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ABSTRACT 
 
TECHNO-ECONOMIC ANALYSIS OF PROTEIN CONCENTRATE PRODUCED 

BY FLASH HYDROLYSIS OF MICROALGAE 
 

Alexander Asiedu 
Old Dominion University, 2015 

Director: Sandeep Kumar 
 
 
 

Process simulation and techno-economic analysis of 95wt.% protein 

concentrate from microalgae has been performed using SuperPro Designer v. 9.0.  This 

work, first of its kind, is focused on the economic analysis of protein concentrate that 

includes processes such as microalgae cultivation, harvesting, protein extraction and 

drying steps. A baseline capacity of 160 MT/day protein concentrate production on 

commercial basis has been analyzed. This throughput requires 336 MT/day dry algae 

(54 wt.% protein). The amount of carbon dioxide required to grow this quantum of 

algae is estimated to be 648 MT/day, which is produced from an in situ 21 MW power 

plant run by approximately 12 MT/h natural gas (methane). 

The economic feasibility study has been performed for the entire process. It 

became clear that decreasing the amount of water of the microalgae biomass slurry to 

the flash hydrolyzer reduces the fixed capital investment (FCI) and the annual operating 

cost (AOC). The baseline production of protein concentrate reveals the following 

results: FCI: $264 million; AOC: $145 million; capital recovery: $180 million/year for 

15 years; unit cost of production: $2.86/kg protein depending on the algae slurry 

density; minimum selling price: $4.13/kg protein; power requirement: 19.5 MW; Land 

requirement: 7177 acres; water: 15576 MT/day (4.1MGD).  
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Further analysis revealed that the major contributors to the financial statue of 

this work is contingent on the algae slurry going to the flash hydrolysis, protein content 

of the microalgae, pond depth for algae cultivation, and algae productivity. 
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NOMENCLATURE 

 
AFC Annualized Fixed Cost  

AOC Annual Operating Cost         

DC Direct Cost  

DCF ROI Discounted Cash Flow Return on Investment  

DO Dissolved Oxygen      

FCI Fixed Capital Investment               

FC Fixed Capital    

FH Flash Hydrolysis                     

IC Indirect Cost  

IRR Internal Rate of Return   

MEA Monoethanolamine  

NPV  Net Present Value  

OC Other Cost  

PAR Active Radiation               

PB Payback Period  

PBR Closed Photobioreactors     

PC Purchase Cost   

PE Photosynthetic Efficiency      

ROI Return on Investment   

TAC Total Annualized Cost   

TCI Total Capital Investment    
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CHAPTER 1 
 
 

1.1 Background and Justification 
  

Microalgae research has been in the forefront of the energy research since the 

inception of fossil-fuel-depletion awareness. This particular biological entity has 

received attention because of its high levels of oil, protein and carbohydrate. Moreover, 

it has remarkable potential utilization of poor quality land and water, and acts as a deep 

sink for carbon dioxide from energy-producing sector such as coal-fired power plants 

[Quinn et al., 2014]. 

Besides its high energy content, microalgae, which are classified as 

heterogeneous organisms possess both food and biological ingredients. Phaeophyceae 

are well-known for having an important class of phenolic compounds and 

phlorotannins, which are strong sources of bioactivities including antioxidant, anti-

inflammatory, antidiabetic, anti-proliferative or antibacterial effects [Sánchez-

Camargo et al., 2015]. 

Scenedesmus obliquus, another kind microalgae, contains considerable level of 

astaxanthin (3, 30-dihydroxy-b, β-carotene-4, 40-dione) that is a natural ketocarotenoid 

pigment which has been widely used in feed as colorant. It has superior antioxidative 

activity, potential inhibitory action to the proliferation of some cancer cells and 

correlation with the enhancement of T-cell activity in human [Qin et al, 2008]. Tibbetts 

et al. reported a general composition of microalgae: ash (5–17 %), moderate to high 

carbohydrate (18–46 %), crude protein (18– 46 %), high crude lipid (12- 48 %), and 

energy (19–27 MJ kg−1). Other reporters quoted that microalgae has high protein 

content of 39-71% dry mater; pigments, and other bioactive constituents like dietary 

fibres (as high as 74.6% on dry basis) in some species; carotenoids, carbohydrates, 
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omega-3 fatty acids, which have tremendous use in the pharmaceutical industries 

[Balasubramanian et al., 2011]. Furthermore, Chlorella vulgaris has been reported to 

have the following essential amino acid (%wt), the framework of proteins: aspartic acid 

8.6, threonine 5.5, serine 4.4, glutamic acid 10.3, proline 5.0, glycine 7.0, alanine 10.7, 

valine 6.7, methionine 2.6, cysteine 1.3, isoleucine 3.4, leucine 8.2, tyrosine 4.4, 

phenylalanine 6.0, histidine 1.6, lysine 5.4, arginine 7.4, tryptophan 0.2, ammonia 1.3 

[Ursu et al., 2014]. Table 1 highlights composition of different species of microalgae. 

Generally, the high contents of proteins in microalgae have undoubtedly proven that it 

is a prominent candidate for the production of peptide or protein concentrate for both 

food and pharmaceutical industries apart from being bioenergy source. 

Despite the immense bioactive components in the algae, less research has gone 

into extracting these component. To extract these essential components, for example, 

protein, the cell wall of the algae needs to be breached. Because of this, bead milling 

[Doucha et al. 2008, & Lee et la. 2011], ultrasonication [Furuki et al.2003, Gouveia et 

al. 2009, Gerde et al.2012], microwave radiation [Zheng, et al. 2011], enzymatic 

treatment [Fleurence et al. 1999, Sari et al. 2013], cell homogenizer [Mendes-Pinto et 

al. 2001] and high-pressure cell disruption [Jubeau et al. 2012] have been reported.  

However, all these methods are tedious and time consuming. Garcia-Moscoso 

et al. reported of protein extraction from microalgae via flash hydrolysis (FH) at the 

laboratory level. This method proved to be most efficient in extracting the protein from 

the microalgae in 10 seconds. Flash hydrolysis in subcritical water (below 374oC and 

22.1 MPa) extracted proteins efficiently and produced lipid-rich biofuel intermediates 

from wet microalgae (Scenedesmus sp.) in a continuous flow process.  However, there 

has been no studies related to techno-economic analysis of protein extraction. 
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In this study, the results from the laboratory level studies were used to develop 

a techno-economic analysis of FH process when Scenedesmus obliquus (17 % lipid, 23 

% Carbohydrate, and 54% protein) was used as a feedstock. Flash hydrolysis is carried 

out in a subcritical water at temperature below 374oC and pressure 22.1 MPa. This work 

focuses on modelling an industrial and commercial protein concentrate suitable for the 

both food and pharmaceutical industries, beginning from the algae cultivation to the 

protein extraction stage, and finally perform economic analysis. 

