4) in 2010 and 0 to 5.1% (mean = 1.1 ± 1.6) in 2011. Prevalence of 

E. ewingii in adults also varied by location, ranging from 0 to 8.2% (mean = 3.1 ± 2.6) in 

2010 and 0 to 7.7% (mean = 2.8 ± 2.8) in 2011. The higher prevalence of E. ewingii 

relative to that of E. chaffeensis in adult A. americanum was mainly driven by one site in 

Virginia Beach, which had the highest prevalence of all sites (8.2% in 2010 and 7.7% in 

2011). Although greater numbers of both A. americanum and D. variabilis were 

collected during May and June, there were no apparent spatial or temporal trends in 
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Fig. 10. Phenology of Amblyomma americanum nymphs and adults and Dermacentor 
variabilis adults collected during 2010 (A) and 2011 (B) from southeastern Virginia. 
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Table 6  
Pooled and maximum likelihood estimated (MLE) prevalence of Ehrlichia spp. in 
questing adult and nymphal Amblyomma americanum and adult Dermacentor variabilis 
collected on flags from multiple sites within southeastern Virginia. To assess true 
pathogen prevalence from pooled DNA samples, a MLE calculation was used 
(Biggerstaff, 2008). 

Tick Year Organism 
Life 

Stage 

Number 
Pools 

Positive 

Number 
Pools 
Tested 

# of 
Ticks 

Pools 
Positive 

(%) 

MLE 
(%) 

A. 
americanum 

2010 E. chaffeensis All 28 417 3134 6.7 0.9 

   Adult 25 221 1363 11.3 2.0 

   Nymph 3 196 1771 1.5 0.2 

  E. ewingii All 45 426 3095 10.5 1.5 

   Adult 42 231 1343 18.2 3.4 

   Nymph 3 195 1752 1.5 0.2 

 2011 E. chaffeensis All 26 550 4814 4.7 0.6 

   Adult 20 254 1483 7.8 1.4 

   Nymph 6 296 3331 2.1 0.2 

  E. ewingii All 59 555 4813 10.6 1.3 

   Adult 48 262 1532 18.3 3.5 

   Nymph 11 293 3281 3.2 0.3 

D. variabilis 2010 E. chaffeensis Adult 0 69 259 0 - 

  E. ewingii Adult 0 69 259 0 - 

 2011 E. chaffeensis Adult 0 76 228 0 - 

  E. ewingii Adult 0 76 228 0 - 
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Table 7  
Maximum likelihood estimated (MLE) prevalence of Ehrlichia chaffeensis (left) and 
Ehrlichia ewingii (right) in adult and nymphal Amblyomma americanum collected from 
various locations (Fig. 9) within southeastern Virginia in 2010 and 2011. The total 
number of individuals represented within pooled DNA samples is indicated.  

Year Site 

Ehrlichia chaffeensis Ehrlichia ewingii 

 MLE Prevalence 
(%) 

# Ticks Represented MLE Prevalence (%) # Ticks Represented 

Adult
s 

Nymph
s 

Adults Nymphs Adults Nymphs Adults Nymphs 

2010 All 1.95 0.17 1363 1771 3.44 0.17 1343 1752 

 CC1 4.33 0.85 50 121 3.50 0 59 99 
 IW1 2.43 0 40 52 2.40 0 41 53 
 JC1 1.09 0 92 155 5.80 0 82 153 
 NH1 0 0 15 3 0 0 15 3 
 PC1 2.23 0.27 630 746 2.10 0.13 624 733 
 PC2 0 0 21 0 0 0 21 0 
 VB1

11 
1.04 0 93 183 3.50 0 91 185 

 VB2 1.30 0 239 302 8.20 0.65 233 317 
 YC1 2.30 0 183 208 2.40 0 177 208 
2011 All 1.41 0.18 1483 3331 3.47 0.34 1532 3281 
 CC1 0 0 203 495 2.09 0.41 203 495 
 HC1 0 0 15 33 2.22 0 95 41 
 IW1 5.08 0.65 41 152 5.58 0 38 48 
 JC1 0 0 22 31 0 0 22 31 
 NC1 0 0 4 2 0 0 4 2 
 NH1 2.59 0 209 119 4.40 0 209 119 
 PC1 1.31 0.06 393 1760 1.13 0.18 366 1707 
 PC2 0 0 4 1 0 0 4 0 
 VB1 2.05 0 101 83 7.06 1.31 97 77 
 VB2 1.94 0.95 216 451 7.72 0.91 217 451 
 VB3 0 0 1 3 0 0 1 3 
 YC1 0.74 0 274 201 3.18 0 276 202 
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prevalence of either Ehrlichia spp. (Table 7).   

To validate the accuracy of the maximum likelihood estimation, leftover 

individual adult A. americanum halves from pools which tested positive for E. 

chaffeensis were extracted and tested by qPCR for E. chaffeensis. A MLE was then 

performed to determine E. chaffeensis prevalence within these individually extracted 

samples. Pooled samples had an overall E. chaffeensis prevalence of 1.95% in 2010, 

whereas when MLE analysis of individually extracted samples indicated a prevalence of 

2.01%. Since these prevalence values are similar, this experiment validates the accuracy 

of the MLE calculation, which has been used extensively to estimate the prevalence of 

vector-borne disease agents in studies with pooled samples. 
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DISCUSSION 

We describe the collection of both A. americanum and D. variabilis in 

southeastern Virginia, as well as the presence of both E. chaffeensis and E. ewingii in 

questing A. americanum nymphs and adults. Although D. variabilis has occasionally been 

shown to harbor these pathogens, we found no evidence of either pathogen in any D. 

variabilis collected in this study. The prevalence of E. chaffeensis (1.4 – 2.0%) and E. 

ewingii (3.4 – 3.5%) in adult A. americanum is comparable to the prevalence of E. 

chaffeensis (2.2%) and E. ewingii (2.2%) determined in another study assessing the rate 

of Ehrlichia spp. infection in A. americanum adults collected in 2012 (Gaines et al., 

2014). The study, which assessed the prevalence of Ehrlichia spp. in A. americanum 

adults collected throughout the state of Virginia, found that E. chaffeensis prevalence 

ranged from 0 – 24.5% and E. ewingii prevalence ranged from 0 – 14.3% (Gaines et al., 

2014). The lower infection prevalence in A. americanum nymphs is consistent with other 

studies assessing the prevalence of Ehrlichia spp. in questing ticks. Amblyomma 

americanum nymphs collected in Maryland were determined to have an E. chaffeensis 

minimum infection rate (MIR) of just 0.8%, while adults showed a MIR prevalence of 

3.5% (Stromdahl et al., 2000). Given that the white-tailed deer (Odocoileus virginianus) 

is a known reservoir of Ehrlichia spp. (Ewing et al., 1995; Lockhart et al., 1997) it is not 

surprising that questing A. americanum adults, which have taken two bloodmeals in 

their lifetime, would have a greater prevalence than questing nymphs, which would 

have taken just one bloodmeal. 
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Other studies have noted the great abundance of A. americanum present in the 

southeastern and south-central United States in relation to other sympatric tick species 

(Stromdahl and Hickling, 2012; and Nadolny et al., 2014). All three A. americanum life 

stages (larva, nymph and adult) are known to aggressively parasitize humans and 

multiple concurrent tick bites of this species are often reported. Stromdahl and Hickling 

(2012) observed that approximately 15% of persons submitting A. americanum to the 

DOD for testing submitted multiple specimens. Because of the high proportion of A. 

americanum in this area and the propensity of this species to seek out human hosts in 

both the nymphal and adult stages, pathogens present even in low numbers within 

these populations warrant attention as concerns to public health. Furthermore, this 

study found no uniformity in geographic distribution of either Ehrlichia species in A. 

americanum, indicating a potential for disease “hotspots” in areas where these 

pathogens are more abundant. 
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Borne Dis. http://dx.doi.org.proxy.lib.odu.edu/ 10.1016/j.ttbdis.2015.04.011 

CHAPTER 4 

 EXPERIMENTAL VERTICAL TRANSMISSION OF RICKETTSIA PARKERI IN THE 

GULF COAST TICK, AMBLYOMMA MACULATUM 

 

INTRODUCTION 

Rickettsia parkeri is one of the spotted fever group rickettsiae (SFGR), a 

collection of obligate intracellular bacteria transmitted to humans and other animals by 

invertebrate vectors. First discovered in 1937 in the Gulf Coast tick, Amblyomma 

maculatum Koch (Parker et al., 1939), R. parkeri was recognized as being pathogenic to 

humans in 2002 when it was isolated from a man residing in Virginia (Paddock et al., 

2004). Since then there have been over 37 documented cases of R. parkeri infection, 

referred to either as “Tidewater spotted fever” or “R. parkeri rickettsiosis,” in the United 

States (Paddock and Goddard, 2015). Infection with R. parkeri can be difficult to 

differentiate from infections caused by other SFGR, including R. rickettsii, the agent of 

Rocky Mountain spotted fever (RMSF); because of this, R. parkeri infections may have 

been misreported as cases of RMSF. Many SFGR infections manifest similarly, often 

characterized by a macropapular rash and flu-like symptoms. Serological testing fails to 

discriminate between infections resulting from SFGR species and such infections are 

now reported as “Spotted Fever Rickettsiosis”. This new category encompasses 

infections caused by other members of the SFGR, including R. parkeri.  

