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Resilience Quantification and Its Application to a 
Residential Building Subject to Hurricane Winds
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Abstract In order to overcome negative consequences of 
a disaster, buildings and infrastructures need to be resilient. 
After a disaster occurs, they must get back to their normal 
operations as quickly as possible. Buildings and infrastruc-
tures should incorporate both pre-event (preparedness and 
mitigation) and post-event (response and recovery) resilience 
activities to minimize negative effects of a disaster. Quantita-
tive approaches for measuring resilience for buildings and 
infrastructures need to be developed. A proposed methodol-
ogy for quantification of resilience of a given building type 
based on different hurricane categories is presented. The 
formulation for the resilience quantification is based on a 
model embedding several distinct parameters (for example, 
structural loss ratios, conditional probabilities of exceeding 
for damage states, estimated and actual recovery times, wind 
speed probability). The proposed resilience formulation is 
applied to a residential building type selected from HAZUS.i 
Numerical results of resilience for the selected residential 
building type against Category 1, 2, and 3 hurricanes are pre-
sented in a dashboard representation. Resilience performance 
indicators between different types of buildings, which are iden-
tical except for their roof types, have been evaluated in order 
to present applicability of the proposed methodology.

Keywords building resilience, HAZUS, hurricanes, probabi-
listic resilience

1 Introduction

Wind related natural hazards, such as hurricanes, tornadoes, 
and thunderstorms can have great negative economic and 
social effects on individuals and society. Natural disasters 
are unpredictable and unavoidable. It is also impossible to 
determine and address all possible vulnerabilities and protect 
individuals, communities, and society against these disasters. 
The concept of resilience has gained much attention in 
disaster management, especially after the man-made disaster 
of the 9/11, 2001 attack, and the 2005 natural disaster of 
Hurricane Katrina. Even though resilience has been consid-
ered a buzzword for many years, recent academic studies and 

governmental reports prove that resilience is an essential part 
of establishing a national security policy platform (Carlson 
et al. 2012). 

Policy makers need a holistic approach to resilience to 
address the necessary actions and to avoid loss of lives as 
well as economic and social crises. As an evolving concept, 
resilience has been associated with the area of emergency 
management. It is believed that the resilience perspective 
can improve preparation, response, recovery, and mitigation 
efforts against risks in emergency management.

It is difficult to determine which actions are helpful in 
reducing adverse consequences of natural disasters. Resource s 
must be used efficiently. Actions are taken by decision mak-
ers to apply necessary resilience strategies against disasters. 
There is a need for quantification of resilience to evaluate and 
compare effectiveness of preparation and mitigation strate-
gies. There is ample information about specific mitigation 
actions, policies, and plans needed to reduce direct or indirect 
losses from extreme disasters. However, there is not much 
information about procedures on how to quantify the out-
comes of these actions, policies, and plans as a function 
of recovery time, an important component of resilience 
(Cimellaro 2008a).

The objective of this article is to develop a methodology 
for resilience quantification of various buildings exposed to 
hurricanes. This work will be helpful in comparing different 
preparation and mitigation actions to improve, for instance, 
the resilience of communities. Resilience cannot be estab-
lished at the national level without achieving it first at the 
community level.

2 Literature Review on Quantification of 
Resilience

Identification of an appropriate metric for resilience is neces-
sary in disaster and emergency management. The adoption 
of a metric can help improve resilience strategies and aid 
alternative prioritization for hazard mitigation.

Several methods have been proposed for quantification 
of resilience (Henry and Ramirez-Marquez 2012). Bruneau 
et al. (2003) and Bruneau and Reinhorn (2007) established 
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a framework to conceptualize, define, and enhance seismic 
resilience of communities using engineering perspectives. 
They emphasized that a clear definition and identification of 
its dimensions are necessary in order to quantify resilience. 
Bruneau et al. (2003) introduced a conceptualized framework 
for community resilience without presenting any resilience 
quantification procedure and implementation. Chang and 
Shinozuka (2004) proposed a series of quantitative measures 
for resilience. They refined the conceptualization efforts 
of Bruneau et al. (2003) and proposed a new approach. The 
refined approach proposed by Chang and Shinozuka (2004) 
has two advantages over that of Bruneau and colleagues:

�  expression of resilience is compact (that is, addresses 
multidimensional characteristics); and

�  expression of a resilience metric is given in a probabi-
listic format. 

