Old Dominion University

ODU Digital Commons

Computational Modeling & Simulation Computational Modeling & Simulation
Engineering Theses & Dissertations Engineering
Summer 2016

Development of Visualization-Animation Software for Learning
Transportation Algorithms

Ivan P. Makohon
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

b Part of the Computer Sciences Commons, Education Commons, and the Transportation Engineering
Commons

Recommended Citation

Makohon, Ivan P.. "Development of Visualization-Animation Software for Learning Transportation
Algorithms" (2016). Master of Science (MS), Thesis, Computational Modeling & Simulation Engineering,
Old Dominion University, DOI: 10.25777/n91a-1h95

https://digitalcommons.odu.edu/msve_etds/2

This Thesis is brought to you for free and open access by the Computational Modeling & Simulation Engineering at
ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering
Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please
contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/2?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DEVELOPMENT OF VISUALIZATION-ANIMATION SOFTWARE FOR LEARNING
TRANSPORTATION ALGORITHMS
by
Ivan P. Makohon

B.S. April 2001, Christopher Newport University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
MODELING AND SIMULATION

OLD DOMINION UNIVERSITY
August 2016

Approved by:

Duc T. Nguyen (Co-Director)
ManWo Ng (Co-Director)
Yuzhong Shen (Member)

Mecit Cetin (Member)

ABSTRACT

DEVELOPMENT OF VISUALIZATION-ANIMATION SOFTWARE FOR LEARNING
TRANSPORTATION ALGORITHMS

Ivan P. Makohon
Old Dominion University, 2016
Co-Directors: Dr. Duc T. Nguyen
Dr. ManWo Ng

Recognizing the steady decline in US Science Technology Engineering Mathematics
(STEM) interests and enrollments, the National Science Foundation (NSF) and the White House
have developed national strategies and provided significant budget resources to STEM education
research [1-2] in the past years, with the ultimate goals being to improve both the quality and
number of highly trained US educators, student workforce in STEM topics, in today’s highly
competitive global markets. With the explosion of the internet’s capability and availability, it is
even more critical to effectively train this future USA-STEM work-force and/or to develop
effective STEM related teaching tools to reach a maximum possible number of “distance
learners/audiences”.

Various teaching philosophies have been proposed, tested and documented by
educational research communities, such as video lectures (YouTube), “flipped” class lectures
(where students are encouraged to read the lecture materials on their own time, and problem
solving and/or question/answer sessions are conducted in the usual classroom environments),
STEM summer camps, game-based-learning (GBL) [3-5], virtual laboratories [6] and concept
inventory [7].

The goal of this study is to develop useful, user friendly Java computer animation for
“teaching” these basic/important STEM algorithms that will not only help both the students and

their instructors to master this technical subject, but also provide a valuable tool for obtaining

the solutions for homework assignments, class examinations, and self-assessment tools. Java
software tools were developed for this research which include the Unloading and Pre-
Marshalling algorithms for Terminal Yard Operations, the Hungarian algorithm for worker to job
optimum assignment, the Dijkstra algorithm for solving the shortest-path of a transportation
network, and the Cholesky Decomposition algorithm for solving simultaneous linear equations.
This “educational version” of the Java-based application were implemented with several

desirable features, such as:

e A detailed, precise and clear step-by-step algorithm will be displayed in text and human
voice during the animation of the algorithm.

e Options to hear animated voice in several major languages (English, Chinese and
Spanish).

e Options to input/output data (CVS file), or manually edit the data using an editor, or
“randomly generating” data.

e Output of the “final/optimal” results can be exported to text so that the users/learners can
check/verify their “hand-calculated” results, which is an important part of the learning
process.

Copyright, 2016, by Ivan P. Makohon, All Rights Reserved.

ACKNOWLEDGMENTS

First, I would like to thank Old Dominion University (ODU) for giving me the outmost
opportunity to attend graduate school to further my education. 1 would also like to thank the
Department of Modeling, Simulation & Visualization Engineering (MSVE) for accepting me
into the Master’s program.

I would like to express my gratitude and deepest appreciation to my committee members,
Dr. Duc T. Nguyen, Dr. ManWo Ng, Dr. Yuzhong Shen, and Dr. Mecit Cetin for their assistance
and the opportunity to write/publish conference/journal papers. In addition, | am extremely
grateful for Dr. Nguyen’s advice and encouragement in pushing me to write conference/journal
papers early on during my graduate studies and for allowing me to work on several projects.

| would like to thank my parents, Nestor and Yong Makohon and all my friends for their
help, support, and words of encouragement throughout these stressful couple of years. | would
like to give a special thanks to an ODU Alumni and colleague, Justin Pearl for introducing me to
ODU’s MSVE department. Without his word of mouth, | would have not known about the
MSVE department and not have pursued a Master’s in Modeling and Simulations.

The Terminal Container Yard chapter was in part funded by Mid-Atlantic Transportation
Sustainability University Transportation Center (MATS UTC). The Hungarian chapter was in
part funded by the TranLive Tier | University Transportation Center. The partial support
provided by the NSF grant # ACI-1440673 (ODU-RF Project # 100507-010) to Duc T. Nguyen

is gratefully acknowledged.

TABLE OF CONTENTS
LIST OF FIGURES ...ttt st viii
Chapter
1. INTRODUCTION ...ttt bbb b bbb nne s 1
1.1 Background OF STUYccoiiiieieieieeese e 1
1.2 LItErature REVIBW.......oiuiiiiiiiiieiiieie ettt bbbt 2
1.3 Goals, ODJECtIVES, ANU SCOPESeeiveererriierieeiesieesteeiesree e eeesree e eseesreesreeneesreesreeneens 3
2. UNLOADING AND PRE-MARSHALLING ALGORITHMc.cccvviiiieieiece e 6
2.1 Summary of the Unloading and Pre-Marshalling Algorithmcccoveiieieienne. 9
2.2 Visualization and AnIimMation USING JAVA..........ccerueieriniriesieieieiee e 18
2.3 Numerical EXampPleS/RESUILSc.eiveiiiieieece e 21
p O o0 Tod 11 1] o] OSSR 23
3. HUNGARIAN ALGORITHM ..ottt 25
3.1 Summary of the Hungarian Algorithmcccooveiieii e 26
3.2 Visualization and AnimMation USING JAVA..........ccceruereriiirinieieieiene e 31
3.3 Numerical EXamplesS/RESUILScc.civiiiiieieece et 39
K B0 O 0 Tod 1115 o] 1SS 42
4. DIJKSTRA ALGORITHM....ooiiiie ettt nne s 43
4.1 Summary of the Dijkstra AlgOrithmccooiiiiiiiec e 44
4.2 Visualization and Animation USING JAVA........ccceoeriererineriniesieeeeee s 52
4.3 Numerical EXampPles/RESUILSccveiieiiiiieiieie et 57
O] o [1] o] USSR 62
5. CHOLESKY DECOMPOSITION ALGORITHM ...c.ccoviiiiiieiiceseeeece e 64
5.1 Summary of the Cholesky Decomposition Algorithm..........c.ccccoevviiiiiiiiiiicine, 66
5.2 Visualization and AnimMation USING JAVA..........ccereiereririnineeieiese e 69
5.3 Numerical EXamples/ReSUILSccoviiiiiic et 70
T B 00 Tod 1115 o] 1SS 72
6. CONCLUSIONS AND RECOMMENDATIONS ..ot 74
6.1 Potential Benefits of Visualization-Animation...........cccocevienininniene e 75
6.2 RECOMMENAALIONS.......eivieiieiiesieeie e et e sttt esraeste e s reeaeeneesneeneeeree e 75
REFERENGCES ...ttt ettt na et saesnenneans 77
APPENDICES ...ttt bbbttt bbbt 82
APPENDIX A: UNLOADING AND PRE-MARSHALLING INPUT/OQUTPUT........... 82
APPENDIX B: HUNGARIAN INPUT/OUTPUT ..ot 83