 

 

Table 1.General Composition of Different Algae (% of dry matter) 

Algae Protein Carbohydrate Lipids 
Anabaena cylindrical 43-56 25-30 4-7 
Aphanizomenon flos-aquae 62 23 3 
Chlamydomonas rheinhardi 48 17 21 
Chlorella pyrenoidosa  57 26 2 
Chlorella vulgaris 51-58 12-17 14-22 
Dunaliella salina  57 32 6 
Euglena gracilis 39-61 14-18 14-20 
Porphyridium cruentum 28-39 40-57 9-14 
Scenedesmus obliquus 50-56 10-17 12-14 
Spirogyra sp.   6-20 33-64 11-21 
Arthrospira maxima 60-71 13-16 6-7 
Spirulina platensis  46-63 8-14 4-9 
Synechococcus sp. 63 15 11 

Source: Becker, 2007 
 
 
 
 
Table 1.1 General Productivity of different Microalgae 

Algal species Raceway pond depth  Biomass Productivity 
 (m) (g/m2/day) 
Scenedemus sp. 0.2 17 
Tetraselmis MUR 233 0.2 29.6 (max. -37.5 
Spirulina Platensis 0.3 8.2 (max -13.95) 
Nannochloropsis sp  0.15-0.2 14.1 
Dictyosphaerium sp. 0.3 5.8 

Source: Kumar et al. 2015. 
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1.2 Research Aims and Objectives 
 
The following are the research aims and objectives: 

• To study the simulation of production of concentrated protein from microalgae 

through flash hydrolysis. 

• To conduct techno-economic analysis of production of concentrated protein 

from microalgae at industrial/commercial scale. 

• To discuss the inherent bottlenecks that hinder the feasibility of this novel 

process. 

 

1.3 Limitations  
 

The research does not incorporate the packaging, distribution, and 

transportation cost of the final product, the protein concentrate. Hence the prices 

employed in this work are not a true reflection of the protein concentrates on the market. 

Two kinds of power sources are suggested in this work: on-site power production and 

outside power. The cost of infrastructure for natural gas transportation and electricity 

transmission to the plant site was not included.  
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CHAPTER 2 
 
OVERVIEW OF MICROALGAE 
 

2.1 Algae Cultivation 
 

Algae are considered as potential feedstock candidates with higher productivity 

per unit land area as compared to traditional lignocellulosic biomass [Griffiths and 

Harrison, 2009]. They possess greater control of nutrient use, ability to receive and 

metabolize concentrated carbon dioxide from industrial sources, and consequently 

avoid competition with arable crops [Lardon et al., 2009]. There are many types of algal 

culture systems that have been built or proposed. Table 2 delineates different algal 

cultivation methods. Besides, the table shows the respective yields and cost of 

production quoted from literature. 

 

 

Table 2 Algal culture systems, types, yields, and cost of production estimates. 

 

System Types 
Yield (dry 
Mg/ha/yr) 

Cost $/kg  
dry biomass 

Ponds Open Raceway 7-135a 0.6-3.80b 

 
Circular with 
Mixing   

 Large Open   
Closed 
Photobioreactors 
(PBR) Tubular 70-150 0.47b-34d 

 Flat Panel   
 Column   
Emerging 
Technologies 

Open thin-layer 
panel Not reported 25-600e 

 Polymer bags   
 Immobilized bed   

a-Moheimani and Borowitzka(2006); b-Chisti (2007); d-Grima etal.(2003); e-
Borowitzka (1999). 
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Though open pond systems require large acres of land and water to thrive, it is 

the least capital intensive. Conversely, closed system (PBR) lend itself to greater 

process control, but possesses higher capital cost. Emerging technologies on the other 

hand might offer better options to ponds and PBR, maybe yielding lower capital cost 

and higher cellular densities, giving total lower production cost. However, components 

such as polymer bags and immobilized bed are difficult to estimate. Besides, algae 

productivity and harvesting could be higher, but inherent hurdles such as high material 

cost, difficult scale-up, and proper strain identification for immobilized growth restrict 

the implementation and progress of emerging technologies [Katrina et al., 2012]. Due 

to the high capital demand open raceway pond are employed in this study. 

 

2.2 Water Resources 
 

The success of microalgae cultivation is contingent partly on reliable water 

supply. Due to the continuous evaporation of water from the open pond, make-up water 

needs to be supplied. PBR also require water for cooling purposes. There have been 

propositions that low competitive water, such as seawater and brackish water, could be 

used for algae cultivation. However, these sources require pre-treatments which results 

in high energy demand for the whole process. Moreover, water recycling has the 

potential of reducing consumption and nutrient loss, but it comes with greater risk of 

bacteria-fungi-virus infection and inhibition. Additionally, non-inhibitors such as 

organic and inorganic chemicals and remaining metabolites from destroyed algae cells 

are found in the recycled water [Slade et al., 2013]. In this work, it is assumed that 98% 

of the water for algae cultivation is recycled. 
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2.3 Land Use and Location 
 

Marginal land use has been suggested to be one of the advantages of algae 

cultivation since this limits its competition for food production. However, topographic 

and soil constraints limit the construction of raceway pond systems since they require 

flat terrain. Moreover, soil porosity calls for the need to line these ponds with polymeric 

and sealing materials thereby increasing cost of construction. Apart from land use, solar 

radiation required for algae cultivation is determined by the location of the pond. For 

practical purposes, suitable pond locations are warm countries near the equator (see 

Table 3) where insolation is not less than 3000 h/yr [Slade et al., 2013].The average 

amount of solar radiation that reaches our planet every second, Esolar, is about 1367 

W/m2, defined as the solar constant [Holtermann et al., 2011]. From Table 3, 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚
𝑛𝑛  

is maximum irradiation intensity; 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛  is the annual amount of irradiation; v is 

intensity of irradiations which describes the regularity of solar irradiation. 

 
Table 3 Solar irradiation data for different locations 

Location 𝒒𝒒𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝒎𝒎𝒔𝒔𝒎𝒎 
𝒏𝒏 (W/m2) 𝒒𝒒𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒏𝒏 (kWh/m2) v 

Bergen(Norway) 828 785 - 
Helsinki(Finland) 906 970 0.1338 
Stuttgart(Germany) 974 1126 0.1419 
Madrid(Spain) - 1657 0.1943 
Lisbon(Portugal) 1010 1726 - 
Rabat (Morocco) - 1837 0.2076 
Sahara Desert - 2350 - 

Source: Holtermann et al., 2011 
 
 

Weyer et al reported that photosynthetic productivity is contingent on the 

intensity of the solar irradiation. Only the light within the wavelength range of 400 to 

700 nm, known as photosynthetically active radiation (PAR), can be used by plants and 

algae, which practically means that only 40 to 45% of total solar energy can be utilized 

for photosynthesis. Another group reported that the theoretical maximum for 
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photosynthetic efficiency (PE) is between 8 and 11% of the total solar energy [Brennan 

and Owende, 2010; Hindersin et al., 2013]. 

However, typical PE values of cultivated microalgae is reported to be in the range of 4 

to 7% under optimized condition [Doucha and Livansky, 2006, 2009; Hase et al., 2000; 

Morita et al., 2002]. 

