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It is well established that cyst-forming phytoplankton species are transported in ships’ ballast tanks.
However, there is increasing evidence that other phytoplankton species which do not encyst are also capable
of surviving ballast transit. These species have alternative modes of nutrition (hetero- or mixotrophy) and/or
are able to survive long-term darkness. In our studies of no-ballast-on-board vessels arriving in the Great
Lakes, we tested for the presence of the harmful algal bloom species Aureococcus anophagefferens (brown tide)
in residual (i.e., unpumpable) ballast water using methods based on the PCR. During 2001, the brown tide
organism was detected in 7 of 18 ballast water tanks in commercial ships following transit from foreign ports.
Furthermore, it was detected after 10 days of ballast tank confinement during a vessel transit in the Great
Lakes, a significant result given the large disparity between the salinity tolerance for active growth of
Aureococcus (>22 ppt) and the low salinity of the residual ballast water (�2 ppt). We also investigated the
potential for smaller, recreational vessels to transport and distribute Aureococcus. During the summer of 2002,
11 trailered boats from the inland bays of Delaware and coastal bays of Maryland were sampled. Brown tide
was detected in the bilge water in the bottoms of eight boats, as well as in one live-well sample. Commercial
ships and small recreational boats are therefore implicated as potential vectors for long-distance transport and
local-scale dispersal of Aureococcus.

It is well established that cyst-forming phytoplankton are
transported in ballast tanks (21, 22, 24, 31, 33). Following
introduction, harmful forms can become established (e.g., the
toxic dinoflagellates Gymnodinium catenatum in southeast Tas-
mania, Australia, and Alexandrium catenella in Tau Lagoon,
France) where they may have significant ecological and eco-
nomic impact (23, 30). However, there is increasing evidence
that at least some algal species which do not form cysts may
survive ballast transit (12, 15). Furthermore, coast-wise vessels
and recreational boats are increasingly being implicated in
facilitating the spread of introduced species (27, 28, 37, 44).

If we consider that ballast and bilge tanks are dark, aerobic
environments, the likely survivors of ballast transit (apart from
cyst formers) are those phytoplankton species that have alter-
native modes of nutrition (hetero- or mixotrophy) and/or the
ability to survive long-term darkness. The brown tide organism,
Aureococcus anophagefferens (referred to below as Aureococ-
cus), fits both of these criteria, since it is able to grow with
organic enrichment (3, 9, 14, 18) and at low light (35) and it is
able to survive at least 30 days in complete darkness (39).
Brown tides have had significant detrimental impacts on the
benthic communities in Narragansett Bay in Rhode Island, the
bays of Long Island in New York, and New Jersey (5), causing
eelgrass dieback (due to decreased light penetration) and star-
vation and recruitment failure of commercially important scal-
lop and mussel populations (7, 43).

New data suggest that there has been a dramatic extension
of the known range of Aureococcus on the east coast of the
United States (40). Previously, this organism was known to
exist in shallow estuaries from New York to Maryland but not
further south (1). The newly defined range extends from Flor-
ida north to New Hampshire (40), and blooms are now being
recorded in Virginia’s coastal bays (4). Blooms have also re-
cently been observed in Saldanha Bay in South Africa (36, 38,
42). Thus, the distribution of brown tide seems to be rapidly
increasing both within and outside the United States, suggest-
ing that there is an anthropogenic dispersal vector, exploitation
of a niche in previously uninhabited environments, or both.

In this study, we tested the hypothesis that brown tide is
transported long distances via ships’ ballast water and on the
local scale via recreational boats. This species is small (diam-
eter, approximately 2 to 4 �m) and difficult to detect directly by
regular microscopic observation, particularly at low back-
ground cell levels. To confirm the presence of the organism, we
used an Aureococcus-specific primer for detection in ballast
water by PCR amplification of the 18S rRNA gene. Aureococ-
cus concentrations in bilge water of recreational boats were
determined by quantitative real-time PCR by using a species-
specific molecular probe (40).