APPENDIX C: DIUKSTRA INPUT/OUTPUT ..ot 84

Vi

vii

LIST OF FIGURES

Figure Page
1. Container Yard (Storage Yard).coccoeoeiierenee et e e snee e 6
2. Container TErMINGLc.ooviiiiii s 7
3. The initial input parameters and layout (QIVEN).ccooveieiiiiriiiieeeee s 9
4. Unloading Algorithm (Movement Iterations).cccooeeererierineniieiee e 12
5. Pre-Marshalling (Reshuffling) Algorithm (Movement Iterations).ccccceveveveennnne. 15
6. Terminal (Yard) Algorithm Educational Application.............cocvvvviiiinieienciincneins 19
7. Terminal EAITOr GUILcoooiiiiiiie e 20
8. Unloading and Pre-Marshalling (Reshuffling) Algorithm Results..............cccccoovnvnns 22
9. Main Graphical User Interface (GUI). ..o 32
10. Assignment Problem Selection. ...t 33
11. Subtracting each Row with its Corresponding Minimum Number.c.ccooeeee. 34
12. Subtract each Column with its Corresponding Minimum Number.c.ccoceeee. 35
13. Cover ALL Zeros with the “Minimum Number of Lines (MNOL)”..........ccccoervennn. 36
14. Compute the “Minimum Uncovered Number (MUN)”..........cccoviiiiiiiicniinicneen 37
15, OptiMUM ASSIGNMENT. ..ottt sb e 38
16. Tutorial Step-By-Step WINCUOW.cciiiiiriiiiiiiieieese e 39
17. A 4x4 Maximization Assignment Problem Example.ccccooiiiiiiiinniine 40
18. A 3x3 Maximization Assignment Problem Example.cccoooiiiiiiiinicieen 40
19. A 4x4 Minimization Assignment Problem Example.cccooiiiiiiinncncnenen 41
20. A 5x5 Minimization Assignment Problem Example.ccccccooviieiivineiieneenecn, 41
21. A 4x5 Minimization Assignment Problem Example.ccccccovvvieiiveieiie e 42

viii

Figure Page
22. Matrix and Graph View of Nodes and LinkKS...........ccccooeiininiiiniiieicieccscseis 44
23. A 6x6 MatriXx and Graph VIBW.cccoeiiiiiiiiniiieieese e 45
24. Data Structures (Iteration k = 0 upon initialization).cccocerviieninnenie e 46
25. Data Structures (Iteration k = 1; Source NOde = 1)ccccoviiviiiieiieneee e 47
26. Data Structures (Iteration k = 2; Source NOde = 3).ccooeiiririniniinieiene e 48
27. Data Structures (Iteration k = 3; Source NOde = 4).ccccoveiiriiiniinieese e 49
28. Data Structures (Iteration k = 4; Source NOGe = 2).cccoceveririniiiinieiese e 50
29. Data Structures (During Iteration k = 5; Source NOde =5)......ccccevvviveneniniieninnnnn 51
30. Data Structures (Vector [d] and [pred], and Set {s} iteration updates). 52
31. Dijkstra Graphical USer INTrface.ccoiiiiiiiiieieie e 52
32. Matrix Editor (Matrix [A] Data).ccccceieririiiiiiiieiee e 53
33. Dijkstra GUI During Step 0: INItIaliZation...........ccooeeiiieniniiiieeeee e 54
34. Dijkstra GUI During Step 1: Outgoing Edges & Update Bookkeeping. 55
35. Dijkstra GUI DUMNG STEP 2. .oviiiiiiiiieeerie s 56
36. Dijkstra GUI DUMNG STEP 3. .o 56
37. Dijkstra 8x8 Matrix and Network Graph Example. ... 57
38. Dijkstra 8x8 Matrix and Network Graph ReSUlLS.ccooeiiiiiiiiiiiiin s 58
39. Dijkstra 9x9 Matrix and Network Graph Example. ... 58
40. Dijkstra 9x9 Matrix and Network Graph ReSUlts.cccooiiiiiiiiniiienc s 59
41. Dijkstra 8x8 Matrix and Network Graph Example.ccoooiiniiiiiinnnncns 59
42. Dijkstra 8x8 Matrix and Network Graph ReSUILS.cccccveveviiiiiiie i 60
43. Dijkstra 6x6 Matrix and Network Graph EXample.......cccccovvvieiininiiinneeiccieseens 61

Figure Page

44. Dijkstra 6x6 Matrix and Network Graph ReSUlts.ccccooviiiiiiiiiiciencs 61
45. Cholesky Decomposition Main WINOW.............ccceoeririiinieniinieieiee e 69
46. Student Percentage Scores Fall 2013 (a) and Fall 2014 (D).ccccovovvieiiiieiieieene 71
47. Unloading & Pre-Marshalling Input & Output Example

(A) CSV File; (B) Java SOFtWArE.cveiieiiicie e 82
48. Hungarian Input & Output Example (A) CSV File; (B) Java Software. 83
49. Dijkstra Input & Output Example (A) CSV File; (B) Java Software.c..c..c..... 84

50. Cholesky Input & Output Example (A) CSV File; (B) Java Software. 85

CHAPTER 1
INTRODUCTION
1.1 Background of Study

Many young people in the United States are reluctant to enter into fields that require a
background in Science, Technology, Engineering, and/or Mathematics (STEM). STEM is a
curriculum based on the ultimate goals to improve both the quality and number of highly trained
US educators and develop a strong student workforce in STEM topics, in today’s highly
competitive global markets. The challenge of STEM is to construct a strong and coordinated
STEM education system to ensure coherence in STEM learning and adequate supply of well-
prepared and highly effective STEM teachers in place to get students back on top in the
international arena?.

Similarly, one of the educational challenges of teaching in colleges and universities today
is the quality of teaching, learning, and assessment in furthering the student’s education and
skills. Another challenge is to understand how to improve the methodology of learning with the
use of improved technologies [8]. Technology today tends to change the quality of teaching with
access to computers and with the use of the internet. One such change is flipped classrooms
which inverts traditional teaching methods; that is, lectures occur after normal hours (usually at
home or work) when the students watch lectures at their own pace and convenience.