 

2.4 Nutrients 
 

The necessary nutrients for algae growth are primarily nitrogen, phosphorus, 

and potassium [Slade et al., 2013]. Others are calcium, magnesium and sulfur, which 

are necessary because biological molecules do not consist of carbon and water only. By 

assimilation, inorganic nutrients are converted into organic compounds to form part of 

the organisms’ biomass [Holtermann et al., 2011]. Moreover, since dry algal biomass 

consist of 7 wt% nitrogen and 1 wt% phosphorus, fertilization has become highly 

indispensable [Wijffels et al., 2010]. Ammonium nitrate and phosphate is used in this 

work as it contains nitrogen and phosphorus that essential nutrients for plants. 

 

2.5 Algae Bloom 
 

Excess nutrients input can lead to excessive algae growth. This will lead to 

deficiency of oxygen leading algae decomposition and eutrophication. Dead algae 

eventually precipitate and finally settle at the bottom of the water or any natural water 

or lake forming colloidal nutrient [Chipman et al., 2010, Sun et al., 2014]. Gao et al. 

and Zhu et al. reported that algae bloom causes a higher availability of P, Fe, and S. 

Sharp et al. and Shen et al. reported that algae bloom changes the physical and 
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biological outlook of the benthic environment such as DO, pH, and Eh, particulate 

matter, which eventually affect the nutrient cycling. 

 

2.5 Carbon Dioxide 
 

Carbon content in microalgae emanates from atmospheric carbon dioxide. 

Moreover, there is a direct relationship between biomass output and CO2 consumption 

[Holtermann et al., 2011]. For example, 1 ton dry algae containing 50% carbon by mass 

consumed 1.83 ton CO2. However, in reality, CO2 supply will be several factor of 1 

tonne. For raceway pond, the outgassing is a function of the depth, friction coefficient 

of the lining, mixing velocity, pH and alkalinity. Depending on the operating 

conditions, the theoretical efficiency can range from 20% to 90% [Weissman et al., 

1998]. Practically, the efficiency of CO2 fixation in open raceways may be less than 

10%; roughly 35% for thin layer cultivation the efficiency of CO2 [Slade et al., 2013]; 

approximately 75% in closed tubular PBRs [Acie´n et al., 2012]. 

The source of CO2 can adversely affect the overall production cost of the 

process. It can also affect the choice of location of plant. CO2 supply from flue gas has 

been reported to cheaper than using raw CO2. It takes 3.7GJ of energy to absorb 1 tonne 

of CO2 from flue gas using monoethanolamine (MEA). About 370 kg of CO2 is released 

during CO2 absorption and regeneration of the MEA solution [Lam et al., 2012] 

 It is also advisable to site the flue gas source close to the algae production site. Since 

the cost of separating the CO2 from the flue gas is costly, the flue gas is directly fed to 

the algae pond. This injection does not affect the algae growth because the algae can 

tolerate the contaminants in the flue gas [Slade et al., 2013]. In this work CO2 is 

supplied by flue gas from an in situ power production that is powered by natural gas. 

Natural gas has been chosen because its flue gas is cleaner than that of coal that contains 



10 
 

 
 

 

a lot of heavy metals (e.g. mercury), which can eventually contaminate the protein 

concentrate. 

 

2.6 Microalgae Harvesting 
 

Being one the technological steps in microalgae recovery from dilute algae 

culture, microalgae harvesting has been reported to have tasked the financial aspect in 

the bioenergy domain. Harvesting step contributes to 20-30% of the cost of microalgae 

production [Rawat et al., 2011]. The micro size of the algae grown in a very dilute 

culture (concentration less than 1 g/L) is the reason behind the high cost of harvesting 

[Danquah et al., 2009; Molina et al., 2003]. Moreover, microalgae possess a negative 

surface charge and their cells have algogenic organic matter that render them stable in 

a dispersed condition [Danquah et al., 2009]. Presently, there is no single economically 

viable and efficient microalgae harvesting method in the algae industry [Christenson et 

al., 2011]. However, combination of two or more harvesting methods can reduce cost 

of production [Schlesinger et al., 2012]. Table 4 highlights different methods, 

advantages and disadvantages of algae harvesting. 

 

2.7 Microalgae Conversion 
 

Microalgae is presently basically a source for biofuels, but to a lesser extent for 

bioactive components, such as protein. There are two general techniques for microalgae 

conversion: thermochemical and biochemical [Tsukahara and Sawayama, 2005]. While 

thermochemical conversion utilizes heat to decompose organic compounds in the algae, 

biochemical conversion employs microorganisms to produce biofuel. Thermochemical 

conversion can be subdivided into gasification, liquefaction, pyrolysis, and direct 
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combustion. Biochemical on the other hand can be subdivided to into anaerobic 

digestion, alcoholic fermentation and photobiological hydrogen production. Other 

emerging conversion technologies are transesterification (acid/base) catalysis and 

photosynthetic microbial fuel cell are under research [Tan et al., 2015]. 

Table 4 Microalgae harvesting methods 

Harvesting method Advantages Disadvantages 

Chemical Coagulation/ • Simple and fast method. 
• May be expensive and toxic to 

algae. 

flocculation • No energy requirement. 
• Culture medium recycle is 

limited. 
   

Auto and bioflocculation • Inexpensive 
• Cellular composition is 

affected. 

 
• Culture medium recycle 

is permitted. 
• Possibility of microbiological 

contamination. 

 
• Non-toxic to microalgae 

biomass.  
   
Gravity Sedimentation • Simple and inexpensive. • Time-consuming. 

  
• Possibility of biomass 

deterioration. 

  
• Low concentration of algal 

cake. 
   

Flotation 
• Feasibility for large scale 

application. • Requires the use of flocculants. 

 • low cost 
• Not applicable to marine algae 

harvesting. 
 • Low space requirement.  
 • Short operation time.  
   
Electrical based 
processes 

• Applicable to wide 
variety of algae sp. • Poorly disseminated. 

 
• Do not require the use of 

flocculants. 
• High energy and equipment 

cost. 
   

Filtration 
• High recovery 

efficiency. • Possibility of fouling/clogging. 

 
• Allow separation of 

shear sensitive sp. 
• Require regular membrane 

change. 

  
• High cost of pumping and 

membrane. 
   
Centrifugation • Fast method. • Expensive. 
 • High recovery efficiency • High energy requirement. 

 
• Suitable for almost all 

microalgae sp. 
• Possibility of cell damage to 

high shear forces. 

  
• Suitable for high-valued 

product recovery. 
Source: Ana et al., 2015 
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2.8 Liquefaction 
 

This reaction converts wet algae biomass to bio-oil at low temperature and high 

pressure by either employing a catalyst or not. In this case energy intensive drying 

process is unnecessary. This process does not only convert lipids but also carbohydrates 

and protein in the algae into biocrude oil [Biller and Ross, 2011]. The efficiency of 

thermochemical liquefaction is contingent on reaction temperature, retention time, 

catalyst, and composition of biomass (liquid, carbohydrate, and protein) [Yang et al., 

2004]. 