MATERIALS AND METHODS

Presence of Aureococcus in ships’ ballast water. During 2001, we sampled
residual water in no-ballast-on-board (NOBOB) bulk carrier ships arriving in the
North American Great Lakes. These vessels were all foreign arrivals (mainly
from ports in Western Europe, including one from the Baltic region and another
from the Mediterranean, but also one ship from Asia). None of the ships had
pumpable ballast on board. Although Aureococcus (a polyhaline organism that
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inhabits waters with salinities of 18 to 30 ppt) poses little potential risk of
establishment in the Great Lakes, we sampled commercial vessels destined for
Great Lakes ports because their residual water should have reflected the inte-
grated history of previous ballasting operations (i.e., multiple ballast loads and
exchanges), including those at marine, brackish, and freshwater ports. Residual
water was collected from ships at the ports of Hamilton, Thorold, and Windsor
in Canada and the ports of Cleveland, Chicago, and Burns Harbor in the United
States. Vessels were selected opportunistically without consideration of previous
ports of call (i.e., probable ballast water sources). Residual water was collected
by using either new (but not sterile) polyethylene siphon pumps or sterile plastic
scoops from double-bottom, upper wing, or forepeak ballast tanks (most fre-
quently double-bottom tanks on the port and starboard sides of a ship). Within
a given tank, samples were taken at numerous locations and pooled. Five ships
(a total of 10 tanks) were sampled during the summer (June to July 2001), and
five ships (a total of eight tanks) were sampled during the fall (October to
November 2001). The ships were between 1 and 18 years old, and the time
between thorough tank cleaning and sampling ranged from 7.8 to 36 months.

Presence of Aureococcus during vessel transit through the Great Lakes. In
October 2001, we sampled a commercial vessel during its transit through the
Great Lakes. The ship was initially sampled in the Port of Hamilton as a NOBOB
vessel (i.e., residual water was collected). The forepeak tank was then partially
filled with harbor water (freshwater) and resampled approximately 1 m below the
surface (zero time), and then it was sampled again in the Port of Windsor on day
6 and in the Port of Chicago on day 10.

Presence of Aureococcus in small boats. We sampled trailered small boats as
they emerged from Delaware’s inland bays and Maryland’s coastal bays. Visits to
Indian River Marina (in Delaware) and Ocean City (in Maryland) in the summer
of 2002 yielded samples from 11 vessels. Permission was requested from recre-
ational boaters before water was collected. Just after a boat was pulled up the
ramp, the aft bung was unscrewed, and water from the bottom of the boat was
collected directly in a clean sampling bottle. For one boat an onboard live well
(approximately 0.25 m2 of storage space filled with seawater and used for car-
rying fish or bait) was also sampled to determined whether it contained brown
tide. A water sample was also collected adjacent to the boat ramp at each marina
in order to determine whether Aureococcus was present in local water at the
time.

Nucleic acid extraction and DNA amplification. Water samples were stored in
coolers filled with water or ice to keep them at ambient temperature. Between
100 and 300 ml of each water sample was prefiltered through 20- and 5-�m-
pore-size polycarbonate filters (Osmonics, Livermore, Calif.) to remove larger
planktonic species and detritus. The 5-�m-pore-size filtrate was then filtered
through 1-�m-pore-size polycarbonate filters to collect the plankton size fraction
that included Aureococcus (diameter, 2 to 4 �m). The 1-�m-pore-size mem-
branes were placed in 0.6 ml of cetyltrimethylammonium bromide (CTAB)
extraction buffer (100 mM Tris-HCl [pH 8], 1.4 M NaCl, 2% [wt/vol] cetyltrim-
ethylammonium bromide, 0.4% [vol/vol] �-mercaptoethanol, 1% [wt/vol] poly-
vinylpyrrolidone) (11), heated to 50°C for 20 to 40 min, and stored at �80°C until
extraction. All samples were heated in a 65°C water bath for 5 to 10 min
immediately before extraction. Nucleic acids were extracted as described previ-
ously (10) and were diluted to a concentration of 25 ng/�l for amplification.