In the U.S. the primary vector of R. parkeri is A. maculatum, although  
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Dermacentor variabilis Say and Amblyomma americanum (L.) have been shown to 

harbor R. parkeri (Cohen et al., 2009; Henning et al., 2014). In South America, R. parkeri 

has been detected in Amblyomma triste Koch (Silveira et al., 2007; Venzal et al., 2004; 

Nava et al., 2008) and Amblyomma tigrinum Koch (Tomassone et al., 2010; Romer et al., 

2014). The prevalence of R. parkeri within the U.S. in A. maculatum populations ranges 

from 5 to 56% (Cohen et al., 2009; Sumner et al., 2007; Trout et al., 2010; Paddock et al., 

2010; Fornadel et al., 2011; Varela-Stokes et al., 2011; Wright et al., 2011; Ferrari et al., 

2012; Jiang et al., 2012; Nadolny et al., 2014). Historically the geographic range of A. 

maculatum in the U.S. has been the southeastern U.S., but recently this tick has been 

expanding northward. Tick surveys conducted in Virginia in the 1970s produced the 

occasional A. maculatum (Sonenshine, 1979); however, no established populations were 

encountered and their sporadic presence was suggested to result from migratory birds. 

Now, multiple established populations of A. maculatum are reported in southeastern 

(Wright et al., 2011) and northern (Fornadel et al., 2011) Virginia. Interestingly, these 

northernmost populations of A. maculatum have a higher prevalence of R. parkeri (41.4 

to 55.7%) than populations in the southern U.S. (5 to 33%). The reason for the 

geographic variation in R. parkeri prevalence is unclear. 

While R. parkeri is a pathogenic SFGR transmitted primarily by A. maculatum in 

the U.S., little is known about the enzootic cycle of R. parkeri and its interaction with A. 

maculatum, including how the pathogen is maintained within A. maculatum 

populations. Pathogen transmission in ticks is complex and not fully understood; in 

general ticks acquire and transmit pathogens vertically and/or horizontally. Vertical 
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transmission occurs when a pathogen is transmitted from an infected female to her 

offspring. Horizontal transmission occurs when a pathogen is transmitted to and from a 

vertebrate host. This study investigates the vertical transmission of R. parkeri within a 

field-derived, naturally-infected A. maculatum colony and determines whether this 

pathogen imposes any reproductive fitness costs on the tick. 
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MATERIALS AND METHODS 

Tick rearing. Two separate colonies of A. maculatum were derived from ticks 

collected from a Virginia field site and propagated in the tick rearing facilities at Old 

Dominion University. Questing adult A. maculatum (n=18) were collected from Back Bay 

National Wildlife Refuge in Virginia Beach in July of 2013 by flagging. Questing adult 

ticks were identified to species level based on morphological characteristics (Keirans & 

Litwak 1989). Male and female ticks were placed on a pathogen-free New Zealand white 

rabbit and allowed to feed to repletion. Replete females (n=13) were placed into 

individual vials and stored in an incubator kept at 26°C, with 94% relative humidity with 

14 hours of light and 10 hours of dark. When females had completed oviposition, which 

lasted approximately 21 days, DNA from individual females and from a sample of each 

egg mass was extracted and tested for R. parkeri (methods described below). To ensure 

the absence of other SFGR in the R. parkeri-negative egg masses, DNA from these 

samples was subjected to a sensitive Rickettsia genus level real-time PCR assay 

(described below). Upon testing negative, these individual eggs were propagated as the 

R. parkeri-free colony, and the positive egg masses were propagated as the R. parkeri-

infected colony. Offspring from each female (eggs, larvae and nymphs) were propagated 

in separate vials and on separate animals and adults from each colony were pooled 

together and fed on single animals to propagate the new generations. To ensure the 

absence of R. parkeri in the R. parkeri-free colony, individuals from F1-F3 were randomly 

sampled and subjected to the R. parkeri real-time PCR assay.  
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Each colony was propagated on separate animals for three generations. Larval 

and nymphal A. maculatum were fed on pathogen-free mice while adults were fed on 

either New Zealand white rabbits or Hartley guinea pigs. Tick feeding protocols were 

performed according to the approved Institutional Animal Care and Use Committee 

(IACUC) protocols 10-018, 10-032 and 12-003. 

DNA extraction. The infection status of A. maculatum was determined using 

real-time PCR on DNA extracted from A. maculatum eggs, larvae, nymphs and adults. 

Skin tissue from the area where ticks were attached was sampled from rabbits and 

guinea pigs after feeding R. parkeri-infected F1 and F2 adults. Quantitative real-time PCR 

(qPCR) was used because it allows for sensitive and specific amplification of R. parkeri 

DNA (Jiang et al., 2012). To extract DNA from eggs and larvae, individual eggs and larvae 

were placed in 0.2 mL PCR tubes and manually crushed with a sterile toothpick; 10 µL of 

ddH2O was added to each tube followed by incubation at 95°C for 10 minutes. DNA 

samples were placed on ice and used immediately for real-time PCR. DNA from whole 

nymphs, adults and skin tissue was extracted using the DNeasy Blood and Tissue Kit 

(Qiagen, Valencia, CA). Prior to extraction, the ticks or skin tissue were placed in a 2 mL 

microcentrifuge tube containing an equal mixture of 1 mm and 2.5 mm glass beads and 

homogenized in a bead-beater (BioSpec Products, Inc., Bartlesville, OK) for 30 - 45 

seconds. DNA was extracted following the manufacturer’s protocol with the DNA eluted 

in 50-100 µL of buffer AE; the eluted DNA was stored at -20°C until processed. 

Pathogen detection. To determine whether ticks were infected with R. parkeri, a 

real-time PCR assay specific to the ompB gene of R. parkeri was used (Jiang et al., 2012). 
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Although no quantification was performed, real-time PCR was used because of the 

sensitivity allowing for detection of low copy number targets. DNA from F1 egg masses 

negative for R. parkeri was tested for the presence of other Rickettsia spp. using the 17-

kD antigen gene in a real-time PCR assay specific to SFG Rickettsia (Jiang et al., 2012). All 

PCR reactions were performed using a Mini-Opticon Real-Time PCR System (BioRad Inc., 

Hercules, CA). Reactions were carried out in 20 µL volumes using 2X EconoTaq PLUS 

Master Mix (Lucigen Inc., Middleton, WI) and 3 µL of DNA template. The R. parkeri assay 

used 0.7 µM each of Rpa129F and Rpa224R and 0.4 µM of Rpa188probe (p. 108) with a 

final MgCl2 concentration of 8 mM. The Rickettsia genus assay used 0.5 µM each of 

R17K128F2 and R17K238R and 0.4 µM of R17Probe (p. 108) with a final MgCl2 

concentration of 5 mM. The PCR protocol for both assays consisted of a 2 minute 

denaturation at 95°C followed by 45 cycles of 95°C for 15s and 60°C for 30s. 

To confirm the presence of R. parkeri in colony-reared A. maculatum, DNA was 

extracted from a subset of F2 adults from the infected colony and a nested PCR reaction 

targeting the ompA gene was performed (Fournier et al., 1998); the resulting amplicon 

was sequenced. Outer primers 190-3588F and 190-5238R were used to amplify a 1631 

bp fragment, and nested primers RhoA4336F and 190-5044R (p. 108) were used to 

amplify a 709 bp fragment. Reactions were carried out in 20 µL volumes using 2X 

EconoTaq PLUS Master Mix (Lucigen Inc., Middleton, WI), 0.5 µM of each primer, and 3 

µL of DNA template (outer reaction) and 1 µL PCR product (inner reaction). 

Thermocycling conditions consisted of 95°C for 3 minutes followed by 35 cycles (outer) 

and 20 cycles (inner) of 95°C for 30 seconds, 45°C for 60 seconds and 72°C for 2 minutes, 
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followed by a final extension at 72°C for 7 minutes. PCR products were visualized on a 

1.8% agarose gel, purified and a sequencing reaction performed following the BigDye 

Terminator v3.1 Cycle Sequencing Kit specifications (Life Technologies, Grand Island, NY, 

USA). Purified products from sequencing reactions were run on an ABI 3130xL Genetic 

Analyzer (Life Technologies, Grand Island, NY, USA), and a BLAST search was performed 

on ompA sequences.  

Fitness estimates. Fitness costs resulting from R. parkeri infection were 

calculated by comparing R. parkeri-free and R. parkeri-infected A. maculatum colonies. 