Hydrothermal liquefaction is a type of liquefaction process that employs 

subcritical water at medium temperature of 280-370oC and pressure range of 10-25 

MPa. This also converts wet biomass into liquid biocrude as the main product. (Patil et 

al., 2008).  

 

2.9 Anaerobic Digestion 
 

Anaerobic digestion is one of the biochemical conversion methods that utilize 

microorganisms to convert algae biomass into biogas comprising CH4 and CO2 with 

small amount of H2S. Biogas has energy content of 20-40% of the original lower 

heating value of the biomass. The optimum moisture content of biomass that is suitable 

for anaerobic digestion is in the range of 80-90% dry weight [Brennan and Owende, 

2010].The three anaerobic stages are: hydrolysis of polysaccharides; fermentation 

(sugar to alcohol acetic acid, volatile fatty acid and mixture of H2 and CO2); 

methanogenesis (conversion of gas mixture into CH4 (60-70%) and CO2 (30-40%)) 

[Cantrell et al., 2008)]. Knowing the carbon, hydrogen, oxygen and nitrogen content of 

the biomass, the theoretical production of methane can be illustrated by the following 

stoichiometric equation [Ward et al. 2014]: 
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(𝐶𝐶𝑠𝑠𝐻𝐻𝑏𝑏𝑂𝑂𝑐𝑐𝑁𝑁𝑑𝑑) + �4𝑠𝑠−𝑏𝑏−2𝑐𝑐+3𝑑𝑑
4

�𝐻𝐻2 ⟶ �4𝑠𝑠+𝑏𝑏−2𝑐𝑐−3𝑑𝑑
8

� 𝐶𝐶𝐻𝐻4 + �4𝑠𝑠−𝑏𝑏+2𝑐𝑐+3𝑑𝑑
8

� 𝐶𝐶𝑂𝑂2 + 𝑑𝑑𝑁𝑁𝐻𝐻3 

where a, b, c, and d equal the carbon, hydrogen, oxygen, and nitrogen contents on molar 

basis respectively. Methane yield (litres/g (VS) destroyed) is found as follows: 

�
4𝑎𝑎 + 𝑏𝑏 − 2𝑐𝑐 − 3𝑑𝑑

12𝑎𝑎 + 𝑏𝑏 + 16𝑐𝑐 + 14𝑑𝑑
� ∗ 𝑉𝑉𝑚𝑚 

Where Vm is the molar volume (22.14 L/mol) at 0oC and 1 atm. 

 

2.10 Flash Hydrolysis 
 

From the preceding discussion on the different kinds of reactions, the end 

products are biofuels (diesel, methane, hydrogen, ethanol, etc.).  

Flash Hydrolysis is a reaction between subcritical water (temperature less than 

374oC and pressure less than 20 MPa) and algae in a continuous plug-flow reactor with 

residence time of few seconds. This reaction does not produce biocrude oil; it does 

produce protein-laden aqueous phase and solid phase (containing biofuel intermediate). 

The short time does not allow the conversion of protein and carbohydrate to convert to 

biocrude oil as reported by Valdez and Savage, 2013 and Valdez et al., 2014. Subjecting 

the microalgae biomass to liquefaction condition for a long time eventually convert 

most of protein, carbohydrate, and lipid into biocrude oil as shown in Figure 1. This 

means that to produce more protein in the aqueous phase, the reaction time should be 

in seconds as reported by Garcia-Moscoso et al. 
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Garcia-Moscoso et al. reported a flash hydrolysis in a continuous-flow reactor 

whereby the protein from microalgae (Scenedesmus sp.) biomass was hydrolyzed in a 

very short residence time (few seconds). In their work, flash hydrolysis was conducted 

at different temperatures (240, 280, and 320oC) and in three different residence times 

(6, 9 and 12 sec.). They concluded that the maximum yield of protein in the aqueous 

phase was approximately 82 % at 320oC in 6 seconds. Based on this work, it has been 

proposed that extraction and concentrating protein from microalgae is feasible and 

environmentally friendly on commercial scale as compared to solvent extraction 

methods. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

  
(a) (b) 

Figure1.Reaction network for the hydrothermal liquefaction of Nannochloropsis sp. 
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CHAPTER 3 
 

COST OVERVIEW 
 

3.0 Overview of Process Economics 
 

Process economics is an indispensable component of every new product or 

process design. In designing a new process or product, many of the technical and 

environmental decisions are strongly influenced by economic factors. It is therefore 

necessary to discuss the economic aspect of this simulation. The knowledge of 

economics will assist in evaluating the feasibility of the process, making improvements, 

comparing alternatives, making design and operating decisions, etc. These decisions 

can be made based on (1) cost and estimate of operation; (2) depreciation; (3) break-

even analysis (i.e. total production cost equals process revenue); (4) time value of 

money; (5) profitability analysis [El-Halwagi and Mahmoud, 2012 ]. 

 

3.1 Cost Types and Estimation 
 

There are two basic cost used to make decisions in process economics: capital 

investment and operating cost. The total capital investment (TCI) or capital cost is the 

money required to purchase and install the plant and its accessories and to provide the 

requisite expenses needed to start the process operations. With the plant in operation, 

the money required to continue or run the operation is known as the operating cost. The 

basis for estimating these two costs are (i) capital (fixed, working, and total), (ii) 

equipment, (iii) operating, and (iv) production (total annualized cost). The fixed capital 

investment/cost is the money required to pay for the processing equipment and the 

auxiliary units, acquiring and preparing land, civil structures, facilities, and control 

systems. On the other hand, the working capital is the money needed to pay for the 
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operating expenses until the product is sold. It also includes the money needed to 

stockpile raw materials. The following outlines the estimation of fixed capital cost. The 

fixed capital (FC) is estimated based on total equipment purchase cost (PC).  

FC = Direct Cost (DC) + Indirect Cost (IC) + Other Cost (OC). The rest of the cost 

analysis can be found in the appendix. 

The word estimate implies, there is a level of uncertainty in most cost estimates. 

These uncertainties emanate from the method or source of cost acquisition. The most 

commonly used methods are (i) manufacture’s quotation, (ii) computer-aided tools, (iii) 

capacity ratio with exponent, (iv) updates using cost indices, (v) factor based on 

equipment cost, (vi) empirical correlations, and (vii) turnover ratio [El-Halwagi and 

Mahmoud, 2012 ]. 

Capacity ratio with exponent can be evaluated from the following equation. 

𝐹𝐹𝐶𝐶𝐹𝐹𝐵𝐵 = 𝐹𝐹𝐶𝐶𝐹𝐹𝐴𝐴 �
𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵
𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵

�
𝑚𝑚

 

where FCIB and FCIA are the fixed capital investments of plant B and A respectively, 

and CapacityB and CapacityA are the capacities (for example, flow rate of main product) 

of plants B and A respectively, the exponent x is usually less than 1 (taken to be 0.6-

0.7). This relation can also be applied to equipment estimation if the sizes of the 

equipment are known and the cost of one them is known. 

Cost estimates are made and reported for a given time. With inflation and price 

fluctuation, it is necessary to account for fixed capital cost as a function of time. Cost 

indices are very useful in adjusted cost estimates based on time. Updates using cost 

indices can be applied using the following equation. 