They demonstrated the implementation of the quantitative 
measure of resilience for the Memphis, Tennessee water sys-
tem. Cimellaro, Reinhorn, and Bruneau (2006) developed a 
framework for a resilience equation based on the conditional 
and total probability theorems. They combined structural and 
nonstructural loss functions, and fragility and recovery func-
tions to calculate resilience. They implemented this approach 
for a hospital in the San Fernando Valley, California with 
outputs from the HAZUS earthquake module and applied 
the same approach to six hospitals in Memphis, Tennessee to 
calculate their resilience in an earthquake scenario. Bruneau 
and Reinhorn (2007) tried to quantify seismic resilience of 
acute care facilities. They focused on seismic resilience, but 
their goal was to develop general concepts and formulations 
for other hazards. They included properties of resilience, 
resourcefulness and redundancy, as the third and fourth 
dimensions, respectively. Cimellaro (2008a) improved the 
resilience equation for seismic events with the addition of six 
sources of uncertainties. He presented a mathematical repre-
sentation of two dimensions of resilience that is rapidity and 
robustness and applied his final approach to a hospital in the 
San Fernando Valley.

Reed, Kapur, and Christie (2009) proposed a methodology 
to evaluate resilience of subsystems of network infrastruc-
tures by combining fragilities and quality characteristics 
of the infrastructure with an input-output (IO) model for a 
natural disaster. Resilience of lifelines was measured using 
fragilities, which are tools to describe the probability of 
damage for a given level of hazard. Omer, Nilchiani, and 
Mostashari (2009) suggested a model to measure resilience of 
a submarine cable system as a network infrastructure. The 
ratio of the rate of delivery of the system after a disruption to 
the rate of delivery before the disruption was defined as a 
reference for resilience. Any hypothetical disruption of the 
demand, capacity, and flow of information, natural or man-
made, was computed node to node to evaluate resilience of 
the system.

3 Proposed Methodological Approach

In this section, the development of an analytical framework 
for the quantification of resilience is given. Damage state and 
building type descriptions, structural loss estimation, damage 
state probabilities as well as wind speed probability, recovery, 
and loss of use functions are the main working concepts 
introduced; a resilience indicator is formulated.

3.1 Formulation of Resilience

Our study aimed to develop an approach for quantification of 
resilience that is applicable to different types of buildings, 
under hurricane threat. It is difficult to formulate the analyti-
cal concept of resilience. According to our knowledge, there 
was only one approach, in which a group of researchers from 
the Multidisciplinary Center for Earthquake Engineering 
Research (MCEER) developed a methodology for the quanti-
fication of resilience of buildings against an earthquake disas-
ter (Cimellaro, Reinhorn, and Bruneau 2010). They defined 
the functionality of a system as a variable ranging from 0 
percent to 100 percent, where 0 percent means that no service 
is available, and 100 percent indicates that there is no degra-
dation in service (Cimellaro, Reinhorn, and Bruneau 2006; 
Cimellaro 2008b). If a disruption occurs, functionality will 
suddenly drop to a value below 100 percent. The service is 
assumed to be fully recovered when functionality resumes 
at 100 percent after a recovery time. Thus, resilience is 
expressed as an integral of functionality (Bruneau et al. 2003; 
Bruneau and Reinhorn 2007). Cimellaro, Reinhorn, and 
Bruneau (2010) also claimed that it was possible to describe 
various types of functionality for different disasters. They 
assumed that the type of disaster has an effect on the 
description of functionality.