One means to improve teaching is to capture and attract the attention of students by the
use of visualization-animation for teaching STEM topics (with transportation engineering

applications). Students learn best and most when they enjoy what they are doing. Using

L IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references.

visualization-animation as a learning tool to encourage and develop the student’s learning is not
only fun, but it would be an effective approach in teaching the transportation algorithm.
1.2 Literature Review

Effective teaching, learning, and assessment require the use of appropriate pedagogies
and methodologies to meet STEM demands for the next generation of young people in the
United States. Young people today need to be educated to think deeply and to expand their
knowledge to become the next innovators, educators, researchers, and leaders who can solve the
challenges facing the world.

For decades, traditional classroom lectures have been the dominant teaching
methodology with classrooms full of students all focused on one professor. Teaching methods
vary between professors; some demonstrate or discuss, some focus on principles or applications,
some emphasize on memory or understanding. Overall, traditional classroom lectures depend on
the student’s native ability and prior preparation to learn and understand the materials being
covered [9].

Active learning in classrooms became popular in the 1990’s as a means to teach students.
Research has shown that students must be actively engaged with the materials that are being
taught. This active engagement helps promote the student to a much deeper level of processing
and learning which allows her/him to create a stronger connection [10]. Active learning
basically shifts the focus from the professor’s delivery of the course content to the students and
their active engagement towards the course materials. This would promote their levels of
thinking and facilitate memory storage and retrieval than traditional classroom lectures [11].

With the increasing technology innovations of the digital age today, students are

equipped with the latest technology such as smart phones, tablets and laptops as learning tools.

There’s been a study that showed that the use of laptops in classrooms has benefitted students’
performance by increasing motivation and collaboration, strengthening connections between
disciplines, improving problem solving skills, and promoting academic achievements [12].

In 2006, flipped (inverted) classrooms were introduced by high school chemistry teachers
from Colorado. Flipped classrooms involve the use of live video recordings and screen casting
software to record classroom lectures. These recorded classroom lectures were posted on
YouTube for students to view [13]. This allowed students to access the video lectures anytime
and anywhere as long as internet connectivity was accessible. Flipped classrooms were
convenient to those students who missed classroom lectures due to circumstances (i.e. school
absence or even traveling to other schools for competition). Flipped classrooms have become a
very attractive and successful approach to teaching. Course materials and videos are provided to
the students prior to coming to class, which allows the students to engage more in active learning
in using case studies, labs, simulations, or experiments during the classroom lecture [14].

1.3 Goals, Objectives, and Scopes

To improve both the quality and number of highly trained US educators, innovations or
improvements need to be applied towards the appropriate pedagogies and methodologies for
teaching and learning. One such innovation is to allow the students or lecturers to use
visualization-animation software applications for teaching transportation algorithms.

Animation is a graphical, artistic way of expression while visualization is the process of
representing data as an image that can aid in the understanding of data. Visualization-animation
can be dated back to the performance of Chinese Shadow Puppetry during the Han Dynasty.
Shadow Puppetry is a unique form of visualization-animation where shadows casted by a

sculpture are essential for artistic effect [15]. Using shadows to animate and visualize objects

was an ideal way to win the hearts and minds of an audience by its exquisite sculptures, music
sounds, and colorful and lively performance to tell a story and capture the audience’s attention.

In the classroom, lectures with static illustrations, text, and videos can sometimes be
difficult to conceptualize for students. Visualization-animation software can help illuminate the
concept easily for the students and teachers [16]. A recent survey of students stated that they
enjoyed lectures that included a simple short animation. It was mentioned that the students were
more engaged with the teachings using the animations within a PowerPoint presentation or video
[17]. Itis also mentioned in the literature that students should adapt to interactive learning
systems to better improve their learning by capturing their attention and to help with memorizing
[18].

The goals, objectives, and scope of this work are to effectively use visualization-
animation to develop useful, user friendly, and Java computer animation for “teaching”
transportation algorithms (Unloading/Pre-Marshalling, Hungarian, Dijkstra, and Cholesky) that
will help both the students and their instructor to not only master this technical subject, but also
provide a valuable tool for obtaining the solutions for homework assignments, class
examinations, and self-assessment tools. This “educational version” of visualization-animation
Java-based application has several desirable features, such as:

e A detailed, precise and clear step-by-step algorithm will be displayed in text and
human voice during the animation of the algorithm.

e Options to hear animated voice in several major languages (English, Chinese and
Spanish).

e Options to input/output data (CVS file), or manually edit the data using an editor, or
“randomly generating” data.

e Output of the “final/optimal” results can be exported to text, so that the users/learners
can check/verify their “hand-calculated” results, which is an important part of the
learning process.

Java was the programming language of choice for implementing these visualization-
animation software applications for teaching those listed transportation algorithms:
Unloading/Pre-Marshalling, Hungarian, Dijkstra, and Cholesky. Java is a general-purpose and
object-oriented computer programming language [19]. Additional supporting Java libraries were
used to implement the management of the matrix data [20], the Google translate text-to-speech
[21], and the G Java 2D graphics library [22]. These transportation algorithm software

applications are covered and discussed in greater detail in the remaining chapters.

CHAPTER 2
UNLOADING AND PRE-MARSHALLING ALGORITHM
Container Terminal Yard operations [see Figures 1-2] reveal an increasing traffic of
cargo container shipment around world ports [23], which makes planning decisions critical with
great importance to optimizing the terminal container yard’s unloading and pre-marshalling (or
reshuffling) of cargo containers within the yard. Container Terminal Yards consist of container
bays, where each bay contains a set of container stacks, and each container stack contains

stackable cargo containers.

Container Yard

. ﬁﬁl
-

Legend

Fig. 1. Container Yard (Storage Yard).

It’s an important storage point because it links the seaside with the landside. More
precisely, it’s a temporary storage point for loading and unloading cargo containers between
vessels and vehicles (trucks or trains) for further distribution. The yard operations department is

responsible for allocating space and equipment needed to maintain terminal efficiency.

Quay Crarl1e (Port Side)

Container Yard

] = 1
OTTT T
B =
| i '
| '7 Trar:\spor't Yard Crane Container
Vessel| (Horizontal) Truck

Fig. 2. Container Terminal.

The unloading and pre-marshalling algorithms for container terminal yard operations are
revisited with the primary goals of developing simple heuristic “unloading” and “pre-
marshalling” algorithms, for port operations. For safety reasons, moving containers from one bay
to another bay by crane is usually prohibited. The proper movement involves putting the
container on a truck first, moving the truck from one bay to another and then moving the
container into the desired bay [24]. Therefore, these algorithms perform efficient unloading and
pre-marshalling tasks in container terminals.

This container yard stacking problem is very similar to the Blocks World planning
domain problem, which consists of a finite number of blocks stacked into columns. The goal is
to turn the initial state into a goal state by moving one block at a time from the top of one column
onto another column. The Block World planning problem is to get to the goal state in a minimal
number of moves [25].

Since efficient operations during the “unloading” and “pre-marshalling” phases will save
time in port operations, leading to significant economic gains, a large amount of the existing
literature has been devoted to these needed algorithms [23-26, 27, 28-33]. Researchers have also
surveyed and synthesized various available methods and algorithms for unloading and pre-

marshaling [29].

Various models have been proposed in the literature including a simulation model for
stacking containers in a container terminal through developing and applying a genetic algorithm
(GA) for container location assignment that minimizes total lifting time and therefore, increases
service efficiency of the container terminals [30].