𝐹𝐹𝐶𝐶𝐹𝐹𝑡𝑡2 = 𝐹𝐹𝐶𝐶𝐹𝐹𝑡𝑡1 �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 𝑎𝑎𝐶𝐶 𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖 𝐶𝐶2
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 𝑎𝑎𝐶𝐶 𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖 𝐶𝐶1

� 

Where FCIt1 and FCIt2 are the cost of plant/equipment at times t1 and t2 respectively. 
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Methods used to estimate the capital cost in the present study are the capacity/size ratio 

and updates using cost indices. These are imbedded in the SuperPro Designer software. 

 

3.2 Depreciation 
 

Depreciation is the annual income tax deduction that is intended to allow a 

company to recover the cost of property (for example, ultrafiltration unit) over a certain 

recovery period [El-Halwagi and Mahmoud, 2012]. This is normally taken from the 

revenue before tax so that the cost of equipment can be recovered and to perpetuate the 

use of the property or asset. Land and working capital investment cannot be depreciated 

because they are recoverable in principle. There are several method to calculate 

depreciation: (i) linear (straight-line) method; (ii) declining-balance method; (iii) 

modified accelerated cost recovery system ;( iv) sum-of-years’ digit method; (v) sinking 

fund method. The detail explanation of each is not explained in this work. However, 

the simplest and most commonly used is the method of the straight-line. In this work, 

the straight-line method was used in the SuperPro Designer. 

 

3.3 Profitability Analysis 
 

This can be done with or without time-value of money. Profitability criteria 

without time-value money are (i) return on investment (ROI) and (ii) payback period 

(PB). Whereas profitability criteria with time-value of money are (i) net present value 

(NPV); (ii) discounted cash flow return on investment (DCF ROI); (iii) discounted cash 

flow payback period. Another way of assessing profitability is by comparison of 

alternatives through (i) NPV; (ii) annual cost/revenue; (iii) total annualized cost; (iv) 

incremental return on investment. 
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ROI = 𝐴𝐴𝑛𝑛𝑛𝑛𝐴𝐴𝑠𝑠𝑠𝑠 𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑡𝑡
𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 𝐶𝐶𝑠𝑠𝐶𝐶𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠 𝑃𝑃𝑛𝑛𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡

× 100% 

NPV is the cumulative value (revenues-expenses) adjusted to a reference time. 

It is found as NPV =∑ 𝐴𝐴𝐶𝐶𝐹𝐹𝑁𝑁(1 + 𝐶𝐶)−𝑁𝑁𝑁𝑁
𝑁𝑁=0  , where ACFN is annual cash flow for year 

N, i is the discount rate. NPV > 0 means investment is financially attractive; NPV = 0 

means the investment is neutral; NPV < 0 means the investment is not financially 

attractive. 

 The DCF ROI also known as internal rate of return (IRR) is the value of 

discount rate that renders the NPV to be zero. The higher IRR value the more attractive 

the project [Edgar and Himmelblau, 2001]. The total annualized cost (TAC) is equal to 

the sum of annualized fixed cost (AFC) and the annual operating cost (AOC). This is 

calculated as TAC = FCI* 𝑃𝑃(1+𝑃𝑃)𝑁𝑁

(1+𝑃𝑃)𝑁𝑁−1
+ 𝐴𝐴𝑂𝑂𝐶𝐶. Thus the AFC is multiplied by the capital 

recovery factor and the result is added to the annual operating cost. This gives the 

annual cost needed to perpetuate the project by taking care of operating cost and capital 

investment. 
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CHAPTER 4 
 

SIMULATIONS 
 

4.1 Process Modelling 
 

Scenedesmus obliquus algae was selected for this work since it is the kind 

grown at Old Dominion Algae Laboratory. Elemental analysis of this algae is as 

follows: C = 50%, H = 6.2%, N = 9.65 %, P = 1 %, and O = 32 %. This gives the 

empirical formula for the algae as C133H192O32N22P. This formula was used to calculate 

for the nutrient requirements.  Rogers et al. reported similar empirical formula as 

C106H181O45N16P. The following were the principal assumptions made. 

 

4.2 Essential Assumptions 
 

• Algae strain: Scenedesmus obliquus 

• Elemental composition of algae biomass: C133H192O32N22P             

• Average annual areal productivity: 15 g m−2 d−1  

• Biomass Protein Content: 54 wt.% 

• Daily peptide production: 160 MT/day   

• Protein Extraction efficiency: 85% 

• Harvested algae slurry: 20 wt. % 

• Dimensions of a pond: 120 m x 10 m x 0.3 m 

• Maximum culture density: 0.8 g L−1 

• Water recycle rate: 98% 
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4.3 Process Description 
 

A simplified process flowsheet for 95 wt.% protein concentrate is as shown in 

Fig.2. 

The process was modelled with SuperPro® Designer V. 9.0. Fig. A1 highlights 

the modelling of the algae cultivation, harvesting and protein extraction. The algae is 

grown in a raceway pond P-2 with ammonium phosphate and ammonium nitrate as the 

necessary nutrients. Carbon dioxide is supplied by the flue gas from an integrated 

cogeneration section. The growth maturity was assumed to 14 days at which the algae 

concentration will have reached 0.8 g/L. The culture is then pumped by pump P-6 to be 

filtered by the belt filter BF-101. The wash-out outlet is recycled back to the pond.  The 

cake density is set to 20 wt. % necessary for the flash hydrolysis. The slurry is stored 

in vessel V-101 awaiting flash hydrolysis. The algae slurry is then pumped by PM-102 

through series of heat exchangers HX-102 to be heated from 20oC to 280oC. The slurry 

is then subjected to flash hydrolysis within 10 seconds in a plug flow reactor PFR-101. 

The products are cooled to 30oC, and are then sent to belt filter B-102 to remove the 

solid part of the algae (biofuel intermediate).  The pregnant protein solution is then 

subjected series of ultrafiltration by UF-101 giving 40 wt.% concentrated proteins. The 

protein concentrate is subjected to spray drying where it allowed to move 

countercurrent to a hot stream of air (140oC) in the dryer (SDR-101). The dry protein 

is collected at the bottom of the dryer while the exhaust air (70oC) is sent to the cyclone 

(CY-101) to recover protein fines. 

The filtrates from both BF-102 and UF-101 are sent to anaerobic digester AD-

101 for methane production. Since the methane generated is not enough to produce 

power and carbon dioxide for the entire process, natural gas is employed to supplement 

the power production. Natural gas is combusted in a boiler SG-101 to produce steam at 
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6 MPa and 300oC. The steam is sent to a multi-staged power generator T-101 for power 

production. The flue gas from the boiler SG-10, which contains 18 % carbon dioxide is 

cooled to 30oC through heat exchanger HX-103 and sent to the algae pond. The steam 

generated from the power house is used to heat the algae slurry for the hydrolysis.  