In this article, a methodology for quantification of 
resilience against a hurricane is presented by adopting func-
tionality, and loss and recovery functions from the previous 
earthquake research (Cimellaro, Reinhorn, and Bruneau 
2010). Such an adoption is reasonable, because both earth-
quakes and hurricanes have different strength levels causing 
different levels of loss and damage. They both cause loss 
and damage with certain probabilities. Recoveries from both 
disasters will depend on preparedness, mitigation, response, 
and recovery efforts. The methodology presented in this arti-
cle can also be modified and extended to make it applicable 
to other types of disasters, after defining the functionality for 
that disaster.

The new proposed resilience equation has been adopted 
for a single hurricane event. The developed formulation is 
being used to compute resilience for individual residential 
building types or a community consisting of various building 
types. Probabilistic numbers for a damaged structure as a 
function of wind speed, called fragility curves, are incorpo-
rated into the formulation. Wind speed probability distribu-
tion is used to include the effects of wind, within the range 
of wind speeds for the considered hurricane category. Four 
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recovery functions are defined and assigned to all damage 
states. Actual and expected recovery times are defined and 
used for each damage state. The resilience of a general 
building type for each hurricane category is formulated as:
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where R is resilience of a building (%), w is wind speed, w1 is 
the minimum value of wind speed for the hurricane category 
considered, w2 is the maximum value of wind speed for the 
hurricane category considered, Te is expected recovery time in 
which structural losses are predicted to be eliminated (also 
known as loss of use), t is time, Q is functionality, P is distri-
bution for probability of having winds with a speed of w, Nds 
is number of damage states, Lj is structural losses for damage 
state j, f (j)

rec is recovery function for damage state j, and Ta is 
actual recovery time.
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is the integral of the recovery function for damage state j.
The following general assumptions were made:

� Only structural losses are taken into consideration.
�  Only damages due to hurricane winds are taken into 

consideration.
�  Complex terrain effects are not taken into consider-

ation.

�  It is assumed that recovery actions will start immedi-
ately after a hurricane event occurs.

�  It is assumed that the system of interest will continu-
ously recover without interruption.

�  Full recovery is not possible, although recovery can be 
very close to full recovery.

3.2 Damage State and Building Type Descriptions

Damage states are described in Hazard in the U.S., HAZUS 
(U.S. Department of Homeland Security, Federal Emergency 
Management Agency 2009a), widely accepted software that 
has been developed by the Federal Emergency Management 
Agency (FEMA) (Table 1). Since many local and state gov-
ernments use HAZUS as a loss estimation tool, descriptions 
of damage states for residential building types are taken 
from HAZUS in order to use them in the estimation of the 
resilience indicator. FEMA evaluates structures for munici-
palities and provides them with recommendations on how to 
improve strategic planning in case of natural hazards, namely 
earthquakes, hurricanes, and flooding. HAZUS brings stan-
dards for categorization of structures; it is common to see 
exact descriptions of structures for different regions in the 
United States. The selection of structure types and descrip-
tions of damage states will both bring standardization and 
generalization to the computation of resilience.

HAZUS has five damage state descriptions according to 
external components and cladding of buildings. The summa-
tion in Eq. 2 is taken over four different damage states (minor 
damage ( j=1), moderate damage ( j=2), severe damage ( j=3), 
and destruction ( j=4)). There is also a damage state represent-
ing no damage or very minor damage, but it is not included in 
Eq. 2 because it will have a negligible contribution.

3.3 Structural Loss Estimation Function

Loss is an important economic element of any disaster event. 
Loss, due to a disruptive event, can be divided into two 

