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BACKGROUND & MOTIVATION

Child facial expression analysis (FEA) may be used to leverage the psychophysical information in facial

expressions to characterize differences in social communication and identify markers for developmental

and behavioral disorders in children. These markers may be used to measure and monitor symptoms to

support early diagnosis and intervention. There are two primary challenges in child FEA:

1. Scarcity of labeled facial expression images for children:

This scarcity limits the performance of deep learning models due to overfitting.

Therefore, adult ground truth data are almost invariably used to train, validate, and test

FEA models even for classifying child facial expressions.

2. Child expressions differ from adult expressions:

Developmental differences in face proportions and motor ability results in a distribution

shift between the adult and child expression domains, making adult ground truth data

inappropriate for child facial expression classification.

The deep learning-based approach to classification learns a function to classify unseen samples based

upon available training examples.

• Assuming that samples are independently and identically distributed (i.i.d.), as the number of

training samples increases, the trained model converges to the optimal model.

• In practice, the i.i.d. assumption is often violated and training examples are limited, resulting in

suboptimal models that may not generalize well outside of the domain on which they are trained.

Transfer learning and domain adaptation attempt to improve upon the generalizability of models to a

target domain that differs from the source domain on which a model is trained.

• Transfer Learning (TL) applies information learned from one domain to a task on another domain. It

assumes a relationship between learning tasks on the source and target domains, which may have

different input and output spaces with different data distributions.

• Domain adaptation (DA) seeks to learn a domain-invariant latent representation, and thus requires

the input and output spaces to be the same. The only difference between the two domains is a shift

in the data distributions.

We hypothesize that combining DA+TL will offer superior results to TL alone on a child

facial expression classification task when training with very few labeled samples.

DATA

Two data sets of facial expression images: adult “source” domain [1] and child “target” domain [2,3].

Seven expression categories: ‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘neutral’, ‘sad’, ‘surprise’.

Transfer Learning
The learned solution for source task 𝑻𝑺 (adult facial expression classification) is leveraged to solve

related target task 𝑻𝑻 (child facial expression classification).
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Full implementation and training details available in our publications [4,5].

METHODS

Model Architecture
We model the deep learning approach for classification as:

𝑌 = 𝑓 𝑋 ,
where the goal is to learn a model 𝑓(∙) that optimally predicts class labels 𝑌 ∈ 𝒴 given input images

𝑋 ∈ 𝒳. The model 𝑓(∙) can be further defined as 𝑓 = 𝑀 ∘ 𝐶, where feature extractor 𝑀 ∶ 𝒳 → 𝒵,
classifier 𝐶 ∶ 𝒵 → 𝒴, and 𝒵 is the latent feature space.

Domain Adaptation
We assume the distribution shift can be attributed to

covariate shift, i.e. 𝒑𝑺(𝒙) ≠ 𝒑𝑻(𝒙), rather than a

shift in the label distributions and that 𝐷𝑇 has very
few labeled samples.

Based on these assumptions, we adapt the

classification and contrastive semantic alignment

(CCSA) approach [6], for our adult-to-child facial

expression adaptation task. This approach uses a

CCSA loss composed of classification loss 𝓛𝑪(𝒇) and
contrastive semantic alignment loss 𝓛𝑪𝑺𝑨 𝑴 . The

approach employs a Siamese network architecture

with input streams for source samples 𝑋𝑆 and target

samples 𝑋𝑇.

Full implementation and training details in [5].

Proposed DA+TL
We leverage the principles of deep TL to improve the CCSA DA approach on limited data. We

define Source Weights Initialization (SWI) as initializing 𝑀 ∙ and 𝐶 ∙ in the CCSA model

architecture with trained weights from the source model.

We consider two variants of our proposed DA+TL model: (1) DA+TL with SWI only (DA+SWI), i.e.

weights in all layers are considered trainable, and (2) DA+SWI with layer freezing (DA+SWI+LF),

i.e. weights in the last convolutional block of 𝑀 ∙ and all weights of 𝐶 ∙ are considered trainable

while the remainder of the architecture is frozen. Full implementation and training details in [5].