Fitness measures included the egg production index (EPI), where the weight of the egg 

mass was determined approximately 21 days after the first day of oviposition; estimated 

reproduction (ER), where the approximate number of larvae resulting from 1 g of eggs 

(~19,610 eggs) was determined by weighing groups of 20 eggs calculating the average 

weight per egg; and the percent reduction of ER (PRER) (Bennett 1974, Drummond et 

al., 1973, Paião et al., 2001). These values were determined using the following 

equations: 

 

                   EPI = 
egg weight (g)

initial female weight (g)
 × 100 

 

                   ER = 
egg weight (g)

initial female weight (g)
 × % hatching × 19,610 

 

                   PRER = 
ER (clean)− ER (infected)

ER (clean)
× 100 
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Climbing experiments. Differences in questing behavior of R. parkeri-free and R. 

parkeri-infected A. maculatum adults were determined by measuring the height to 

which questing adults would climb. A total of 76 F1 adults (38 male, 38 female) and 62 F2 

adults (33 male, 29 female) were observed. All climbing experiments were performed in 

a walk-in incubator kept at temperature of 19.4-21.7°C and relative humidity of 83-91%. 

Adult ticks were placed at the base of a 100 cm wooden rod measuring approximately 1 

cm in diameter. Ticks were allowed to climb for 30 minutes and the highest height (cm) 

to which each tick climbed was recorded.  

Statistical analyses. To determine any significant differences between R. parkeri-

free and R. parkeri-infected A. maculatum fitness results, including climbing 

experiments, Mann-Whitney U tests were performed. To determine significant 

differences in molting success between R. parkeri-free and R. parkeri-infected A. 

maculatum Fisher’s exact tests were used. Values were considered significant at the 

α=0.05 level. All statistical analyses were performed using SPSS software (IBM, Inc.). 
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RESULTS 

Colony establishment and tick fitness. DNA from all 13 replete F0 females and 

from 7 of 13 F1 egg mass samples tested positive for R. parkeri. Although unlikely that all 

13 females were initially infected R. parkeri, it is possible that R. parkeri-negative 

individuals became infected due to feeding in close proximity to infected ticks. To 

ensure the absence of R. parkeri in the R. parkeri-free clutches, samples from each 

successive life stage (larvae, nymphs, adults) resulting from each of the six R. parkeri-

negative egg clutches were tested for R. parkeri. Of the six negative egg clutches, two 

pools of hatched larvae were positive for low levels of R. parkeri DNA. These two 

clutches were discarded so that only individuals from lines showing consistently-

negative PCR results, from eggs, larvae, nymphs and adults, were used to propagate the 

uninfected colony. Pools of larvae and nymphs that were R. parkeri-negative were also 

shown to be Rickettsia spp. negative based on the genus-level real-time PCR. 

Amblyomma maculatum colonies were reared in the laboratory for three generations, 

through the F3 adult stage. R. parkeri was detected in the infected colony in each 

generation and life stage by real-time PCR. The presence of R. parkeri was additionally 

confirmed by sequencing and performing a BLAST search on a 599 bp fragment of the 

ompA gene of two R. parkeri-infected F2 adult A. maculatum DNA extracts. The ompA 

sequences were 100% identical with GenBank accession numbers KJ741849, CP003341 

(R. parkeri strain Portsmouth) and U83449 (R. parkeri Maculatum 20). R. parkeri ompA 

sequences were deposited into GenBank under accession numbers KP235202 and 
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KP235203. The F1 egg masses negative for R. parkeri also tested negative for Rickettsia 

spp., indicating that no other SFGR was present in the R. parkeri-free colony. 

Within the three generations of R. parkeri-infected A. maculatum, no significant 

difference in reproductive fitness was observed between R. parkeri-infected and R. 

parkeri-free A. maculatum colonies. Although the overall engorged female weight, egg 

mass weight, and egg production index was generally higher in the R. parkeri-free 

colony than in the R. parkeri-infected colony, these differences were not statistically 

significant (Table 8). Additionally, there were no significant differences in the egg 

hatchrates or estimated reproduction between the colonies. The overall percent 

reduction in estimated production (PRER) was -4.73%, indicating the estimated 

reproduction of the R. parkeri-infected colony was slightly higher than that of the 

uninfected colony (Table 9).  

To determine whether R. parkeri affects molting success of A. maculatum, the 

molt success of fed larvae and of fed nymphs of both the R. parkeri-infected and R. 

parkeri-free colonies was determined (Table 10). Although there was no data for F1 

larval molt success, a highly significant difference was observed between R. parkeri-free 

and R. parkeri-infected F2 larval molting (p<0.001), with significantly more R. parkeri-

free larvae failing to molt. A significant difference (p=0.035) was also observed between 

F1 nymphs, with fewer R. parkeri-free nymphs successfully molting. No other significant 

differences were observed in molt success. 
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Table 8 
Egg production index, engorged female weight, and egg mass of Rickettsia parkeri-free 
and Rickettsia parkeri-infected Amblyomma maculatum. Infected lines represent 
offspring from a single egg clutch that consistently tested positive for Rickettsia parkeri. 
Rickettsia parkeri-free lines represent offspring from a single egg clutch that consistently 
tested negative for Rickettsia parkeri. F1 and F2 generations were propagated from 
adults from cohorts that consistently tested positive (infected line) or negative 
(Rickettsia parkeri-free) for Rickettsia parkeri by qPCR. Values represent mean ± 
standard error. 

Generation Engorged female weight (mg) 
Egg mass weight 

(mg) 
Egg Production Index 

F0 Infected (n=7) Rp-free (n=4) 
Infected 

(n=7) 
Rp-free 
(n=4) 

Infected 
(n=7) 

Rp-free (n=4) 

 948.5 ± 232.0 1072.9 ± 138.4 
585.9 ± 
155.2 

641.1 ± 
96.6 

61.5 ± 4.3 59.9 ± 6.0 

F1 Infected (n=6) Rp-free (n=6) 
Infected 

(n=6) 
Rp-free 
(n=6) 

Infected n=6 Rp-free n=6 

 867.3 ± 147.9 996.2 ± 129.2 
531.2 ± 
101.5 

603.8 ± 
88.3 

61.1 ± 3.2 61.0 ± 7.8 

F2 Infected (n=5) Rp-free (n=4) 
Infected 

(n=5) 
Rp-free 
(n=4) 

Infected n=5 Rp-free n=4 

 982.4 ± 104.6 1082.4 ± 127.0 
545.2 ± 

54.1 
672.1 ± 
117.5 

55.8 ± 6.0 61.8 ± 4.3 

Total (F0 – 

F2) 

Infected 
(n=18) 

Rp-free (n=14) 
Infected 
(n=18) 

Rp-free 
(n=14) 

Infected 
(n=18) 

Rp-free (n=14) 

930.9 ± 174.2 1010.4 ± 153.8 
556.4 ± 
113.3 

617.2 ± 
105.5 

59.5 ± 4.5 60.9 ± 6.0 

 
 
 
Table 9  
Larval hatchrates, estimated reproduction (ER), and percent reduction in estimated 
reproduction (PRER) of Rickettsia parkeri-free and Rickettsia parkeri-infected 
Amblyomma maculatum. Values presented in tables 1 and 2 are derived from the same 
females and egg clutches. Values represent mean ± standard error. 

Generation Hatchrate Estimated Reproduction PRER 

F0 Infected (n=7) 
Rp-free 
(n=4) 

Infected (n=7) Rp-free (n=4)  

 0.90 ± 0.18 0.76 ± 0.11 10,857.9 ± 2431.2 9011.4 -20.5% 

F1 Infected n=5 Rp-free n=6 Infected n=5 Rp-free n=6  

 0.98 ± 0.023 0.88 ±  0.12 11,897.6 ± 522.0 10,563.4 ± 2259.5 -12.6% 

F2 Infected n=5 Rp-free n=4 Infected n=5 Rp-free n=4  

 0.79 ± 0.093 0.88 ± 0.12 8,673.8 ± 1748.0 10,700.1 ± 2051.8 18.9% 

Total (F0 – 

F2) 

Infected n=17 Rp-free n=14 Infected n=17 Rp-free n=14  

0.89 ± 0.14 0.84 ± 0.12 10,521.3 ± 2181.0 10,136.9 ± 1984.8 -4.73% 
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Table 10  
Molt success of infected and clean-line Amblyomma maculatum. Molt success was 
determined by counting individuals that successfully molted and those that failed to 
molt (died), post-bloodmeal. Molt success rates were determined by sampling all 
individuals of each colony.  

Generation 
Molt Success (Larva to Nymph) Molt Success (Nymph to Adult) 

Infected Clean Infected Clean 

F1 No data No data 41/41 (100%) 8/10 (80%)* 

F2 181/212 (85%) 276/381 (72%)* 23/26 (88%) 54/58 (93%) 

F3 78/94 (83%) 35/38 (92%) 13/15 (87%) 9/10 (90%) 

Total 259/306 (85%) 311/419 (74%)* 77/82 (94%) 76/83 (92%) 

*Molting success between infected and clean groups were significantly different (p<0.05).  

