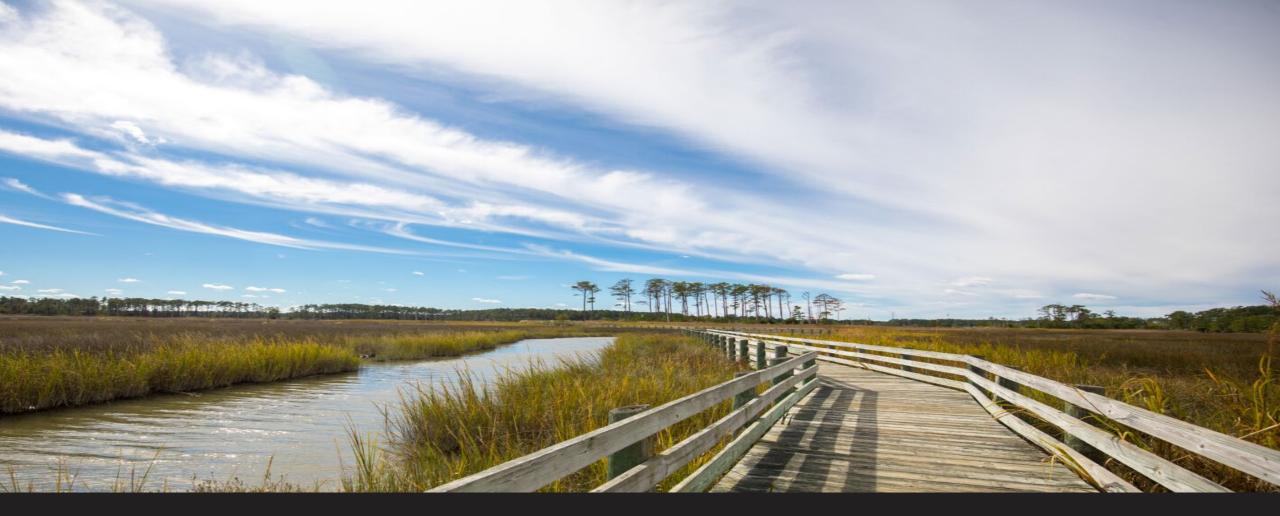
Old Dominion University

ODU Digital Commons

December 17, 2021: Natural and Nature-Based Solutions (Part 2)

Hampton Roads Sea Level Rise/Flooding Adaptation Forum 2012-present


12-17-2021

Carbon Sequestration Benefits of Coastal Restoration

Brendan Player

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_30

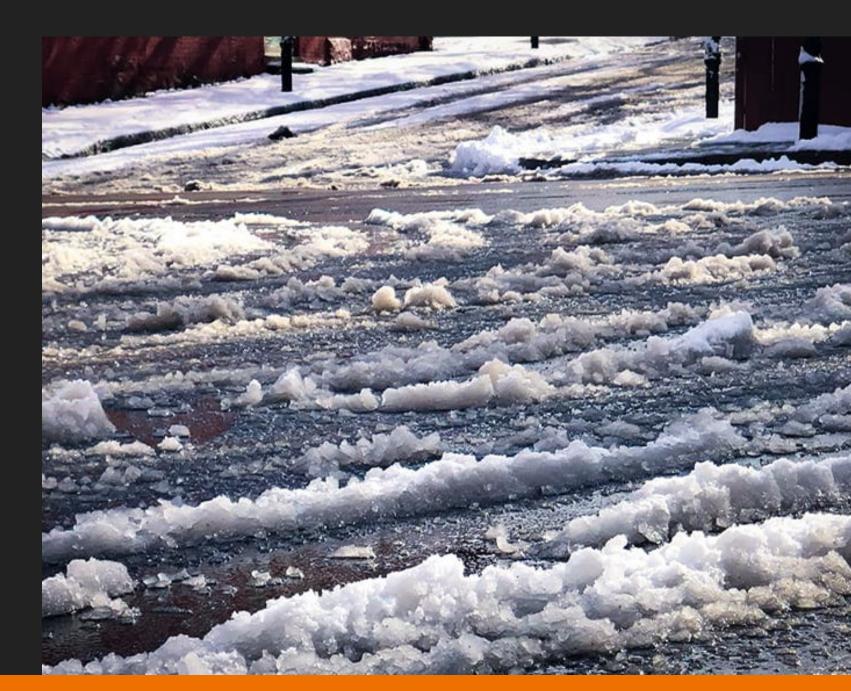
Part of the Climate Commons

Carbon Sequestration Benefits of Coastal Restoration Hampton Roads Sea Level Rise/Flooding Adaptation Forum Natural and Nature-Based Solutions (Part 2) <u>Brendan.player@stantec.com</u>