Table 1. Damage states for residential buildings in HAZUS

Damage State Qualitative Damage 
Description

Roof Cover 
Failure

Window Door Failure Roof Deck Missile Impacts 
on Wall

Roof Structure
Failure

Wall Structure 
ailure

0 No damage or very 
minor damage

≤2% No No No No No

1 Minor damage >2% and ≤15% One window, door or 
garage door failure

No <5 impacts No No

2 Moderate damage >15% and 
≤50%

>1 and ≤ the larger of 
20% and 3

1–3 panels Typically 5 to 10 
impacts

No No

3 Severe damage >50% >the larger of 20% and 
3 and ≤50%

>3 and ≤25% Typically 10 to 
20 impacts

No No

4 Destruction Typically >50% >50% >25% Typically >20 
impacts

Yes Yes

Source: U.S. Department of Homeland Security, Federal Emergency Management Agency (2009a).
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categories: structural and nonstructural. In this article, only 
the structural losses for different building types are taken into 
account. Various structural loss estimation methodologies 
are available. The approaches to loss estimation are mostly 
probabilistic (Jain, Davidson, and Rosowsky 2005). The most 
notable structural loss estimation functions were given by 
Vickery et al. (2006) for developing a loss estimation meth-
odology that was implemented in HAZUS for hurricanes, and 
by Cimellaro, Reinhorn, and Bruneau (2010), who expressed 
losses as a function of intensity of an earthquake and recovery 
time. A detailed explanation of structural loss represented 
by different researchers was given by Eren Tokgoz (2012). 
The direct economic structural loss formulation presented 
by Cimellaro, Reinhorn, and Bruneau (2010) is modified, 
improved, and used in this research as follows:
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where It is total replacement cost for all building types, Nm is 
number of different building types, Ii,j is replacement cost for 
building type i in damage state j, Di,j is loss ratio correspond-
ing to the ratio of building repair costs to building replace-
ment costs for building type i in damage state j, Pi(dsj/w) is 
probability to be in damage state j at a given wind speed for 
building type i, and Ci,j is the repair cost for building type i in 
damage state j.

It should be noted that the structural loss estimation in 
Eq. 5 takes into consideration the probabilities of being in 
different damage states for different building types. Damage 
state probabilities available as damage state graphs (so-called 
fragility curves) from HAZUS are used (U.S. Department 
of Homeland Security, Federal Emergency Management 
Agency 2009b). The methodology requires the probabilities, 
Pi(dsj/w), for each building type i to be in damage state j. 
These required probabilities can be obtained from the proba-
bilities provided by HAZUS, Pi(dsj or higher/w), for each 
damage state of each building type and incorporated into 
Eq. 5.

Assumption 1: Fragility curves taken from HAZUS pertain 
to residential buildings in South Florida; the computed 
resilience data mostly represents that region.

3.4 Wind Speed Probability

Russell (1968, 1971) was the first who applied mathematical 
simulation methods to estimate hurricane wind speed for the 
Texas Coast (U.S. Department of Homeland Security, Federal 
Emergency Management Agency 2009a). Other researchers 

have adapted the same approach (Russell and Schueller 1974; 
Tryggvason, Surry, and Davenport 1976; Batts, et al. 1980; 
Georgiou, Davenport, and Vickery 1983; Twisdale and Dunn 
1983; Georgiou 1985; Vickery and Twisdale 1995a, 1995b). 
Estimation of hurricane wind speed is important; results 
of these estimations can be used for risk estimation purposes 
(Li and Ellingwood 2006). According to the studies of Batts 
et al. (1980), Peterka and Shahid (1998), and Vickery, Skerlj, 
and Twisdale (2000), a Weibull distribution is the most 
appropriate representation for wind speed probability. A spe-
cial case of a Weibull distribution for wind speed probability 
distribution is used:

 P w w( ) exp( / )= -
1

a
a  Eq. 8

The wind speed distribution in Eq. 8 can be used in Eq. 1 
where the limits of the integrations, w1 and w2, can be 
obtained from the Saffir-Simpson scale given in Table 2 for 
each hurricane category. 

Assumption 2: Average wind speed for South Florida 
is assumed to have a uniform distribution with a mean of 
9.2 mph, and minimum and maximum values of 7.9 and 
10.5 mph, respectively.