 

No differences in the questing height of R. parkeri-infected and uninfected A. 

maculatum adults, sampled from both the F1 and F2 generations, were observed. The 

uninfected adults climbed an average of 65.9 cm (± 3.5 cm, standard error) and the 

infected adults climbed an average of 63.0 cm (± 3.8 cm, standard error). This difference 

in questing heights was not statistically significant.  

R. parkeri transmission. Amblyomma maculatum transovarially (female to 

offspring) and transstadially (between life stages) transmitted R. parkeri. Efficiency of 

transovarial transmission was determined by calculating the percentage of positive eggs 

of the total number of eggs tested. The overall efficiency of transovarial transmission 

was 83.7%, ranging from 66.7% in the F2 generation to 100% in the F3 generation (Table 

11). Transstadially, the larva-to-nymph and nymph-to-adult transmission rates of R. 

parkeri were both 100% for all three generations (Table 11).  

Skin tissue DNA from the rabbit and the guinea pig on which F1 and F2 R. parkeri-

infected adults fed, respectively, tested positive for R. parkeri. 
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Table 11  
Efficiency of transovarial and transstadial transmission of Rickettsia parkeri in 
Amblyomma maculatum.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation Life Stage  # positive / # tested (% infected) # hatched or molted / total #  

F1 Eggs 49/56 (87.5%) 627/700 (90%) 
 Larvae 60/70 (85.7%) No data 
 Nymphs 17/17 (100%) 41/41 (100%) 
 Adults 15/15 (100%) - 

F2 Eggs 40/60 (66.7%) 490/500 (98%) 
 Larvae 43/60 (71.6%) 181/212 (85%) 
 Nymphs 43/50 (86%) 23/26 (88%) 
 Adults 4/7 (57.1%) - 

F3 Eggs 50/50 (100%) 393/500 (79%) 
 Larvae 49/50 (98%) 78/94 (83%) 
 Nymphs 16/16 (100%) 13/15 (87%) 
 Adults 11/11 (100%) - 
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DISCUSSION 

Despite knowing that A. maculatum is the primary vector for R. parkeri in the 

U.S., no studies have assessed the vertical transmission dynamics for this pathogen in its 

host vector. The current study addresses questions related to how R. parkeri is 

maintained within a naturally-infected, laboratory-reared Gulf Coast tick colony, and 

whether R. parkeri imposes any reproductive fitness costs on this tick. To minimize 

fitness effects resulting from potential colony inbreeding, A. maculatum colonies were 

only propagated and observed for three generations.  

Although no studies specifically assessing vertical transmission of R. parkeri in A. 

maculatum have been reported, other studies investigated various routes of R. parkeri 

transmission in a number of tick species. Goddard (2003) determined that the lone star 

tick, Amblyomma americanum, can vertically maintain R. parkeri infection for two 

generations after infection by inoculation. Horta et al. (2010) investigated horizontal 

transmission of R. parkeri between big-eared opossums (Didelphis aurita) and 

Amblyomma spp. and found that one A. cajennense (2%) became infected with R. 

parkeri after taking a bloodmeal. Moraru et al. (2013) determined that A. maculatum 

nymphs feeding on either northern bobwhite quail (Colinus virginianus) or hispid cotton 

rats (Sigmodon hispidus) infected with R. parkeri failed to acquire the pathogen. 

Nieri-Bastos et al. (2013) studied R. parkeri transmission in the related tick 

species, Amblyomma triste Koch, a vector for the pathogen in South America. Unlike the 

results obtained with A. maculatum in this study, R. parkeri significantly reduced the 

molting success of engorged A. triste nymphs. The opposite was seen in R. parkeri-
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infected A. maculatum, with these ticks showing a significantly increased molt success 

with F2 larvae and F1 nymphs. No significant differences in reproductive fitness, as 

assessed by measuring egg production, were observed in either A. maculatum or A. 

triste; however, in the F1 and F2 generations of A. triste, the egg hatch rates of the 

infected group was significantly lower than the control group (Nieri-Bastos et al., 2013). 

Such a decrease was not observed with A. maculatum. Furthermore, no differences in 

questing height between infected and non-infected ticks were observed. These data 

suggest that R. parkeri may be better adapted to an association with A. maculatum than 

to one with A. triste. Taken together, the results from prior investigations and the 

present study indicate that R. parkeri is efficiently maintained by vertical transmission in 

ticks and less-efficiently so by horizontal transmission between ticks and vertebrate 

animals.  

Another route of pathogen transmission to ticks is transmission by co-feeding, 

which occurs when a tick ingests a microorganism obtained during a bloodmeal due to a 

recent or proximal feeding event by an infected tick. Co-feeding transmission differs 

from horizontal transmission in that it occurs in the absence of a systemic infection in 

the animal (Randolph et al., 1996). Efficient transmission by co-feeding was observed 

with Rickettsia conorii, with 92-100% of uninfected Rh. sanguineus nymphs acquiring 

the pathogen by co-feeding with infected adults (Zemstova et al., 2010). Although co-

feeding transmission was not investigated in this study, it is interesting to note that all 

13 field-caught females that were fed on a rabbit tested PCR-positive for R. parkeri after 

simultaneously taking a bloodmeal, despite only 7 of the 13 resulting egg masses testing 
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positive for the pathogen. R. parkeri prevalence in southeastern Virginia ranges from 

43.1 to 56% (Wright et al., 2011; Nadolny et al., 2014) making it unlikely that all 13 

females collected by flagging were initially positive for R. parkeri. Thus, it is possible that 

uninfected female ticks acquired R. parkeri by co-feeding with infected ticks on a rabbit 

but were not transmitted transovarially as the rickettsiae were unable to establish 

infection within the ovaries prior to oviposition. 

Given the high prevalence of R. parkeri in certain A. maculatum populations and 

the efficiency by which female ticks transovarially transmit this microorganism, it is not 

surprising there were no fitness costs to the infected ticks. Given the ability of A. 

maculatum to efficiently maintain R. parkeri without detriment to reproduction or 

questing behavior, these results indicate the tick is a suitable reservoir host in this 

enzootic cycle and suggest that vertebrate animals may not be absolutely necessary for 

R. parkeri to be maintained in A. maculatum populations. The propensity of Rickettsia 

spp. to rely on vertical transmission stands in stark contrast with other members of the 

Rickettsiales order, such as Ehrlichia and Anaplasma, which rely heavily on vertebrate 

reservoir hosts and horizontal transmission to survive (Munderloh and Kurtti, 1995; 

Long et al., 2003). 

 Perlman et al. (2006) suggested that given the long history of Rickettsia spp. as a 

vertically-transmitted invertebrate endosymbiont, this genus would eventually evolve 

horizontal transmission strategies. Although this study did not specifically address the 

efficiency of horizontal R. parkeri transmission, this idea was substantiated in part in 

that R. parkeri was found to be efficiently maintained by transovarial transmission. The 
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lack of fitness cost to the invertebrate host and gaining of horizontal transmission are 

factors that could have led to R. parkeri emerging as a pathogen of vertebrate animals 

and humans.  

Not all Rickettsia species have symbiotic relationships with invertebrates. 

Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever has been 

shown to result in mortality of Dermacentor andersoni, one of the vectors for this 

pathogen (Niebylski et al., 1999). The detrimental effect of this SFGR on its vector may 

explain the low prevalence of this organism in field-collected ticks (Nadolny et al., 2014, 

Moncayo et al., 2010; Stromdahl et al., 2011). In contrast, R. parkeri has a relatively high 

prevalence (20 - 56%) in U.S. A. maculatum populations which may in part be explained 

by the absence of any fitness costs and potential for increased molt success. The lack of 

detriment to its vector and increased molt success could be an important facilitator of 

higher rates of infection in A. maculatum populations, which in turn could have negative 

consequences for public health.
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Entomol. In Press. 

CHAPTER 5 

RICKETTSIA PARKERI TRANSMISSION TO AMBLYOMMA AMERICANUM BY 

CO-FEEDING WITH AMBLYOMMA MACULATUM AND POTENTIAL FOR 

SPILLOVER 

 
INTRODUCTION 

 
Commonly known as the lone star tick, Amblyomma americanum (L.), was first 

described by Carl Linnaeus in 1758. A. americanum is a three-host, non-nidiculous tick 

with all three life stages (larva, nymph and adult) known to seek out large vertebrate 

hosts, including humans. Currently the distribution of A. americanum spans much of the 

southeastern and mid-Atlantic portion of United States. The range of this tick has been 

expanding, with populations reported as far north as New York, Connecticut and Rhode 

Island (Ginsberg et al., 2002; Ijdo et al., 2000) and, more recently westward in Nebraska 

(Cortinas and Spomer, 2013). In the southeastern states, A. americanum is the most 

abundant human-biting tick encountered (Stromdahl and Hickling, 2012; Merten and 

Durden, 2000; Nadolny et al., 2014), representing approximately 95% of questing ticks 

collected in Virginia (Nadolny et al., 2014) and 70-95% of ticks collected from humans 

residing in New Jersey, Maryland, Virginia, Kentucky, and South Carolina (Stromdahl and 

Hickling, 2012).  

