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ABSTRACT 

 

Stem cells are a cell type present during and following development, which possess self-

renewal properties, as well as the ability to differentiate into specific cells. Asymmetrical division 

is the cellular process that allows stem cells to produce one differentiated and one un-differentiated 

daughter cell during the same mitotic event. Insights in the molecular mechanisms of such process 

are minimal, due to the absence of effective methods for its targeted study. Currently, traditional 

methods of investigation include monolayer cell culture and animal models. The first poses 

structural limitations to the accurate representation of human tissue and cell structures, while 

animal models pose restrictions on the ability to visualize and manipulate the experiment 

performed, as well as being highly susceptible to error during data analysis and interpretation. 

Three-dimensional cell culture models are a novel approach to the study of cell mechanisms and 

disease, and are able to overcome many of the limitations of monolayer cell cultures and animal 

models.  

It is our goal to devise a three-dimensional cell culture system suitable for the in vitro study 

of asymmetrical division of neural stem cells at a single cell resolution. Current methods based on 

the culture of cells embedded in extracellular matrix-derived substrates have been efficient tools 

for the understanding of cellular mechanisms. However, currently available three-dimensional cell 

culture systems lack important qualities for an efficient application to the study of asymmetrical 

division of neural stem cells. A defining quality of cells of the neural lineage is the generation of 

spontaneous electrical activity, necessary for the transmission of signals in the organism. Current 

systems lack the ability to perform electrophysiological measurements and characterize the 

functionality of the cells in culture. A second limitation is posed by the adoption of non-specific 



 

 

substrates for cell culture able to recapitulate the natural cellular environment, as it is known that 

this has an impact on cell fate determination. Finally, current methods lack the ability to place and 

inject a controlled number of cells within the three-dimensional substrate, preventing the ability to 

perform studies at lower-cells resolutions.  

In this project, I developed three Aims with the goal of overcoming the three major 

limitations of three-dimensional cell culture systems. In Aim 1, I evaluated the efficiency of 

Microelectrode Arrays systems to perform electrophysiological measurements of neural stem cells 

and neuronal networks in vitro. In Aim 2, I fabricated and characterized a porcine brain 

extracellular matrix-derived hydrogel, and I tested its ability to promote stem cells survival and 

proliferation. Finally, in Aim 3, I optimized the parameters of a custom 3D extrusion-based 

bioprinter to perform single cell and single beads resolution printing. Combined, the development 

of these Aims allowed me to lay the foundations for the development of a functional three-

dimensional cell culture system applicable to the study of asymmetrical division in neural stem 

cells at a single cell resolution level, and which holds great potential for the uncovering of cellular 

mechanisms characteristic of stem cells and neurodegenerative disease. 
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CHAPTER I – BACKGROUND 

 

The goal of this study entailed the development of basic protocols to facilitate the study of 

targeted differentiation in vitro. Three aims were developed, and all contributed to the devising of 

an optimal method of investigation for asymmetrical division of neural stem cells in a three-

dimensional environment. In aim 1, I tested the adoption of Microelectrode Arrays (MEA) for the 

functional characterization of neural stem cells and neurons. The ability of this technology to 

measure the real-time electrical activity observed in neural networks enables the study of changes 

in the electrophysiological properties of differentiating cells. In aim 2, I fabricated a porcine brain 

matrix-derived hydrogel suitable for cell culture, which allows for the study of asymmetrical 

division in a biomimetic environment. Lastly, in aim 3 I optimized a 3D extrusion-based bioprinter 

to obtain single cell/single beads resolution printing, to enable the study of asymmetrical division 

processes at a single cell resolution. 

 

Stem Cells and Asymmetric Cell Division 

Differentiation is the process that allows the generation of cellular diversity via the 

formation of specialized, terminally-differentiated cell types. It is characterized by an interruption 

of the cell cycle and the development of each cell’s characteristic structures and functional 

properties [1]. The undifferentiated cells from which all the different types of somatic cells of the 

organism originate are known as stem cells. Based on their differentiation potential, which defines 

the diversity of cell types that they can subsequently generate, stem cells can be classified as 

totipotent, pluripotent, multipotent, oligopotent, and unipotent. Totipotent stem cells have the 

ability to divide and differentiate into any cells of an organism, including those found in the 
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extraembryonic tissue. This property allows for the formation of a developing embryo and the 

associated placenta after fertilization, all arising from a single totipotent cell. Pluripotency is 

defined as the ability of a cell to differentiate into another belonging to any of the three germ layers 

(endoderm, mesoderm, or ectoderm). Any fetal or adult cell can arise from pluripotent cells; 

however, they lack the ability to organize into an embryo [2]. Multipotent stem cells are found in 

developed tissue and can only generate cell types with specificity restricted to the tissue in which 

they are located, playing fundamental roles in organogenesis and regeneration. An example is 

provided by hematopoietic stem cells, responsible or the formation of the cell lineages circulating 

in the blood, or neural stem cells, responsible for the formation of neurons and the supporting glial 

cells present in the nervous system [2]. In contrast, oligopotent stem cells can only differentiate 

into a few, closely related cell types [3]. Finally, unipotent cells can only produce one cell type, 

but they are distinguished from normal cells because of their self-renewal properties, for which the 

cells can keep dividing over many generations [3]. However, the potency of cells is likely only 

understandable within the specific context of their microenvironment, as changing the location of 

a cell can drastically affect its differentiation potential [4, 5]. 

 Two general categories in which stem cells can be classified are embryonic or adult stem 

cells, and their distinction resides in their preservation after the organism’s development. 

Embryonic stem cells (ESC) can develop into any fully differentiated cell type of the body, and 

they are characterized by the properties of self-renewal and pluripotency [3]. They are found in 

the inner cell mass of the primordial embryo and are responsible for the generation of all the 

structures of the fetus [6]. Cells with the same properties as ESCs can be generated in vitro starting 

from somatic ones, and are known as induced pluripotent stem cells (iPSC) [7, 8]. This type of cell 

can be generated via the introduction of different combinations of transcription factors in the 
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differentiated cells.  This can be accomplished by using viral vectors (such as lentiviruses or 

nonintegrating viruses), reprogramming factor mRNAs, micro RNAs, minicircle vectors, via 

transposons cloned into piggyBac vectors, or using episomal plasmids [9]. A first successful set 

of factors was identified by Yamanaka’s group, and consisted of OCT3/4, SOX2, C-MYC, and 

KLF4, while a second combination was reported by the Thompson’s group, and consisted of the 

reprogramming factors OCT3/4, SOX2, NANOG and LIN28 [4, 6-8]. The introduction of either 

combination of factors into mature cells, results in the activation of the genes associated with 

pluripotency and the induction of the adult cells from a mature, differentiated stage to an 

undifferentiated one.  

Adult stem cells are found throughout various fully developed tissue and allow for tissue 

regeneration. Their location within the tissue is known as a stem cell niche, a concept first 

postulated by Schoefield in 1978. Here Schoefiled defined a “niche” as the in vivo 

microenvironment in which the cells are physically located and receive and exchange stimuli that 

influence their fate. These stimuli include cell-cell and cell-matrix interactions, and are responsible 

for the activation and repression of genes and transcription. They allow for the maintenance of 

stem cells in a quiescent state, in which division does not occur but the regular functioning of the 

cell cycle can be triggered by normal physiological stimuli, and the proliferative potential of the 

stem cells is preserved [10, 11]. Stem cell niches possess an intrinsic plasticity that allows them to 

coordinate the stem cells behavior in order to maintain the homeostasis of the tissue in which they 

are located [11, 12]. In fact, removal of cells from the niche, would result in loss of stemness and 

self-renewal capacity, as well as initiation of differentiation of the cells upon necessity [4, 13].  

The mechanism that allows stem cells to maintain a state of self-renewal and at the same 

time maintain their potential to differentiate into mature cells, is known as asymmetric cell 
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division. Asymmetric division is defined as any division process that results in the formation of 

two daughter cells of different fates. Symmetrical division, results in the formation of two identical 

cells. Instead, stem cell asymmetric division creates two daughter cells directed towards different 

fates, a new stem cell and a differentiated one. This can be achieved through two main 

mechanisms: intrinsic or niche-controlled asymmetric cell division. In the first case, an axis of 

polarity is used during mitosis to ensure that self-renewal regulators are confined to only one half 

of the cell, thus consequently only one of the daughter cells will preserve its future-potency 

capabilities. In niche-controlled division, the fate of each daughter cell is determined by its position 

relative to the stem cell niche; also in this case, the orientation of the mitotic spindle during division 

plays a key role in the process. When the mitotic spindle is perpendicular to the niche, only one of 

the daughter cells remains in contact with it, preserving its pluripotency, while the second daughter 

cell will differentiate [14]. Alternatively, if the mitotic spindle is parallel to the stem cell niche, 

symmetrical division occurs and stem cells undergo self-renewal, demonstrating the key role that 

niches play in regulating stem cell potency and division.  

 

Mechanisms of Study 

 The traditional methods of investigation to elucidate molecular mechanisms behind 

cellular processes and disease pathophysiology include either two-dimensional cell culture or 

animal models. Combined, they have been relatively efficient approaches assisting in the discovery 

of biological processes and the development of disease treatments. However, both techniques are 

flawed in that they do not provide for an accurate representation of the human in vivo cellular 

microenvironment.  
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Conventional two-dimensional cell cultures rely on the adherence of primary or 

immortalized cells on the culture dishes’ flat surface, which provide the mechanical support 

needed by the cells. Culture of many different cell types is made possible by the ease with which 

nutrient media, optimized and supplemented with various exogenous components, can be delivered 

to the cells. Although characterization of the type and viability of cells, as well as simplicity of 

culture maintenance are easily achieved, cells in two-dimensional cultures lose their natural in vivo 

histological organization, leading to the inaccurate representation of tissues’ structures. The loss 

of polarization observed in cultured cells may lead to alterations in their behavior and in the way 

in which cells and other extracellular components in culture interact. In fact, the histological 

organization of a tissue is strictly related to its function, and affects its biological functions and its 

biochemical specificities [15, 16]. 

In animal models, the inaccuracies encountered adopting monolayer cultures are overcome, 

as the cells and tissues studied are found in their natural disposition within the body. However, 

known and unknown differences between the animal physiology and the human physiology, are 

significant limiting factors in the accuracy of such approaches. The effectiveness of drugs and 

treatments has been shown to be species specific, with identical approaches producing discordant 

results when administered to animal models versus humans, and therefore reducing the reliability 

of results [17]. An additional risk factor in the adoption of animal models is the high probability 

of errors in the design of preclinical studies to accurately represent a disease population, as well 

as errors in the results’ interpretation [18]. Finally, animal models often present limitation in the 

experimental design, as the use of live models allows for minimal visualization of the experiment 

progression, as well as a limit on manipulation opportunities.  
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A novel approach to the study of cellular mechanisms and disease, while maintaining a 

high degree of accuracy is represented by three-dimensional cell cultures. They overcome many 

of the structural limitations posed by monolayer culturing techniques and all the while reducing 

the error margin associated with the development and interpretation of studies in animal models. 