For ballast water samples DNA (50 ng) was amplified by PCR in 20-�l reaction
mixtures consisting of 0.5 U of Taq polymerase (Promega, Madison, Wis.), 1�
Taq polymerase buffer (Promega), 2.5 mM MgCl2, each deoxynucleoside triphos-
phate at a concentration of 200 nM, 0.5 �M Aureococcus-specific primer
Aa1685F (5� ACCTCCGGACTGGGGTT 3�) (40), and 0.5 �M universal eu-
karyotic primer EukB (5� GATCC[A/T]TCTGCAGGTTCACCTAC 3�) (34) as
a reverse primer (representing a total of 122 bp). The PCR consisted of 35 cycles
of 30 s at 94°C, 30 s at 56°C, and 1 min at 72°C, followed by a 5-min extension
at 72°C. PCR products were fractionated on a 2% agarose gel, stained with
ethidium bromide, and visualized with a transilluminator. To verify the presence
of Aureococcus, bands were sequenced and compared with previously published
sequences (accession numbers AF117776 to AF117779, AF119119, AF118443,
and AAU40257).

For recreational boat samples, DNA (62.5 ng) was amplified by quantitative
PCR by using the same primers (Aa1685f and EukB) and a species-specific
molecular probe (40). The concentration of Aureococcus was then estimated by
the method described previously (40).

cDNA synthesis. Since RNA is more labile than DNA, the RNA pool in a
nucleic acid sample is contributed primarily by those organisms that are meta-
bolically active and transcribing RNA (29, 41). Therefore, to test for the presence
of viable Aureococcus, samples determined to be positive by PCR were assayed
by reverse transcription-PCR. Along with the ballast water samples, four samples
from the small-boat survey were also subjected to reverse transcription-PCR as

positive controls. About 100 ng of total nucleic acids was treated for 15 min at
room temperature in 10-�l reaction mixtures containing 1 U of DNase (Invitro-
gen, Carlsbad, Calif.) and 1� DNase buffer. EDTA was added to a final con-
centration of 2.5 mM, and the DNase was inactivated by incubation at 65°C for
15 min. RNA was reverse transcribed in 20-�l reaction mixtures containing 200
U of Superscript III (Invitrogen), 1� buffer, each deoxynucleoside triphosphate
at a concentration of 0.5 mM, 100 ng of random hexamers (Invitrogen), 10 mM
dithiothreitol, and 2 U of RNaseOut (Invitrogen). The reaction was carried out
at 50°C for 1 h, followed by 15 min at 70°C to inactivate the reverse transcriptase.
RNA was removed by RNase H treatment at 37°C for 20 min. cDNA was
amplified as described above.

RESULTS

Presence of Aureococcus in ships’ ballast water. The brown
tide organism was detected only during summer months (7 of
10 tanks sampled), when the ballast water temperatures were
above 19°C (Fig. 1). Cell abundance was generally low, as
revealed by the relatively faint DNA bands on electrophoresis
gels. Viable cells (i.e., cells transcribing DNA to RNA) were
found in a vessel that had a history of freshwater ballast and
had exchanged ballast water off Venezuela in May 2001, ap-
proximately 1 month before we sampled the tank (Table 1).

Generally, the longer ballast tanks are utilized and the more
ballast tanks and higher ballast capacity a ship has, the greater
the potential for sediment and organisms to accumulate. How-
ever, the ships in which Aureococcus was detected were similar
ages and had similar ballast capacities and residual contents
and the times between thorough tank cleanings were similar
compared to the ships in which Aureococcus was not detected
(Table 2). As far as we know, double-bottom tanks on the port
and starboard sides of a ship had identical ballast histories, but
in two of seven cases in which paired tanks were sampled,
Aureococcus was detected in only one tank. In one other case,
viable cells were found in the starboard tank but not in the
corresponding port tank (Table 1).

Presence of Aureococcus during vessel transit through the
Great Lakes. Aureococcus was also detected in a commercial
vessel after 10 days of ballast tank confinement during transit
through the Great Lakes (when the initial sampling tempera-
ture was 17.6°C). However, viable cells were detected in this

FIG. 1. Mean temperatures and salinities of ships’ ballast tanks in
which Aureococcus (brown tide) was detected (solid bars) and not
detected (open bars). The error bars indicate standard deviations. �,
differences were significant (T statistic � 3.89; P 	 0.01; n � 18).
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vessel directly only after the tank was filled with freshwater in
the Port of Hamilton and were not detected at the Port of
Windsor 6 days later. This vessel had exchanged its ballast
water in the Atlantic after its second-to-last ballast load in
Ghent, Belgium, about 2 months before it was sampled, but it
had later taken on more ballast water in the Port of Amster-
dam (Table 1). Upon entry into the Great Lakes, the residual
ballast water in the tank had a salinity of 5 ppt.