3.5 Recovery Function

Defining recovery is difficult since the recovery process is 
(very) complex and has various associated dimensions. For 
instance, recovery of a poor neighborhood from a disaster is 
usually slower compared to that of a rich neighborhood, as 
expected. In the literature, there is no suggested representa-
tion for recovery from hurricanes. Some recovery models are 
available for earthquake studies. Miles and Chang (2006) did 
a comprehensive recovery study for earthquakes and applied 
their model to the Kobe earthquake. Cimellaro, Reinhorn, and 
Bruneau (2010) suggested some simplified time dependent 
recovery functions. In their study, the function selected 
was based on the response of the affected system/society. 
They proposed linear, exponential, or trigonometric recovery 
functions as follows:

�  The linear recovery function was used when there was 
no information about preparedness and available 
resources as well as societal response. 

�  The exponential recovery function was found to be 
suitable when the initial response was fast because of 
the high level of resources and preparedness, and it 
slowed down later (Kafali and Grigoriu 2005). 

Table 2. Saffir-Simpson hurricane damage potential scale

Category Wind Speed (mph) Damage Level

1 74–95 Minimal
2  96–110 Moderate
3 111–130 Extensive
4 131–155 Extreme
5 >155 Catastrophic
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�  The trigonometric recovery function was considered 
when the response was initially slow due to the lack of 
resources and preparedness, and it improved over time 
(Chang and Shinozuka 2004).

The approach for hurricane recovery representation has 
been inspired by the earthquake study of Cimellaro, Rein-
horn, and Bruneau (2010). The same recovery function can be 
used for all damage states. However, if wind speed is not too 
high, there may be only minor or moderate damage, and 
recovery can be very fast. If wind speed is very high, there 
may be severe damage or destruction, and recovery can be 
relatively slow. Assignment of separate recovery functions to 
different damage states is proposed in this article.

The exponential, normal, linear, and sinusoidal recovery 
functions used in this research are:
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Since it does not seem to be possible to achieve 100 per-
cent recovery, equations 9.a–9.d are defined such that recov-
ery is assumed to be complete when λ percent of the initial 
loss is recovered at time Ta(w). Actual and expected recovery 
times at a given wind speed, w, are denoted by Ta(w) and 
Te(w), respectively.

Three different cases are considered for recovery, namely 
Ta(w) = Te(w), Ta(w) < Te(w), and Ta(w) > Te(w). For illustra-
tion purposes, the functionality of the linear recovery func-
tion is shown for these three cases in Figure 1. Resilience is 
proportional to the gray area depicted in Figure 1. If Ta(w) = 
Te(w), recovery is completed at the expected time. If Ta(w) < 
Te(w), recovery is faster than expected, resulting in a larger 
gray area and higher resilience. If Ta(w) > Te(w), recovery 
takes longer than the expected time, shrinking the gray area 
and lowering the resilience.

Assumption 3: Exponential, normal, linear, and sinusoidal 
recovery functions are assigned to minor damage, moderate 
damage, severe damage, and destruction, respectively. It is 
assumed that recovery from a hurricane can be modeled by 
one of these four representations.

Assumption 4: It is assumed that loss ratios, which are the 
ratios of repair costs to replacement costs, have uniform dis-
tributions with mean values of 0.05, 0.2, 0.45, and 0.8, mini-
mum values of 0, 0.1, 0.3, and 0.6, and maximum values of 
0.1, 0.3, 0.6, and 1 for minor damage, moderate damage, 
severe damage, and destruction, respectively.

3.6 Loss of Use Function

Accurate estimation of recovery time is critical to quantify 
resilience. In order to estimate recovery time, the calculation 
of loss of use approach from the hurricane module of HAZUS 
for residential buildings has been adopted. Five damage 
states, namely no damage, slight damage, moderate damage, 
extensive damage, and complete damage, correspond to 
damages of 0, 2, 10, 50, and 100 percent, respectively. In the 
present hurricane model, losses of use for these five damage 
states are given as 0, 5, 120, 360, and 720 days, respectively. 
A linear interpolation is used in HAZUS to compute expected 
recovery times for loss ratios different from these five cases.