 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. Simplified Process flowsheet for protein concentrate production. 
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4.4 Economic Analysis 
 

Numerous studies have evaluated the economics of microalgae production, but 

most of them concentrate on biofuel production (Amer et al., 2011; Benemann, 2013; 

Davis et al., 2011; Draaisma et al., 2013; Lam and Lee, 2012; Rios et al., 2013; Taylor 

et al., 2013). Richardson et al. reported Farm-level Algae Risk Model (FARM) and 

used it to simulate the economic feasibility and probabilistic cost of biomass and bio-

crude oil production for two projected algae farms. Rogers et al. also reported 

sustainability and economic requirements of a 160 MT/day algal biofuel facility based 

in New Mexico. Since the outcome their work cannot be substituted for the current 

work, it is necessary to assess the actual financial viability of protein concentrate as 

opposed to biofuel production. 

In this work, it is assumed that the year of construction is 2015; construction 

period is three years; start-up period is one year; project life is 15 years; inflation (to 

update equipment cost) is 4%; interest rate is 10%. In financing the project, 30% of the 

fixed capital investment is provided in the first year, 40% in the second year, and 30% 

in the third year. Concerning depreciation, straight line method was employed with 

salvage value being 5% of the fixed capital. Moreover, the operation hours is assumed 

to be 7920 /year (330days/year). The cost of materials and equipment is obtained from 

the SuperPro Designer. Other assumed parameters include the following: Pond 

paddlewheel ($5000/unit); energy requirement for a paddlewheel (0.73 W/m2); pond 

liner ($0.77/m2); Landscaping ($0.16/m2), raceway covering ($0.98/m2) [Rogers et al., 

2014]. 
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Table 5. Capital Cost estimation for 160 MT/day protein concentrate 
 

Name Description Quantity Unit Cost ($) 
Total Cost 

($M) 
MX-101 Mixer 28 2000 0.15 
Algae Pond 19138 8000 153.104 
PM-101 Centrifugal Pump 3 206000 0.618 
PM-103 Centrifugal Pump 1 55000 0.050 
V-101 Receiver Tank 1 55000 0.055 
PM-102 Centrifugal Pump 3 187000 0.561 
PM-104 Centrifugal Pump 1 45000 0.045 
M-101 Centrifugal Fan  1 16000 0.016 
PFR-101 Plug Flow Reactor 1 75000 0.075 
HX-101 Heat Exchanger  6 130000 0.780 
UF-101 Ultrafilter 245 147000 36.015 
SG-101 Steam Generator 2 975000 1.950 
T-101 Multi-Stage Steam 
Turbine 1 4115000 4.115 
MX-102 Mixer 28 2000 0.056 
MX-103 Mixer  1 2000 0.002 
MX-106 Mixer 1 2000 0.002 
HX-102 Heat Exchanger 75 2000 0.15 
AD-101 Anaerobic Digester 2 6136000 12.272 
MX-106 Mixer  1 2000 0.002 
HX-102 Heat Exchanger 8 126000 1.008 
HX-103 Heat Exchanger 5 122000 0.610 
HX-104 Heat Exchanger 1 54000 0.054 
BF-101 Belt Filter 14 280000 3.920 
BF-102 Belt Filter  5 280000 1.400 
SDR-101 Spray Dryer 1 303000 0.303 
CY-101 Cyclone 2 3000 0.006 
Land Acquisition (Acres)* 7177 3000 21.530 
Equipment installation    27.834 
Startup Cost   12.244 
Working Capital   6.402 
Total    263.827 

  *This is excluded from the fixed capital investment. 
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Table 6 Annual Operating Cost for 160 MT/day Protein Concentrate  

Bulk  
Material 

Unit 
Cost ($) 

Annual Amount 
(MT) Units 

Annual Cost 
($M) 

Labor 69.000 88829 hrs 6.129 
Ammonium Nitrate* 0.150 46023 MT 6.903 
Carbon dioxide* 40.000 3523 MT 0.141 
Diammonium Phosphate* 0.500 4744 MT 2.372 
Methane* 0.136 76074 MT 10.346 
Water* 0.013 5135536 MT 0.668 
Dft Membrane 400.000 27413 m2 10.965 
Power (kWh) 0.100 191883086 kWh 19.188 
Steam (High P) 20.000 979713 MT 19.594 
Cooling Water 0.050 107724417 MT 5.386 
Facillity-dependenta    62.742 
Laboratory/QC/QAb    0.919 
Waste Treatmentc    1.099 
Total     146.452 

a Estimate based on capital investment parameters (i.e., maintenance, depreciation and miscellaneous costs). 
b This accounts for the cost of off-line analysis, quality control (QC) and quality assurance (QA). 
c 1 barrel of peptide concentrate costs $3.33 wastewater treatment. 
*These are the main inputs to the SuperPro Designer. 
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CHAPTER 5 
 

RESULTS AND DISCUSSIONS 
 
 

In this work, protein concentrate of 160 MT/day commercial facility has been 

analyzed. This throughput requires 336 MT/day dry algae. The amount of carbon 

dioxide required to grow these microalgae is estimated to be 648 MT/day, which is 

produced from an in situ 21-MW power plant run by approximately 12 MT/h natural 

gas (methane). This means the cost of supplying carbon dioxide to the pond is 

approximately 4 % of the operating cost. Ketheesan et al. reported that the cost of 

supply and transfer of CO2 accounts for nearly one-third of the total algal cultivation 

cost. Li et al. also reported that the cost of the carbon source in the algal medium ranges 

from 8 to 27% of the daily production cost. The amount of water consumed in the entire 

process is estimated to be 15,576 MT/day. With the area of 0.3 acre per pond, the total 

area require for the facility is approximately 7177 acres inclusive of area required for 

downstream process equipment.  

The fixed capital investment (FCI) and the annual operating cost (AOC) for the 

production of 160 MT/day of protein concentrate via flash hydrolysis are estimated to 

be 264 million and 145 million US Dollars respectively. It is worth noting that the value 

of FCI excludes the cost of land acquisition. Moreover, it is evident that the FCI is 

contingent on the algae cultivation stage, which is driven by the algae pond 

construction.  The major drivers here are the pond liner, paddle wheel, and pond cover 

while landscaping plays the minor role (Fig 3 and 3.1). The other major FCI drivers are 

cost of equipment installation, ultrafiltration, filtration and anaerobic digestion. This 

result is in agreement with the work of Rogers et al.  

Operating cost, on the other hand, is controlled by facility-dependent cost, 

which comes from maintenance, depreciation and other miscellaneous cost. Utilities 



26 
 

 
 

 

cost is due to huge energy consumption by pumping, heating and cooling, and pond 

agitation (Table 6 and Fig.4). The total power consumption (19.5 MW) is dictated by 

energy-intensive equipment summarized in Table 7. Algae growth consumed 

approximately 94% of the total power used in this work. 