Brendan Player MS

Associate, Environmental Planner Carbon Sequestration SME

- Environmental Consultant supporting Stantec Consulting Services Inc.
- Supports Williamsburg, Virginia, working out of Coral Gables, Florida
- Received Master's Degree at Christopher Newport University studying stream and wetland biogeochemistry and ecology
- Background in environmental restoration and water quality
- Assists in leading a core Technical Carbon Team (TCT) studying nature-based carbon solutions
- Stantec Subject Matter Expert (SME) in Carbon Sequestration
- Works from coast to coast and internationally analyzing carbon impacts and storage across a variety of ecosystems (i.e., tidal marshes, mangroves, seagrasses, peatlands, forests, grasslands, and agriculture)
- Supports clients in generating carbon offsets for use in fulfillment of their corporate sustainability goals
- Personal: musician and married to a choral conductor

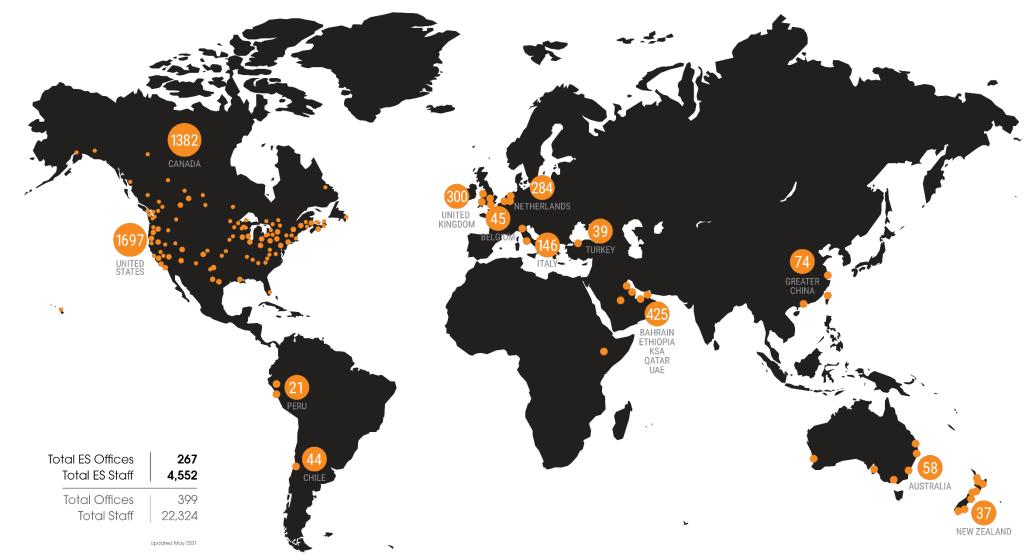

https://www.stantec.com/en/people/p/player-brendan

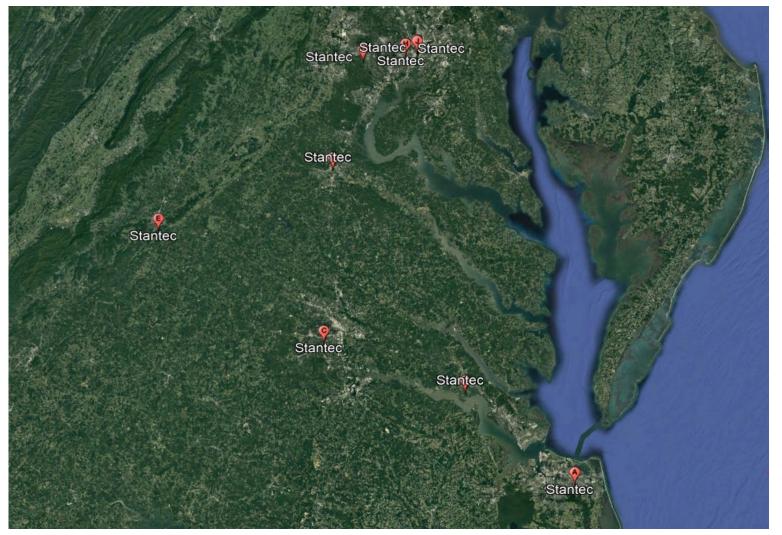
 \bigcirc

SaferTogether™

Safety Moment

Beware of ice, snow, down tree limbs, and other drivers around the holidays.