Expected and actual losses of use, in terms of days, are 
identified as a function of wind speed in order to help with the 
quantification of resilience. Based on the expected loss of use 
pertaining to different damage states in HAZUS, expected 
loss of use is expressed in this article as:

Figure 1. Functionalities for the linear recovery function. (a) Ta(w)=Te(w) with Ta(w)=100 and Te(w)=100, (b) Ta(w)<Te(w) with 
Ta(w)=80 and Te(w)=100, and (c) Ta(w)>Te(w) with Ta(w)=125 and Te(w)=100

1
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0

Ta(w)

Te(w)
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where expected recovery time is weighed with the relevant 
damage state probability for each damage state, and

  T(1)
e = 5, T(2)

e = 120, T(3)
e = 360, and T(1)

e = 720 Eq. 11

are expected recovery times for minor damage, moderate 
damage, severe damage, and destruction, respectively. The 
actual recovery time is defined as:
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where Ta
(1), Ta

(2), Ta
(3), and Ta

(4) are the actual recovery times 
for minor damage, moderate damage, severe damage, and 
destruction, respectively.

Assumption 5: Actual recovery times are also used for 
damage states. The actual recovery time can be less than, 
equal to, or greater than the expected recovery time for each 
damage state. Actual recovery times for minor damage, mod-
erate damage, severe damage, and destruction are assumed to 
have Rayleigh distributions with mean values of 5, 120, 360, 
and 720, respectively.

4 Numerical Results

To demonstrate the proposed methodology, resilience was 
calculated and compared for Category 1, Category 2, and 
Category 3 hurricane scenarios. Calculations in this section 
were done using MATLABii for residential buildings with 
different roof shapes (for example, hip and gable roofs). 
Damage state graphs (so called fragility curves) that show the 
probability of being in a certain damage state versus storm-
maximum peak gust speed were found in the Appendices 
of HAZUS Hurricane Technical Manual for residential 
buildings (U.S. Department of Homeland Security, Federal 
Emergency Management Agency 2009b). Selected residen-
tial buildings used in the following numerical example have 
unreinforced masonry walls, 6d sheathing, strap roof to wall 
connection, asphalt shingle roofs, single pane annealed glass 
windows, tempered glass sliding doors, one-story, and no 
garages.

4.1 Monte Carlo Analysis

A resilience expression in Eq. 1 has multiple parameters with 
uncertain values. A Monte Carlo analysis was performed to 
see how resilience varies when these parameters change. 
Among the parameters, loss ratios and average wind speed 
are assumed to have uniform distribution given by:

 D Ui , ~ ( , . )1 0 0 1  Eq. 13.a

 D Ui , ~ ( . , . )2 0 1 0 3  Eq. 13.b

 D Ui , ~ ( . , . )3 0 3 0 6  Eq. 13.c

 D Ui , ~ ( . , )4 0 6 1  Eq. 13.d

 a ~ ( . , . )U 7 9 10 5  Eq. 13.e

while actual recovery times for damage states are assumed to 
have Rayleigh distribution given by:

 T Ta e
( ) ( )~1 1 2¬( )p  Eq. 14.a

 T Ta e
( ) ( )~2 2 2¬( )p  Eq. 14.b

 T Ta e
( ) ( )~3 3 2¬( )p  Eq. 14.c

 T Ta e
( ) ( )~4 4 2¬( )p  Eq. 14.d

A Monte Carlo analysis was performed for a gable roof 
residential building type by generating a replica of 10,000 
random numbers for these parameters. Resilience histograms 
for the Monte Carlo analysis are presented for that particular 
building type in the following section.

4.2 Dashboard Representation for Resilience 
Acceptability

In order to evaluate resilience of buildings exposed to hurri-
canes, green, yellow, and red zones are defined. It is desired 
to have resilience of a building against a certain category 
hurricane in the green zone, which shows that the building is 
sufficiently resilient and only minor damage is likely to be 
experienced in case of such a hurricane category.

If resilience falls into the yellow zone, it means that the 
building is more vulnerable while still being quite resilient; 
moderate damages can most probably happen. If resilience is 
in the red zone, it raises a red flag, suggesting that resilience 
has to be improved to avoid a possible severe damage or 
destruction in case of a hurricane with the category for which 
resilience is evaluated. The green, yellow and red zones are 
defined as shown in Figure 2.