Presence of Aureococcus in small boats. Sampling compli-
ance during the small-boat survey was excellent. Of 20 people

approached, only 1 refused to participate, and another 8 who
were amenable to our sampling had boats either with no water
or with not enough water for a sample. In the boats sampled,
Aureococcus was detected in the bilge water in 8 of 10 cases, as
well as in the one live-well sample which we collected. Two of
the recreational boat samples had Aureococcus concentrations
below the detection limit, five had concentrations of 1 to 25
cells ml�1, and four had concentrations of 100 to 400 cells ml�1

(Fig. 2). Interestingly, the concentration of Aureococcus in the
live-well sample (sample B4 from Indian River Marina) was

TABLE 1. Ballast activity of ships in which Aureococcus (brown tide) was detected and not detected

Ship code Sample date (mo/day/yr)
Ballast load

Exchangeb Tank typec Tank salinity
(ppt)d

Date (mo/yr) Salinitya

1004 6/25/01 6/01 FW X DB2 port 10 (�BT)
5/01 FW DB2 stbd 2 (�BT)
5/01 BR
4/01 FW

1005 6/27/01 5/01 BR X DB4 port 34 (�BT)
3/01 BR X DB4 stbd 32 (�BT)
2/01 BR X
1/01 MW X

12/00 FW
1006 6/30/01 5/01 FW X DB6 port 29 (�BT)

5/01 FW DB6 stbd 34(�BT)e

4/01 MW
4/01 FW

1007 7/26/01 6/01 FW UW6 stbd 8 (�BT)
6/01 FW FP 9 (�BT)
5/01 FW
5/01 BR
3/01 MW X

1008 7/28/01 7/01 FW DB4 port 5 (�BT)
7/01 MW DB4 stbd 2 (�BT)

1013 10/05/01 9/01 FW DB3 stbd 7 (�BT)
9/01 FW
8/01 FW
8/01 FW
7/01 FW

1007 10/07/01 9/01 FW DB2 port 3 (�BT)
9/01 FW DB2 stbd 23 (�BT)

1014 10/22/01 10/01 FW DB3 port 20 (�BT)
9/01 BR DB3 stbd 22 (�BT)
8/01 FW
8/01 FW/BR

1015 10/25/01 10/01 MW X UW1 port 7 (�BT)
9/01 FW
8/01 MW
7/01 FW
6/01 FW X
5/01 MW

1016 11/08/01 10/01 MW/BR DB2 port 22 (�BT)
10/01 MW DB2 stbd 22 (�BT)
9/01 FW
8/01 MW
8/01 FW

1007f 10/01/01 9/01 FW FP 1 (�BT)e

8/01 FW X
4/01 MW X
1/01 MW X

11/00 FW

a FW, freshwater; BR, brackish water; MW, marine water.
b X, exchange took place after ballast load.
c DB, double bottom; UW, upper wing; FP, forepeak; stbd, starboard.
d �BT, Aureococcus was detected; �BT, Aureococcus was not detected.
e Viable cells were detected.
f Ship resampled after exit and reentry into the Great Lakes.
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higher than the concentration found in the water tested at the
marina. Further investigation of four samples that were posi-
tive for brown tide (highest cell abundance) showed that cells
had Aureococcus-specific RNA, which demonstrated that met-
abolically active cells were present (Fig. 3).

DISCUSSION

This study demonstrated that commercial ships and recre-
ational boats allow delivery of viable brown tide cells at end
points of transits. Of the ships sampled (Table 1) from June to
November 2001 (a total of 19 tanks), two contained detectable
levels of viable (actively transcribing) Aureococcus cells. This
result is noteworthy given the ships’ ballast histories, which
indicated that both tanks were ballasted twice with freshwater
before they were sampled and that the ships had exchanged
their ballast in the open ocean either on their last or second-
to-last voyage, as much as 1 month prior to sampling. For a
polyhaline (salinity, 18 to 30 ppt) phytoplankton species to
remain viable in the presence of water with a salinity of �5 ppt
is remarkable and suggests that this information should be
taken into consideration as new ballast regulations are devel-
oped (26).