Different methods can be adopted to culture cells three-dimensionally, comprising of spheroid 

cultures, natural or synthetic scaffolds, cells sheets and hydrogels, the latter of which was chosen 

as model for the studies reported here. Three-dimensional cultures have so far revealed to be 

efficient means for the development and testing of drugs, for the study of the physiology of cells 

and cell populations, including their behavior and interactions, and have had applications in 

regenerative medicine research [19, 20]. Three-dimensional cultures have also been shown to 

promote the thriving of cell populations in culture. Their superiority to monolayer cell cultures 

resides in the cells’ enhanced deposition of the ECM-components fundamental for cell movement 

and proliferation, as well as promoting integration of signaling pathways between cells, and 

ensuring a more natural response in drug studies [19, 20].  

When considering an application to the study of asymmetrical cell division of neural stem 

cells in vitro, three-dimensional cultures represent an ideal approach, with some limitations. 

Physiological and functional measurements are retrieved with difficulty due to the typically 

random disposition of the cells in the system. Often, the substrates used for three-dimensional cell 

culture are not biomimetic, resulting in a system not accounting for the effect of different 

microenvironmental cues on the cell cultures’ physiology and behavior. Finally, current systems 

are efficient for the formation and study of organoids, however they lack the ability to provide 

precise placement and dispensing of a limited number of cells, necessary for single-cell studies. 

These particular limitations were all approached in the development of the described project and 
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the devising of a functional system suitable for the study of asymmetrical division of neural stem 

cells.  

A distinctive characteristic of cells of the neural lineage is their ability to produce 

spontaneous and evoked action potentials to transmit information. Traditional methods in the field 

of electrophysiology, such as patch clamp, rely on the analysis of the transmembrane voltages in 

isolated cells [21, 22]. Although they can grant a high level of accuracy even at single ionic channel 

resolution, these set-ups do not reflect the natural disposition of neural cells in networks, therefore 

not representing the behavior of cells in a population. Additionally, these methods are extremely 

invasive and the assays are usually terminal, as the cells cannot survive such procedures, and thus 

not allowing for the long-term culture and study of the cells in analysis [23]. Microelectrode arrays 

systems (MEAs) are a novel and efficient tool for the characterization of the electrophysiology of 

neural networks. They are constituted by a glass or plastic culture dish containing an array of 

electrodes in contact with the plated cells. These in vitro systems allow for the real time and 

simultaneous recording of spontaneous or evoked electrical activity of cells on multiple electrodes. 

The main advantage of this technology is the possibility to measure the activity of neural cells as 

part of a network rather than in single cells, more accurately representing the cell’s natural 

disposition, in a very accessible way. This includes the performance of electrophysiological studies 

in the presence of both neurons and glial cells as well as accounting for the contact between 

different neurons. In addition, MEA plates allow for the long-term culture of stem and 

differentiated cells [23, 24]. This important quality enables the study of the variability in cells’ 

electrophysiology associated with cell differentiation, development, and synchronization in a very 

controlled environment. MEA systems currently have a wide variety of applications, with 

particular focus on the study of the dynamics of neuronal signals and pharmacological studies. 
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This technology was applied to the development of my project, as it represents an optimal approach 

for the functional characterization of stem and neural cells populations. 

The three-dimensional culture model used for this project envisioned cell cultures 

embedded in ECM-derived hydrogels. The substrates necessary to fabricate such hydrogels can be 

extracted from animal or human tissues. A first example is provided by Matrigel (Corning), a 

commercially available product extracted from the Engelbreth-Holm-Swarm (EHS) mouse 

sarcoma. This tumor is particularly rich in the type of proteins that constitute the basement 

membrane ECM, such as laminin, collagen IV, entactin, and different growth factors [25]. The 

Matrigel matrix is widely applied for the two-dimensional culture of stem cells as well as cells of 

the neural lineage. Additionally, the substrate has been applied to three-dimensional cultures for 

the study of neurodegenerative disease, as it promotes the survival of functional neurons and 

provides a structure that recapitulate the molecular characteristics of diseases such as Alzheimer’s, 

more accurately than monolayer cultures [26-28]. Matrigel is the substrate predominantly adopted 

by research facilities, and it has proven efficient for the 2D and 3D culture of cells of the neural 

lineage. However, its tumor-origin and its unlikelihood of ever receiving FDA approval, and 

therefore being utilized in a clinical setting, raise concerns among researchers [29]. An alternative 

to the use of Matrigel is given by the extraction of the substrate directly from the animal or human 

tissues of interest. The process consists of extraction of the whole tissue and decellularization using 

a solution able to lyse the cells while preserving the extracellular matrix proteins intact. The 

decellularized product is then lyophilized, enzymatically digested and neutralized, in order to 

obtain a self-gelling product able to solidify upon warming into a hydrogel. This technique is 

currently employed in our laboratory, and substrates obtained from rat and human mammary 

tissues are manufactured for the study of the behavioral changes observed in breast cancer cell 
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lines cultured in a healthy environment and along normal mammary cells. Our laboratory has 

shown that tissue specific ECMs of the breast have unique properties in supporting the 

development of mammary epithelial cells [30]. Similarly, other laboratories have explored the use 

of tissue specific ECM for the culture of neural stem cells and neurons, demonstrating the 

possibility of manufacturing a substrate suitable for cell culture starting from animal brain tissue 

[31-33]. The adoption of a tissue-specific substrate derived from porcine brain was explored in 

this project, to devise a highly biomimetic 3D culture model.  

A final limitation of traditional hydrogel-based 3D culture models is the ability to position 

and visualize a specific, limited number of cells within the hydrogels. This problem was 

approached in this project using a 3D extrusion-based bioprinter, which was developed in our lab 

as an adaptation of a relatively inexpensive, commercially available 3D printer [34]. It allows 

precise, coordinate-based, injection of variable concentrations of cells into substrates plated in 

standard-size culture plates, and allows the maintenance of cell viability after injection. The 

components critical to the development of this portion of the project were needle geometry, cell 

dilution concentration, medium, printing parameters, and the substrate adopted for the injection. 

Needle geometry plays a key role in the ability to dispense a minimum number of cells while 

avoiding structural damage. During the dispensing process, cells are subjected to many forces, and 

when their duration or intensity exceeds a certain threshold, disruption of the cellular integrity 

might occur. The shape of the needle influences the flow rate of the cells during dispensing as well 

as the level of damage inflicted to the cells. Through simulation and experimental models, it was 

possible to demonstrate that the least amount of damage is obtained adopting a tapered needle 

shape [34]. Additionally, the needle diameter is a fundamental parameter to consider while 

printing. A large needle tip allows for a greater number of cells to be released in a smaller amount 
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of time, and allows the passage of multiple cells at the same time. Smaller diameters, in the order 

of 150-500 µm, are more suitable for an application in single cell printing, as they are only wide 

enough to allow passage of a single cell, however such needles are more prone to clogging [34]. 

Cell dilution and printer parameters are two factors that need to be coordinated for the successful 

performance of single cell printing. The amount of solution extruded for each print can be adjusted 

to the cell concentration, and vice versa. When setting each one, it is important to determine an 

extrusion value suitable for the thickness of the substrate adopted, and limit the likelihood of the 

formation of cell clumps when determining the cell concentration. Lastly, the choice of substrate 

also affects the quality of the final print. The composition and stiffness of the hydrogel affect the 

type of deformation induced by the needle penetration. Stiffer gels are less plastic and tend not to 

deform to properly adapt to the volume of cells injected while preventing permanent deformation. 

It is then important to consider the structural behavior of the substrate when placed in different 

culture plates. Specifically, adhesive forces between the substrate and the cultureware result in the 

formation of a meniscus in correspondence with the hydrogel surface. Steepness of the meniscus 

is dependent on the material adopted and the quantity of substrate applied relatively to the height 

and width of the wells in the chosen culture plate. Minimizing the meniscus size is fundamental to 

ensure continuity in the printing process. Additionally, when the printing is performed envisioning 

culturing of the printed cells, the substrate of choice must be biocompatible with the type of cells 

adopted. All the parameters described were considered and adjusted in order to enable single-cell 

printing, and ultimately allow for the study of neural stem cell asymmetrical division at a single-

cell resolution. 
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Project Aims 

The overall goal of this research project is the development of the basic protocols necessary 

for a functional three-dimensional culture system. Specifically, such system was conceived for an 

application in the study of asymmetrical division in neural stem cells. Three separate aims were 

envisioned to ensure the development of the different qualities of the system, and were (1) the 

adoption of microelectrode arrays (MEA) systems for the functional characterization of neural 

stem cells and neurons, (2) fabrication of porcine brain matrix-derived hydrogels suitable for cell 

culture and (3) optimization of a 3D extrusion-based bioprinter to obtain single cell/single beads 

resolution printing. 

  

Aim (1) – Adoption of Microelectrode Arrays (MEA) systems for the functional characterization 

of neural stem cells and neurons. 

Microelectrode Arrays systems are a novel technology that allows for the real-time 

characterization of the spontaneous and evoked electrical activity of excitable cells. The placement 

of multiple microelectrodes in contact with the cells of a population in culture enables the 

simultaneous measurement of voltage changes in multiple regions of the same cell population. 

MEAs system represent an ideal approach for the study of the electrophysiology of neural stem 

cells and neurons in long-term cultures, with the possibility to focus on events such as 

development, potentiation, depression and synchronization. 

The first aim of this project focused on the application of an MEA system for the functional 

characterization of neural stem cells and neurons. The long-term goal of this research envisions 

the development of a three-dimensional culture system and, consequently, of an appropriate 

method for the functional characterization of cells in such structure. Being able to assess the 
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functionality of a two-dimensional neural culture represents the first step towards the progression 

of this project. 

 

Aim (2) – Fabrication of porcine brain matrix-derived hydrogels suitable for cell culture. 

A common approach to 3D culture, is through the fabrication of protein-derived hydrogels. 

Many of such models have been designed using extracted substrates, such as extracellular matrix 

(ECM), which possess similar, although not exact, properties as the corresponding in vivo 

environment. The cellular microenvironment plays a role in directing cell fate [4, 5, 30], therefore 

being able to mimic the natural cellular microenvironment allows a high level of accuracy of the 

devised models, both under the structural aspect as well as the behavior of cells in culture. 

The second aim of the project focused on the adaptation of existing ECM isolation 

protocols for the fabrication of a substrate derived from porcine brain extracellular matrix, suitable 

for two- and three-dimensional culture of neural stem cells and neurons. Such structure represents 

the ideal method of culture of neural cells in order to mimic their natural environment and three-

dimensional disposition, with potential applications in the study of neural cells mechanisms typical 

of normal and disease conditions.  

 

Aim (3) – Optimization of a 3D extrusion-based bioprinter to obtain single cell/single beads 

resolution printing.  

Asymmetric division is a subject of research that has long been explored, but the limited 

theoretical knowledge behind the possible mechanisms that drive it represents a great limiting 

factor with regard to the performance of practical experiments. Insights into the dynamics of the 

process have been partially unveiled by Habib et al., who demonstrated the capability to induce 
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asymmetric division in a pluripotent stem cell model upon contact with Wnt transcription factor 

[35]. The experiment was conducted utilizing mouse embryonic stem cells cultured along Wnt3a 

or Wnt5a-conjugated to microbeads, and the authors were able to observe that contact with the 

beads allowed preservation of self-renewal properties of stem cells instead of inducing 

differentiation. The setup of this experiment allowed the observation and distinguishing of 

differentiated vs. non-differentiated products of asymmetric division, but prevented the 

performance of any study during or following division. The last aim of this project consisted in 

the optimization of a 3D extrusion-based bioprinter, with the goal of obtaining single cells and 

single WNT conjugated beads injected in different substrates, to be later applied to the study of 

asymmetric division at a single cell resolution, following the model proposed by Habib et al. 