Experiments

To demonstrate the effect of the number of target samples per class in the training data on the

TL approach, we train/validate/test TL models varying the number of samples per class.

We consider 1, 2, 3, 4, 5, 10, 25, and 50 target samples per class, as well as ‘all’ target training

samples not held out for testing.

To evaluate the efficacy of proposed models with our data-limited child facial expression

classification task, we train/validate/test five model configurations:

(1) source baseline     (2) transfer learning     (3) CCSA     (4) DA+SWI     (5) DA+SWI+LF 

RESULTS & DISCUSSION

In the figure (left), the performance of transfer

learning models is substantially impacted by the

number of target samples per class. When the

number of target samples per class is in the single

digits, there is a 15% gap between training accuracy

and validation and test accuracies, indicating

overfitting. Mean accuracy increases with the number

of target samples per class to reduce the magnitude

of overfitting.

Model
Number of Target Samples per Class in Training Set

0 1 2 3 4 5 10 All

Source Baseline 50.76 % ± 7.18 % - - - - - - -

Transfer Learning - 55.15% ± 4.69% 57.27 % ± 5.60 % 56.85 % ± 4.43 % 59.38 % ± 4.73 % 56.28 % ± 5.95 % 59.67 % ± 4.71 % 74.79 % ± 6.06 %

CCSA - 59.67 % ± 6.14 % 62.79 % ± 5.13 % 63.08 % ± 5.53 % 67.04 % ± 3.45 % 65.74 % ± 5.52 % 70.29 % ± 4.53 % -

DA+SWI - 61.95 %± 3.31 % 63.63 % ± 4.45 % 63.95 % ± 5.35 % 68.45 % ± 4.44 % 68.58 % ± 7.27 % 71.84 % ± 6.14 % -

DA+SWI+LF - 58.42 %± 4.00 % 62.79 % ± 4.53 % 64.50 % ± 3.30 % 67.19 % ± 3.69 % 66.18 % ± 5.65 % 70.00 % ± 4.97 % -

Comparison Across Approaches of Mean Test Accuracies from 10-fold Subject Independent Cross Validation  

CONCLUSION & FUTURE WORK

This work:

• Demonstrates the advantage of the DA approach over traditional TL for child facial expression

classification data with 10 or fewer samples per class

• Shows that initializing the model architecture with pretrained weights learned from adult facial

expression data improves model performance

• Suggests that even a small amount of annotated data may be leveraged to substantially improve

expression classification performance for children

In future work, we plan to improve upon the class alignment between domains in the latent space and

extend to the more challenging child FEA task of facial action coding system (FACS) AU classification.

Representative confusion matrices obtained from the

same test fold for the transfer learning approach using

all target training samples and the DA+SWI approach

using 10 target samples per class are shown (right).

The models follow similar patterns of class confusion.

Neither model misclassifies ‘surprise’ samples because

of their distinctive open-mouth appearance. The

‘disgust’ and ‘anger’ expressions are the most

confusing for both models.

The t-SNE algorithm is used to

visualize the latent space of

both models (left). Here, we

see that confusing classes,

such as ‘anger’ and ‘disgust’

as well as ‘sad’ and ‘neutral’

are mapped closely together in

the latent space. This may be

because these pairs are

visually similar.

The source baseline model performs the worst out of all approaches. The best performing model is the

transfer learning model using all target training samples. When possible, collecting more training data is the

best way to improve model performance. However, when collecting additional data is difficult/ not possible,

DA approaches may offer substantial increases in model performance over TL. The DA approaches

outperform the TL approach for all values of number of target samples per class 1 to 10. Of the three DA

approaches, DA+SWI has a higher mean test accuracy than CCSA across all number of samples per class.
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