Researchers have presented an algorithm selection benchmark based on optimal search
algorithms for solving the Container Pre-Marshalling Problem (CPMP), an NP-hard problem
from the field of container terminal optimization [27-28]. The CPMP deals with the sorting of
containers in a set of stacks (called a bay) of intermodal containers based on their exit times from
the stacks such that containers that must leave the stacks first are placed on top of containers that
must leave later. A recent approach for solving the CPMP to optimality [28] presents two state-
of-the-art approaches based on A* and IDA*. The researchers then use parameterized versions of
these approaches to form a benchmark for algorithm selection. An example (with 3 stacks,
maximum height per stack is 3, and having a total of 6 containers) is highlighted by the authors’
CPMP for algorithm selection. The researchers have presented an exact algorithm based on
branch and bound algorithms, and it is shown to be NP-hard [30].

Two heuristic algorithms have been proposed to solve for the pre-marshalling problems
[31]. While the existing literature extensively discussed (including some numerical examples)
unloading and pre-marshalling (or re-shuffling) operations at the port terminals, step-by-step
numerical algorithms have either not been given or have been described without sufficient
details. Thus, it is not an easy task to implement and compare the performance of various
proposed algorithms. In this work, some simple heuristic algorithms for both “unloading” and

“pre-marshalling” operations are proposed. Detailed step-by-step algorithms are explained and

presented so that readers can reproduce the presented results. Several numerical examples are
used to validate the proposed heuristic algorithms.
2.1 Summary of the Unloading and Pre-Marshalling Algorithm

External vehicles (trucks or trains) are responsible for transporting cargo containers in
and out of the container yard whereas the internal vehicles are responsible for transporting
containers within the terminal from the storage yard to the quayside. The storage yard is where
containers are stored temporarily until a vehicle arrives to further distribute them to their next
location [29].

GIVEN:
NS:= 4

MNCPS:= 3

Layout:= 8 containers
[*1 [*] [4] [*]
(81 [*] [2] [6]
(1] [7] [5] [3]
S1 S2/S3/54
[*] means empty space
Fig. 3. The initial input parameters and layout (given).

Two types of algorithms (unloading and pre-marshalling) are discussed and proposed
along with a discussion of a visualization-animation software tool for teaching, learning, and
improving the algorithms. The unloading algorithm approach is based upon having the stack
reshuffled to get to the priority container when a vehicle arrives. The pre-marshalling algorithm
approach is based on having the stack ordered before the first vehicle arrives so that the priority
container is on top.

To facilitate the discussion in this section, the given input variables and layout are

defined [see Figure 3] as follows.

10

e N = NS = the number of container stacks (columns).

e M = MNCPS = the maximum number of containers per stack (rows).

e NAES = the number of available empty spaces (total number of empty spaces in each
stack).

e NESR = the number of empty spaces required.

e NCC = the number of cargo containers.

TNS = the total number of spaces in the container yard

We also initialize and define some variables for collecting results:
e NM = the number of moves (container relocations).

e NR = the number of removes (containers unloaded).

First, we begin with a given initial storage layout [see Figure 3], the given N = NS = (4
stacks), M = MNCPS = (3 Tiers). From this we can compute the TNS (12 total spaces), NAES
(4 available spaces based on the given initial layout) and NESR (3 Tiers) based on the equations:

TNS = (MxN)

NAES =TNS — NCC

NESR = MNCPS.

Figure 3 provides a 2D initial layout that will be discussed throughout this paper. The
number in each container represents the priority order: the order sequence in which the
containers need to be unloaded onto a vehicle.

Once the initial parameters and layout are given, we begin each algorithm performing
Step 0. Step 0’s purpose is to determine whether we have enough spaces to perform the

algorithms. The verifications for both algorithms are defined as:

1. Unloading Algorithm

11

e If the NAES is greater than or equal to NESR-1, the NESR-1 spaces should allow us
to get to the priority cargo container for removal.

e If the NS is greater than 1 container stacks, we need at least 2 or more container
stacks to be able to do the unloading. NAES should provide enough empty spaces
initially to get to the priority cargo container if it’s on the bottom.

2. Pre-Marshalling (or Reshuffling) Algorithm

e |f the NAES is greater than or equal to NESR, we need NAES spaces in order to do
reshuffling without removal.

e |f the NS is greater than 2 container stacks, we need at least 3 or more container
stacks to be able to do reshuffling. Note: some layouts can be solved without these
validations for reshuffling, though these verifications avoid deadlock cases.

The remainder of the section provides an overview of each algorithm in pseudo code and
walks through the proposed step-by-step numerical algorithms.
2.1.1 Unloading Algorithm

In the Unloading Algorithm, cargo containers remain where they reside and are unloaded
when a vehicle arrives. If the prioritized cargo container is not on top of the stack, then those
cargo containers above it must be relocated. This approach frees up a space before the next
vehicle arrives; therefore, the NAES is increased by 1 after every unloaded container.

Before the algorithm begins, the given initial input data is required (Figure 3). From this
initial data, the algorithm determines if there’s enough available empty spaces in the container
stacks to solve this problem (Step 0). For this example, there’s enough available empty space
(NAES-1 >= NESR).

Next, the algorithm determines if Cargo Containers can be unloaded from the Container
Stacks (Step 1). This step loops until the Container Stacks are empty (all Cargo Containers
unloaded). Before unloading Cargo Containers, this step determines the Cargo Container with

the highest priority and then performs the Cargo Container move (Step 2).

12

Fig. 4. Unloading Algorithm (Movement Iterations).

Step 2 determines whether the given next highest priority Cargo Container is on top of
the Container Stack. Ifitis, it is removed (unloaded onto a truck); otherwise, the algorithm finds
the Container Stack with a highest priority (sorted) but lesser priority than the one that needs to
be moved. Once the move occurs, it then loops back and repeats until all the Cargo Containers
are unloaded.

For example, Figure 4 shows the iterations of the movements and unloads using the given
initial data against the unloading algorithm. Figure 4B shows that Cargo Container 1 is the next
highest priority to unload, though in order to unload it those Cargo Container(s) above it must be
relocated. Therefore, Cargo Container 8 is relocated to Container Stack 2. Note that there’s no
Cargo Container that is the highest priority container lesser than the one that needs to be
relocated, so we randomly pick the closest Container Stack with an available space. We can

improve this to pick the closest stack, pick the least number of containers in the stack, or pick the

13

least priority container to research what kind of impact it would have. Once Cargo Container 8
is relocated (number of moves = 1), Cargo Container 1 can be unloaded onto a vehicle (a truck in
this example).

Figure 4C shows that Cargo Container 2 is the next highest priority to unload, but in
order to unload it those Cargo Container(s) above it must be relocated; therefore, Cargo
Container 4 is relocated to Container Stack 1. Once Cargo Container 4 is relocated (number of
moves = 2), Cargo Container 2 can be unloaded onto a vehicle.

Figure 4D shows that Cargo Container 3 is the next highest priority to unload, but in
order to unload it those Cargo Container(s) above it must be relocated; therefore, Cargo
Container 6 is relocated to Container Stack 2. Once Cargo Container 6 is relocated (number of
moves = 3), Cargo Container 3 can be unloaded onto a vehicle.