Research Significance 

The ability of a model to faithfully mimic the characteristics of a physiological system is a 

fundamental quality for its application in translational research. Monolayer culture systems and 

animal models, although widely adopted for the study of stem cells and asymmetric division, 

present significant limitations. Three-dimensional culture models hold great potential in the field, 

as they can be devised to reproduce the physiological conditions of a system, both under the 

structural and biochemical point of view. The development of the described project lays the 

foundations of a 3D culture system ideal for the culture and study of stem and neural lineage cells. 

This system holds great potential in research in the field of stem cells and neurodegeneration. 

Combined, the real-time physiological measurements obtained through MEA systems, the use of 

a highly biomimetic tissue-specific substrate, and the use of precise 3D extrusion-based 

bioprinting, grant an unprecedented level of accuracy in the study of neural stem cell asymmetrical 

division and differentiation. Further, this system allows for a more precise study of molecular 
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mechanisms of neurodegenerative disease, as well as higher expected efficiency in the 

development and testing of potential treatments.   
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CHAPTER II – MATERIALS AND METHODS 

a. Aim (1) – Functional Characterization of Neural Stem Cells and Neurons 

Induced Pluripotent Stem Cells Generation and Culture 

One wild-type iPSC-Wt, two Huntington’s disease affected iPSC-GM02191 (iPSC-HD1) 

and iPSC-GM04022 (iPSC-HD2), and one Alzheimer’s disease iPSC-AG09088 (iPSC-AD) 

induced pluripotent stem cell lines, were previously generated in our lab starting from human 

fibroblast lines. Huntington’s and Alzheimer’s diseased cells were purchased from Coriell Cell 

Repositories (Camden, NJ). Briefly, cellular reprogramming and validation was conducted using 

the CytoTuneTM – iPS 2.0 Sendai Reprogramming Kit (Life Technologies, Carlsbad, CA) [36]. 

Following successful reprogramming, the cells were cultured under feeder-dependent conditions 

on irradiated murine-embryonic fibroblasts (iMEFs) (GlobalStem; Gaithersburg, MD). iPSC lines 

were initially cultured in complete KnockOut Serum medium (KOSR), constituted by 

KnockOutTM Dulbecco’s Modified Eagle’s Medium (DMEM)/F-12 medium (Life Technologies), 

supplemented with 20% KnockOutTM Replacement Serum, 1x MEM Non-Essential Amino Acids 

(Life Technologies), 10 ng/mL of Basic Fibroblast Growth Factor (Life Technologies), 55 nM β-

mercaptoethanol, (Sigma Aldrich; St. Louis, MO) and 1% Antibiotic-Antimycotic (ABAM; 

Thermo Fisher Scientific, Whaltam, MA). Medium was completely replenished daily. Upon 

reaching of an adequate size, as determined following the Maintenance of Human Pluripotent Stem 

Cells in mTeSRTM1 technical manual (STEMCELL Technologies; Cambridge, MA), the colonies 

were manually split and passaged for expansion. iPSC lines were then adapted to a feeder-

independent protocol using Geltrex® LDEV Free hESC-qualified matrix (from here on referred 

as Geltrex®) (Thermo Fisher Scientific) coated culture plates. The iPSC lines were then cultured 

with mTeSRTM1 medium, composed by mTeSRTM1 Basal Medium (STEMCELL Technologies), 
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5x mTeSRTM1 Supplement (STEMCELL Technologies) and 1x ABAM. Subsequent passages 

were performed upon adequate growth of the colonies and pluripotency expression, verified, 

respectively, following the directions provided by the Maintenance of Human Pluripotent Stem 

Cells in mTeSRTM1 technical manual, and with positive staining for TRA-1-60 (Life 

Technologies) performed according to the manufacturer’s protocol. Passages were performed 

manually or using the StemPro® Accutase® Cell Dissociation Reagent (Thermo Fisher Scientific).  

 

Neural Stem Cells Induction and Culture 

Neural stem cell (NSCs) lines were obtained for each of the previously described iPSC 

lines using the STEMdiffTM Neural System Embryoid Body (EB) protocol (STEMCELL 

Technologies). iPSCs adapted to feeder-independent conditions and cultured in mTeSRTM 1 

medium were plated on an AggrewellTM 800 plate, and cultured in STEMdiffTM Neural Induction 

medium (STEMCELL Technologies). Daily partial (3/4) medium change was performed from Day 

1 – 4. On day 5 the EBs were harvested from the AggrewellTM 800 wells and re-plated on Geltrex®-

coated culture plates. All NSC cultures from this point were maintained on culture plates coated 

with Geltrex® matrix at a 1:100 dilution. Daily full medium change was performed until Day 11. 

On Day 12 the newly formed neural rosettes were selected using the STEMdiffTM Neural Rosette 

Selection Reagent (STEMCELL Technologies). Cells were cultured in STEMdiffTM Neural 

Induction medium until ready for passage 1, approximately day 19. NSC outgrowths formed 

between the rosette clusters, and passage 1 was performed when confluency reached 80-90%. 

Passage was performed using TrypLE™ Express Enzyme (1X) (Thermo Fisher Scientific) as 

recommended by the manufacturer. Cells were cultured in complete StemPro® NSC Serum Free 

Medium (Thermo Fisher Scientific), composed of KnockOutTM DMEM/F-12 medium, StemPro® 
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Neural Supplement 50X (Thermo Fisher Scientific), FGF-basic (AA 10-105) Recombinant Human 

(Thermo Fisher Scientific), EGF Recombinant Human (Thermo Fisher Scientific), 1X 

GlutaMAXTM (Thermo Fisher Scientific), and 1X ABAM. Media was replenished completely 

every other day. The identity of the NSCs obtained with the neural induction protocol was 

confirmed through immunocytochemistry staining for the antigens listed in Table 1 as described 

below.  

 

Neuronal Differentiation 

General neuronal differentiation was performed using previously published protocols [37, 

38].  NSCs were cultured in complete StemPro® NSC Serum Free Medium until 90-100% 

confluency was achieved. Successively the culture medium was substituted with NeurobasalTM 

Medium (Thermo Fisher Scientific), supplemented with 2% B-27TM Supplement (50X) (Thermo 

Fisher Scientific), 0.5 mM GlutaMAXTM, 1X ABAM, 500 nM puromorphamine (STEMCELL 

Technologies), 50 nM retinoic acid (STEMCELL Technologies). Partial (1/2) medium change was 

performed daily, limiting the direct exposure of the differentiating cells to air during the process. 

Immunocytochemistry was performed at Day 15 of differentiation (as described below), and the 

molecular markers tested to confirm the identity of the maturing neurons are listed in Table 1. 

 

Immunocytochemistry 

Immunocytochemistry assays were performed to confirm the identity of newly generated 

neural stem cell lines, as well as to test the efficiency of our neuronal differentiation protocol. 

Samples were washed twice in 1X tris-buffered saline (TBS) for 5 minutes each – all the 

subsequent washes were performed for the same amount of time – and fixed in 10% formalin 
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(Thermo Fisher Scientific) for 20 minutes. Samples were then washed with 1X TBS three times, 

incubated with 0.1% NP40 in TBS at room temperature for 10 minutes, and then blocked with 

10% goat serum for 60 minutes. Primary antibodies were diluted in 1% goat serum according to 

the manufacturer’s instructions, and following application they were incubated overnight at 4°C. 

Next, after washing the samples with TBS four times, Alexa FluorTM 488 and 568 secondary 

antibodies (Thermo Fisher Scientific) diluted 1:1000 in 1% goat serum were added and the samples 

were incubated in the dark, at room temperature, for 60 minutes. Samples were newly washed in 

TBS four times, and nuclear stain was performed adding DAPI diluted 1:1000 in 1% goat serum. 

The samples were finally washed four times in TBS, and images were acquired with a Zeiss Axio 

microscope with a short-working distance 20X objective. 

 

Nucleic acid extraction and gene expression analysis 

The identity of the newly formed neural stem cell lines was confirmed analyzing their 

relative expression of genes of interest, listed in Table 1. Gene expression data were obtained 

through RNA extraction and purification, cDNA synthesis, and Real-Time quantitative PCR 

assays. 

Upon reaching of the appropriate confluency level of the cultures, RNA extraction was 

performed using TRIzol® (Thermo Fisher Scientific) reagent following the manufacturer’s 

protocol. The RNA phase was isolated through centrifugation. Next, the RNA was precipitated 

using 100% isopropanol, and washed using 75% ethanol. Finally, the isolated RNA was 

resuspended in 22 µL of nuclease-free water. Purity of the RNA samples was ensured by the 

performance of gDNA digestion using Deoxyribonuclease I, Amplification Grade (Thermo Fisher 

Scientific), following manufacturer’s protocol. RNA was then quantified using a NanoDrop 2000 
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(Thermo Fisher Scientific), and its concentration was determined based on the UV absorbance 

levels at 260 nm (A260 nm). Quantification values were considered acceptable with 260/280 ratios 

>1.7, and 260/230 ratios > 1.8. The RNA product was then used to synthesize cDNA strands using 

the High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific), as per 

manufacturer’s protocol.  

  cDNA samples were amplified using TaqMan® Gene Expression Assay (Applied 

Biosystems) to quantify the original mRNA levels. Optimized primers and probes were provided 

for the specific target genes in analysis, and each probe presented a 5’ terminal reporter dye FAM 

(6-caroxyfluorescein) and a 3’ terminal non-fluorescent quencher dye (NFQ-MGB). To perform 

the amplification, real-time quantitative PCR assays were performed using a StepOnePlus™ Real-

Time PCR System (Applied Biosystems; Foster City, CA). Complete samples for the reactions 

comprised 1X TaqMan® Fast Advanced Master Mix, 1X TaqMan® Gene Expression Assay, and 

50 ng of cDNA template, for a total final volume of 20µL. All PCR experiments comprised a total 

of 40 thermal amplification cycles, and each cycle consisted of 1 cycle of 2 minutes at 50°C, 1 

cycles of 20 seconds at 95°C, and 40 cycles of 1 second at 95°C and 20 seconds at 60°C. All 

experiments were performed in triplicates, and each sample was sub-sampled three times, to ensure 

statistical significance of the results. Gene expression analysis was conducted using the 2-ΔΔCt of 

the average Ct for each subsample. Statistical analysis and data graphical representation were 

performed with Prism 7 (GraphPad Software; La Jolla, CA).  

 

Table 1. 

Neural lineage related proteins targeted during characterization of neural stem cells and neurons.  
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Target Marker Description Brand Catalog No. Anti 

Doublecortin / 

DCX 

Neuron Cytoplasmic protein that 

regulates the organization and 

stability of microtubules, 

directing movement of cortical 

neurons during development. 

Life 

Technologies 

481200 Rb 

GABA B1 GABA Neuron Targets cells presenting GABA 

receptors. Mainly found 

secreted and in brain cells’ 

membranes. 

