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INTRODUCTION

The term ‘organic aggregate’ is a general expression
that encompasses multiple kinds of aggregated mater-
ial suspended in aquatic systems, including marine,
lake and river snow, macro- and microaggregates,
organic detritus, flocs and bioflocs (see Fig. 1A,C,D).
Aggregation of living, dead, and inorganic particles in
aquatic ecosystems is a natural process influenced by
numerous biological, chemical, and physical interac-
tions, and affects the net transport of carbon, nutrients,
metals, and other materials from the water column to
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ABSTRACT: Four predictions of the MacArthur-Wilson
theory of island biogeography were evaluated to assess
the degree to which detrital-based organic aggregates
(e.g. marine snow, organic detritus, and bioflocs) may
provide a favorable microhabitat (i.e. an ‘island’) for
bacteria in general, and specifically aquatic pathogens.
We demonstrate the theory’s relevance for microbial
communities in aquatic environments by describing the
community metabolic response and functional diversity
of individual organic aggregates while documenting
the persistence of potential pathogens and fecal indica-
tor bacteria. Our results support the 4 predictions,
including a significant species–area relationship, con-
sistency of species richness at equilibrium, non-zero
level of species turnover at equilibrium, and variance to
mean ratios of less than 0.5 at equilibrium. The aggre-
gate-associated microbial communities demonstrated
significantly higher rates of metabolic response and
functional diversity, and contained higher concentra-
tions of culturable vibrios and fecal indicator bacteria
compared to aggregate-free water, supporting the idea
that organic aggregates are sites of favorable habitat
surrounded by a less favorable matrix. These results
substantiate that organic aggregates may be repre-
sented as microscopic islands. Using island biogeogra-
phy theory to understand the microbial ecology of
aquatic pathogens associated with organic aggregates
is important with respect to environmental sampling of
recreational waters and mathematical modeling of the
transmission of waterborne diseases from aquatic
reservoirs to humans.
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Organic aggregate (light micrograph inset and dark spots
in main photo) produced in 10 l rotating tanks function as
islands for aquatic bacteria, including potential pathogens

Photo: M. M. Lyons

OPENPEN
 ACCESSCCESS



Aquat Microb Ecol 60: 1–13, 2010

benthic habitats (Fowler & Knauer 1986). For decades
the biology and ecology of organic aggregates has
been studied in the context of oceanography (e.g. All-
dredge 1979, Silver & Alldredge 1981, Alldredge &
Cohen 1987, Lampitt et al. 1993, Azam & Long 2001),
environmental microbiology (e.g. Riley 1963, Caron et
al. 1986, Logan & Hunt 1987, Herndl 1988, Azam et al.
1994, Kiørboe 2003, Grossart et al. 2006, Yam & Tang
2007), the distribution of metals (e.g. Cowen & Silver
1984, Hebel et al. 1986), phytoplankton ecology
(Riebesell 1991, Kaltenböck & Herndl 1992, Kiørboe &
Hansen 1993, Silver et al. 1998, Thornton 2002), meso-
plankton and benthic trophic interactions (e.g. Boch-
dansky & Herndl 1992, Alber & Valiela 1996, Shanks &
Walters 1997, Kiørboe & Thygesen 2001), and carbon
and nutrient cycling (e.g. Shanks & Trent 1979, Cho &
Azam 1988, Alldredge & Gotschalk 1990, Brzezinski et
al. 1997, Ploug et al. 1999, Alldredge 2000, Kiørboe
2001). Detailed reviews of the processes governing
aggregation (Eisma et al. 1991, Jackson & Burd 1998,
Burd & Jackson 2009) and the microbial ecology of
aggregates (Alldredge & Silver 1988, Simon et al. 2002,
Turner 2002) have summarized the breadth of informa-
tion regarding these ubiquitous and dynamic conglom-
erations of living and nonliving particles.

Although the importance of marine, estuarine, and
freshwater aggregates continues to be an area of
active research (e.g. Guidi et al. 2008, Kach & Ward
2008, Ploug et al. 2008, Stemmann et al. 2008, Engel et
al. 2009, Stevens et al. 2009, Ward & Kach 2009), the
role of organic aggregates in the ecology of aquatic
pathogens is only now beginning to be evaluated
(Lyons et al. 2007, Lyons 2008). For example, aggre-
gates have been shown to be an environmental reser-
voir for the eukaryotic hard clam pathogen, Quahog
Parasite X (QPX; Lyons et al. 2005, Lyons 2008), and to
contain Vibrio parahaemolyticus (Venkateswaran et al.
1990) and V. cholerae (Colwell et al. 2003). Elsewhere,
Lyons et al. (2007) also found these 2 bacterial species
in aggregates and expanded the list of potentially
harmful, aggregate-associated bacteria to include: V.
vulnificus, V. alginolyticus, Escherichia coli, Entero-
coccus sp., Mycobacterium sp., Aeromonas hydro-
phila, Pseudomonas aeruginosa, Photobacterium dam-
selae, Shigella sonnei, Stenotrophomonas maltophila,
and Burkholderia cepacia. These species include
potential pathogens (and pathogen indicators) associ-
ated with sewage-related pollution events and natural
aquatic microbial communities, yet little is known
about the community ecology of aggregates with re-
spect to these pathogens.