Rickettsia parkeri is a member of the spotted fever group rickettsiae (SFGR) and 

causes an infection in humans referred to as “Tidewater spotted fever” (Wright et al., 

2011), “R. parkeri rickettsiosis” (Paddock et al., 2004; Paddock et al., 2008) or 
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“American Boutonneuse fever” (Goddard, J. 2004). Although R. parkeri is primarily 

transmitted in the U.S. by the Gulf Coast tick, Amblyomma maculatum Koch, R. parkeri 

has been found at a very low prevalence in A. americanum collected from the 

southeastern U.S. From 2005-2007, only 1 of 446 A. americanum from Tennessee and 1 

of 418 A. americanum from Georgia tested positive for R. parkeri (Cohen et al., 2009). In 

2012, R. parkeri was detected in 1% of questing A. americanum adults (n=206) and 0.4% 

of questing A. americanum nymphs (n=1381) in Virginia (Gaines et al., 2014). Although it 

is currently unknown whether A. americanum is a competent vector of R. parkeri, the 

high proportion and ubiquity of A. americanum populations relative to A. maculatum 

populations suggests that A. americanum may play a role in R. parkeri maintenance and 

transmission.  

R. parkeri is transovarially maintained in A. maculatum (Wright et al., 2015). The 

role vertebrate hosts play in the maintenance and transmission of R. parkeri in tick 

populations is unclear. It is likely that transmission to A. americanum is through a shared 

vertebrate host. White-tailed deer (Odocoileus virginianus) and coyotes (Canis latrans) 

are preferred hosts of adult A. americanum (Childs and Paddock, 2003) and adult A. 

maculatum are often found parasitizing large mammals, such as carnivores and 

ungulates, including white-tailed deer (Teel et al., 2010). A. americanum larvae and 

nymphs will feed on small animals, such as ground-dwelling birds and rodents, but will 

also actively seek out medium and large-sized hosts, such as wild turkey (Meleagris 

gallopavo), red foxes (Vulpes vulpes) and white-tailed deer (Teel et al., 2010). A. 

maculatum larvae and nymphs are rarely found on medium and large animals and 
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preferentially feed on smaller hosts such as passerine birds and rodents (Teel et al., 

2010).  

Rickettsia amblyommii is another SFGR member, and although there is only 

limited evidence of it being pathogenic to humans (Apperson et al., 2008; Billeter et al., 

2007), it is found in up to 84% of tested A. americanum populations (Childs and 

Paddock, 2003; Mixson et al., 2006; Moncayo et al., 2010; Nadolny et al., 2014; Sayler et 

al., 2014; Smith et al., 2010). In southeastern Virginia, the prevalence of R. amblyommii 

in A. americanum adults collected in 2010 and 2011 was 33.4% and 44.3%, respectively 

(Nadolny et al., 2014). In A. americanum adults collected throughout Virginia during 

2012, the prevalence of R. amblyommii ranged from 64 to 100% (Gaines et al., 2014). 

The first objective of this investigation was to determine whether R. parkeri is 

spilling over into A. americanum populations within eastern Virginia. Given the recent 

range expansion of A. maculatum into Virginia and the high prevalence of R. parkeri in 

some of these Gulf Coast tick populations (41-56%) (Wright et al., 2011; Fornadel et al., 

2011), it is possible that R. parkeri is spilling over into A. americanum, facilitated either 

by rickettsemic vertebrate bloodmeals or by co-feeding alongside R. parkeri-infected 

ticks. The second objective was to determine whether A. americanum could acquire R. 

parkeri by co-feeding on guinea pigs with infected A. maculatum. Furthermore, this 

study assessed the extent to which R. amblyommii-infected A. americanum nymphs 

were able to acquire and transstadially maintain R. parkeri. 
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MATERIALS AND METHODS 

Tick collection. Between June 9th and June 22nd of 2014, transects at sites within 

31 counties and independent cities in eastern Virginia were sampled for ticks by flagging 

vegetation; flagging was carried out as previously described (Ginsberg and Ewing, 1989). 

Ticks were sampled from a variety of habitat types. Adult A. americanum were identified 

to species level morphologically (Keirans and Litwak, 1989) and stored at -20°C prior to 

DNA extraction.  

DNA extraction and pathogen detection. DNA was extracted from individual A. 

americanum adults using the DNeasy Blood and Tissue kit (Qiagen Inc., Valencia, CA). 

Prior to extraction, adult ticks were cut in half longitudinally and subjected to bead-

beating for 30-60 seconds at maximum speed on a BioSpec Mini Bead-beater (BioSpec, 

Inc., Bartlesville, OK) using equal volumes of 5 mm and 1 mm glass beads. DNA 

extraction was carried out on the tissue homogenates following the manufacturer’s 

protocol; DNA was eluted in 100 µL elution buffer.  

All DNA extracts from adult ticks were subjected to a real-time PCR assay 

targeting the ompB gene of R. parkeri using Rpa129F, Rpa224R and FAM/BHQ labeled 

Rpa188probe (p. 108). Extracts testing positive for R. parkeri were also tested for R. 

amblyommii. To test for R. amblyommii, DNA extracts were subjected to real-time PCR 

assays targeting the ompB gene of R. amblyommii using Ra477F, Ra618R and FAM/BHQ 

labeled Ra532probe (p. 108). Reactions were carried out in 20 µL volumes using 2X 

EconoTaq PLUS Master Mix (Lucigen Inc., Middleton, WI) and 3 µL of DNA template. The 

PCR protocol for both assays consisted of a 2 minute denaturation at 95°C followed by 
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45 cycles of 95°C for 15s and 60°C for 30s. PCR reactions were performed on a Mini-

Opticon Real-Time PCR System (BioRad Inc., Hercules, CA). 

Tick rearing for transmission experiments. Rickettsia-free A. americanum 

nymphs were purchased from the tick rearing facility at Oklahoma State University 

(OSU) (Stillwater, OK). An engorged A. americanum female was collected from a wild 

boar in Virginia Beach, Virginia, during the spring of 2014. Ticks were housed in an 

incubator kept at 26°C with 94% relative humidity with 14 hours of light and 10 hours of 

dark. To ensure absence of R. amblyommii in the OSU ticks, 8 nymphs were randomly 

selected and tested for R. amblyommii using real-time PCR, as described above. All OSU 

nymphs tested negative. A sample of the egg mass laid by the boar-derived adult A. 

americanum was also tested for R. amblyommii DNA; this egg mass sample tested 

positive. Upon hatching, larval ticks from the R. amblyommii-positive egg mass were fed 

on mice.  

Pathogen acquisition experiments. To expose A. americanum nymphs to R. 

parkeri, nymphs were fed on guinea pigs alongside F2 females from a field-derived, R. 

parkeri-infected A. maculatum colony (Wright et al., 2015). This colony was previously 

found to be free of other known SFGR by qPCR testing. Two guinea pigs were used, one 

each for feeding R. amblyommii-free (n=11) and R. amblyommii-infected (n=11) A. 

americanum nymphs. Five female adult A. maculatum were placed on each guinea pig 

24-48 hrs prior to infesting with A. americanum nymphs to ensure attachment prior to 

nymphal feeding. Guinea pigs were inspected daily to ensure tick attachment. After A. 

americanum nymphs had fed to repletion, approximately 5 days, replete nymphs were 
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returned to the incubator and allowed to molt into adults. After adult A. maculatum had 

fed to repletion (approximately 14 days), guinea pigs were euthanized and a 2 cm 

diameter piece of skin was removed from the area of tick attachment for R. parkeri 

testing by qPCR.  

After molting into adults, the salivary glands from each A. americanum were 

dissected from individual ticks to determine whether R. parkeri was present. Briefly, 

adults were surface sterilized with 70% ethanol and allowed to air dry. Salivary glands 

were aseptically dissected from each tick, washed twice in sterile PBS and individually 

stored in PBS prior to homogenizing with 1 mm glass beads in a bead-beater on low 

speed for 10 seconds. The salivary gland homogenate was immediately introduced into 

confluent flasks of Vero cells. The remaining tick tissue was subjected to DNA extraction 

using the DNeasy Blood and Tissue kit (Qiagen, Inc. Valencia, CA) and tested for R. 

parkeri and R. amblyommii using the real-time PCR assays described above. 

Cell culture. Vero cells were propagated in 25 cm2 flasks according to the 

protocol developed by Ammerman et al. (2008). Flasks containing confluent layers of 

Vero cells were inoculated with individual salivary gland homogenates dissected from 

each A. americanum adult (n=22). Cultures containing salivary gland homogenates from 

adults whose tissue tested negative for R. parkeri by qPCR were discarded. Vero cells 

and spent media were monitored for R. parkeri infection by real-time PCR for up to five 

days after inoculation with salivary gland homogenates. Briefly, Vero cells were 

centrifuged and DNA from Vero cells and spent media was extracted by incubating at 

95°C for 10 minutes.  
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Statistical analysis. To determine whether significant differences exist between 

presence of R. parkeri in lab-reared Rickettsia-free and R. amblyommii-infected A. 

americanum, a Fisher’s exact test was performed in SPSS (IBM, Inc.). 
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Fig. 11. Virginia cities and counties in which Amblyomma americanum were sampled 
and where Rickettsia parkeri was detected in questing adults. 
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RESULTS 

A total of 449 adult A. americanum were collected from sites representing 29 

counties and independent cities in eastern Virginia during June of 2014 (Table 12). 