ABCAM ab55051 Ms 

GAD65/67 GABA Neuron 

 

Associated with neuronal 

presynaptic clusters and 

cytosolic leaflets of Golgi 

membranes. 

ABCAM ab11070 Rb 

GFAP Astrocyte Associated with intermediate 

filament in CNS cytoplasm. 

Distinguishes astrocytes from 

other glial cells. 

ABCAM ab10062 Ms 

MAP2 Neuron Microtubule Associated 

Protein 2. Involved in 

microtubule assembly during 

neurogenesis.  

Thermo Fisher 

Scientific 

MA5-1282C Ms 

Nestin Neural Stem Cell Intermediate filament protein 

expressed during dividing and 

developing cells. 

Thermo Fisher 

Scientific 

MA1-110 Ms 
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OLIG Oligodendrocyte Oligodendrocyte-specific 

protein. Fundamental to ensure 

cell-cell adhesion in tight 

junctions. 

ABCAM ab53041 Rb 

PAX6 Neural Stem Cell Transcription factor involved 

in the development of CNS 

cells 

Thermo Fisher 

Scientific 

MA1-109 Ms 

SOX1 Neural Stem Cell Transcriptional activator 

located within the nucleus of 

developing CNS cells (NSCs). 

Associated with cell’s 

multipotency and pluripotency.  

ABCAM ab87775 Rb 

SOX2 Neural Stem Cell Required for stem cell 

maintenance in the CNS 

Thermo Fisher 

Scientific 

PA1-094 Rb 

Tyrosine 

Hydroxylase 

(TH)  

Neuron Expressed in brain and adrenal 

glands. Characterizes 

adrenergic neurons 

ABCAM ab112 Rb 

 Beta III 

Tubulin 

(TUJ1) 

Neuron Major constituent of 

microtubules. Found mainly in 

PNS and CNS axons. 

ABCAM ab18207 Rb 

 

Microelectrode Arrays System and Set Up  

Functional characterization of neural stem cells and neurons was performed in 

collaboration with the Neural Engineering Lab at George Mason University. Electrical activity of 

the cell networks was measured using an MEA1060-Inv-BC (Multichannel Systems, Reutlingen, 
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Germany) amplifier and filter system with 1,200 total gain and band pass filter from 300 to 3k Hz. 

This setup allowed for single-well recording, and the MEA plated used presented 60 recording 

electrodes each. The software MEA_Select V1.3.0 (Multichannel Systems) was used to select the 

electrodes for recording and for grounding. Temperature control was achieved with a heated 

surface placed underneath the recording device, and set to about 35°C, using the TCX-control 

V1.3.4 software (Multichannel Systems). Signal visualization and analysis was possible through 

the software MC_Rack V4.5.10 (Multichannel Systems), which allowed visualization of the raw 

signals as well as the extracted wavelengths.  

 

Plating of MEAs 

Single wells were plated with neural stem cells and neurons following two distinct 

protocols, and their efficiencies were tested and compared. Plates were first coated on their entire 

surface with Geltrex® matrix diluted 1:100 in DMEM/F-12. Neural stem cells were plated and 

cultured in complete StemPro® NSC Serum Free medium, replenished every other day, until 80-

100% confluency was reached. Neuronal differentiation was conducted directly on MEA plates, 

and was initiated in selected plates upon reaching of confluency of the NSCs by switching to neural 

differentiation medium, partially replenished daily. Alternatively, MEA plates were coated with 

0.1% Poly-L-Lysine (Sigma Aldrich) and laminin (Sigma Aldrich). Poly-L-Lysine solution was 

used to cover the center of the MEA plates and incubated for 5 minutes at room temperature. The 

excess solution was aspirated and a 20 µg/mL solution of laminin in sterile water was used to cover 

the electrodes. Neural stem cells and 3-weeks-old neurons, previously differentiated in Geltrex®-

coated cultureware, were plated onto the MEA plates. The cell lines used for these 

electrophysiological studies were Wt, and GM04022 (Huntington’s disease).  
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Data collection and analysis  

Spike selection from the raw data obtained using the MEA1060-Inv-BC amplifier was done 

using a -5-standard deviation threshold. Spontaneous electrical activity of NSCs and neurons was 

recorded for 5 minute intervals for 5 consecutive days, with media replenished after each 

recording. After collection of this first set of data, neuronal differentiation was induced in the MEA 

plates seeded with NSCs and 5 minute recordings of their spontaneous electrical activity were 

collected every other day. After recording, the raw data was analyzed using the Offline Sorter 

(Plexon Inc., Dallas, TX) software, which allowed for spike isolation and waveform extraction. 

This type of analysis enabled us to determine the number of spiking neurons acting on each 

electrode and visualize their distinct action potential shape. Further analysis was conducted using 

a custom Python script to construct raster plot of the activity of the neural networks. Such graphs 

enable the visualization of the spiking activity recorded on all the functioning electrodes relatively 

to their occurrence during the recording interval.  

 

b. Aim (2) – Fabrication of porcine brain matrix-derived hydrogels suitable for cell culture 

Brain tissue origin and extraction 

Tissue was extracted from adult animals and obtained from three sources. Two frozen 

porcine heads were purchased from Central Meats & Almost Catered (Chesapeake, VA). Two 

heads were provided by Dr. Christian Zemlin at the Frank Reidy Center for Bioelectrics, after the 

animals were sacrificed for the research purposes of his laboratory. Finally, two heads were 

purchased from Animal Biotech Industries, Inc (Danboro, PA).  
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All brain tissues were extracted in our laboratory immediately after acquisition or upon 

complete thawing. The skullcap was carefully removed to preserve the intact brain structures at 

best. Cerebrum, cerebellum, pons, midbrain, medulla, and part of the spinal cord and optic nerves 

were collected. The blood brain barrier, the meninges layers, and the blood vessels were carefully 

removed, and the tissue was washed with sterile water to remove residual blood. 

 

Hydrogel formation protocol 

Following extraction and wash, the brain tissue was cut into sections and washed in a 2% 

v/v solution of N-Lauroyl Sarcosine (NLS) sodium salt solution (Sigma Aldrich) and 2X ABAM. 

This and all subsequent washes were performed at room temperature in a temperature controlled 

orbital shaker (MaxQ 4000; Thermo Scientific). The solvent allowed for removal of the cells from 

the tissue inducing lysis, while maintaining the extracellular matrix proteins intact. The 

decellularization solution was replaced every 24 hours for 4-7 days (depending on the relative size 

of the tissue samples), until complete cell removal. The product was then transferred into high-

speed autoclavable centrifuge tubes, and centrifuged at 17,500 x g for 5 minutes. The supernatant 

was carefully decanted to prevent loss of ECM, and the product was resuspended and rinsed in 

ultra-pure water. A total of ten washes were performed to ensure complete removal of the NLS 

solvent. Subsequently, the product was washed once in isopropyl alcohol (IPA) for 24-48 hours to 

remove any lipid component. Finally, the product was washed an additional ten times with ultra-

pure water to remove any residual IPA. The decellularized tissue was then lyophilized using a 

FreeZone Triad Freeze Dryer (Labconco; Chapel Hill, NC). Successively the product was 

mechanically homogenized using liquid nitrogen. The ECM was then solubilized though an 

enzymatic digestion process, a 1 mg/ml solution of pepsin from porcine gastric mucosa (Sigma 
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Aldrich) in 0.1 M HCl was prepared and stirred overnight at 4℃, and the product was diluted 

20mg:1mg of pepsin. The solution’s pH was adjusted to about 1.5 using 0.1M HCl, and allowed 

to digest for 24-48 hours. This process results in an acidic product, and dialysis was used to 

neutralize the digested solution. A 6-8kDa dialysis tubing (Spectra Por; Spectrum Labs, Virginia 

Beach, VA) was used to dialyze the product:pepsin solution against a neutral PBS solution, a 

procedure performed at 4°C to prevent premature gel formation. The product obtained was self-

gelling when kept above 4-8°C. Hydrogels were prepared placing a set volume of product in the 

appropriate container, and incubating at 37°C for two hours. 

 

Decellularized Tissue Characterization: Immunohistochemistry 

 Native and decellularized brain tissue were characterized to define the efficiency of the 

decellularization protocol. Samples from the unprocessed cerebrum, cerebellum, pons, midbrain 

and medulla, and unidentified samples of decellularized tissue were fixed in 10% formalin for two 

hours and then preserved in 70% ethanol. The fixed samples were embedded in paraffin and 

sectioned at the EVMS Histology Laboratory (Eastern Virginia Medical School, Norfolk, VA). 

One section of each sample was stained with hematoxylin and eosin to define their nuclear content, 

while the remaining ones were utilized for immunofluorescence assays and tested for various cell 

markers. For each immunohistochemistry (IHC) assay, sections were washed twice in xylenes 

(Thermo Fisher Scientific) for 8 minutes each, to remove the paraffin from the slides. Sections 

were rehydrated doing two 2 minutes washes in 100% ethanol, one 1-minute wash in 90% ethanol, 

one 1-minute wash in 70% ethanol, and one 1-minute wash in distilled water. Slides were rinsed 

in 1X TBS and transferred to preheated citrate buffer (antigen retrieval buffer) for 25 minutes. 

After cooling, the samples were rinsed twice in 1X TBS and washed in the same solution until 
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cool. Samples were blocked with 10% goat serum and incubated for 60 minutes, at room 

temperature, in the dark. Primary antibodies were diluted in 1% goat serum according to the 

manufacturer’s instructions, placed on the slides, and incubated overnight in humidified chambers, 

at 4℃. A negative control was performed by addition of 1% goat serum only. Cell markers chosen 

for analysis with their specific targets are summarized in Table 1. Next, slides were rinsed twice, 

and successively washed thrice in 1X TBS. Secondary antibodies were diluted 1:1000 in 1% goat 

serum, applied to the samples and incubated at room temperature, in the dark, for 60 minutes. 

Slides were washed with TBS and nuclear stain DAPI, diluted 1:1000 in 1% Goat Serum, was 

applied, and the samples were incubated for 5 minutes protected from light. Samples were finally 

washed thrice in 1X TBS and images were acquired with a Zeiss Axio Observer microscope at 

10X or 20X magnification.  

 

Decellularized Product Characterization: genomic DNA content 

The genomic DNA (gDNA) content of the native and decellularized brain tissue was 

extracted, purified and quantified to determine the efficiency of our protocol. Extraction of the 

genetic material was performed with the DNeasy® Blood and Tissue Kit (Qiagen; Hilden, 

Germany) on unprocessed samples of cerebrum and cerebellum and decellularized samples of 

unidentified porcine brain tissue. The total DNA purification was performed according to the 

manufacturer’s protocol for extraction from tissues. 

Between 15 – 25 mg of tissue were placed into eppendorf tubes, Buffer ATL and proteinase 

K were added, and the samples were incubated at 56°C until complete lysis of the tissues. AL 

buffer and ethanol were successively added to the tubes and mixed thoroughly, and samples were 

transferred into DNeasy Mini spin columns. A first spin at 6000 x g was performed and the flow 
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through was discarded, next AW1 Buffer was added to the sample and the centrifugation step was 

repeated. 