A fundamental part of disease risk is exposure.
Accordingly, to understand the disease risk presented
by aggregate-associated pathogens, it is important to
understand the processes that determine the number

and diversity of species associated with an aggregate
or collection of aggregates. In this study, we adopt the
theory of island biogeography (MacArthur & Wilson
1963, 1967) as a conceptual framework for understand-
ing the accumulation of bacterial species on aggre-
gates. Originally, island biogeography theory was
developed to explain the composition of biological
communities found on oceanic islands. The theory pre-
dicts a dynamic equilibrium between colonization of
new species and extinction of resident species in which
the total number of species (i.e. species richness) is an
increasing function of island size and a decreasing
function of the distance to a source of potential coloniz-
ers (e.g. continental mainland). Previous applications
include the species richness of birds on California’s
Channel Islands (Diamond 1969, Jones & Diamond
1976) and of ants within the Malaysian Archipelago
(Wilson 1959), re-colonization of islands following vol-
canic eruptions (Krakatau Islands; Bush & Whittaker
1991, Thornton 1996), and intentional depopulations
(mangrove islands in Florida Keys; Simberloff & Wilson
1970). More recently the theory of island biogeography
has been extended to other ecosystems with high-
quality habitat surrounded by less-suitable habitat,
such as mountains bounded by deserts (Lomolino et al.
1989, Kebede et al. 2007), and ecological reserves
encircled by urban environments (Fore & Guttman
1999, Ohmura et al. 2006). In contrast with the many
applications of island biogeography to macro-organ-
isms, the theory has seldom been tested on a smaller
scale for microbial communities (for exceptions see
Kinkel et al. 1987, Bell et al. 2005, Reche et al. 2005),
and to our knowledge, not in the context of disease
ecology.

Here, we argue the theory’s relevance for microbial
communities in aquatic environments by describing
the community metabolic response and functional
diversity of individual organic aggregates while moni-
toring the persistence of potential pathogens and fecal
indicator bacteria. Four predictions of island biogeog-
raphy theory were evaluated including (1) species–
area relationship, (2) consistency of the number of spe-
cies, (3) degree of species turnover, and (4) variance to
mean ratio of species diversity at equilibrium (Gilbert
1980, Brown & Dinsmore 1988). Other predictions of
the theory, including the distance from a source and
colonization of new (e.g. sterilized) islands, are the
focus of ongoing experiments not described in this
paper. Our long-term objective is to apply this commu-
nity-level approach to the study of waterborne dis-
eases and illnesses by evaluating the degree to which
detrital-based organic aggregates may provide a
favorable micro-habitat (i.e. an ‘island’) for aquatic
pathogens. If so, aggregates may facilitate persistence,
prevalence, and dispersal of aquatic pathogens in

2



Lyons et al.: Aggregates as islands for aquatic pathogens

nature. Furthermore, an improved understanding of
the processes involved will inform and influence envi-
ronmental sampling and mathematical modeling of
aquatic pathogens.

MATERIALS AND METHODS

Source water. Surface water (15 l, salinity 15 psu)
was collected from Knitting Mill Creek (KMC), Vir-
ginia, USA (36.89° N, 76.29° W). The creek is a small
branch of the Lafayette River, a tributary of the Eliza-
beth River, which ultimately empties into the mouth of
the Chesapeake Bay. Water was collected in a sterile
container from an area near (~1 m) a storm-water
drainage pipe.

Generation of aggregates. Aggregates (Fig. 1A,
C,D) were generated in a rotating 10 l cylindrical tank
(Fig. 1B, 40 cm diameter, 8 cm width) modified from
Shanks & Edmonson (1989). The tank was filled with
source water (well mixed) and rolled at 1.5 rpm for 35
d at room temperature.