Agenda

- Who we are
- Context
- Coastal restoration and blue carbon
- Blue carbon example
- Summary
- Questions

Where We're Located

Stantec in Virginia

Office locations instate

Arlington Charlottesville Fairfax Fredericksburg Richmond Virginia Beach Washington, DC Williamsburg

Carbon Background

Compensatory versus voluntary market

MANY COMPANIES WORLDWIDE HAVE SET NET-ZERO OR CARBON NEUTRAL GOALS

Although definitions of Carbon Net Zero and Carbon Neutral vary, offsets are a significant part of any company's path towards these goals

<u>Offsets</u>= certified climate benefit representing either avoided emissions or improved capture

<u>Unit of measurement</u>= Metric Tonne of CO2e

(verified carbon units, certified emissions reductions, etc.)

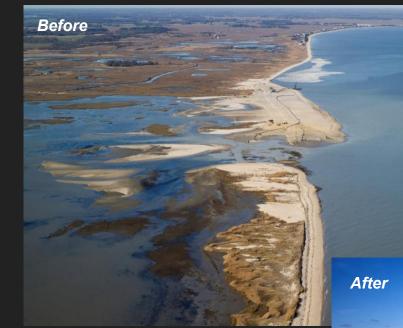
Offsets are quantified and certified under registry systems after having undergone a third-party review

Nature-Based Solutions (NbS)

NATURAL SYSTEMS HELP COMBAT CLIMATE CHANGE AND GENERATE A VARIETY OF CO-BENEFITS


Ecosystems both release and capture different greenhouse gasses

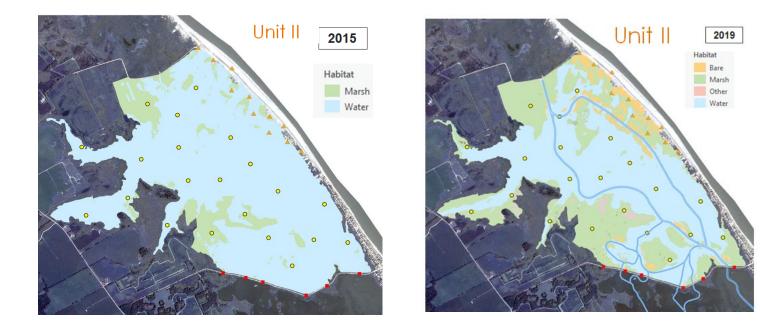
- Targeted restoration, enhancement, and management strategies can either reduce emissions or improve carbon sequestration
- Climate benefits from certain projects can be quantified and occasionally certified for sale as offsets
- NbS for carbon can also generate a multiplicity of benefits
 - Water quality
 - Biodiversity
 - Infrastructure protection
 - Human health and wellbeing
 - Air quality
 - Etc.


Coastal Restoration and Blue Carbon

- <u>Blue carbon</u>: Greenhouse gasses produced and captured by tidal saline and brackish marshes, mangroves, and seagrasses
- Sequester a large quantity of carbon per unit area, while producing less emissions than freshwater wetlands
- Protect our coastlines by absorbing wave action and help to reduce flooding and damage to infrastructure

Prime Hook **National Wildlife** Refuge

- 10,000 acres of shoreline and wetland restored in Delaware following Hurricane Sandy
- \$40M construction value
- Critical habitat for migratory birds, fish, and other wildlife
- Analyze hurricane impact to build protective beach barrier system
- · Post-hoc assessment of carbon capture
- Brackish Marsh -> freshwater marsh -> degraded salt marsh -> brackish marsh

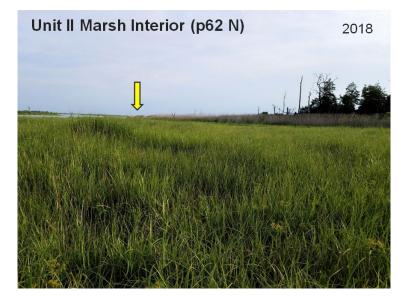


Prime Hook

Field Monitoring and Vegetation Growth

Unit II (Years 2015 to 2018)

- Open Water area decreased from 87% to 59%
- Marsh, bare ground, and other area increased from 13% to 41%
- Salinity characteristics remained similar between the degraded and restored condition


Prime Hook

Vegetation Carbon Sequestration

Unit II (Years 2015 to 2018)

- Growth within the first year is roughly 3 t of carbon per hectare
- Growth beyond year one is a 1 to 1 ratio
- Small reversal in year 2019
- Total improved vegetative sequestration to date is 1,304.33 t CO₂e