Isolated gDNA samples were concentrated and purified with 100% ethanol and sodium 

acetate and resuspended in 20 µL of nuclease-free water. gDNA concentration was quantified 

using a Nanodrop 2000, and purity of the samples was deemed acceptable with 260/280 ratios 

around the value of 1.8.  

 

Hydrogel Product Characterization: DCTM Protein Assay 

The total protein concentration of the final product was evaluated with a DCTM Protein 

Assay (Bio-Rad Laboratories, Portland, ME), performed as per manufacturer’s instructions. To 

perform the colorimetric assay, five serial dilutions of a bovine serum albumin protein standard 

(Bio-Rad Laboratories) were prepared, as well as five dilutions of the brain-derived hydrogel, to 

ensure that the protein concentration in the product fell within the concentrations of the protein 

standard. Product concentration was measured spectrophotometrically using a Nanodrop 2000 and 

a wavelength of 750 nm.  

 

Hydrogel Product Characterization: Polyacrylamide Gel Electrophoresis 

Qualitative characterization of the hydrogel product was done performing polyacrylamide 

gel electrophoresis (PAGE) and detection was achieved through coomassie 250 staining.  

A 7.5% polyacrylamide gel (Bio-Rad) was inserted in a vertical electrophoresis cell (Bio-

Rad Laboratories), and the cell’s chambers were filled with 1X SDS Buffer, to obtain a continuous 

buffer system. Samples were prepared as serial dilution of the product, from 100% to 6.50% 

concentration of product to sterile water. Geltrex® matrix diluted 1:100 in sterile water, for a final 
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concentration of 1.57 µg/µL, was used to compare the protein content of brain-derived matrix to 

the commercially available product. Samples were diluted with laemmli buffer to form a 1X 

solution, heated to about 100°C and incubated for 10 minutes, and equal amounts of each sample 

were loaded into the polyacrylamide gel wells. The gel was resolved applying voltage at 5 V for 

five minutes, and then at 100 V until the ladder sample reached the lower portion of the gel.  

After completion of PAGE, the polyacrylamide gel was carefully removed from the 

chamber and washed with deionized water. A coomassie G-250 stain was prepared with 50% 

methanol, 10% acetic acid, 40% deionized water and 0.5% of coomassie brilliant blue G-250 dye 

(Amresco, Solon, OH), and used to wash the gel for 5 minutes. Successively, the gel was rinsed 

with deionized water, and a destain solution composed of 40% methanol, 10% acetic acid and 50% 

deionized water was applied overnight, until visible bands appeared on the gel. Imaging of the 

stained gels was performed with a myECLTM Imager (Thermo Fisher Scientific),  

 

Cell Culture and Biocompatibility 

The suitability of the hydrogel products for cell culture purposes and their biocompatibility 

were tested to establish the potential application of this technology in future translational research 

projects. Suitability of the products for use in the laboratory was tested by using the hydrogels to 

coat cultureware and successively seed it with neural stem cells. Plastic cultureware was coated 

with a 0.1% poly-L-lysine solution (Sigma Aldrich) according to manufacturer’s protocol. The 

brain-derived product was diluted 1:100 in DMEM/F-12 or acetic acid, plated over the dried 

laminin layer and incubated overnight at 37℃. Next, wild-type NSCs were seeded on the culture 

plates and cultured as previously reported (1).  
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In vivo injections of the brain-derived matrix were performed in rats to assess its 

biocompatibility, and injected with human wild type NSCs and iPSCs to determine its ability to 

promote cell survival, proliferation, and differentiation. The endogenous epithelium of the inguinal 

mammary glands of sedated 3 week old mice was removed, the brain-derived product was diluted 

1:2 in DMEM/F12 and injected into the cleared mammary fat-pad. Consequently, 200,000 cells of 

either line were injected in the gel. Cells were also injected in the rats’ mammary gland in absence 

of the brain-derived matrix, to provide a negative control. After ten weeks of incubation, the tissue 

was removed, fixed and embedded in paraffin for further analysis.   

 

c. Aim (3) – Optimization of a 3D extrusion-based bioprinter to obtain single cell/single 

beads resolution printing. 

 Cell lines and culture 

For the development of the third aim of this project, three breast-epithelial cell lines were 

utilized. The lines MCF-12A, MCF-7, and MDA-MB-468 were previously acquired from 

American Type Culture Collection (ATCC). Cells of the MCF-12A line were previously 

transfected in our laboratory to express the RFP protein, while those of the MCF-7 and MDA-MB-

468 were transfected to express GFP protein. The three cell lines were adopted for the third aim of 

this project based on their availability in the lab, ease of culture, ease of visualization after printing, 

and elevated proliferation rates. MCF-7 and MDA-MB-468 were cultured in DMEM containing 

GlutaMAXTM complete medium supplemented with 10% fetal bovine serum (Life Technologies) 

and 1X antibiotic-antiomycotic. MCF-12A cells were cultured in DMEM/F-12 with GlutaMAXTM, 

supplemented with 5% horse serum (Thermo Fisher Scientific), 20 ng/mL hEGF (Thermo Fisher 

Scientific), 10 µg/mL bovine insulin (Sigma Aldrich), 500 ng/mL hydrocortisone (Sigma Aldrich), 
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and 1X ABAM. All cells were cultured at 37℃ in a 5.0% CO2 incubator, and media was 

replenished every 2-3 days. Upon reaching of 80-100% confluency cells were passaged using 

TripLE® Express enzyme, following the manufacturer’s protocol.  

 

Bioprinting System 

 A custom-made 3D extrusion-based bioprinter was previously developed in our laboratory 

by modifying a commercially available model, Felix 3.0 (FELIXrobotics, NL) [34]. Needles were 

manufactured prior to each print using a Model P-1000 Flaming/Brown Micropipette Puller (Sutter 

Instruments; Novato, CA), and the needle diameter was adjusted to fall in the range of 100-500µm.  

Single cell/single beads resolution prints were obtained through progressive experiments, 

in which printer parameters and materials chosen were varied and adjusted. Initial experiments 

were performed using one single cell line, with the goal of achieving single-cell printing resolution. 

The substrates adopted were hydrogels constituted of 1% agarose diluted in deionized water, and 

chosen for its accessibility, and suitability for extrusion-based printing [39]. Prints were performed 

in 24-well culture plates, and each well contained 500 µL of agarose hydrogel, a volume chosen 

to minimize the meniscus size and ensure consistency within the same print. The initial 

concentration of cells was arbitrarily set to a value of 300,000 cells/mL. Cells were digested using 

TripLE® Express enzyme according to the manufacturer’s protocol, and resuspended in 1% EDTA 

solution, to maintain the single-cell state after resuspension and prevent the formation of cell 

clumps during printing. Extrusion values were progressively adjusted and optimized to a value 

e=0.009 to obtain single-cell prints.  

 After achievement of single-cell resolution on agarose hydrogel in 24-well plates, prints 

were performed on PEN slides with the same objective. Slides were coated with approximately 2 
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mL of 1% Agarose gel, and the same parameters were maintained to perform the prints and obtain 

single cell resolution.  

The aim of the experiments was then adjusted to achieve single cell/single bead resolution 

printing. To one ml of cells diluted to a concentration of 300,000 GFP labeled-cells/ml were added 

0.5µL of red FluoSpheres® Fluorescent Microspheres (Thermo Fisher Scientific) diluted 1:1000.  

Prints were performed on PEN membranes coated with 1% Agarose gels or Corning® Collagen I, 

High Concentration, Rat Tail (Corning; Corning, NY). The gels were prepared to a final product 

concentration of 1.2 mg/ml. A volume equal to 2.3% of the Collagen I stock needed of 1N sodium 

hydroxide was added to the stock product, and then 1X PBS and 1X DMEM were added to reach 

the final desired volume.  

 

Qualitative and quantitative analysis of prints 

 Resolution of the prints was evaluated qualitatively and quantitatively. Upon performance 

of each printing experiment, samples were visually inspected using a Zeiss Axio Observer 

microscope at 10X magnification, to establish presence of single cells or single beads. Printing 

resolution was quantified through nuclear staining, using DAPI diluted 1:1000. Percentage of 

single cell prints in one experiment was calculated upon visual inspection. 
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CHAPTER III – RESULTS 

a. Aim (1) – Functional Characterization of Neural Stem Cells and Neurons 

In the first portion of this project, I aimed at testing the suitability of Microelectrode Array 

systems for the functional characterization of neural stem cells and neurons. First of all, I generated 

neural stem cell lines starting from wild-type, Alzheimer’s disease, and Huntington’s disease 

induced pluripotent stem cell lines (iPSC). To do so, I cultured iPSC lines, and after confirming 

the pluripotency of the colonies I performed the previously described neural induction protocol to 

generate NSCs lines, and I characterized their identity through immunocytochemistry assay. I then 

chose a neuronal differentiation protocol, performed the neuronal differentiation of the various 

NSCs lines, and confirmed the identity of the maturing neurons through immunocytochemistry 

staining. These preliminary experiments were fundamental for the development of the cell types 

and cell lines required for the development of the first aim, and which can be adopted for further 

studies concerning asymmetrical division of neural stem cells and neurodegenerative disease. 

 

Efficiency of Cell Culture, Induction and Differentiation Protocols  

Induced pluripotent stem cells are characterized by their ability to self-renew and also 

differentiate into any cell type. Pluripotency of iPSC lines was confirmed through TRA-1-60 live 

staining, a pluripotent specific marker. Colonies stained positively both on feeder and feeder-free 

conditions, while MEFs and Geltrex® matrix did not stain (Figure 1). This confirmed the identity 

of the iPSC colonies, and their suitability to be applied for the generation of cells of the neural 

lineage.  

To begin the process of neural differentiation, select iPSC colonies were replated on an 

AggrewellTM 800 plate, and the STEMdiff TM Neural System Embryoid Body (EB) protocol was 
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followed to induce the formation of embryoid bodies, neural rosettes and, finally, neural stem cells 

colonies (Figure 2). Efficiency of the neural induction protocol was tested through 

immunocytochemistry staining assays. The control NSC wild type line (NSC-wt; bASC3.2), the 

NSC Alzheimer’s disease line (NSC-AD; AG09088.1) and the NSC Huntington’s disease line 

(NSC-HD1; GM02191.1), were used to perform the assay. The cells’ identity was confirmed 

through positive staining for NSCs markers. All the cell populations tested presented uniform 

expression of the listed markers, indicating successful induction to neural stem cell state (Figure 

3). 