Aggregate sampling. On Days 1, 2, 7, 14, and 35 the
tank was temporarily removed from the rolling table
and placed horizontally on a calibrated white back-
ground for photography (see ‘Materials and methods:

Image analysis’) and sample collection. Individual
aggregates (n = 6) of similar size (2 to 4 mm long axis)
were collected, one at a time, through the tank’s center
port with minimal surrounding water (<0.1 ml) using
sterile 1 ml disposable pipettes. Individual aggregates
were then transferred to labeled 15 ml centrifuge tubes
in which each aggregate was diluted to 10 ml with
sterile (autoclaved and 0.2 µm filtered) KMC water.
This dilution was used for both the community compo-
sition analysis and the culturable vibrios assay (see
sections ‘Microbial community composition’ and ‘Con-
centration of culturable vibrios (TCBS)’). A total of 30
samples (i.e. 5 d × 6 aggregates per day) were used for
all statistical analyses of aggregate data . Additional
aggregates (n = 3) were collected to evaluate the con-
centration of Escherichia coli in the aggregate-associ-
ated microbial communities (total n = 15).

Water sampling. Water samples with no aggregates
visible to the naked eye (i.e. operationally defined ‘ag-
gregate-free’ water) were collected from the center port
of the tank using sterile 10 ml disposable pipettes. The
starting water (Day 0 for both aggregate and aggregate-
free samples) included 1 sample based on 3 replicates,
whereas on all other days, 6 samples (10 ml each) were
collected for determination of community composition
and concentration of culturable vibrios. These water
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Fig. 1. (A) Concurrently created aggregates typically differing in size, shape, and complexity. (B) Aggregates were made from
natural waters in large cylindrical tanks (diameter = 40 cm) that were rotated (1 to 2 rpm for 1 to 35 d) on bench top roller tables
(Shanks & Edmonson, 1989). Resulting aggregates contained a variety of plankton as seen with a microscope under (C)

transmitted light and (D) with epifluorescent blue-light excitation (same field as C)



Aquat Microb Ecol 60: 1–13, 2010

samples were processed without dilution. A total of 31
water samples (5 d × 6 samples per day, plus 1 initial
water sample) were collected and used for statistical
analysis with the exception of the assessment of com-
munity metabolic response and functional diversity
for which 28 samples were used (due to loss of 3 samples
during processing). Additional 10 ml samples (n = 3)
were collected on each sampling day to evaluate the
concentration of Escherichia coli in the aggregate-free
microbial communities (total n = 18). After sampling
was completed, a similar volume of sterile KMC water
(~90 ml) was added back to the tank to maintain a con-
stant volume. Although this additional water diluted the
microbial community in the 10 l tank, the effect is likely
to be small given the size of the tank relative to the
amount of the water added (i.e. < 1% per time point).

Image analysis. With the tank in the horizontal posi-
tion, individual aggregates were photographed and

analyzed using previously developed image analysis
procedures for marine aggregates (Lyons et al. 2007).
Digital color photographs were uploaded to an image
analysis program (ImageJ; available at http://rsbweb.
nih.gov) and converted to 8-bit gray scale. Aggregates
were identified, numbered, counted, and sized using a
binary threshold and an automated particle counter.
Results were manually verified against the original
photographs (Fig. 2A–D). Several metrics of size,
including long and short axes, surface area, and
perimeter were recorded. Volumes of individual
aggregates were calculated using the long and short
axes of each aggregate and the equation for volume
(V) of an ellipsoid (V = 4/3 πab2; a: 1⁄2 long axis, b: 1⁄2
short axis).

Microbial community composition. Biolog Eco-
Plate™ microplates (Biolog, Inc.) were used to charac-
terize and compare the aggregate-associated and
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Fig. 2. Individual aggregates were measured (e.g. long axis, surface area, volume) via image analysis prior to being collected with
sterile 1 ml disposable pipettes. Selected aggregates (1 to 6) were identified on digital color photographs (A) before being
converted to an 8-bit gray-scale (B). A binary threshold was used to produce dark particles on a light background (C; notice shad-
ows, located to the right of aggregates [in A,B], were eliminated by this procedure). An automatic particle analyzer (ImageJ) was
used to determine the size of selected aggregates (D), the locations of which were then verified against the original photographs 