 Apart from the main product (protein concentrate), power generation 

contributes moderately (3%) to the revenue of this project. Moreover, Low and high 

pressure steam, which is considered as additional credit contributes approximately 5% 

to the revenue. These percentages are based on the minimum product prices of $4.13 

(see Table 8). The minimum value of the protein concentrate is calculated using excel 

solver. This is illustrated in Table A1 in the appendix. 
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 Figure 3.1 Drivers of Pond Cost 

 

 
 Figure 4 Annual Operating Cost Drivers 
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Table 7 Energy consumption at the various sections 

Section                                                                                                         Power (kwh/h) 
Algae Growth                                                                                                                16765 
Biogas Production                                                                                                            166 
Ultrafiltration                                                                                                                    652 
Pumping                                                                                                                           1441 
Drying 359 
 
 
 
 
Table 8 Revenue/Credit Summary for 160 MT/day of Protein Concentrate 

Description Rate Rate Unit Price Price  Unit Revenue ($M) 
Power Generation 168412221 kwh/yr 0.08 $/kWh 13.472 
Protein Concentrate 50688 MT/yr 4.13 $/kg 209.341 
Total     222.813 

 
 

5.1 Sensitivity Analysis 
 

Results from this simulation gave the following baseline values: FCI of $264 

million, AOC of $145 million, Annualized cost of $180 million, unit cost of $2.86/kg 

protein, and a minimum product price of $4.13/kg. These values can be compared to 

some of the protein prices on the market (Fig. A3). These values are controlled by the 

kind of microalgae employed, algae productivity, nature or kind of pond (depth, lined, 

open, mixing power, kind of nutrients etc.), algae slurry to the flash hydrolyzer, percent 

algae conversion in the hydrolysis, protein content in the algae, percent of total water 

recycle, project life, discount rate, tax rate, debt/equity ratio etc. This section is 

dedicated to analyzing how some of these factors affect the financial and technical 

aspect of this work. 
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5.2 Effect of Flash Hydrolysis Percent Conversion 
 

The percent conversion in the flash hydrolysis was pegged at 85%, which 

affected the quantity of protein extracted. Changing the percent algae conversion from 

85% to 95% produced a protein throughput from 6.4 to 7.1 MT/h. While the 

concentrated protein price from $4.13 /kg to $3.71/kg, the unit cost of protein changed 

from $2.86/kg to $2.56/kg (see Figures 5.1). However, changing the percent conversion 

did not affect the AOC and the FCI since none of the factors that affect AOC and FCI 

was affected by the change in percent conversion. 

 

 
 Figure.5.1 Flash Hydrolysis (F.H.) Conversion 
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total number of ponds and the land required decreases. Due to the decrease in the 

number of pond, the AOC also decreased from $146 M to $131 M (Fig.5.2). Decrease 

in the annual operating cost prompted the unit cost, which is the annual operating cost 

divided by the total annual protein, decrease from $2.86/kg to $2.58/kg (Fig. 3). Since 

the minimum protein price is contingent on both the FCI and AOC, their decrease 

consequently reduced the protein price from $4.13/kg to $3.61/kg (Fig. 5.3).  

 

 
 Figure 5.2 Pond Depth on FCI & AOC 
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5.4 Effect of Protein Content in the Algae 
 

The percent protein content in the microalgae dictates the amount of annual 

protein produced. The baseline protein content in the microalgae is assumed to be 54%. 

Changing the protein from 54% to 70% increases the protein from 6.4 MT/h to 8.34 

MT/h, which in turn decreases the protein price from $4.13/kg to $3.18/kg (Fig 5.4).  

Increase in the protein content decreases the total amount of solids generated during 

flash hydrolysis. This consequently reduces the number of filters required for filtration 

prior to ultrafiltration. Moreover, the number of ultrafilters also decreases due high 

protein concentration gradient across the membrane. These reductions in equipment 

slightly decrease the both FCI (from $264 M to $262 M) and AOC (from $146 M to 

$145 million) as the protein content in the microalgae increases. The unit cost 

eventually reduces from $2.86/kg to $2.20/kg (Fig 5.4). Moreover, the annualized cost 

decreased from $180M to $179M. 

 

 
 Figure 5.4 Protein Content 
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5.5 Effect of Algae Productivity 
 

Davis et al. employed algae productivity 25 g/m2/day as the baseline in their 

simulation of techno-economic analysis of autotrophic microalgae for fuel production. 

Rogers et al. also use a value of 15 g/m2/day in simulating a critical analysis of 

paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. 

In this work the baseline algae productivity was assumed to 15 g/m2/day. This value 

affects the concentration of the biomass a given pond for a given area. Varying the algae 

productivity from 10 g/m2/day to 25 g/m2/day increases the algae biomass from 6.4 

MT/h to 38.7 MT/h. This increase moved the minimum protein price from $4.13/kg to 

$1.50/kg while the unit cost of protein changed from $2.86/kg to $1.04/kg (Fig. 5.5). 

The increase in algae productivity does not affect FCI and AOC since this factor 

describes the microbial growth rate and not the need for additional area. Microbial 

growth rate can be improved by employing genetically modified culture. This also 

depends on the location of the pond where radiant energy is present 12 hours/day. 

 

 
 Figure 5.5 Algae Productivity 
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5.6 Effect of Water Recycle 
 

Water recycle in the algae industry is highly indispensable practice. In this 

work, without water recycle, the annual amount of water required would be 127 million 

gallons per day (MGD) ($2.1 million per year), which is approximately 1.4% of the 

AOC. However, with incorporation of recycling strategy, the annual water utilized was 

approximately 4.2 MGD ($0.07 million per year), which represents 97% reduction in 

the cost of annual water use. In this work, it is assumed that 98 % of the water is 

recycled. Testing the sensitivity of percent water recycle on the AOC did not show any 

significant change. This is buttressed by the fact that the annual cost of water 

contribution to the AOC is merely 1%. Davis et al. reported that varying the percent 

water recycle from 80-100% did not change the unit cost and minimum price of the 

algae. Fig. 5.6 depicts the change in water use as the percent recycle changes. 

 

 
 Figure 5.6 Water Recycle and Total Water Used 
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5.7 Effect of Algae Slurry  
 

In flash hydrolysis, the more the water content of the slurry the more energy 

required to pump, and the more the annual operation cost for a specific production 

capacity. In this work, the simulation was done using 20 wt.% of algae slurry. Dote et 

al and Minowa et al. published the first reports of hydrothermal liquefaction of 

microalgae using a batch reactor with high feed concentration dry matter algae mass, 

50 wt.% and 78.4 wt.%, respectively. However, pumping these slurries through a 

continuous reactor is highly impractical due to flowability issues. 

 In this study, decreasing the percent weight of the algae slurry increases the 

FCI and AOC due to the increase in the total volume of slurry with the amount of dry 

weight of algae being constant (14 MT/h i.e. the baseline). Moreover, the total mass of 

water increases from 649 MT/h to 866 MT/h. Furthermore, the number of filters, 

ultrafilter, anaerobic digesters, pumps, etc. increases when the percent algae in the 

slurry decreases from 20 to 5%. Increase in the number of equipment increases the 

amount of total power consumed from 19.5 MW to 22 MW. Furthermore, the total 

water consumption increases by 25% (i.e. 649 MT/h to 866 MT/h). As a result, the FCI 

increased from $264 million to $481 million while AOC increased from $146 million 

to $301 million (Fig.5.7). Consequently, the unit cost and minimum prices increased 

from $2.86-$5.94 and $4.13 to $8.34 respectively (Fig. 5.8).  
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 Figure 5.7 Algae Slurry on FCI &AOC 

 
 

 
 Figure 5.8 Algae Slurry on Minimum Price-Unit Cost 
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5.8 Effect of Project life 
 

The life of a project is crucial as far as recouping of the FCI is concerned. 