The boundaries between red and yellow zones and 
between yellow and green zones are determined by simplified 
assumptions. However, boundaries should be determined by 
decision makers.

In this article, the boundary between red and yellow zones, 
Rry, is defined as:

 R
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D f t T try
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i rec
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d  Eq. 15

which is obtained by taking Pi(ds1/w)=0, Pi(ds2/w)=1, Pi(ds3/
w)=0, Pi(ds4/w)=0, Te(w)=Te

(2), and using linear recovery in 
Section 3.3. Therefore, Rry corresponds to the resilience of a 
building that has moderate damage with a probability of 1 and 
goes through linear recovery within the expected recovery 
time for moderate damage. The boundary between yellow and 
green zones, Ryg, is also defined as:
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which is obtained by taking Pi(ds1/w)=1, Pi(ds2/w)=0, Pi(ds3/
w)=0, Pi(ds4/w)=0, Te(w)=Te

(1), and using linear recovery in 
Section 3.3. Therefore, Ryg corresponds to the resilience of a 
building that has minor damage with a probability of 1 and 
goes through linear recovery within the expected recovery 
time for minor damage. 

Assumption 6: In order to be able to interpret the computed 
resilience data, a dashboard representation consisting of 
green, yellow, and red zones is defined. The resilience value 
associated with moderate damage followed by a linear recov-
ery within the expected recovery time is assumed to be the 
border between the red and yellow zones. The resilience value 
associated with minor damage followed by a linear recovery 
within the expected recovery time is assumed to the border 
between the green and yellow zones.

4.3 Monte Carlo Analysis Results in a Dashboard 
Representation

As explained in Section 4.1, resilience was computed by 
Eq. 1 with relevance to Category 1, 2, and 3 hurricanes. For 
numerical calculations, the building selected for computation 
is a residential building with a gable roof. The resulting histo-
grams for resilience against Category 1, 2, and 3 hurricanes 
are shown in Figures 3–6, respectively. Each one of the 
Figures 3–6 visualizes resilience for each recovery function 
for Category 1, 2, and 3 hurricanes. It should be noted that, 
for each parameter, 10,000 resilience values were generated 
using 10,000 random numbers. The range of resilience values 
was divided into 100 intervals and the number of resilience 
values that fall into each interval is plotted on a dashboard in 
Figures 3 and 4. The vertical axis represents the number of 
resilience values for each interval on the horizontal axis.

4.4 Comparison of Monte Carlo Analysis Results for 
Gable and Hip Roofs for Residential Buildings

The aim of resilience comparisons is to demonstrate both the 
applicability of the proposed resilience calculation methodol-
ogy, and resilient components of the buildings. It is believed 
that these types of comparisons can be practical for decision 
makers in the evaluation of mitigation actions for different 
building types.

During a wind event, roof shape plays an important role in 
determining the degree of potential damage to a building. 
Roof shape can be flat, hip, or gable. Only resilience of hip 
and gable roofs is compared in this section since these two 
roof shapes are very common in residential structures. Resil-
ience was compared between two Unreinforced Masonry 
Residential (URM) buildings with the same characteristics, 
except that one has a gable roof and the other has a hip roof. 
Resilience data for the 30 replicas of Monte Carlo analysis 
corresponding to these two building types are compared; 
results are given in Table 3. 