NSCs are a progenitor cell type capable of differentiation into neuronal cells, which are the 

cell types of interest for our studies. Thus, we tested the ability of the previously generated NSCs 

lines to successfully differentiate into neurons. To do this, wild type NSCs were plated and cultured 

in complete StemPro® NSC Serum Free medium until reaching 80% confluency. Differentiation 

was then initiated by switching to general neuronal differentiation media, partly (1/2) replenished 

daily. Three slightly different differentiation media were tested to determine their relative 

efficiency. Cells were cultured in either complete B27 medium, complete B27 medium 

supplemented with 500 nM of purmorphamine, or complete B27 medium supplemented with 500 

nM of purmorphamine and 50 nM of retinoic acid. Complete B27 medium was chosen as it is the 

most commonly adopted serum-free medium for neuronal culture [40]. The supplement 

purmorphamine was chosen for its ability to induce the initiation of neuronal differentiation [41], 

and retinoic acid was chosen as it inhibits neural cell proliferation while promoting their 

differentiation [42]. We tested each combination to determine if the addition of each of the 

supplements would have a significant impact in promoting the differentiation of NSCs to neurons, 

and in the ability of maturing neurons to grow rapidly and efficiently. At Day 14 of differentiation, 
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immunocytochemistry staining was performed targeting the neuronal marker MAP2, and all the 

cell populations presented its uniform expression, indicating that the protocols adopted induced 

neuronal differentiation (Figure 4). The relative expression of MAP2 was associated to the size of 

the axonal outgrowths formed in each of the cultures tested. To determine efficiency of neuronal 

differentiation protocols, we quantified primary neuronal outgrowth using NeuronJ in ImageJ 

software. Briefly, 8-bit images of MAP2 positive cells were used to determine pixel length of 

neurite outgrowth from cell bodies. The highest values for the average length of primary axonal 

outgrowths (in pixels) were observed for the cells cultured in B27 medium supplemented with 500 

nM of purmorphamine and 50 nM of retinoic acid (Figure 4). Therefore, this protocol was deemed 

the most efficient and was adopted in successive neuronal differentiations. 

Neuronal identity was confirmed through immunocytochemistry staining of 14-day old 

neurons generated starting from the cell lines NSC-AD, NSC-wt, and NSC-HD1. The assay 

targeted NSC markers and neuronal markers. Uniform expression of the neuronal markers (Figure 

5), as well as suppression of the NSC markers (result not shown) confirmed the successful 

differentiation of NSCs into neurons in all the cell lines. Neurons can be classified according to 

the neurotransmitter that they produce and adopt to transmit signals within the organism. They can 

be distinguished as cholinergic neurons, producing acetylcholine; GABAergic neurons, producing 

gamma aminobutyric acid; glutamatergic neurons, producing glutamate; dopaminergic neurons, 

producing dopamine; and, finally, serotonergic neurons, producing serotonin. The neuronal 

differentiation protocol that we adopted induced a general neuronal differentiation, without 

directing differentiation to any specific neuronal type. I therefore attempted to perform a 

preliminary characterization of the neuronal populations generated by targeting GABAergic and 

adrenergic markers, and establish if these two types of neurons were produced. Positive staining 
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for the GABAergic markers (Figure 5), and negative staining for the adrenergic marker (result not 

shown), indicated that the general neuronal differentiation protocol adopted favored the formation 

of GABAergic neurons over adrenergic ones. Altogether, these data indicated that all of our NSCs 

lines were capable of differentiation into neurons, and that the general protocol adopted enabled 

the generation of GABAergic neurons.   
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Figure 1. Live staining of an induced pluripotent stem cell colony. Positive staining for TRA-1-

60 confirms the pluripotency of the colony. Coincidence of the pluripotent region with the phase 

image of the colony indicates the absence of differentiated regions, and suitability of the colony to 

be expanded or adopted for the neural induction protocol.  
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Figure 2. Neural induction protocol progression. The wild-type (bASC3.2), Alzheimer’s disease 

(AG09088.1), and Huntington’s disease (GM02191.1) cell lines were adopted for the purpose. 

Depicted are the cells at the embryoid body stage in an AggrewellTM 800 plate (A), the embryoid 

bodies replated on Geltrex® (B), and neural stem cells (C).   
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Figure 3. Efficiency of the neural induction protocol was determined performing 

immunocytochemistry assays on NSCs populations. Cells of the lines NSC-AD, NSC-HD1, and 

NSC-wt were tested, and presented uniform expression of multipotency and NSCs markers SOX1, 

SOX2, PAX6, and Nestin. All cultures were counterstained with DAPI. Size standards 100 m.  
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Figure 4. Selection of a neuronal differentiation protocol based on their relative efficiency. 

Neuronal differentiation was performed on 80% confluent NSCs using B27 medium, B27 medium 

supplemented with 500 nM of purmorphamine, or B27 medium supplemented with 500 nM of 
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purmorphamine and 50 nM of retinoic acid. In the figure, green indicated expression of MAP2 

marker, blue indicated expression of DAPI nuclear stain, and the size standards were 100 µm. 

Following quantification of average length (in pixels) of primary axonal outgrowths using the 

NeuronJ in ImageJ software, B27 medium supplemented with 500 nM of purmorphamine and 50 

nM of retinoic acid was deemed the most efficient protocol. 
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Figure 5.    
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Figure 5 cont. Efficiency of the neuronal differentiation protocol was evaluated through 

immunocytochemistry staining of 14-Days old neurons obtained from differentiation of the cell 

lines NSC-AD, NSC-wt, and NSC-HD1. Expression of the neuronal markers TUJ1, MAP2, and 

DCX confirmed the successful differentiation into neurons. Additionally, expression of the 

GAD65/67 and GABA markers indicated differentiation into GABAergic neurons. All cultures 

were counterstained with DAPI nuclear stain. The size standard was 100 µm.  
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MEAs cell culture and recording 

After generation of the cell lines NSC-wt, NSC-HD1, NSC-AD, and their successful 

differentiation into neurons, I proceeded to apply an MEA system for the study of their 

electrophysiological properties. Cells of the neural lineage are known to produce spontaneous 

activity in the form of transmembrane voltage fluctuations, and I tested the system and compared 

the spontaneous electrical activity of NSCs and maturing neurons. This portion of the last aim was 

fundamental to establish the most appropriate protocols for the use of MEA systems to study the 

spontaneous activity of neural networks, and their suitability to become part of a more 

sophisticated three-dimensional cell culture system.   

Electrophysiological studies with MEAs systems were conducted with the goal of 

establishing the presence of spontaneous activity of NSCs and neuronal networks of wild type and 

disease cells [24, 43]. The cell lines NSC-wt and NSC-HD1 were adopted to perform this 

experiment. MEA plates were coated with Geltrex® matrix and NSCs were enzymatically passed 

from a 100% confluent well of a 6-well plate to 6-8 MEA plates (Figure 6). When the NSCs 

reached 80-100% confluency on selected MEA plates, neuronal differentiation was initiated. A 

second coating protocol was adopted to determine if the use of a different substrate for cell culture 

would result in altered quality of the electrophysiological readings. Therefore, the MEA plates 

were alternatively coated with laminin, and seeded with NSCs or maturing neurons previously 

differentiated on Geltrex®-coated plates. 

To establish the presence of spontaneous activity, measurements of electrical activity of 

neural stem cells and neurons were taken for five-minute intervals. Data produced by primary rat 

cortical and spinal cord neuron populations, and measured at the Neural Engineering Lab for 

scopes outside of this project, were used as positive control. The recording software MC_Rack 
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V4.5.10 allowed real-time visualization of the electrical activity measured at each recording 

electrode in the form of  graphs presenting the change in voltage over time. Voltage changes above 

the set 5-standard deviation threshold were attributed to cell activity, and distinct waveforms could 

be observed with regard to the voltage-change pattern associated with each spike. Signals recorded 

from neural stem cells populations (plated either on Geltrex® or laminin) presented significant 

noise, and no spikes attributable to spontaneous cell activity were observed. Spike-like activity 

was present, but the waveforms generated were credited to artifact signals due to environmental 

disturbances. Spikes were identified as artifacts following visual analysis of the real-time 

recordings, based on their characteristic shape and the fact that they were simultaneously generated 

on various electrodes on the MEA plates. No differences were observed in the type of signals 

produced by NSC-wt or NSC-HD1 cells. Data collected from maturing neurons also presented 

high noise ratios, and no significant spikes were observed for wild type or Huntington’s disease 

cells plated and differentiated on Geltrex®. Differently, scarce but relevant spikes were recorded 

from neurons plated on laminin. 

The MC_Rack V4.5.10 software allowed for analysis of the raw data recorded, which was 

constituted by the voltage values at each measuring time point. Spikes within the recording interval 

were individuated when the amplitude of the measured voltage exceeded the set threshold. The 

time points corresponding to each spike were used to generate raster plots representative of the 

neural network’s activity (Figure 7). These graphs are a schematic representation of all the 

electrodes in the MEA plate versus the recording time. Each spike measured is visualized in the 

graph as a darkened region in correspondence of the recording electrode and the relative time at 

which the spike was observed. Raster plots provide an accessible way to analyze the activity of a 

neural network, showing the activity of the few cells in contact with each electrode, as well as 
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emphasizing the overall activity of the cell network and highlighting potential synchronization 

episodes. We generated a raster plot with the firing activity of neurons differentiated from NSC-

wt and plated on a laminin-coated MEA, and we compared our plot to a typical raster plot obtained 

from rat primary spinal cord neurons recordings. The levels of activity observed in the maturing 

neurons were significantly reduced compared to the positive control, and no firing pattern was 

observed. Optimization of the plating protocol adopted will be necessary for improved results. 

The waveform corresponding to the voltage change generated by the transmission of 

signals, is a distinct characteristic of each neuron. Analysis of the raw data allows for the extraction 

of the specific waveforms of each spike, and isolation of waveforms significantly different in shape 

can be attributed to the fact that they were generated by different cells. Electrodes on the MEA 

plates can record signals generated by multiple cells in contact with them. Analysis of the raw data 

produced by each channel using software such as MATLAB is an effective tool to determine the 

number of cells on each electrode. Starting from the control raw data obtained from rat primary 

spinal cord neurons, I generated a MATLAB code able to individuate spikes present in 30-second 

intervals, after setting a threshold of 0.01 V, and extract the waveforms of each spike. 

Superimposing and comparing the extracted waveforms allowed me to determine the number of 

distinct shapes present, and consequently the number of firing cells in contact with the recording 

electrode in analysis, which in this case was only one (Figure #). The same code has the potential 

to be applied to raw data recorded from the neural cells that we previously generated. However, 

due to the absence of significant spiking activity in any of the recording electrodes on the MEA 

plates, it was not possible to analyze the raw data and extract waveforms prior to further 

optimization of the coating and seeding protocol.  

  



46 

 

 

Figure 6.  Wild type NSCs on Geltrex®-coated MEA plates two days after plating; Wild type 

maturing neurons at Day 11 of differentiation on Geltrex®-coated MEA plates. Increased cell 

death, compared to NSCs, and prominent axonal outgrowth are observed.  

NSCs Neurons 
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Figure 7. Example of a typical raster plot generated by rat primary spinal cord neurons (top). Only 

three of the thirty recording electrodes in the MEA plate were clearly active, and spikes were 

reported at a high frequency throughout the 300-second recording interval. Differences in the 

spiking pattern between the three electrodes can be attributed to the specificity of each neuron’s 
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electrophysiological characteristics. Raster plot generated with data obtained from maturing 

neurons plated on laminin-coated MEA plates (bottom). Significantly reduced activity was 

observed, compared to the positive control. 
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Figure 8.  Raw data obtained from rat primary spinal cord neurons. Spikes were individuated and 

labeled after arbitrarily setting a voltage amplitude threshold of 0.01 V. Waveforms of each spike 

were extracted and superimposed. Their uniform shape indicates that all the spikes were produced 

by a single firing cell on the recording electrode.    
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b. Aim (2) – Fabrication of porcine brain matrix-derived hydrogels suitable for cell culture 

In the second portion of this project, I aimed at developing a porcine brain extracellular 

matrix-derived substrate, suitable for culture of iPSCs and neural lineage cells. This tissue based 

ECM should contain all of the necessary signaling and structural elements to elicit biomimetic 

responses from neuronal cells.   