(Lyons et al. 2007)
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aggregate-free heterotrophic microbial communities.
EcoPlate™ microplates consist of 3 replicate sets of 31
carbon substrates (see Table 1), predominantly amino
acids, carbohydrates, and carboxylic acids, individu-
ally arrayed in a 96-well format. Each well also con-
tains a minimal growth medium and tetrazolium violet
dye. The redox dye turns purple in the presence of
electron transfer, indicating utilization of the substrate
by inoculated microbes (Bochner 1989). A control well
contains no sole-carbon substrate, thus any color
development indicates utilization of carbon sources
inherent in the inoculated water or storage polymers
of microbes. EcoPlate™ microplates have been shown
to be effective at discriminating among aquatic het-
erotrophic microbial communities (Choi & Dobbs
1999). Preliminary experiments (data not shown)
revealed that pooling aggregates prior to dilution
yielded consistent results among replicate wells, but
that diluting a single aggregate to the necessary vol-
ume required to fill all 96 wells of an EcoPlate™ did
not (presumably because excessive dilution reduced
heterotrophic expression of the microbial community
below threshold levels). Consequently, individual
aggregates were only diluted enough to fill one set of
32 wells per plate. Samples of aggregates (diluted)
and aggregate-free water (undiluted) were vigorously
shaken and vortexed (30 s) before 150 µl aliquots
were inoculated into each well. Optical density (λ =
590 nm) of each well was determined immediately
(time = 0 h) and after 3 d (time = 72 h) of dark incuba-
tion at room temperature (20°C) with a BioTek plate
reader (model ELX800, BioTek). Bacterial concentra-
tions of the aggregates and aggregate-free water
were not determined.  Christian & Lind (2006) showed
no correlation, after 72 h incubation, between optical
density of wells and bacterial concentration of the
starting inoculum (i.e. if the community can utilize a
substrate, it will have done so by then). Average well
color development (AWCD, measure of average com-
munity metabolic response) was calculated in accor-
dance with Garland & Mills (1991) after subtracting
the starting values of each EcoPlate™ microplate from
its 72 h readings (ΔAWCD) to account for intrinsic dif-
ferences in the absorbance of the carbon substrates
(Insam & Goberna 2004). The average (n = 6 per time
point) ΔAWCD (i.e. difference between times 0 and 72
h) was used to assess and compare community meta-
bolic response and functional diversity of microbial
communities in aggregates and aggregate-free water
samples. The number of substrates utilized by the
microbial community of the sample (i.e. a measure of
functional diversity, Zak et al. 1994) was determined
by comparing the change in well color development
(adjusted for the control well) to a threshold value
(0.250 optical density). Readings greater than the

threshold were counted as substrates used by the
community in the sample, whereas readings less than
or equal to the threshold value were scored as sub-
strates not used. Species turnover was assessed by
comparing the specific substrates used by the aggre-
gate-associated communities at each of 4 consecutive
time points (Days 0, 1, 2, 7) when no significant differ-
ences were detected in the number of substrates used
(i.e. equilibrium, see section ‘Results’). To do so,
ΔAWCD values of the 6 aggregates at each time point
were averaged, then compared to the threshold (as
described above) to determine if the substrate was
utilized or not utilized. Finally, variance to mean ratios
of the functional diversity (i.e. number of substrates
used) of aggregate-associated microbial communities
were calculated for each set of 6 aggregates collected
at each of the 4 time points.

Concentration of culturable vibrios (TCBS). Tripli-
cate 100 µl aliquots of the 10 ml dilutions of individual
aggregates (n = 6) and the 10 ml samples of undiluted
aggregate-free water (n = 6), were spread-plated onto
individual thiosulfate citrate bile salts sucrose (TCBS)
agar plates. Plates were incubated overnight at 35°C,
after which colony forming units (CFUs) of sucrose-fer-
menting vibrios (i.e. yellow colonies) and total vibrios
(i.e. yellow and green colonies) were counted and
recorded. Sucrose-fermenting species of the genus
Vibrio comprise several potential pathogens including,
V. cholerae, V. alginolyticus, V. harveyi, V. cincinna-
tiensis, V. fluvialis, V. furnissi, and V. metschnikovii.

Concentration of fecal indicator bacteria (Esche-
richia coli). Triplicate samples of aggregates (diluted
1:999) and aggregate-free water (diluted 1:9) were
analyzed for E. coli using Colilert-18 (IDEXX Laborato-
ries) to enumerate most probable number (MPN) val-
ues for E. coli in the aggregate-associated and aggre-
gate-free microbial communities.