For non-cyst-forming phytoplankton such as Aureococcus,
the presence of a large initial population entrained in the

ballast tank is likely key to successful transport and introduc-
tion, given the exponential decay of photosynthetic organisms
during ballast tank confinement (13). Current ballast water
management procedures recommend that vessel captains
avoid algal blooms when they load ballast (25). However, for
Aureococcus, it appears that temperature may also be an im-
portant physiological constraint on survival in ballast tanks
(Fig. 1). Brown tide was not detected in ballast water having
temperatures below 17.6°C, which is consistent with its tem-
perature response in laboratory cultures (the optimal temper-
ature for growth ranges from 20 to 25°C [8]). Other character-
istics, such as the ability to survive in the dark and the ability to
utilize organic substrates, may also facilitate ballast transport
of Aureococcus. However, Aureococcus survives best in the
dark at low temperatures (e.g., 6 and 12°C), presumably due to
the decrease in metabolic activity, and addition of organic
substrates has no effect on survival (39).

One of the most intriguing aspects of this organism’s survival
in ballast water is its apparent tolerance of low salinities (Fig.
1), in contrast to its salinity preferences in the field (18 to 32
ppt) (1) and in culture (
22 ppt) (8). Brown tide was found in
vessels with residual water salinities ranging from 2 to 34 ppt
(Fig. 1), and in both cases when viable cells were detected, the
tanks had taken on freshwater ballast during the last two bal-
last operations. In a previous study (40), Aureococcus was de-
tected in locations that were periodically fresh (i.e., tidally
influenced), but brown tide blooms have not occurred at these
sites. Thus, it appears that Aureococcus is tolerant of low sa-
linities in ballast tanks (perhaps due to buffering properties of
the sediments) and can survive a 30-day exposure to 2-ppt
ballast water. However, based on culture data (no growth at a
salinity of 0 ppt) it is unlikely that cells would grow after
delivery to the freshwater Great Lakes.

Of the six commercial ships containing Aureococcus (Table
1), only one had previously taken on ballast water in a port
(Philadelphia) that overlaps the alga’s currently recognized
distribution (the east coast of the United States and Saldanha
Bay in South Africa) (40). However, during the eastern sea-
board survey of Popels et al. (40), relatively high cell densities
were found in waters of the Delaware continental shelf, sug-
gesting that brown tide may be an oceanic species rather than
a coastal species. The implication is that ballast exchange (oc-
curring in waters 
200 nautical miles offshore), which is gen-
erally practiced as a barrier to future invasions by estuarine
species, may actually increase the abundance of Aureococcus in

FIG. 2. Concentrations of Aureococcus found in marinas and rec-
reational boats. IR, Indian River Marina; OC, West Ocean City Ma-
rina. Recreational boat samples B1 to B5 were collected at Indian
River Marina, and samples B6 to B11 were collected at West Ocean
City Marina. The error bars indicate standard deviations for duplicate
samples.

FIG. 3. Results obtained with molecular probes for Aureococcus
(brown tide) in water samples from three small boats. D, DNA am-
plification; R, cDNA amplification; P, positive control; N, no-reverse-
transcriptase control. Lane M, DNA ladder; lanes 1 to 3, bilge water
collected at Indian River Marina in Delaware (sample B1 in Fig. 2);
lanes 4 to 6, live-well water collected at Indian River Marina (sample
B4 in Fig. 2); lanes 7 to 9, bilge water collected at West Ocean City
Marina in Maryland (sample B8 in Fig. 2); lane 10, positive control;
lane 11, negative control (no transcript).