A National Association of Home Builders (NAHB) 
Research Center document gives a detailed post-disaster 

0 100Rry Ryg

Figure 2. Definition of red, yellow, and green zones for 
hurricane resilience
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Figure 3. Histograms of resilience for the exponential recovery function in a Monte Carlo analysis against (a) Category 1, 
(b) Category 2, and (c) Category 3 hurricanes
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Figure 6. Histograms of resilience for the sinusoidal recovery function in a Monte Carlo analysis against (a) Category 1, 
(b) Category 2, and (c) Category 3 hurricanes

Figure 4. Histograms of resilience for the normal recovery function in a Monte Carlo analysis against (a) Category 1, 
(b) Category 2, and (c) Category 3 hurricanes

Figure 5. Histograms of resilience for the linear recovery function in a Monte Carlo analysis against (a) Category 1, 
(b) Category 2, and (c) Category 3 hurricanes
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analysis after Hurricane Andrew (NAHB Research Center 
1993). This report and the loss estimation methodologies 
used in HAZUS show that hip roofs are more resistant to 
wind damage compared to gable roofs. Comparison of the 
resilience data in Table 3 also shows that hip roofs are more 
resistant to wind damage. The resilience data in Table 3 are in 
agreement with the findings of the NAHB document. Mean 
resilience values are higher for Category 1 and 2 hurricanes 
for hip roofs compared to gable roofs, but the difference 
between the mean values of resilience for hip and gable 
roofs is more significant for Category 3 hurricanes. From the 

recovery perspective, it is important to notice the difference 
between the resilience of hip and gable roofs for all recovery 
types. Exponential recovery is faster than other recovery 
types.

5 Conclusions and Future Work

Attempts to quantify resilience can be found in the literature 
for different types of disasters. However, quantification of 
resilience for residential buildings has not been found in the 



Tokgoz and Gheorghe. Resilience Quantifi cation and Its Application to a Residential Building 113

literature, especially for a hurricane disaster. Quantification 
of resilience is important, because it can be used to evaluate 
and compare mitigation and preparedness strategies. In addi-
tion, quantification of resilience can help organize response 
and recovery actions better. For this purpose, a methodology 
for quantification of resilience is proposed for residential 
buildings against a hurricane event. The major objectives, to 
develop a resilience indicator for buildings against hurricanes, 
and to compute and visualize resilience of a residential build-
ing, were achieved in this research. Formulation of resilience 
is given in this article in a very general form that is applicable 
to other structures as well as other hurricane categories. In 
the proposed methodology, resilience values of residential 
building types are computed and presented in a dashboard 
against different hurricane categories. It is believed that dash-
board representation of resilience can lead to an ultimate goal 
of achieving resilience management to support community 
resilience. In addition, resilience values of two different 
residential building types (in terms of their roof types) have 
been compared and results are presented using fragility 
curves. Resilience calculation employing fragility curves is 
much more helpful for decision makers to identify better 
mitigation strategies and preparedness activities to enhance 
community resilience. Fragility curves are usually used to 
evaluate damage states of structures based on wind speed, but 
these curves alone may not help decision makers much. Since 
it is difficult to find post-hurricane data for different building 
types, resilience values of buildings, which have different 
types of roofs, are compared using only NAHB findings. 
Resilience calculations show that hip roofs are more resilient 
than gable roofs which are in agreement with the NAHB 
findings about the resilience of different types of roof against 
hurricanes.

For future work, resilience of different types of residential 
structures as well as other types of structures such as essential 
facilities and commercial buildings can be evaluated with the 
same methodology. Such a study can be useful to analyze the 

entire community resilience. It can also provide an opportu-
nity for a comparative resilience analysis among communi-
ties. In addition, a user friendly software tool can be 
developed with a graphical user interface for the proposed 
methodology. Such a tool can also be very useful for local 
governments to determine the resilience values for their com-
munities. The obtained resilience values can be used in the 
prioritization of preparation and mitigation actions in the 
communities. Formulation of resilience against a hurricane 
can be extended with the addition of other parameters such 
as wind direction and debris generation due to a hurricane. 
Addition of these parameters can yield more precise 
resilience estimation.

Note

i HAZUS is a nationally applicable standardized methodology that 
contains models for estimating potential losses from earthquakes, 
floods, and hurricanes. The Federal Emergency Management Agency 
(FEMA) owns HAZUS. For more information, please visit http://
www.fema.gov/hazus.

ii MATLAB is a high-level language and interactive environment for 
numerical computation, visualization, and programming. For more 
information, please visit http://www.mathworks.com/products/matlab/.
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