Statistical analysis. We used Minitab® for all statisti-
cal tests. When exploring a functional or predictive
relationship between variables, we used regression
analysis (general linear model, GLM), whereas when
estimating their degree of association, we used corre-
lation analysis (Sokal & Rohlf 1981). We analyzed
aggregate sizes using 1-way ANOVA (factor was Day).
We tested average community metabolic response,
functional diversity, and bacterial concentrations using
2-way ANOVA (with interaction); factors were Day (0,
1, 2, 7, 14, and 35) and Sample type (aggregates and
water). Counts of bacteria (vibrios and E. coli) were not
normally distributed and were log-transformed before
ANOVA. All counts <1 colony forming unit (CFU) ml–1

or <1 most probable number (MPN) ml–1 were as-
signed a value of 0.1 prior to transformation.  Results
were considered significant when the calculated
p-value was less than or equal to α = 0.05.
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RESULTS

Aggregate size

Aggregates ranged in size (long axis) from 1.9 to
3.7 mm with surface areas from 2.6 to 8.6 mm2 and vol-
umes of 0.024 to 0.137 ml. The sets of 6 aggregates col-
lected on each of the 5 sampling days were not signifi-
cantly different in size (i.e. no relationship between
sample day and size, n = 30) as measured by long axis
(p = 0.095), area (p = 0.149), or volume (p = 0.903). Over
the small range of aggregate sizes evaluated, surface
area was weakly (r2 = 0.160), but significantly (p =
0.016, n = 30) related to average community metabolic

response (ΔAWCD) and functional diversity (number of
substrates used; r2 = 0.101, p = 0.049, n = 30) (Fig. 3A).

Average community metabolic response 

A 2-way ANOVA detected highly significant effects
of Day (p < 0.001, n = 58), Sample type (p < 0.001, n =
58), and a significant interaction (p = 0.009, n = 58). For
all sampling days, the average community metabolic
response, measured as the change in the average well
color development (ΔAWCD), was significantly greater
in aggregates compared to water (see asterisks in Fig.
4A), indicating a greater utilization of more substrates
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by microbes associated with aggregates. The metabolic
response steadily declined in the water samples over
the duration of the experiment, whereas the response
in aggregates was maintained for at least 1 wk (i.e. no
significant differences among Days 0, 1, 2, 7) before
declining on Days 14 and 35 (see letters on dark bars in
Fig. 4A). The largest difference in response between
the 2 types of microbial communities occurred on Day
7. Metabolic response was significantly related to all
metrics of size including long axis (r2 = 0.134, p = 0.027,
n = 30), surface area (r2 = 0.160, p = 0.016, n = 30), and
volume (r2 = 0.146, p = 0.021, n = 30).

Functional diversity 

Functional diversity (i.e. number of substrates used)
varied from 0 to 24 (mean ± SD: 13 ± 8) out of 31 sub-
strates available. A 2-way ANOVA determined highly
significant effects of Day (p < 0.001, n =
58), Sample type (p < 0.001, n = 58),
and a significant interaction (p = 0.004,
n = 58). For Day 1 (after 24 h in the
rolling tank), there was no significant
difference between the functional di-
versity of aggregate-associated and
aggregate-free microbial communities
(p = 0.251, n = 58), but for all other time
points, the functional diversity of the
aggregate-associated microbial com-
munities was significantly greater
than that of its aggregate-free counter-
part (Day 2: p = 0.002, Day 7: p = 0.001,
Day 14: p = 0.020, Day 35: p = 0.001;
see asterisks in Fig. 4B). Similar to re-
sults for community metabolic re-
sponse detailed above, functional di-
versity of the microbial community in
the water steadily declined from Day 0
to Day 35, whereas the functional di-
versity of the microbial communities
in aggregates was maintained for at
least 1 wk (no significant differences
among Days 0, 1, 2, and 7, represent-
ing an equilibrium period for the ag-
gregate-associated microbial commu-
nity), before declining on Days 14 and
35. The largest difference in diversity
between the aggregate-associated and
aggregate-free microbial communities
was on Day 7. For all samples (water
and aggregates) the functional diver-
sity of the microbial community was
highly correlated with the average
community metabolic response (r =

0.98, p < 0.001, n = 58). Functional diversity of the
aggregate-associated communities was also signifi-
cantly related to long axis (r2 = 0.105, p = 0.045) and
surface area (r2 = 0.101, p = 0.049), but not volume (p =
0.066; n = 30 in all cases).

Species turnover

Substrate utilization was analyzed for the 4 consecu-
tive time points, i.e. Days 0, 1, 2, and 7, when no signif-
icant differences in the functional diversity of aggre-
gates were detected (Table 1). A total of 17 of the 31
carbon substrates were used at all 4 time points,
whereas only 1 (2-hydroxy benzoic acid) of the 31 sub-
strates was not used at all. Against this ‘background’
signal of relatively constant number of species (func-
tional diversity being a proxy for species number),
there was temporal variation in utilization of the