Although sites within Norfolk City and Gloucester County were sampled, no A. 

americanum were found. Of the 449 adult A. americanum collected, up to 10 males and 

up to 10 females from each site or transect within a site, comprising 317 adults (170 

female, 147 male) were tested for R. parkeri DNA. A single female collected from 

Mathews County, Virginia (Fig. 11), tested positive for R. parkeri (Table 12). This 

individual tested negative for R. amblyommii.  

 A total of 11 each of R. amblyommii-free and R. amblyommii-infected A. 

americanum nymphs were co-fed alongside R. parkeri-infected adult A. maculatum on 

guinea pigs for 5-7 days. Skin tissue collected from guinea pigs from each feeding event 

tested positive for R. parkeri DNA by real-time PCR, indicating that A. maculatum 

successfully transmitted R. parkeri while feeding. Upon molting into adults, 8 of 11 

(73%) R. amblyommii-free and 2 of 11 (18%) R. amblyommii-infected A. americanum 

adults tested positive for R. parkeri DNA (p=0.03). All adults from the R. amblyommii-

positive and R. amblyommii-negative A. americanum colonies were PCR-positive and 

PCR-negative for R. amblyommii, respectively (Table 13).  

To determine whether R. parkeri was present in salivary glands and whether the 

rickettsiae were viable, salivary gland homogenates from adults testing positive for R. 

parkeri by real-time PCR were inoculated into confluent flasks of Vero cells. R. parkeri 

DNA was detected in cell culture from 1/2 (50%) and 4/8 (50%) salivary gland 
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homogenates from R. amblyommii-positive and R. amblyommii-free A. americanum, 

respectively, five days post-inoculation (Table 13).  

 
 
Table 12  
Virginia cities/counties in which adult A. americanum were collected and number of 
ticks collected, tested, and determined to contain R. parkeri DNA, from each county.  
 

County 
Number adult A. 

americanum 
Collected 

Number adult A. 
americanum 

tested 

Number adult A. 
americanum R. 
parkeri positive 

Accomack County 43 21 0 
Caroline County 26 26 0 
City of Chesapeake 43 19 0 
Essex County 39 20 0 
Fairfax County 14 13 0 
Greensville County 6 6 0 
City of Hampton 8 8 0 
Isle of Wight County 1 1 0 
James City County 29 29 0 
King and Queen County 5 5 0 
King George County 3 3 0 
King William County 1 1 0 
Lancaster County 24 10 0 
Mathews County 4 4 1 
Middlesex County 20 19 0 
City of Newport News 11 11 0 
Northampton County 15 15 0 
Northumberland 
County 

1 1 0 

City of Portsmouth 31 16 0 
Prince William County 4 4 0 
Richmond County 10 10 0 
Southampton County 1 1 0 
Stafford County 5 5 0 
City of Suffolk 9 9 0 
Surry County 6 6 0 
Sussex County 11 11 0 
City of Virginia Beach 12 12 0 
Westmoreland County 11 11 0 
York County 56 20 0 
   Total 449 317 1 
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Table 13  
Number of individual adults and number of Vero cell cultures, derived from salivary 
gland homogenates, testing positive for Rickettsia parkeri DNA.  
 

 

Number R. parkeri-
positive adults / 
Number tested 

Number R. 
amblyommii-

positive adults / 
Number tested 

Number R. parkeri-
positive cultures / 

Number tested 

R. amblyommii-positive A. 
americanum 

2/11 (18%)* 11/11 (100%) 1/2 (50%) 

R. amblyommii-free A. 
americanum 

8/11 (73%)* 0/11 (0%) 4/8 (50%) 

*Fisher’s Exact Test (p=0.03) 
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DISCUSSION 

The first documented R. parkeri infection in a human was in 2002 and since then 

this pathogen has caused at least 37 reported infections (Paddock and Goddard, 2015), 

although the true number of cases is likely higher due in part to non-reporting and the 

cross-reactivity of serological tests (Vaughn et al., 2014). Because of the range 

expansion of A. maculatum into states including Virginia (Wright et al., 2011), Delaware 

and Maryland (Florin et al., 2014), and the high proportion (42 - 56%) of A. maculatum 

from Virginia infected with R. parkeri, this disease agent may now pose an increasing 

threat to human health. 

Although the prevalence of R. parkeri is high in A. maculatum populations, for 

each questing A. maculatum encountered in southeastern Virginia approximately 50 A. 

americanum are collected (Nadolny et al., 2014). Because A. americanum are so 

widespread in this region it is important to identify pathogens present in this species. 

Even a low prevalence of pathogens in A. americanum, such as E. chaffeensis, which 

ranges in prevalence from 0 to 8.2% in southeastern Virginia (Wright et al., 2014), may 

be of public health importance due to the high density and ubiquity of the lone star tick. 

The purpose of this study was to determine whether A. americanum are infected with R. 

parkeri in coastal Virginia and also to determine whether R. parkeri can be acquired 

while co-feeding with infected ticks and maintained transstadially. Because R. 

amblyommii is commonly found in A. americanum, the potential for this related SFGR to 

inhibit R. parkeri from establishing infection within the lone star tick was also 

investigated.  
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Field collections of A. americanum from eastern Virginia revealed a single R. 

parkeri-positive adult, indicating that R. parkeri is found in A. americanum from Virginia, 

albeit in low (0.3%) frequencies. In 2014, Gaines et al., also demonstrated low numbers 

(≤1%) of Virginia A. americanum harboring R. parkeri. In 2009, Cohen et al. reported R. 

parkeri prevalence of <1% of A. americanum collected from Tennessee and Georgia. 

Although it is apparent from these studies that R. parkeri is present at a very low 

prevalence in A. americanum populations, it is unclear whether A. americanum is 

capable of transmitting this organism to humans and other hosts. In 2003, Goddard 

experimentally infected A. americanum with R. parkeri by direct inoculation  

Hemolymph tests and fluorescence antibody tests indicated the presence of R. parkeri 

in A. americanum and the ticks were shown to maintain viable R. parkeri both 

transstadially and transovarially for two generations (Goddard et al., 2003).  

The present study determined that A. americanum can acquire R. parkeri by co-

feeding alongside infected A. maculatum on guinea pigs. Guinea pigs are susceptible to 

infection with R. parkeri (Parker et al., 1939; Goddard et al., 2003), showing clinical signs 

of infection including fever and scrotal swelling in males. The extent to which R. parkeri 

transmission by co-feeding occurs in other animals is uncertain. It is possible that R. 

parkeri spillover is facilitated in the natural environment by cotton rats (Sigmodon 

hispidus) which have been shown to have persistent infection with R. parkeri for up to 7 

days after subcutaneous inoculation (Moraru et al., 2013). Furthermore, the presence of 

R. parkeri from cell culture five days post inoculation suggests that at least 50% of the 

salivary gland homogenates from PCR-positive adults contained potentially viable R. 
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parkeri. This finding suggests that A. americanum may be capable of R. parkeri 

transmission and thus may be a competent vector of this pathogen. 

Interestingly, A. americanum nymphs infected with R. amblyommii prior to 

feeding alongside R. parkeri-infected A. maculatum were significantly less likely to 

acquire the pathogen, as detected in adults by PCR post-molting. This finding is 

consistent with the phenomenon of rickettsial exclusion observed by Macaluso et al. 

(2002), where the presence of either Rickettsia montanensis or Rickettsia rhipicephali 

excluded the transovarial transmission of the reciprocal organism in laboratory-reared 

Dermacentor variabilis. Although this study only investigated transstadial transmission, 

and not transovarial transmission, the same phenomenon may still be occurring.  

In summary, this investigation confirmed the presence of R. parkeri in a low 

proportion of Virginia A. americanum populations. Furthermore, this study determined 

that A. americanum can acquire R. parkeri by feeding alongside R. parkeri-infected A. 

maculatum, and it was also confirmed that A. americanum can transstadially transmit R. 

parkeri from nymphs to adults. This experiment also indicated a decreased capacity for 

R. amblyommii-infected A. americanum to successfully acquire and/or maintain R. 

parkeri, confirming previous studies of rickettsial exclusion. Although R. parkeri was 

detected in salivary glands of A. americanum adults, suggesting that A. americanum is a 

competent vector of R. parkeri, future studies should further investigate the capacity for 

lone star ticks to horizontally transmit this pathogen to vertebrate hosts.    
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GENERAL DISCUSSION 
 

Tick-borne pathogens are an increasing threat to human and animal health 

worldwide. Ticks are the most common agents of vector-borne pathogens in the United 

States and worldwide they are second only to mosquitoes as arthropod pathogen 

vectors (Goodman et al., 2005). In the U.S., cases of Lyme disease and spotted fever 

rickettsioses have been on the rise, in addition to infections such as ehrlichiosis and 

anaplasmosis caused by emerging tick-borne pathogens. Factors related to emergence 

include appearance of new pathogens, recognition of existing pathogens and 

environmental changes that result in new exposure events. Despite the rise in tick-

borne disease incidence within many states, including Virginia, there is a paucity of data 

related to the prevalence and distribution of ticks and tick-borne pathogens.  