TABLE 2. Ship specifications for ballast water samples in which
Aureococcus (brown tide) was detected and not detected

Parameter �BTa �BT

Ship age (yr) 10.2 � 8.5 7.3 � 6.9
Total ballast capacity (MTb) 18,942 � 5,237 17,698 � 6,097
Time from sampling to last

cleaning (months)
20.5 � 10.1 31.0 � 7.4

Total estimated residual water
(MT)

72 � 49 66 � 58

Total estimated residual water
(% of ballast capacity)

0.38 � 0.19 0.35 � 0.20

a �BT, samples in which Aureococcus was detected; �BT, samples in which
Aureococcus was not detected.

b MT, metric tons.
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ships’ ballast tanks rather than decrease it through displace-
ment or osmotic shock.

With respect to its origin and dispersal, Aureococcus is esti-
mated to have been present in Quantock Sound in New York
for over 100 years (17), based on the presence of a unique
sterol found in sediments (16). Furthermore, the small amount
of sequence variation in 14 Aureococcus strains (18S ribosomal
DNA gene) isolated from New York (2) caused Popels et al.
(40) to design a species-specific molecular probe for a con-
served region in the 18S ribosomal DNA sequence. However,
the disjunct global distribution of Aureococcus may suggest
that there was relatively recent introduction to South Africa,
and the evidence provided here indicates that ships’ ballast
water could be a transport vector. Current investigations in-
volving comparisons of DNA sequences of different geographic
strains should help clarify whether Aureococcus is indeed an
introduced species in South Africa (L. Botes, personal com-
munication) rather than cryptogenic (a species which is neither
clearly native nor clearly introduced [6]).

In this study, PCR techniques were used to detect Aureo-
coccus and estimate its viability. Such molecular techniques
provide an extremely powerful and efficient tool for the detec-
tion and quantification of microorganisms compared to tradi-
tional microscopic and cultural methods (10, 19, 20). Further-
more, these techniques are uniquely suited to analysis of
ballast water and sediment samples in which viable target or-
ganism abundance may be below the level of microscopic de-
tection, yet still pose a threat to human health or the environ-
ment. We detected the DNA of Aureococcus in eight ballast
tanks of the commercial ships sampled (Table 1); however, we
detected RNA (which is more labile than DNA [29, 41]) from
only two tanks, suggesting that most Aureococcus cells present
in our ballast water samples were inactive. Given the great
disparity between the number of samples in which Aureococcus
was viable and the number of samples in which it was detected,
we suggest that studies to assess the metabolic activity or ca-
pacity for growth as a means of estimating invasive potential
are warranted.

Aureococcus was present at both marinas where small boats
were surveyed. Furthermore, boats were sampled immediately
after they came out of the water, so it was not surprising that
the recreational boat samples contained viable cells of Aureo-
coccus, either in the bilge or in live-well water. Given the
likelihood that recreational boaters will use their vessels in
multiple locations on any given day or weekend or within the
same month and the likelihood that that they will not fully
drain or rinse their boats with freshwater, there is great poten-
tial for small boats to distribute the brown tide organism. A
quantitative risk assessment could be achieved by sampling
boats before they are launched at various marinas to test for
the presence of viable cells, and boat owners could be inter-
viewed and asked when and where they last used their boats.

The presence of a relatively high concentration of Aureococ-
cus in the live-well sample also has implications for the alga’s
potential introduction with bait or its dispersal by commercial
bait vendors. Other instances of such hitchhikers (e.g., macro-
phytes [27]) suggest that this is a real possibility. These findings
add to those of previous studies which demonstrated the po-
tential for recreational boaters to facilitate the spread of pre-
viously introduced species (e.g., zebra mussel into inland water

bodies from Lake Michigan [37]) and highlight the importance
of educating recreational boaters about their role in species
dispersal.

Conclusions. To our knowledge, this is the only study that
has demonstrated the presence of viable harmful microbes in
ships’ ballast water and small-boat bilge and live-well water.
The variable presence of Aureococcus in paired ballast water
tanks on the same ship, as well as in different ships, indicates
the importance of tracking the history of individual tanks when
workers attempt to determine outcomes of ballast manage-
ment practices. With respect to risk assessment, current mod-
els incorporate the number of propagules at transit end points
(32); however, this study shows that the number of viable
propagules (2 of 19 tanks; 11%) is likely a better predictor of
potential invaders.
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