7

Specific substrate Substrate type Day 0 Day 1 Day 2 Day 7

Putrescine Amine + + + +
Phenylethylamine Amine + 0 0 +
L-arginine Amino acid + + + +
L-asparagine Amino acid + + + +
L-phenylalanine Amino acid + 0 0 0
L-serine Amino acid + + + +
L-threonine Amino acid + + + +
Glycyl-L-glutamic acid Amino acid + + + +
D-cellobiose Carbohydrate + + + +
α-D-lactose Carbohydrate + + + +
β-methyl-D-lucoside Carbohydrate + + + +
D-xylose Carbohydrate + + + 0
I-erythritol Carbohydrate + + + +
D-mannitol Carbohydrate 0 + + +
N-acetyl-D-glucosamine Carbohydrate + + + +
Glucose-1-phosphate Carbohydrate + 0 0 0
D,L-α-glycerol phosphate Carbohydrate + + + +
D-galacturonic Carbohydrate + + 0 0
acid-γ-lactone

Pyruvic acid methyl ester Carboxylic acid 0 + + +
Glucosaminic acid Carboxylic acid + 0 0 0
D-galacturonic acid Carboxylic acid 0 + + +
γ-hydroxybutyric acid Carboxylic acid + + + 0
α-ketobutyric acid Carboxylic acid + 0 0 +
D-malic acid Carboxylic acid + 0 0 0
Itaconic acid Carboxylic acid + + + +
2-hydroxy benzoic acid Carboxylic acid/ 0 0 0 0

phenol
4-hydroxy benzoic acid Carboxylic acid/ + 0 0 0

phenol
Tween 40 Polymer + + + +
Tween 80 Polymer + + + +
α-cyclodextrin Polymer + + + +
Glycogen Polymer + + + +

Table 1. Variation over time in the utilization of specific substrates by the ag-
gregate-associated communities supports the concept of species turnover
(+ = utilized, 0 = not utilized). The proxy for number of species (functional diver-

sity) remained relatively constant across the same 4 time points.
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remaining 13 substrates, evidence of species turnover
in the aggregate-associated microbial communities.
No consistent utilization pattern among the 6 substrate
types was discernable.

Variance to mean ratio (VMR) of functional diversity

VMR values of the functional diversity for each set of
6 aggregates collected at each time point in the equi-
librium period (i.e. Days 0 to 7 when no differences in
functional diversity were detected) were all under the
minimum value of 0.5 (Day 1 = 0.23, Day 2 = 0.09, Day
7 = 0.42) predicted by the theory of island biogeogra-
phy, supporting the notion that a non-random process
generated the patterns observed.

Concentration of culturable vibrios

A 2-way ANOVA showed highly significant effects
of Day (p < 0.001, n = 61), Sample type (aggregates >
water; p < 0.001, n = 61), and a significant interaction
(p = 0.027, n = 61) for sucrose-fermenting vibrios. For
total vibrios, there were significant effects of Day (p <
0.001, n = 61) and Sample type (aggregates > water,
p < 0.001, n = 61), but the interaction was not signifi-
cant (p = 0.074, n = 61). For both types of culturable
vibrios, the highest concentrations occurred in aggre-
gates sampled on Day 2 (Fig. 5). Culturable vibrios
were detected in at least some aggregates sampled
up to 35 d, whereas no culturable vibrios were
detected in any water samples after 2 d. For the aggre-

gate-associated microbial communities, functional di-
versity was significantly correlated with the concentra-
tion of both total vibrios (r = 0.46, p = 0.011, n = 30) and
sucrose-fermenting vibrios (r = 0.37, p =0.047, n = 30),
whereas community metabolic response (ΔAWCD) was
only correlated with the concentration of total vibrios
(r = 0.44, p = 0.015, n = 30) and not sucrose-positive
vibrios (r = 0.35, p = 0.058, n = 30).

Concentration of fecal indicator bacteria
(Escherichia coli)

A 2-way ANOVA indicated highly significant ef-
fects of Day (p < 0.001, n = 36), Sample type (aggre-
gates > water; p < 0.001, n = 36), and a significant
interaction (p < 0.001, n = 36) for concentrations of
the fecal indicator bacteria, E. coli. Subsequently,
using 1-way ANOVA on samples of aggregates only,
concentrations on Days 1, 2, and 7 were significantly
greater than the starting concentration (Day 0) and
the concentrations on Days 14 and 35 (see letters
above lines in Fig. 6).