New and emerging tick-borne pathogens are increasingly posing threats to 

human and animal health. Since the onset of this dissertation research in 2010, at least 

four tick-borne pathogens have emerged or been associated with human disease for the 

first time in the United States. These emerging disease agents include Heartland virus, 

Borrelia miyamotoi, Rickettsia montanensis and Rickettsia phillipi (previously known as 

Rickettsia 364D) (McMullan et al., 2012; Krause et al., 2013; McQuiston et al., 2012; 

Shapiro et al., 2010). In 2014, a novel Thogotovirus was isolated from the blood of a 

patient, who later died; due to the homology of this novel “Bourbon virus” to other tick-

transmitted Thogotovirus members, it is likely this organism is also tick-transmitted 

(Kosoy et al., 2015). The emergence of new tick-borne pathogens is ongoing, posing 

significant challenges for protecting human and animal health. While molecular tools 
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are quickly evolving and becoming more usable for rapid detection of these new agents, 

gaining increased knowledge of the ecology and epidemiology of these organisms and 

their vectors is often a slow and laborious task.  

In addition to the threat posed to human health by emerging pathogens, tick 

range expansions, likely driven by environmental and anthropogenic factors, are also 

occurring in the U.S. The results from this and other research investigations indicate that 

the Gulf Coast tick is expanding its range northward, carrying high infection rates (>40%) 

of R. parkeri. Since 2002, R. parkeri has caused infections in at least four residents of the 

Tidewater region of Virginia, indicating that this organism is contributing to disease now 

reported broadly as spotted fever rickettsiosis. Given the difficulty in serologically 

differentiating between infections caused by R. parkeri and other SFGR, the true 

incidence of Tidewater spotted fever in this region remains largely unknown. The lone 

star tick is another tick species that has been expanding its range in recent decades. 

Populations of A. americanum, which were once limited primarily to the southeastern 

U.S., are now reported from New York, Connecticut, Rhode Island (Ginsberg et al., 2002; 

Ijdo et al., 2000) and Michigan (Springer et al., 2014), in addition to more recently-

reported established populations in Nebraska (Cortinas et al., 2013). Pathogens carried 

and transmitted by A. americanum include Ehrlichia spp., Borrelia lonestari and more 

recently, the Heartland virus. Ticks with expanding ranges present important problems 

to human health in that when new pathogens are introduced into an area, physicians 

and public health officials are often unaware of the introduction and unprepared for 

diagnosing and treating new illnesses. 
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This research focused on ticks and tick-borne pathogens present and recently 

introduced into Virginia. Given the high density of A. americanum in the southern U.S., it 

was not surprising that 95% of the ticks encountered during this study were A. 

americanum. All three life stages of this tick actively seek out large hosts, including 

humans, and are most active during the summer months when many people are 

outside. In the southeastern U.S., A. americanum is the most commonly found tick 

parasitizing humans, representing >80% of ticks attached to humans in Virginia, South 

Carolina and Kentucky (Stromdahl and Hickling; 2012). Because of the high density and 

ubiquity of the lone star tick in the southeastern U.S., even low abundance pathogens 

may pose an important problem for human health. This research showed that E. 

chaffeensis and E. ewingii are detected in up to 8.2% of A. americanum populations. 

Interestingly, prevalence of these pathogens was not constant throughout the region, 

with some locations having no detectable Ehrlichia while other areas have a prevalence 

of up to 8.2%. This finding highlights the focality of certain tick-borne pathogens and 

implies that the risk of exposure to a tick-borne pathogen may not be constant 

throughout a region, even though tick density can remain relatively stable. Gaines et al., 

(2014) also demonstrated a focal trend in distribution of E. chaffeensis and E. ewingii in 

A. americanum populations throughout Virginia; of seven regions sampled, four regions 

had 0% E. chaffeensis prevalence, while the prevalence in the three other regions 

ranged from 2.2% to 24.5%. A possible explanation for this variation in prevalence is 

that E. chaffeensis is largely maintained by white-tailed deer (Odocoileus virginianus) 

populations, so distribution of deer populations and rate of Ehrlichia infection in deer 
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may affect tick infection prevalence. Other potential reservoir hosts for E. chaffeensis 

include goats, coyotes, domestic dogs, red foxes, raccoons and opossums (Paddock and 

Childs, 2003), although it is unclear the extent to which these hosts play a role in the 

enzootic maintenance of Ehrlichia species.  

An additional aim of this dissertation research was to identify and determine the 

prevalence of various spotted fever group rickettsiae in ticks collected from 

southeastern Virginia. The most notable member of the SFGR group is perhaps R. 

rickettsii, the agent of Rocky Mountain spotted fever (RMSF). Historically RMSF was a 

debilitating disease, with a case fatality rate of over 25% (CDC, 2013b). Although the 

incidence of RMSF has increased in recent decades, the case fatality rate has dropped to 

nearly 0% (CDC, 2013b), suggesting that other SFGR may be contributing to cases 

misdiagnosed as RMSF. Vaughn et al. (2014) demonstrated that 7 of 8 serum samples 

collected from patients diagnosed with RMSF in North Carolina cross-reacted with 

antibodies specific to R. amblyommii and R. parkeri. The research presented in this 

dissertation identified several SFGR from Virginia tick populations, including R. 

amblyommii, R. montanensis and Candidatus R. andeanae. Of these, R. montanensis, 

which is found in 5.6 – 6.9% of questing D. variabilis is southeastern Virginia, was 

recently associated with human infection (McQuiston et al., 2012). In lone star tick 

populations within the U.S., R. amblyommii prevalence is variable and can be fairly high 

(up to 84%); in Virginia, R. amblyommii prevalence was 26.9% and 54.9% in 2010 and 

2011, respectively. Although prevalence of R. amblyommii is high, there is limited 

evidence supporting R. amblyommii as a human pathogen (Apperson et al., 2008; 
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Billeter et al., 2007). Candidatus R. andeanae was first detected in ticks from Peru (Jiang 

et al. 2005) and it is currently unclear whether this organism is pathogenic to humans. 

Candidatus R. andeanae has been found on occasion in A. maculatum within the United 

States, typically at a low prevalence (<5%) (Wright et al. 2011; Jiang et al. 2012; Fornadel 

et al. 2011; Varela-Stokes et al. 2011; Sumner et al. 2007). Conversely, A. maculatum 

collected from Oklahoma and Kansas from 2011 to 2014 were reported to have a very 

high prevalence (47 – 73%) of Candidatus R. andeanae but no R. parkeri was detected 

within these populations (Paddock et al. 2015). This finding suggests a possible 

exclusory role between Candidatus R. andeanae and R. parkeri. In southeastern Virginia, 

1 of 301 A. maculatum tested was positive for Candidatus R. andeanae, indicating a very 

low prevalence of this organism in Virginia A. maculatum populations. Due to the variety 

and abundance of SFGR in Virginia, and also the ability of these SFGR to cross-react with 

R. rickettsii antigens, it is plausible that these organisms have contributed to the 

increased reported incidence of RMSF in the U.S. 

Another research objective was to investigate the ecological dynamics of R. 

parkeri and A. maculatum by determining whether R. parkeri can be vertically 

maintained within tick populations. Other studies indicate that transovarial transmission 

is common with Rickettsia spp. (Goddard, J. 2003; Nieri-Bastos et al., 2013). Rickettsia 

rickettsii, while transovarially transmitted, imparts reproductive fitness costs on D. 

andersoni over several generations (Niebylski et al., 1999). This current research 

determined that R. parkeri is efficiently maintained vertically in A. maculatum, being 

transmitted both transovarially and transstadially. Furthermore, presence of R. parkeri 
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did not appear to confer any costs to reproductive fitness on the tick. Interestingly, R. 

parkeri-infected F1 nymphs and F2 larvae were significantly more likely than R. parkeri-

free ticks to successfully molt, suggesting a potential advantage to R. parkeri infection in 

this tick. The ability of R. parkeri to be transovarially transmitted contrasts dramatically 

with other pathogens such as E. chaffeensis, which are not vertically maintained in A. 

americanum and thus rely on the presence of a competent vertebrate reservoir host. 