Figure 4E shows that Cargo Container 4 is the next highest priority to unload. Cargo
Container 4 is on top of Container Stack 1; therefore, no movement is required, so Cargo
Container 2 can be unloaded onto a vehicle.

Figure 4F shows that Cargo Container 5 is the next highest priority to unload. Cargo
Container 5 is on top of Container Stack 3; therefore, no movement is required, so Cargo
Container 5 can be unloaded onto a vehicle.

Figure 4G shows that Cargo Container 6 is the next highest priority to unload. Cargo
Container 6 is on top of Container Stack 2; therefore, no movement is required, so Cargo
Container 6 can be unloaded onto a vehicle.

Figure 4H shows that Cargo Container 7 is the next highest priority to unload, but in

order to unload it those Cargo Container(s) above it must be relocated; therefore, Cargo

14

Container 8 is relocated to Container Stack 1. Once Cargo Container 8 is relocated (number of
moves = 4), Cargo Container 7 can be unloaded onto a vehicle.

Figure 41 shows that Cargo Container 8 is the next highest priority to unload. Cargo
Container 8 is on top of Container Stack 1; therefore, no movement is required, so Cargo
Container 8 can be unloaded onto a vehicle. For the initial example given above, the final results
show that there was a total of 4 container relocations (number of moves = 4), and all 8 Cargo
Containers were unloaded onto a vehicle.

2.1.2 Pre-Marshalling (Reshuffling) Algorithm

In the Pre-Marshalling Algorithm, the container yard is reshuffled and prioritized before
the first vehicle arrives. The goal is to have the container stacks in order with the highest priority
containers on top and the lower priority on the bottom. This algorithm is identical to the Block
World planning domain problem and is more complex than the unloading algorithm since it’s
limited to the initial number of spaces available whereas the unloading algorithm frees up a
space when a priority container is unloaded onto a vehicle.

The algorithm begins by initializing the given input data required (Figure 3) along with
additional variables for bookkeeping purposes. From this initial data, the algorithm determines if
there’s enough available empty spaces and number of stacks available in order to perform
reshuffling of cargo containers with the number of container stacks (Step 0). For this example,

there’s enough available empty space (NAES >= NESR and NS > 2).

15

Fig. 5. Pre-Marshalling (Reshuffling) Algorithm (Movement Iterations).

After the initial given data is verified for reshuffling, Step 1 is performed. This step
begins the main loop which loops through all the Container Stacks and checks if all the
Container Stacks are in order. If they’re not, then the goal is to reshuffle all the highest priority
Cargo Containers to the top and the lowest to the bottom while each Container Stack is sorted
from highest to the lowest in priority. In doing so, the algorithm must determine the source and
destination of the Container Stacks.

Step 1 first begins to look at any container stack with a single cargo container. If there is
one that exists, the algorithm determines if it’s the source or destination Container Stack. In
Figure 5A, the initial container layout example shows that Cargo Container 7 is the only Cargo
Container in Container Stack 2, so it meets this condition. The same step determines if this
Cargo Container can be placed on top of a sorted Container Stack with that selected Container
Stack still prioritized or if another higher priority (lower number) Cargo Container can be placed
on top of Cargo Container 7 in Container Stack 2. Step 1 determines that Container Stack 2 is

selected as the destination Container Stack since there’s not another sorted Container Stack on

16

which Cargo Container 7 can be placed. Figure 5B shows that Container Stack 4 is determined
to be the source Container Stack; therefore, Cargo Container 6 is placed on top of Cargo
Container 7 in Container Stack 2. After this move (relocation), the algorithm is then restarted
back at the beginning of the loop.

Step 1 is again repeated; once again there’s a condition where one Cargo Container exists
within a Container Stack shown in Figure 5B. The algorithm again needs to determine if this is
the source or destination Container Stack. In this case, Container Stack 2 is a sorted stack that
will allow Cargo Container 3 to move on top of it; therefore, Container Stack becomes the source
Container Stack while Container Stack 2 becomes the destination. Figure 5C shows that Cargo
Container 3 is moved (relocated) from Container Stack 4 onto Container Stack 2. After this
move (relocation), the algorithm is then restarted at the beginning of the loop.

Note that the first two moves are not placed in bookkeeping for containers to move back
towards their original Container Stack. The original stack being looked at is Container Stack 2;
there have been no Cargo Containers moved from this Container Stack.

Once again, Step 1 is repeated; during this iteration there are no Container Stacks with
one Cargo Container, so that check doesn’t meet that condition. From this point, the algorithm
looks for an unsorted Container Stack with the least amount of Cargo Containers that is not
empty. In this case, Container Stack 1 is selected; refer to Figure 5D. From this point, the
algorithm enters Step 2 which is to reshuffle (relocate) the top Cargo Container and temporarily
put it onto a different Container Stack.

Step 2 is now entered with Container Stack 1 as the selected source Container Stack. The
goal of this step is to reshuffle this selected Container Stack and temporarily put the Cargo

Containers into a different Container Stack. The step keeps track of the least priority Cargo

17

Container being moved (relocated) so that it can always be placed on the bottom of the Container
Stack when moved back. In Figure 5D, the algorithm takes the top Cargo Container in Container
Stack 1, which is Cargo Container 8 and picks the Container Stack with the least amount of
Cargo Containers. Container Stack 4 is empty; therefore, it is selected as the destination
Container Stack. Cargo Container 8 is then moved from Container Stack 1 to Container Stack 4.
In this case, since Container Stack 4 is empty and Cargo Container 8 is the Cargo Container with
the least priority in Container Stack 1, the algorithm does not place Cargo Container 8 in
bookkeeping for containers to move back towards their original Container Stack. After this
move, the algorithm loops back and looks at the next Cargo Container on Container Stack 1, so
Step 2 is repeated.

In this next iteration in Step 2, the algorithm continues to try to temp spot the next top
Cargo Container in the selected Container Stack 1. Before the algorithm checks for a destination
Container Stack for Cargo Container 1, it looks for the highest priority Cargo Containers in the
other unsorted Container Stacks. Container Stack 3 in Figure 5E shows that Cargo Container 4
is the top Cargo Container for all unsorted Container Stacks. Since this Cargo Container isn’t in
the Cargo Containers to move back bookkeeping, it’s moved (relocated) to Container Stack 4
since it’s a higher priority than Cargo Container 8. Since Cargo Container 6 isn’t from the
original source Container Stack, it isn’t placed within the Cargo Containers to move back to
bookkeeping. After this move, the algorithm loops back and looks at the next Cargo Container
on Container Stack 1, so Step 2 is repeated. At the very beginning of this loop, there’s a check to
see if all the Container Stacks are in order. Figure 5F shows that all Container Stacks are sorted
from highest to lowest priority after Cargo Container 4 was moved to Container Stack 4;

therefore, the algorithm breaks out of its loop and returns back to Step 1 and continues after it

18

called Step 2’s procedures. After this procedure there’s a check to see if all the Container Stacks
are in order so that it too can trigger the restart of Step 2’s main loop. At the very top of the
main loop, if all the Container Stacks are in order the algorithm can proceed to Step 3. Figure 5F
shows the final state of the reshuffled sorted Container Stacks.