DISCUSSION

The advantages of applying the theory of island bio-
geography to organic aggregates are plentiful. For
example, aggregates (i.e. ‘islands’) are easily produced
in the laboratory from a variety of environmental
waters with relatively simple equipment, making
aggregates conducive to island biogeography studies.
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In addition, a large number of aggregates can be gen-
erated, yielding a greater number of replicates than is
typically available with other island biogeography
studies. Furthermore, since individual aggregate-
islands can be isolated, the entire island can be sam-
pled to determine the number of species, compared to
studies on oceanic islands (as archetypal examples)
that rely on subsamples to infer species numbers.
Finally, the microbial community of aggregate-islands
can be manipulated, observed, and analyzed on sub-
stantially shorter time scales than corresponding stud-
ies of birds, mammals, or insects on islands. We are
using island biogeography theory to better understand
an important issue in applied ecology, that is, the trans-
mission of waterborne diseases. The theory of island
biogeography predictions that were evaluated in our
research included species consistency, non-zero spe-
cies turnover rates, species-area relationship, and vari-
ance to mean ratio of species number.

Species consistency and non-zero level
of species turnover 

Island biogeography predicts that the number of
species on an island tends toward equilibrium because
of a balance between immigration and extinction. We
used functional diversity (i.e. number of substrates uti-

lized) as a proxy for species diversity to evaluate the
temporal consistency of species number and found no
significant differences in the aggregate-associated
communities on Days 1, 2, and 7. Analysis of the spe-
cific substrates utilized during this time period indi-
cated a non-zero turnover of species (i.e. there were
changes in species composition without changes in the
number of species). The consistency of species num-
ber, coupled with non-zero turnover rates, supports the
premise that a dynamic equilibrium within the aggre-
gate-associated microbial community was reached
within 1 d and was maintained for at least 1 wk.
Whether or not an individual aggregate could remain
intact and in suspension for 1 wk in nature, is not
known, but would most likely depend on the site- and
time-specific hydrodynamics of the aquatic system in
question. In addition, any period of dynamic equilib-
rium might be expected to vary with source water and
season, but these variables were outside the scope of
this experiment.

Species–area relationship 

Island biogeography predicts that the relationship
between the number of species (i.e. species richness,
S) on an island and its area (A) is a power function: S =
C × Az (Fig. 3), where the constants C and z vary with
taxonomic group, geography, and degree of isolation.
Over the small size range of aggregates targeted in the
present study (~2 to 4 mm long), the species–area rela-
tionship was confirmed with a weak but significant
relationship between size (in area) and functional
diversity. Prior experiments by our group (M. M. Lyons
& F. C. Dobbs unpubl.), using the same methods, but
with other sources of water over a wider range of
aggregate sizes, support a more robust relationship
(comparing Fig 3A to 3B). The species–area relation-
ship documented in the present study supports other
reports on the abundances of bacteria, flagellates, and
ciliates scaling with the size of aggregates (Kiørboe
2003) and the existence of steep microbial species–
area relationships (Bell et al. 2005).

Variance to mean ratio (VMR) at equilibrium 

The 6 aggregates collected at each time point repre-
sent 6 islands that were similar in terms of source
water, age, and size. In each set, the VMR of functional
diversity was well below the 0.5 minimum predicted by
the theory of island biogeography (MacArthur & Wil-
son 1963, Brown & Dinsmore 1988). In general, a VMR
near 1.0 suggests that the number of resident species is
due to a random process, whereas the further the VMR

9

0

A BC BC CD E

2 4 6 8 10 12 14

Time (d)

0.1

1

10

100

1000

10000

100000

C
on

ce
nt

ra
tio

n 
(M

P
N

 1
00

 m
l–

1 )

Aggregates
Water

Fig. 6. Concentrations of Escherichia coli (mean ±1 SD) in
samples of aggregates compared to aggregate-free water. No
signals (recorded as <1 MPN, i.e. most probable number)
were detected in either type of sample on Days 14 or 35
(Day 35 not shown). Letters above the lines denote signifi-
cantly different concentrations among the samples of aggre-
gates, demonstrating that concentrations of E. coli on Days 1,
2, and 7 were significantly higher than the starting concentra-
tion (Day 0). Given that positive results were detected in
samples collected up to Day 7 for aggregates, but not for wa-
ter, these results suggest a role for organic aggregates in the 

persistence of E. coli in aquatic environments



Aquat Microb Ecol 60: 1–13, 2010

is away from 1, the more likely the process governing
the number of species is not random (i.e. either a
patchy distribution if VMR > 1 or a patterned distribu-
tion if VMR < 1). In the case of island biogeography,
the processes resulting in a patterned distribution are
expected to be the balance of immigration and extinc-
tion rates.