These differences in transmission dynamics between R. parkeri and E. chaffeensis may in 

part explain the different trends in prevalence seen in field-collected A. maculatum and 

A. americanum. While R. parkeri prevalence tends to be high and relatively consistent 

within and among A. maculatum populations, ranging from 30.2 – 55.7% in Virginia 

(Nadolny et al., 2014; Fornadel et al., 2011), E. chaffeensis is not always present in A. 

americanum populations and varies in prevalence (up to 25%) (Gaines et al., 2014).  

The last objective of this research was to determine whether A. americanum 

could be a suitable vector for R. parkeri. This and other studies have established that R. 

parkeri is present in low numbers in lone star tick populations in Virginia, Tennessee and 

Georgia, ranging in prevalence from 0.2 – 1% (Cohen et al., 2009; Gaines et al., 2014). It 

should be noted that although R. parkeri prevalence is quite low in this tick, A. 

americanum is by far the most abundant human-biting tick species encountered in these 

states (Stromdahl and Hickling, 2012; Cohen et al., 2009) and pathogens present even in 

low prevalence may still pose a substantial risk to human health. Goddard (2003) 

determined that A. americanum can acquire R. parkeri from an infected guinea pig and 

maintain the pathogen transovarially, although it was unclear whether A. americanum 
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could transmit the pathogen during a bloodmeal. The present research indicates that 

nymphal A. americanum can acquire R. parkeri by co-feeding alongside R. parkeri-

infected A. maculatum on a guinea pig, and that viable R. parkeri can be detected in 

salivary glands of A. americanum adults after molting from nymphs. Although it was not 

conclusively established that A. americanum can transmit R. parkeri to a vertebrate 

host, the presence of this pathogen in the salivary glands suggests that A. americanum is 

potentially a competent vector of R. parkeri. Interestingly, A. americanum nymphs that 

were previously infected with R. amblyommii were significantly less likely to acquire and 

maintain R. parkeri, suggesting that the presence of one Rickettsia species may exclude 

another from colonizing the tick. This phenomenon was also observed by Macaluso et 

al. (2003) who found that the presence of either R. rhipicephali or R. montanensis 

excluded colonization by the reciprocal organism within D. variabilis. It is possible that 

the high prevalence of R. amblyommii in A. americanum populations may inhibit R. 

parkeri colonization and may effectively prevent A. americanum from serving as a vector 

of R. parkeri. Whether A. americanum can transmit R. parkeri and whether R. 

amblyommii can inhibit R. parkeri acquisition and/or transmission are both questions 

that should be investigated in the future.  
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CONCLUSIONS 
 

The first aim of this dissertation research was to determine the tick-borne 

pathogen composition within tick populations in southeastern Virginia, with a particular 

focus on two emerging pathogens, R. parkeri and Ehrlichia spp. The results of this 

research indicate that R. parkeri is highly prevalent in Virginia A. maculatum 

populations, with a prevalence of 43 - 56%. Ehrlichia chaffeensis and E. ewingii were 

both detected in A. americanum populations in Virginia. The prevalence of E. chaffeensis 

varied by location, ranging from 0 to 5.08% among A. americanum populations, while 

the prevalence of E. ewingii was slightly higher, ranging from 0 to 8.20% among A. 

americanum populations. Other SFGR were also detected in Virginia tick populations, 

and these include R. amblyommii, R. montanensis and Candidatus R. andeanae.  

The second aim was to determine the transmission dynamics of R. parkeri within 

its vector, A. maculatum. Although some rickettsiae are transovarially transmitted in 

ticks, little was previously known about the frequency and efficiency of this transmission 

route, and nothing was known regarding the transmission strategy of R. parkeri in A. 

maculatum. Furthermore, nothing was known regarding whether R. parkeri infection 

results in decreased fitness of the tick. The results from the transmission experiments 

indicate that R. parkeri is efficiently maintained both transovarially and transstadially in 

A. maculatum. No observable declines in tick fitness were observed in the R. parkeri-

infected colony, and significantly more R. parkeri-infected nymphs and larvae succeeded 

in molting as compared to R. parkeri-free ticks. The results of these experiments 

indicate that R. parkeri is maintained in A. maculatum populations efficiently by 
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transovarial and transstadial transmission without any noticeable effects on tick 

reproduction or survival. 

The third aim was to explore the potential for R. parkeri to spill over from A. 

maculatum populations into populations of A. americanum. Amblyomma americanum is 

an aggressive human-biting tick. It represents 95% of the ticks encountered in 

southeastern Virginia and is the most common tick found attached to humans in the 

southeastern and mid-Atlantic United States. Because of its common association with 

humans, A. americanum and the pathogens it transmits are an important threat to 

human health in southeastern states. The competence of A. americanum as a vector of 

R. parkeri was investigated in this study. Of 317 adult A. americanum collected from 

eastern Virginia, one female tested positive for R. parkeri. Laboratory studies using 

guinea pigs indicated that 8 of 11 A. americanum nymphs co-feeding alongside R. 

parkeri-infected A. maculatum adults acquired R. parkeri; and the pathogen was 

detected in salivary glands of adults after molting. However, A. americanum nymphs 

infected with R. amblyommii prior to co-feeding were less likely to acquire R. parkeri, 

with only 2 of 11 nymphs acquiring and transstadially transmitting the pathogen. The 

results of this study indicate that R. parkeri is present at low levels in Virginia A. 

americanum populations, and that A. americanum can acquire and transstadially 

transmit R. parkeri by feeding alongside an infected Gulf Coast tick. Because viable R. 

parkeri were detected in the salivary glands of adult A. americanum, it is plausible that 

this tick may serve as a secondary vector of R. parkeri. 
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PRIMERS AND PROBES USED TO AMPLIFY RICKETTSIAE AND EHRLICHIAE 

 

Specificity Primer and Probe Sequence (5’-3’) 
Target 
Gene 

Product 
Size 

Reference 

Rickettsia 
genus 

R17K128F2: GGGCGGTATGAAYAAACAAG 
R17K238R: CCTACACCTACTCCVACAAG 
R17K202TaqP: 6FAM-CCGAATTGAGAACCAAGTA 
ATGC-BHQ1 

17kD-
antigen 

111 Jiang et al., 
2012 

Rickettsia 
amblyommii 

Ra477F: GGTGCTGCGGCTTCTACATTAG 
Ra618R: CTGAAACTTGAATAAATCCATTAGTAACAT 
Ra532Probe: 6FAM-CGCGATCTCCTCTTACACTTGG 
ACAGAATGCTTATCGCG-BHQ1  

ompB 142 Jiang et al., 
2010 

Candidatus 
Rickettsia 
andeanae 

Rand957F: CGCTGGACAAGTTTATGCTCAAG 
Rand1062R: GGCAGTAGTACCGTCTGTACCAAC 
Rand1003FAM: 6FAM-CGCGATGTAGGCGGACAGGT 
AACTTTTGATCGCG-BHQ1 

ompB 109 Jiang et al., 
2012 

Rickettsia 
montanensis 

RMF2832: GCGGTGGTGTTCCTAATAC 
RMR2937: CCTAAGTTGTTATAGTCTGTAGTG 
RMB2875: 6FAM-CGGGGCAAAGATGCTAGCG 
CTTCACAGTTACCCCG-BHQ1 

ompB 106 Smith et 
al., 2010 

Rickettsia 
parkeri 

Rpa129F: CAAATGTTGCAGTTCCTCTAAATG 
Rpa224R: AAAACAAACCGTTAAAACTACCG 
Rpa188probe: 6FAM-CGCGAAATTAATACCCTTATG 
AGCAGCAGTCGCG-BHQ1  

ompB 96 Jiang et al., 
2012 

Rickettsia 
spp. 

190-FN1: AAGCAATACAACAAGGTC 
190-RN1: TGACAGTTATTATACCTC 

ompA 540 Paddock et 
al., 2004. 

Rickettsia 
spp. 

RompB11F: ACCATAGTAGCMAGTTTTGCAG 
RompB1902R: CCGTCATTTCCAATAACTAACTC 

ompB 1895 Jiang et al., 
2005. 

Rickettsia 
spp. 

Outer 
190-3588F: AACAGTGAATGTAGGAGCAG 
190-5238R: ACTATTAAAGGCTAGGCTATT 
Inner 
RhoA4336F: AGTTCAGGAAACGACCGTA 
190-5044R: AACTTGTAGCACCTGCCGT 

ompA 1631 Fournier et 
al. 1998; 
Pagac et 
al. 2014 

Ehrlichia 
chaffeensis 

Ech16S-17: GCGGCAAGCCTAACACATG 
Ech16S-97: CCCGTCTGCCACTAACAATTATT 
Ech16S-38: 6FAM- AGTCGAACGGACAATTGCTTATA 
ACCTTTTGGT-BHQ1 

16S 81 Loftis et al. 
2003 

Ehrlichia 
ewingii 

Ech16S-17: GCGGCAAGCCTAACACATG 
Ece16S-99: CAC CCG TCT GCC ACT AAC AAY TAT 
Eew16S-40: 6-FAM-TCGAACGAACAATTCCTAAAT 
AGTCTCTGACTATT-BHQ1 

16S 82 Killmaster 
et al. 2014 
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