 

Successful fabrication of porcine-brain derived hydrogels 

The first step in the protocol for the formation of ECM derived hydrogel consisted in the 

retrieval of animal brain tissues. Whole porcine brains were successfully extracted and all the 

structures of the cerebrum, cerebellum, midbrain, pons, medulla, and part of the optic nerves and 

spinal cord were preserved (Figure 8A). The meninges layers and the blood vessels embedded in 

the brain tissue were removed as best as possible before proceeding with the protocol 

implementation. Complete decellularization of the brain was then performed over a 4 – 7 days’ 

period (Figure 8B), depending if the brains were cut into smaller sections prior to decellularization 

or they were left whole. Decellularization solution was completely replenished every 24 hours, 

and it was observed that complete discard of the supernatant results in poor final product yields. 

This can be attributed to the characteristic low content of fibrous or basement ECM proteins in the 

brain, and high proteoglycan contents [44]. Proteoglycans interact with several components, 

including soluble factors, and are more easily dissolved in the decellularization solvent [45]. To 

overcome excessive loss of product, the supernatant was spun in a high-speed centrifuge at 17,500 

x g for five minutes, allowing recovery of the dissolved ECM protein and discard of the 

decellularization solution. Product was washed once in IPA, lyophilized (Figure 8C), and digested 

in 1 mg/ml solution of pepsin from porcine gastric mucosa in 0.1 M HCl (Figure 8D). Digestion 
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was performed for 24-72 hours, until formation of a visibly viscous solution, and the product was 

filtered through a 40 µm strainer. Larger pieces of undigested ECM were re-diluted in pepsin 

solution and underwent prolonged digestion. The filtered product was dialyzed against PBS to 

bring the product to neutral pH, and aliquots were preserved at -80℃ until ready to be used for 

hydrogel formation. 

The ultimate goal of this experiment was the generation of ECM-derived hydrogels, onto 

which cells can be injected and cultured. The ability of the product to spontaneously gel at elevated 

temperatures was tested plating diluted product on plastic cultureware and incubating overnight at 

37℃. Serial dilutions from 100% to 5% of the brain-derived matrix in DMEM/F-12 were prepared, 

and successful gelling was observed at matrix concentrations superior to 30% (Figure 8E).   
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Figure 9. Steps in the fabrication of the brain-derived matrix product. (A) Whole brain extracted 

from porcine head. In the figure, the Dura Mater was removed, while the Arachnoid and Pia Mater 

and the embedded blood vessels are depicted. (B) Decellularized brain tissue. (C) Lyophilized 

product obtained from the processing of a whole porcine brain. (D) Pepsin digestion process. (E) 

Hydrogel spontaneously formed after incubation of the final product at 37℃.  
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Formation of tissue-specific substrates that more closely mimic the natural cellular 

environment contributes to the formation of highly biomimetic cell culture systems. The minimal 

presence of nucleic acids embedded in the substrate is fundamental for the ability of cultured cells 

to survive and proliferate in such an environment. I therefore evaluated the efficiency of the 

decellularization protocol first through Hematoxylin and Eosin staining of paraffin embedded 

sections (Figure 9). Samples from different anatomical regions were collected to observe the 

variability in cellular content of different areas of the porcine brain, and were used as positive 

controls. In non-decellularized samples collected from cerebrum, cerebellum, medulla, pons, and 

midbrain, eosin-stained nuclei were clearly visible as well as the hematoxylin-stained proteins. 

The decellularized product presented no nucleic acid-staining, while the protein staining was 

preserved. This indicated efficiency of the protocol in removal of cells and preservation of 

extracellular proteins. To further confirm the protocol’s efficiency, gDNA content of native and 

decellularized tissue was measured. The decellularized tissue presented a gDNA content reduced 

by about 65% compared to the positive control. 

The protein composition of tissue’s extracellular environment plays a role in the definition 

of the physical and biochemical characteristics of each tissue [46]. Definition of the ECM protein 

components of the brain-derived product were conducted to determine its similarity to 

commercially available products and establish its suitability for cell culture purposes. The protein 

content of the final product was quantified through DCTM assay and compared to a serum albumin 

protein standard. The final total protein concentration of the brain-derived hydrogels was measured 

as 6.4 mg/ml. The protein composition of the brain-derived hydrogel was qualitatively analyzed 

via PAGE assay (Figure 10). The product was run on a polyacrylamide gel, and compared to 

Geltrex® matrix and a ladder positive control. The assay showed that the main protein components 
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of the brain-derived product and those of the commercially available matrix are comparable. 

Geltrex® has been extensively characterized, and its main protein components are laminin, 

collagen IV and entactin. It is therefore possible to attribute the three major bands obtained 

performing PAGE assay of the Geltrex® matrix, and observed between 200-300 kDa, and 100-

130 kDa, to such proteins. Multiple bands were also observed performing the assay respectively 

to the brain-derived matrix and confirming the preservation of intact proteins following the 

hydrogel-formation protocol. Bands were observed both in correspondence of those characteristic 

of Geltrex® and in additional locations that indicate smaller protein size. From this result it is 

possible to infer that the major protein components of the brain-derived product are laminin, 

collagen IV, and entactin, and that the product is also rich in smaller and yet unidentified proteins. 

The ultimate goal of this experiment was to produce a substrate suitable for three-

dimensional stem and neural cell culture. This includes the coating of cultureware to maintain 

monolayer cultures, and injection of cells within the substrate to allow them to grow three-

dimensionally. The suitability of the product for neural cell culture was therefore tested coating 

cultureware with the brain-derived product diluted in DMEM/F12, and through in vivo injections 

in rat models. NSC-wt cells were seeded on the coated plates and incubated at 37℃. Cells on 

multiple plates were not able to stick to the plates’ surface, and instead they adhered to each other 

forming cell clumps floating in the media (result not shown). However, the brain-derived matrix 

injected in vivo allowed for survival of the iPSCs and NSCs over the ten-week period, 

demonstrating the biocompatibility of the product.  This was in contrast to iPSCs and NSCs 

injected in the rat’s mammary tissue in absence of the brain-derived matrix, which did not survive 

in any of the samples (Figure 11). The potency of the cells was confirmed through 

immunohistochemistry staining of paraffin-embedded samples (Figure 12). Expression of the 
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SOX2 marker was observed in both iPSCs and NSCs injected in brain-derived hydrogels in rat 

models, confirming that both cell lines conserved their potency during the incubation period.  
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Figure 10. Hematoxylin and Eosin staining was performed on paraffin embedded samples 

retrieved prior and following the decellularization process. In untreated samples from, 

respectively, cerebrum, cerebellum, pons, medulla, and midbrain (A-E), the presence of nuclei and 

extracellular proteins is clearly shown by positive staining for both hematoxylin and eosin. In 

decellularized tissue (F), negative staining for hematoxylin and positive staining for eosin 

demonstrate the absence of cells in the sample, and confirm the efficiency of the adopted protocol. 

Size standard 200 µm.   
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Figure 11. PAGE assay was performed to qualitatively analyze the protein content of the brain-

derived product. The major bands, observed between 200-300 kDa, and 100-130 kDa were present 

in both Geltrex® and porcine brain matrix. These can be attributed to Geltrex®’s main protein 

components laminin, collagen IV and entactin. Additional bands indicating the presence of lower-

weights proteins are observed. 
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Figure 12. The biocompatibility of the porcine brain-derived product was tested injecting NSCs 

in rats’ mammary tissue. In absence of brain-derived matrix, no change in the morphology of the 

tissue was observed after injection of NSCs and incubation in any of the samples (A). When the 

NSCs were injected in porcine brain matrix placed within the mammary pad, observable growths 

were present in the samples following incubation (B). 
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Figure 13. Immunocytochemistry assay of iPSCs and NSCs injected in brain-derived hydrogels 

in rat models. Expression of SOX2 in NSCs and iPSCs after incubation confirmed the preservation 

of the cells’ potency, indicative of the ability of the hydrogels to promote cell survival and 

proliferation. All cultures were counterstained with DAPI nuclear stain. Size standard was 100 

µm.  
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Aim (3) – Optimization of a 3D extrusion-based bioprinter to obtain single cell/single beads 

resolution printing. 

The last portion of the project aimed at the optimization of the parameters of a 3D 

extrusion-based bioprinter to perform single-cell/single-beads resolution printing. The ultimate 

application of such systems entails the printing of single NSCs and WNT transcription factors 

conjugated to fluorescent beads into various substrates. By achieving the critical single cell 

separation of NSCs in a high-throughput array we would be able to study of the mechanisms of 

NSCs asymmetrical division at a single cell resolution.   

  

3D Extrusion-Based Bioprinting System 

A 3D extrusion-based bioprinter represents the ideal instrument to perform injections of a 

selected number of cells into specified 3D locations and ultimately enable the study of NSCs 

asymmetrical division at a single cell resolution. The system used was adapted from the 

commercially available model Felix 3000 (Figure 13A). Prints were performed on either 24 well 

plates or PEN membrane slides placed on the printer’s moving bed. The aim of this experiment 

was the achievement of single-cell/single-beads resolution printing, to enable the study of 

asymmetrical division in the context of single cells. This would be achieved printing NSCs 

conjugated to Fluorospheres®-labeled WNT beads, and studying the ability of NSCs to divide 

asymmetrically and differentiate, relatively to their contact to the WNT transcription factor. To 

achieve single-cell/single-bead resolution printing needles of about 100 µm in diameter (measure 

relative to the inner diameter of the needle’s opening) were fabricated (Figure 13B). Smaller tip 

inner diameters were found to prevent cells from being easily delivered during the extrusion 
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process, while the use of significantly larger diameters resulted in the delivery of an excessive 

number of cells during each single print. 

Starting from a cell concentration of 300,000 RFP-MCF12A/ml, the extrusion value most 

suitable to achieve single-cell printing was determined experimentally (Figure 14). The extrusion 

value parameter refers to the amount of fluid (in this case cell solution) injected into the substrate 

for each print, and corresponds to the travel of the lead screw in mm to achieve such injection 

volume. It is calculated accounting for the diameter of the needle and cell concentration, as well 

as the desired cell density of the print. MCF12As or MCF7s (both human breast derived cell lines) 

were chosen to evaluate the single cell performance of our printer as they are easy to culture, and 

they are constitutively fluorescently labeled with either GFP or RFP, thus are easy to visualize. 

Cells were resuspended in 0.005 M EDTA in PBS and injected into 1% agarose gels. Starting from 

an extrusion value of E=0.001 to one of E=0.017, ten prints were performed for each value to 

determine which produced the most consistent number of single-cell prints. Upon visual analysis 

on a Zeiss Axio microscope at 20X magnification, it was concluded that an extrusion value 

E=0.009 was the most suitable to achieve single-cell resolution printing. Printing was repeated 

with the chosen extrusion value, and following DAPI nuclear staining the printing resolution was 

determined to be 35%, relatively to single cells (Figure 15).  