Aggregates as islands — application in disease
ecology 

Although the details of the theory of island biogeog-
raphy have been debated for some time (reviewed by
Whittaker 2000), overall, the results of the present
study support the idea that the theory applies to
organic aggregates, which we have shown function as
islands for bacteria. While arguing the relevance of the
theory for microbial communities in aquatic environ-
ments, we have also demonstrated an elevated meta-
bolic response and functional diversity of bacteria on
individual organic aggregates compared to the sur-
rounding water, supporting the concept that organic
aggregates are favorable habitats surrounded by less
favorable habitat. This result quantifies research de-
scribing organic aggregates as ‘physically distinct ben-
thic-like habitats’ (Silver et al. 1978). Focusing on
aggregates as islands is important in their context as
potential reservoirs and vectors for aquatic pathogens
(Lyons et al. 2005, Lyons 2008).

In aquatic ecosystems in general, the adhesion of
bacteria to both biotic (e.g. phytoplankton, macro-
phytes, zooplankton, benthic invertebrates, pelagic
vertebrates) and abiotic (e.g. clay particles, sediment
grains, boat hulls, piers) surfaces is considered a pro-
tective mechanism for enhanced survival (Davies et al.
1995, Colwell et al. 1996, Lipp et al. 2002, Fries et al.
2006, 2007). Likewise, it has been proposed that aggre-
gates might enhance the persistence of aquatic
pathogens by providing a ‘protective refuge’ (Decho
2000) or a ‘resource-rich microhabitat’ (Cottingham et
al. 2003), but prior to research presented herein, little
data was available to support these ideas. We have
demonstrated the relevance of the theory of island bio-
geography for microbial communities and simultane-
ously showed persistence of potential bacterial
pathogens and fecal indicator bacteria in aggregates.
For sewage-associated bacteria and naturally occur-
ring pathogens such as vibrios, aggregates should
enhance persistence, much as has been reported for
bacteria associated with living plankton (Lipp et al.
2003, Cottingham et al. 2003, Signoretto et al. 2004).
Indeed, we propose that when a planktonic organism
dies and becomes part of a detrital aggregate, it brings
with it a microbial community that persists even after

the plankton has died. The same scenario would be
expected for pathogens attached to sediment particles
(Noble et al. 2006, Hartz et al. 2008) when they are
resuspended and incorporated into aggregates.

An important application of our results is the deci-
sion framework that water quality managers use to
make determinations about beach and shellfish bed
closures. Specifically, our study shows that there is
considerable variation in bacterial abundance among
aggregates of the same age and similar size (Figs. 4 &
5). Since aggregates are typically present in densities
on the order of 1 × 100 to 1 × 103 per liter (see references
in Simon et al. 2002), variation in water samples of <1 l
could be too high to reliably measure bacterial concen-
trations because the presence or absence of a single
aggregate in an environmental water sample could
drastically alter the measure of bacterial concentra-
tions. In general, aggregates harbor bacteria at con-
centrations much higher than the surrounding waters
with enrichment factors as high as 5700 per aggregate
for non-pathogenic bacteria (Turley & Mackie 1994).
Enrichment factors for potentially pathogenic species
were generally less than 500 (Lyons et al. 2007), but
still significantly elevated compared to bulk water con-
centrations. Attachment to aggregates may ameliorate
some of the effects of environmental stressors (e.g.
sunlight, changes in temperature, salinity, pH, and
competition, and lack of nutrients; Sinton 2005), an
idea that is supported by the results of the present
study which show that Vibrio spp. and Escherichia coli
associated with organic aggregates persist longer than
their counterparts in aggregate-free water.

Aggregates also present a complication for modeling
the transmission of waterborne diseases and illnesses
from aquatic reservoirs to human hosts. At present,
models do not consider the protection potentially pro-
vided to microorganisms by aggregates. We have
shown that culturable vibrios proliferate in aggregates
and decline in adjacent, aggregate-free water. Were
these differences in population dynamics to be mod-
eled, the presence or absence of aggregates would
have profound effects on the model’s predictions
(McCallum et al. 2001, Eisenberg et al. 2002). This pos-
sibility is especially topical for models of Vibrio
cholerae transmission (Koelle et al. 2005, Hartley et al.
2006, Pascual et al. 2006), given the well-recognized
role of the aquatic reservoir in cholera dynamics
(Codeço 2001). We therefore recommend that aggre-
gates be incorporated into models of waterborne dis-
eases and illnesses, similar to the way they have been
added to models of carbon cycling and food webs
(Azam & Long 2001, Burd & Jackson 2009).

In summary, we have provided evidence that
organic aggregates function as islands for microbial
communities. Aggregate-associated communities have
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elevated levels of metabolic response and functional
diversity compared to their aggregate-free counter-
parts. We have also demonstrated higher concentra-
tions and greater persistence of culturable Escherichia
coli and vibrios in aggregate-associated microbial
communities and suggest that these findings have
applications to the field of disease ecology.
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