In Step 3, all the Container Stacks are sorted from highest priority Cargo Containers on
top with the lowest priority on the bottom. With all the highest priority Cargo Containers on top,
unloading Cargo Containers on to vehicles doesn’t require any more reshuffling. For the initial
example given above, the final results show that there was a total of 4 container relocations
(number of moves = 4) and all 8 Cargo Containers were unloaded onto a vehicle.

2.2 Visualization and Animation using Java

The software is custom written in Java and is meant to create 2D animations and provide
voice explanations for both the unloading and pre-marshalling algorithms for the Terminal
Container Yard operations. The Java software is 100% written in Java and developed from
scratch using several open-source software options. The software uses various third-party
libraries, such as the 2D graphics library (Geosoft’s G 2D) for animations, the text-to-speech
library (Google API Translate) for voice, and the matrix library (Efficient Java Matrix) for data
storage. Applying open-source libraries to this software allowed lots of Graphical User Interface

(GUI) functionality and many features to be developed.

Terminal (Yard) Layout Input Controls Terminal (Yard) Layout Tutorial Lesson Controls
% =] | L& | e 5
l
I Terminal (Yard) Layout View (Animated Layout) Algorithm Step 6
MNCPS$: 3 Ex]
Ns:3 Tutorial Information
NM: 0
NR: 0
Terminal (Yard) Layout View (Initial Layout)
Stack 1 Stack 2 Stack 3 8
STATUS: Layout Valid - Enough Available Empty Spaces S
< - >
Stack 1 Stack 2 Stack 3
Stow Mormal
4 —

19

Fig. 6. Terminal (Yard) Algorithm Educational Application.

The software GUI is developed with JFC/Swing, included within the Java Development

Kit (JDK). The Main GUI consists of eight main components as shown in Figure 6.

1.

Menu Buttons (File, Preferences, and Help)

Provide basic options, such as an option to open/save Container Layouts, an option to
provide terse, verbose, or no voice step-by-step instructions, an option to change the
voice language to English, Spanish, and Chinese, and an option to display a user manual.

Input Control Buttons
Buttons on the main window to open, save or edit a container yard layout.

Terminal (Yard) Layout Animation View
Provides an animated view for Cargo Container movement and attributes (NS, MNCPS,
NM, and NR fields) updates.

Status View
Provides a meaningful status: ready, play, or paused.

Lesson Control Buttons

Buttons on the main window to play, pause, or stop a lesson (an algorithm). The buttons
are enabled when an initial layout is given. The information button provides a user guide
for the Main GUI.

20

6. Algorithm Step
Textbox view of the current algorithm step (during play session).

7. Tutorial Information View
Textbox view of instructions or steps being done within the algorithm (during play
session).

8. Terminal (Yard) Layout Initial View
Provides a given initial layout view of the terminal yard.

Terminal (Yard) Editor —_ T—

Stack 1 Stack 2 Stack 3 Stack &

I @] I--—5

W
Bemi

Fig. 7. Terminal Editor GUI.
The Terminal Yard Editor GUI in Figure 7 provides a means to edit terminal layouts and
consists of 5 main components.

1. Display and Information View
This view displays the NS and MNCPS for this layout. It also provides a random button
that will randomly generate a layout for the given NCC, and the information button
provides a user guide for this GUI.

2. Editor Buttons
The editor buttons allow the user to add/remove a container from the container stack and
to increase/decrease the NS and MNCPS.

3. Zoom Buttons
The zoom buttons zoom in/out or reset the view back to the original state.

4. Visualization Editor View

21

The visualization editor allows the user to drag-and-drop Cargo Containers from one
Container Stack to another (left-click hold to drag) and to select a Cargo Container to
remove (right-click).

5. Bottom Buttons
These buttons either accept the user’s edited layout or cancel it.

As mentioned above, the software has special functionality and features, such as
animating the Cargo Container movements based on a selected algorithm applied towards a
given Terminal Yard Layout. It supports step-by-step animation with voice for a given terminal
layout and a selected algorithm. This mode aims to help students understand the working
mechanism of the algorithm and allows developers to visually fine tune it. To achieve this goal,
the software provides steps within the algorithm with voice and animates the movement of
containers from one stack to another. In addition to the visible aspects, a computer generated
(text-to-speech) voice accompanies the animation.

2.3 Numerical Examples/Results

Several terminal container yard layouts were referenced from the literature, and some
were referenced from classroom lecture [26]. These layouts were used within the Java computer
animation software and executed for both the unloading and pre-marshalling (or reshuffling)
algorithms. The algorithm results are recorded below within the figure. Results in Figure 8 that
show “N/A” for the pre-marshalling algorithm did not provide any results since the layout did
not meet the validation checks described earlier in Section 2.1. The main reason for no results
for the pre-marshalling algorithm was either that the NAES was not greater than or equal to

NESR and/or the NS was not greater than 2 container stacks.

Container Yard NS MMNCPS MNCC N [NR
*
Unloading 3 3 9 7 3 7
Reshuffling | 3 3 =] 7 NfA | NfA
wramck 1 Srmcls P Srmcik 3
*
Unloading iq 3 12 =3 4 a
Reshuffling | 4 3 12 8 4 5
Whachk F Sk ¥ Bhach 4
ek
Unloading | 4 3 12 | 10 9 10
Reshuffling | 4 3 12 10 MNSA | NSA
Siasck1 Shack? Siackd Siackd
ook ok
Unloading 2 5 10 3 3 3
Reshuffling 2 5 10 3 NAA | NSA
el W S
EEET
Unloading 3 8 24 16 39 16
Reshuffling 3 8 24 16 51 16
e W A P RS B
o
5 Unloading 3 3 9 & 3 [
4
3 Reshuffling | 3 3 9 & 3 [
Stack 1 Stack 2 Stack 3
*
Unloading 3 3 9 [49 1
Reshuffling | 3 3 9 [[[
Stack 1 Stack 2 Stack 3

Fig. 8. Unloading and Pre-Marshalling (Reshuffling) Algorithm Results.

22

(* denotes from reference [29], ** denotes from reference [27], and *** denotes from reference

[26]).

23

2.4 Conclusions
The terminal container yard unloading and pre-marshalling (or reshuffling) algorithms

have been proposed, explained and verified through several numerical examples. Detailed
descriptions of the proposed step-by-step algorithms are also provided so that readers can
reproduce the presented results. A secondary goal for this paper is to develop the Java computer
animated software (associated with the proposed unloading and pre-marshalling algorithms) to
be used as an additional tool for teaching and learning these unloading and pre-marshalling
algorithms. The software tool is custom developed in Java and integrated with open-source
libraries. It provides desirable teaching/learning features for these transportation algorithms for
unloading/pre-marshalling, such as:

e Software tool with a user friendly and easy to use GUI.

e 2D Graphical visualization-animation for displaying container movement (relocation).

e 2D Graphical visualization to edit a new or existing terminal container yard layout.

e Ability to allow the user/learner to load/store a terminal container yard layout.

e Ability to allow the user/learner to output/save the step-by-step results.

e Provides a clear and attractive computer animated voice that provides step-by-step
instructions of the algorithms.