Printing with the same parameters was then performed with the addition of Red 

FluoSpheres® Fluorescent Microspheres. Printing was optimized using Corning® Collagen I, 

High Concentration, Rat Tail hydrogels, aiming to achieve single-cell/single-bead resolution 

printing. Following visual inspection of images acquired with a Zeiss Axio microscope at 20X 

magnification, the printing resolution achieved was determined to be 13%, relative to successful 

single-cell/single-beads prints. An average of 2 cells per injection, with standard deviation 1.3 was 
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achieved, while beads were printed with an average of 0.76 per injection with standard deviation 

0.78 (Figure 16). 
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Figure 14. (A) 3D extrusion-based bioprinter setup. In the field of view are included the moving 

bed and the cultureware inserted at the moment of printing. The needle placement to perform the 

injections is also shown. (B) Needle size was adjusted to 100-500 µm in inner diameter to prevent 

4cell clogging at the tip while allowing passage of at least a single cell.   
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Figure 15.  Experimental determination of the most suitable extrusion value to perform single-cell 

resolution printing of MCF 12A-RFP cells in 1% agarose gel. Phase imaging (A) confirmed the 

successful performance of uniform injections throughout the printing experiment. Fluorescence 

imaging (B) showed consistent single-cell printing at extrusion value E=0.009. Size standard was 

1000 µm.   
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Figure 16. Efficiency of single-cell printing was quantified performing DAPI nuclear staining. 

Depicted are cells of the MCF7 line printed in 1% agarose gel, with printer parameters set to 

extrusion value E=0.009 and needle diameter of about 100 µm. Single cells were successfully 

printed in 35% of the injection sites. Size standard was 1000 µm.  

 

  



66 

 

 

Figure 17. Cells and beads printed on Rat Tail Collagen I gels plated on a PEN membrane, with 

printer parameters set to extrusion value E=0.009 and needle diameter of about 100 µm. Efficiency 

of single-cell/single-beads printing was evaluated upon visual inspection of fluorescence images, 

and 13% of the injections contained one single cell and one single bead. Single cells were printed 

with an average value of 2 and standard deviation of 1.3, while beads were printed with an average 

of 0.76 per injection, with a standard deviation value of 0.78. Size standard was 1000 µm. 
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CHAPTER IV – DISCUSSION 

With this project, I developed three separate Aims to establish the foundations of devising 

a functional three-dimensional cell culture system to be utilized for the study of asymmetrical 

division using a neural stem cell model. In Aim 1, I adopted a Microelectrode Array system for 

the study of the physiology of neural stem cells and neurons. In Aim 2, I produced porcine brain-

ECM derived hydrogels, suitable for the culture of neural lineage cells. Finally, in Aim 3, I applied 

a 3D extrusion-based bioprinting system to achieve single-cell/single-beads resolution printing. 

 

c. Aim (1) – Functional Characterization of Neural Stem Cells and Neurons 

Fundamental for the development of Aim 1 and for subsequent applications of the 3D 

culture system, was the creation of neural stem cell lines starting from induced-pluripotent stem 

cells. After confirmation of pluripotency of the iPSCs populations, wild-type (bASC3.2), 

Alzheimer’s disease (AG09088.1) and Huntington’s disease (GM02191.1) neural stem cell lines 

were successfully induced through the embryoid body method. Identity of the NSC lines and their 

ability to differentiate into neurons were confirmed through ICC assays and gene expression 

analysis. Creation of such lines allowed for the correct development of Aim 1, as well as providing 

a valuable tool for the future application of the optimized 3D cell culture system to the study of 

asymmetrical cell division and neurological diseases. 

Further, I evaluated the suitability of MEA systems to measure the spontaneous electrical 

activity of neural stem cell and neurons of the lines previously generated. This allows for us to 

confirm functional characteristics of our neuronal cells. Two different protocols were used, which 

envisioned coating of the MEA plates with Geltrex® or laminin. It was observed that no significant 

activity was present from the NSCs of any of the cell lines tested. The absence of activity was 
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attributed to the nature of the cells in analysis. Neural stem cells are a progenitor cell type, with no 

recorded data of transmitted electrical signals within the brain. However, patterns of ion-channel 

presence suggest potential activity may be present, but at decreased magnitudes.  Differently, 

neurons of all the cell lines tested presented discernable electrical activity when plated on laminin-

coated MEA plates, while none when plated on Geltrex® matrix. Laminin resulted a more suitable 

substrate for the purpose, as the characteristic thickness of Geltrex® results in insulation of the 

recording electrodes, and limited ability to measure changes in voltage from the cell network [47]. 

The MEA system, with the optimal coating substrate, represented an accessible and efficient 

methods to study the electrophysiology of neuronal networks. It has the potential to contribute to 

the elucidation of the changes in neural cells’ electrophysiological properties during development 

and maturation, giving our lab a key method of characterization. Optimization of the MEA plates 

coating and plating techniques still need to be performed for accurate physiological measurements. 

 Future Aims include the development and adaptation of a three-dimensional MEA system 

to an ECM-based culture system. This would allow the performance of real time physiological 

measurements of the cells under analysis, particularly focusing on the changes in 

electrophysiology that characterize wild type and diseased neural stem cell lines in a three-

dimensional context.  

 

d. Aim (2) – Fabrication of porcine brain matrix-derived hydrogels suitable for cell culture 

In Aim 2 I explored the possibility of creating a tissue-specific substrate derived from 

porcine brain ECM, and evaluated its suitability for neuronal cell culture. The protocol I adopted 

resulted in the successful generation of a self-gelling product, comparable in protein content to the 

commercially available Geltrex®, already widely used for 2D and 3D cell culture purposes.  
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The decellularization protocol adopted was overall effective and the genomic DNA content 

of the product was reduced by about 65% compared to the brain control. Ideally, gDNA content 

should be reduced by about 90%, therefore optimization of this protocol is recommended to further 

decrease the final gDNA content, as well as increasing the final product yield. One potential 

improvement to the protocol is represented by the adoption of a peristaltic pump system to perform 

the water, decellularization and sterilizing solution washes. Such system would precisely regulate 

the flow (force) of incoming washes/treatments, thus preventing the necessity to remove the tissue 

from its container at every step of the process, reducing the product loss associated with it, as well 

as the risk of contamination. Additionally, using a peristaltic pump would ensure a continuous 

flow and replenishment of the solvent. The fluids would then be able to penetrate the tissue even 

at low flow rates, eliminating the necessity for an orbital shaker and resulting in reduced 

degeneration of the sample’s macroscopic structures. This would ideally lead to an increase in the 

final product yield and allow for the design of experiments targeting different anatomical regions 

of the brain.  

The brain-derived product was shown to be biocompatible through in vivo experiments, 

and to allow the survival and proliferation of iPSC and NSC over a prolonged time. It can be 

inferred that the matrix-derived product is therefore suitable for a three-dimensional cell culture 

system where stem cell lines are injected into the hydrogel. Optimization of our protocol is 

however needed to render the product suitable for culture ware coating and allow iPSCs and NSCs 

to attach and expand two-dimensionally on the substrate.  

Future developments of this Aim, following the successful optimizations previously 

mentioned, include the application of the brain-derived substrate for the three-dimensional culture 

of wild-type, Alzheimer’s disease and Huntington’s disease iPSC, NSC, and neurons. The 
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suitability of the substrate for the long-term culture of each cell type shall be tested applying the 

substrate to coat culture plates, by culturing cells over thin gel layers, by embedding the cells 

within the substrate prior to plating, and by injecting the cells via 3D bioprinting. The ability of 

each cell type to survive, proliferate, and differentiate in each environment will be evaluated, and 

consequently, the suitability of the substrate to enable the study of asymmetrical division of neural 

stem cell, as well as performance of experiments designed to study the mechanisms of each disease 

in a three-dimensional setting. 

 

e. Aim (3) – Optimization of a 3D extrusion-based bioprinter to obtain single-cell/single-

beads resolution printing. 

In the third Aim of this project I adjusted the parameters of a custom 3D extrusion-based 

bioprinter to obtain single-cell/single-beads printing resolution. Preliminary experiments were 

performed injecting MCF7, MCF12A, or MDA-MB-468 cells in 1% agarose gels, all materials 

adopted as they were readily available in our lab and represented a suitable model for neural stem 

cells injected in ECM based hydrogels. Consistent single-cell resolution prints were obtained 

setting the printer extrusion value to E=0.009 and fabricating needles of inner diameter between 

100-500 µm.  Initially we had a large amount of clusters that began to form before printing, making 

single cell prints difficult. Increased maintenance of a single cell state of the cell in suspension was 

made possible by resuspension in a chelating agent. This improvement to our protocol made it 

possible for us to successfully print single cell events 35% of the time. 

Subsequent experiments were performed with the goal of achieving single-cell/single-

beads resolution printing into Rat Tail Collagen I gels. A success rate of a single cell and a single 

bead was achieved 13% of the time.  This was accomplished by slightly adjusting the cells and 
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beads concentrations, as well as the needle diameter. Lower precision of the printing, compared to 

the numbers reported printing single cells on agarose gels, was associated with issues relating to 

the resuspend cells and beads in a chelating agent prior to printing. In fact, addition of EDTA 

would have a counterproductive effect in allowing the placement of one cell in contact with one 

bead, as the agent would act against binding of cells and beads in the same way it interferes in the 

formation of cell clusters. To increase the efficiency of single-cell and single-bead prints, the 

parameters of cell concentration, bead concentration, needle-tip diameter, and time-interval 

between preparation and printing, would require optimization. Such parameters include cells 

concentration, beads concentration, needle diameter, and interval between cell dilution and 

printing to prevent cell clusters formation. However, even with a 13% single bead/single cell rate 

the high-throughput nature of our 3D printing system still was able to achieve ~26 successful 

events in a 10x20 grid.  Not counting the possibility of improving our efficiency, expanded arrays 

>100x200 are plausible with our system making a 13% success rate a reasonable N for future 

studies of asymmetric divisions. 

Further developments of this Aim include performing cell-bead conjugation prior to their 

injection in the substrate. This would ensure their contact following printing. Further adjustment 

of the printing parameters will be necessary to ensure optimal single-cell/single-beads printing 

resolution using conjugated beads. Finally, the same experiments will be repeated using iPSCs and 

NSCs conjugated to red Fluoroshperes® beads and Wnt transcription factors, to evaluate the 

suitability of the system and the previously determined parameters to study the different cell types, 

and ultimately design experiments for the study of asymmetrical division mechanisms.  
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The three Aims developed within this project resulted in tangible improvements towards 

the development of a functional three-dimensional cell culture system for the study of 

asymmetrical division in neural stem cells. Optimization and further development of each Aim is 

necessary before experiments culturing and differentiating cells in the 3D culture system can be 

designed and performed. With this project, concrete steps were taken for the application of MEA 

systems to perform electrophysiological studies, the development of tissue-specific substrates 

suitable for stem and neural cell culture, and the application of a 3D extrusion-based for single-

cell resolution printing. The foundations for the application of each technique to the development 

of a sophisticated three-dimensional cell culture system were laid. The scope of the project set the 

basis for the development of a system to study asymmetrical cell division. However, the finalized 

system will allow the performance of broader projects, including studies concerning the 

mechanisms that characterize neurological diseases.  
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