Year	Hectares	Change in Hectares	Tonnes of Carbon	
Baseline	412.38	0.00	0.00	
2016	482.40	70.01	210.04	
2017	691.22	208.82	208.82	
2018	694.86	3.64	3.64	
2019	628.09	-66.77	-66.77	
		Total (t C)	355.73	
		Total (t CO ₂ e)	1,304.33	

Prime Hook Soil Emissions

Unit II (Years 2015 to 2018)

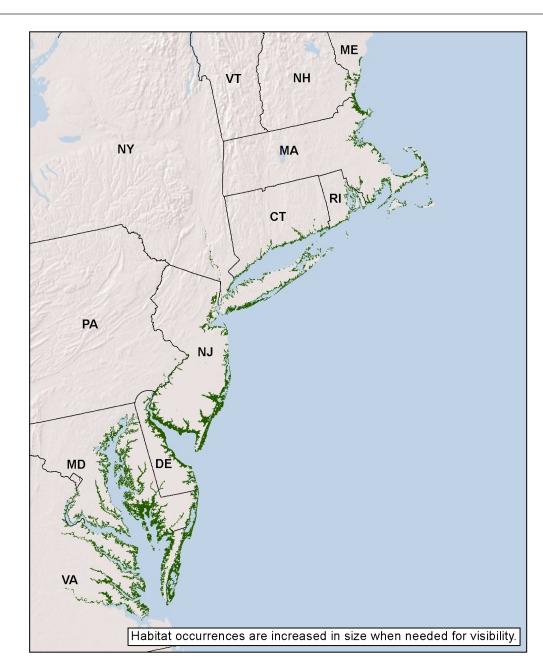
- Salinity remained largely unchanged
- Enhanced carbon sequestration is derived from growing marsh area
- Onsite emissions will vary depending on soil characteristics, salinity, inundation, vegetation, etc.
- Does not factor in flux from open water areas

Scenario	Hectares	t CO ₂ ha ⁻¹ yr ⁻¹	t CH₄ ha⁻¹ yr⁻¹	t CO₂e ha⁻¹ yr⁻¹	t CO ₂ e yr ⁻¹	Enhanced Annual Emissions Reductions (t CO ₂ e yr ⁻¹)	
Baseline	412.38	7.66	0.16	-3.31	-1,365.54	714.26	
Project	628.09	-7.66			-2,079.80	/ 14.20	

https://coastalchangelab.files.wordpress.com/2019/01/finalreport_may_2018.pdf https://link.springer.com/article/10.1007%2Fs13157-011-0197-0

Prime Hook Emissions Summary

		Marsh Area	4 Year Emissions (t CO2e)		30 Year Emissions (t CO2e)					
Projection	Scenario	На	Soil	Vegetation	Total	Soil	Vegetation	Total	4-Year Offsets	30-Year Offsets
Brackish degraded to	Baseline	412	-5,462	0	-5,462	-40,966	0	-40,966		
brackish restored	Project	628	-8,319	-1,304	-9,624	-62,394	-1,304	-63,698	4,161	22,732
-	Baseline	628	3,645	0	3,645	27,334	0	27,334		
Freshwater marsh to brackish marsh	Project	628	-8,319	0	-8,319	-62,394	0	-62,394	11,964	89,728


Prime Hook Example (degraded baseline conditions):

- Restoring Prime Hook generated climate benefits equivalent to approximately 4,161 offsets after 4 years
- The site had the potential to generate 22,732 offsets after 30 years
- 30-year projection assumes no further change in vegetation or marsh area

Salinity-Based Restoration:

• If the site would have been restored to brackish conditions from the original freshwater, it would have the potential to generate an estimated 11,964 offsets after 4 years and 89,728 offsets after 30-years

22,732 t CO₂e= 2,568,713 gallons of gasoline= 3,916 US drivers

Challenges and Opportunities

Challenges

- High degree of variability and difficult to predict
- Subject to non-permanence risks (sea level rise, hurricanes, etc.)
- Inundation, salinity, and vegetation type substantially change GHG flux
- Some coastal restoration projects can be engineering and cost intensive

Opportunities

- Brackish marsh net soil GHG sequestration= 1.34 tCO2e per acre per year
- Coastal restoration generates many benefits outside of carbon
- The cost of carbon is increasing exponentially along with demands
- Looking towards States with extensive blue and teal carbon resources

Summary

- Blue carbon systems have high sequestration potential
- Coastal restoration can be used to generate creditable offsets representing a multitude of co-benefits
- Offset sales can be used to recover costs or generate revenue
- Projects that restore tidal wetland hydrology, altering inundation and/or salinity generate the highest credit yield for the lowest cost of implementation
- The cost of carbon is growing exponentially and is not expected to match the global demand

Questions?