¢ Animated voice can be configurable to translate text-to-speech into another language,
such as English, Spanish and Chinese.

e Provides results of the algorithms, such as NM, NR, NS, and MNCPS.
The software tool itself can be used as a visualization-animation framework for including
other implementations of the unloading/pre-marshalling algorithms. Applying the JBoss Rules
(Drools) engine which uses the Rete Algorithm could potentially be considered as further work.

The Rete Algorithm is a pattern matching algorithm for implementing production rule systems.

24

It’s known to be helpful in planning rule-based systems [25]. By using this approach, we can
experiment with JBoss rules and use the Java animation teaching tool to refine and optimize both

the unloading and pre-marshalling algorithms for Terminal Container Yard operations.

25

CHAPTER 3
HUNGARIAN ALGORITHM

The classical, popular Hungarian algorithm for solving the “optimum assignment”
problems (with its broad engineering/science applications) has been well-documented in the
literature. Other (more efficient) variations of the Hungarian algorithm have also been
extensively studied by the research community. In this chapter, the basic Hungarian algorithm is
revisited, with the ultimate goal of developing a useful, user friendly, attractive Java computer
animation for “effectively teaching” this basic/important optimum assignment algorithm.

The major objective for this work is to develop an “educational tool”, which will help
students fully understand undergraduate STEM subjects (such as “numerical methods”), to help
alleviate the time consuming tasks of designing homework problems and preparing the
associated solutions. For this purpose, the “Hungarian” algorithm (for finding the optimum
assignment problems) is selected for use in this work since this topic does not require any
specific engineering discipline’s backgrounds as the prerequisite and due to its general
application. The final developed “educational product” from this work will be a Java-based
Hungarian algorithm/animation with the following desirable features:

e Both “minimum” (or “maximum”) objective function can be handled.

9% ¢

e Both “square”, “rectangular/tall”, or “rectangular” input cost matrices can be treated.

e A detailed, precise, and clear step-by-step explanation of the Hungarian algorithm is
provided in text and via a Java computer animated voice (for listening purposes).

e The ability to change the voice (female or male) that is providing the step-by-step
instructions.

e The ability to change and hear the computer animated voice in 3 major languages
(English, Chinese, and Spanish).

26

e The ability to either read input data from a text file, manually input data into the GUI, or
randomly generate data with a press of a button.

e A pausing capability to temporarily pause the Hungarian process.

e The ability to print the step-by-step instructions and “final/optimum assignment” results.
This allows users/learners the ability to check/verify their “hand calculated” results,
which is an important part of their learning process.

It should be emphasized here that existing/documented literatures on the Hungarian
algorithm is quite extensive and includes videos and YouTube lectures [32-33]. However, to the
best of the author’s knowledge, none of the existing tools have offered all of the above desirable
features. The remaining section of this chapter is organized as follows. A simple (small-scale)
5x5 matrix example is introduced in Section 3.1 to facilitate the explanation of a modified form
of the step-by-step Hungarian algorithm (such as how to handle a “maximization” assignment
problem, how to handle cases where the input data is the “rectangular/tall”, or “rectangular/fat”
matrix). Section 3.2 covers the Java computer animation features added/inserted into the basic
Hungarian algorithm to make the learning process easier, and more attractive. Users’, learners’,
and/or students’ interactions with the developed “Java Hungarian Animation” and the potential
benefits for both students and their instructor from the developed “teaching tool” are described
and highlighted. In Section 3.3 several small-scale matrix examples are used within the Java
computer animation and the final results are provided and discussed. Finally, conclusions and
future research works are summarized in Section 3.4.

3.1 Summary of the Hungarian Algorithm

To facilitate this step-by-step discussion, the following small-scale numerical 5x5 matrix

[A] data is used as a “generic” case for the assignment problem (5 workers/rows will be assigned

to 5 jobs/columns, in such a way to minimize the total cost).

27

5 2 4 3 6
|7 4 3 6 5
[Al=12 4 6 8 7|
s 6 3 5 4
l39476J

In a “transportation” example, the above “generic” 5x5 matrix [A] with its elements [Aij]

can be interpreted as the cost to transport the i-th bus (say, located at the Grey Hound bus station

in Norfolk) to the j-th terminal (so that the bus drivers will carry passengers from the j-th

terminal to certain destinations). Thus, one needs to have “optimum assignments” (which bus is

to be assigned to which terminal?) for minimizing the total cost and making sure that every bus

and every terminal can be utilized.

A. Step 0 — “Dummy” Rows (or Columns)

If the original matrix is rectangular, then “dummy” rows (or columns) can be added to

make the matrix become a square matrix. The maximum value in the original matrix [A] can be

used in these "dummy" rows (or columns).

B.

Step 1 — Subtract each Row with its Corresponding Minimum Value

Each row in matrix [A] is subtracted by its minimum corresponding value.

[5 2 4 3 6 302 1 4
|7 4 3 6 5 [41032]
[Al=12 4 6 8 7| & [4=|0o 2 4 6 5
[86354J 5 3 0 2 1
39 4 7 6 06 1 4 3

Step 2 — Subtract each Column with its Corresponding Minimum Value

Each column in matrix [A] is subtracted by its minimum corresponding value.

[3 0 2 1 4] [3 0 2 0 3]
|4 1 0 3 2 |4 1 0 2 1
[A]=10 2 4 6 5 =2 J[Al=1l0 2 4 5 4
[5 3 0 2 lJ [5 3 0 1 OJ
0 6 1 4 3 0 6 1 3 2

Step 3 — Cover ALL zeros in the current matrix [A] with the “Minimum Number of Lines
(MNOL)”

28

Compare each column and row in matrix [A] to determine which has the most zeros to be
covered first by a horizontal or vertical line. First, loop through each row and then each column
in matrix [A] to determine which column has the most zeros. For each row, the number of zeros
(number_of_zeros = 0) and column index (column_index = -1) is reset. Each column is looped
and checked for when a zero is found that is not covered by an existing vertical or horizontal
line. If this condition is met, the column index for this column is stored, and the number of zeros
is incremented. After looping through all the columns for a row and if it is determined if the
number of zeros is less than or equal-to the number of zero limit (humber_of_zero_limit = 1) and
is greater than zero, then the column that was marked by the column_index is covered since it
has the most zeros.

So, in Row 1 Column 2, the zero value is noted and there is no existing vertical or
horizontal line, so this column index is stored and the number of zeros is incremented
(column_index = 2, number_of zeros = 1). The remaining columns are checked and another
zero is found in Row 1 Column 4, so this column index is now stored and the number of zeros is
incremented (column_index = 4, number_of_zeros = 2). After all the columns are checked, the
number of zeros is not less than or equal-to the number of zero limit; therefore, no column is
marked and the next row is checked. In Row 2 Column 3, the zero value is noted and there is no
existing vertical or horizontal line, so this column index is stored and the number of zeros is
incremented (column_index = 3, number_of_zeros = 1). The remaining columns are checked for
this row and there are no remaining zeros; therefore, the number of zeros is less than the number
of zero limit so Column 3 is marked. This is continued until all the rows are looped.

After all the rows have been looped, the matrix [A] marked lines are as follows where

Column 3 is marked first, then Column 1 and then finally Column 5.

29

4

=10
5
0

1

[4]

ANWN = O
RO ON
WK Ul o

3
1
4
0
2

Next, loop through each column and then each row in matrix [A] to determine which row
has the most zeros. For each column, the number of zeros (number_of zeros = 0) and row index
(row_index = -1) is reset. Each row is looped and checked for when a zero is found and if it is
not covered by an existing vertical or horizontal line. If this condition is met, the row index for
this row is stored and the number of zeros is incremented. After looping through all the rows for
a column and if it is determined that the number of zeros is less than equal-to the number of zero
limit (number_of zero_limit = 1) and is greater than zero, then this row that was marked by the
row_index is covered since it has the most zeros.

After all the columns have been looped, the matrix [A] marked lines are as follows where

Row 1 is only marked.

[3 0 2 0 3]
4 1 0 2 1
0 2 4 5 4

[5 3 0 1 OJ
0 6 1 3 2

At this point, all the zeros are covered with a line (yellow highlight) with the minimum
number of lines (MNOL = 4). If MNOL is greater than or equal-to the matrix [A] dimension (N
= 5) proceed to Step 4 — Optimum Assignment; otherwise, proceed to Step 3.1 — Compute the
“Minimum Uncovered Number (MUN)” in matrix [A].

E. Step 3.1 — Compute the “Minimum Uncovered Number (MUN)” in matrix [A]
Since the MNOL is less than matrix [A] dimension (N = 5), the MUN can be computed.

This is done by subtracting the MUN from every uncovered number matrix [A] and adding the

30

MUN to every number covered with two lines (intersecting lines or yellow highlights) matrix
[Al

The MUN for matrix [A] is 1. Every uncovered number (blue font text) is subtracted
from MUN while every intersecting lines (red font text) is added by MUN. The resulting matrix

[A] is as follows:

302 0 3 0 3 0
[« 1 0 2 1 la 0 8 1 1
[Al=]0 2 4 5 4] =2 [4=]o0 4 4|
l5301oJ [5 0 oJ
06 1 3 2 05 1 2 2

After the MUN has been computed, the horizontal and vertical lines are removed and
Step 3 — Cover ALL zeros in the current matrix [A] with the MNOL is repeated.

F. Step 4 — Optimum Assignment
When the MNOL is greater than or equal-to the matrix [A] dimension (N = 5), the matrix

[A] is converged and is ready for assignment. Starting with the top row, work your way
downwards as assignments are made. An assignment can be (uniquely) made when there is
exactly one zero in a row.

The optimum assignment portion of the algorithm is done in a similar fashion as in Step 3
for covering all zeros with the MNOL. The final optimum assignment (optimum minimum score
=3+3+4+4+3=17) for this matrix [A] is as follows:

e Worker #1 assigned to Job #4

e Worker #2 assigned to Job #3

e Worker #3 assigned to Job #2

e Worker #4 assigned to Job #5

e Worker #5 assigned to Job #1

31

6 1 4 0 4 [5 2 4 3 6
50000] |7 4 3 6 5
[Al=]0 0 3 2 2| = [4]=12 4 6 8 7|
7 31 0 0 s 6 3 5 4
0 4 0 0 0 l39476J

3.2 Visualization and Animation using Java

The software is custom written in Java and is meant to create 2D animations and provide

voice explanations for solving for the “final/optimum assignment” for the Hungarian Algorithm.

The Java software is 100% written in Java and developed from scratch using several open-source

software options. The software uses various third-party libraries, such as the 2D graphics library

(Swing) for animations, the text-to-speech library (Google API Translate) for voice, and the

matrix library (Efficient Java Matrix) for data storage [20-21]. Applying open-source libraries to

this software allowed lots of Graphical User Interface (GUI) functionality and features to be

developed. The software GUI is developed with JFC/Swing which is included within the Java

Development Kit (JDK). The Main GUI consists of eight main components, as shown in Figure

1.

Menu Buttons (File, Preferences, and Help)

Provides basic options, such as an option to open/save the matrix, an option to provide
terse, verbose, or no voice step-by-step instructions, an option to change the voice
language to English, Spanish, and Chinese, and an option to display a user manual.

Input Control Buttons
Buttons to open, save or edit a matrix.

Lesson Control Buttons

Buttons to play, pause, or stop the step-by-step lesson. The buttons are enabled when an
initial matrix is given. The step-by-step window button displays a scrollable window
with the step-by-step instructions. The information button provides a user guide for the
Main GUI.

. Algorithm Step

Textbox view of the current algorithm step (during play session).

32

5. Tutorial Information View
Textbox view of instructions or steps being done within the algorithm (during play
session).

6. Animation View (Matrix Table View)
Provides an animated table view of the matrix during each step within the algorithm.

7. Animation View (Matrix Canvas View)
Provides an animated canvas view of the matrix during each step within the algorithm.

8. Status View
Provides a status view which displays meaningful status: ready, playing, or paused.

L) Hungarian Algorithm Educational Application - o IEN
1 [Options Help
Matrix Input Controls Tutorial Lesson Controls
2 == 0 O —3
Tutorial Information View

Algorithm Step
Step 2. Sublract each column with its corresponding minimum value C—TO— 4
Tutorial Information

The minimum corresponding value in the matrix for column 4 is 1.0

o J .

Matrix Table View Matrix Canvas View
Job1 | Job2 | Job3 | Job4 | Job S]
Worker1 | 30 | 00 | 20 40
Worker2 | 40 | 10 | 00 30 | 20
Worker3 | 00 | 20 | 40 | 60 | 50 3.0 0.0 2.0 i@ 4.0
Workerd | 50 1 30 | 00 17201 1.0 4.0 1.0 0.0 3.0 2.0
Vorker 5 0.0 6.0 10 40
vorke 2 : “4 (a1 =[0.0 2.0 4.0 6.0 5.0 7
SO RONE——
6— 50 3.0 0.0 2.0 1.0
0.0 6.0 1.0 4.0 3.0

8 ommmmgm— Playing

Fig. 9. Main Graphical User Interface (GUI).
The given small-scale numerical 5x5 matrix [A] data given in Section 3.1 is used again as

a “generic” case for the assignment problem (5 workers/rows will be assigned to 5 jobs/columns,

33

in such a way to minimize the total cost) and is inputted into the Java computer animation tool.
The tool will perform the same step-by-step instructions along with voice, visualization and

animation.

£ Assignment Problem Selection -4

Choose an Assigment Problem

Maximization -

Minimization
Maximization

Fig. 10. Assignment Problem Selection.

Prior to starting the step-by-step instructions for a given matrix, the Java tool will prompt
the user to either solve for the “minimization” or “maximization” optimum assignment [See
Figure 10]. If “maximization” is selected, an additional step prior to Step 0 will occur to convert
the assignment problem into a “maximization” assignment problem. This is done by locating the
maximum cost value in the matrix. Once that is determined, every cost value in the matrix is
multiplied by -1 and then added to the maximum cost value. This will convert the given matrix
for the solving for the “maximization” assignment problem. In this example, we solve for the
“minimization” assignment problem.

A. Step 0 — “Dummy” Rows (or Columns)

During Step 0, the Java tool determines if the original matrix is non-squared
(“rectangular” or “tall”). If so, “dummy” rows (or columns) with the values set to zero are added
to make the matrix become squared. In our given exam