Moreover, it is well-advised to reduce the project life in profitability analysis so as to 

offset any risk of inflation. Increasing or decreasing the project life affects the minimum 

product price and the annualized capital investment. The baseline project life in this 

work is assumed to be 15 years. Changing the project life from 10 to 20 years decreases 

the minimum product price from $4.75 to $3.90 while the annualized cost decreases 

from $188 M to $176 M (Fig.5. 9 and 5.10). 

 

 
 Figure 5.9 Project life Product Minimum Price 
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 Figure 5.10 Project Life on Annualized Cost 

 

5.9 Effect of Discount Rate 
 

Another important parameter of interest in this work is the discount rate of the 

interest rate. The baseline interest rate in this work is assumed to be 10%. Varying the 

interest rate from 7-12% increases the minimum product price from $3.87 to $4.33 

while the annualized capital investment jumps from $174 M to $183 M (fig. 5.11 and 

5.12). 
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 Figure 5.12 Discount rate on Annualized Cost 

 

5.10 Effect of Product Price  
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Though IRR is a subjective financial parameter, its knowledge will assist 

stakeholders in the algae industry to make easy and sound decision. It is truism that 

higher product price gives higher IRR. The higher the IRR the more attractive the 

enterprise. 

 Fig. 5.15 highlights the effect of internal rate of return as product prices 

increase. These evaluations are based on 10% interest rate, 40% tax rate and 100% debt 

financing. 

Table 9 Effect on product price on NPV, PBP, and IRR 

Protein Price NPV PBP IRR 
$/kg Million Dollars Years % 
4.13 0.0 9.8 25 
4.50 57 7.1 30 
5.00 134 5.1 36 
5.50 212 4.1 42 
6.00 290 3.3 48 

 
 
 
 

 
 Figure 5.13 Product Price on PBP & Discount Rate 
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 Figure 7.14 Product Price on NPV 

 
 

 
 Figure 5.15 Product Price on IRR 
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5.11 Major Drivers of Unit Cost and Price 
 

Figures 5.16 and 5.17 depict the summary of sensitivity of unit cost and price 

of protein concentrate to the aforementioned factors in the work. The only factors not 

discussed in the preceding section are the effect of pond covering, pond liner, paddle 

wheel energy consumption, and CO2 and flue gas.  

It is assumed that high density polyethylene (HDPE) can be used a pond cover 

to reduce evaporation of water from the raceway pond. However, foregoing pond 

covering reduces the FCI, AOC, and annualized cost (AC) to $233 million, $138 

million and $168 million respectively, which resulted in unit cost and unit price 

reduction of ¢15 and ¢30 respectively.  

To enhance photosynthetic efficiency of a raceway pond, there is the need to 

incorporate paddlewheel to agitate the algae culture, and expose them to the necessary 

radiant energy. Lundquist et al. reported that absence of light for the algae culture over 

the night can result in biomass loss of 25%. Mixing and agitation the pond demand 

huge amount of energy. In this work, 0.73 W/m2 was used as published by Rogers et 

al. However, reducing this value to 0.22 W/m2 reduced the FCI and AOC to $ 262.5 

million and $134 million respectively, which consequently reduced the unit cost and 

unit price equally by ¢22. 

Pond liners play crucial role in raceway pond by preventing pond contamination 

or leakage. These liners could be clay, concrete, HDPE, etc. However, due to cracks 

and seismic activities, HDPE is preferred to clay and concrete [Roger et al., 2013]. In 

this work the cost of lining all the ponds (19138) amounts to $5.3 million (2% of FCI). 

Without lining the pond, the FCI dropped to $243.4 million thereby reducing the unit 

price and cost by ¢20 and ¢10 respectively.  
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Supplying CO2 to the microalgae via the flue gas has the advantage reducing 

global warming from power plants. However, in this work it is evident that using pure 

CO2 is more economically friendly than employing flue gas. With the current CO2 price 

of $40/ton, the FCI and AOC of this work reduced to $253 million and $139 million 

respectively. It could be seen that the unit cost and prices decreased by ¢12 and ¢16 

respectively. However, forgoing flue as a source of CO2 supply also offsets in situ major 

power supply to the plant. Nevertheless, minor power (3.2 MW) supply can be 

produced from the approximately 2 MT/h methane from the anaerobic reactor. This 

minor power supply represents 16% of the required total power for the whole process. 

This means the rest of the power should be purchased from outside the plant. 

Furthermore, it is evident that algae productivity and slurry to the FH have the 

most remarkable effect on both unit cost and prices of the protein concentrate 

production. 

 

 
 Figure 5.16 Major Drivers of Unit Cost 
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 Figure 5.17 Major Drivers of the Protein Price 
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 Figure 5.18 Production Capacity against Unit Cost &Price 

 
 

 
 Figure 5.19 Production Capacity against FCI & AOC 
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CONCLUSIONS 
 

This work has focused on the technical and economic assessment of 95 wt.% 

protein concentrate (food and pharmaceutical grade) production from microalgae. Data 

used is based on the previous work done at the Old Dominion Algae Laboratory. 

Additional data concerning protein production from microalgae has been generated to 

assist stakeholders in the algae industry to make meaningful technical and economic 

decisions. A baseline capacity of 160 MT/day of protein concentrate was employed in 

developing this model.  

However, there are hurdles in the scalability of this model to a full-scale 

operation looking at the huge FCI and AOC. One of the obstacles in this work is the 

huge amount of freshwater required to grow the algae. To embark upon this enterprise, 

there is the need to locate the plant near places with abundance of water. The use of 

brackish or saline water, which is more abundant, has been successful in microalgae 

cultivation [Lee, 2001].  Wastewater has also become one the promising candidates that 

can be employed to grow microalgae in this kind of project. Using non-freshwater will 

eventually reduce the cost of water treatment and cost nutrient employed. 

Not only the above-mentioned impediments are inherent in this work, but also 

the cost of mixing or agitating the pond for effective algal growth is real. To reduce this 

cost, there is the need to slope raceway ponds so the entire algae culture can flow in a 

fashion that will enhance utilization of radiant energy. This kind of pond design has 

been reported by Craags et al.1997. 

Furthermore, algae productivity has most pronounced effect on the protein 

price, there is the need to galvanize the research and development of different strain of 

algae whose growth rates for protein concentrate production.  
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Apart from using microalgae to produce protein concentrate, it is evident that 

the biofuel intermediate has the potential of supplying energy through anaerobic 

digestion, which supplies almost 20% of the total power requirement for the whole 

process. 

Moreover, the percent weight of protein in microalgae play important role in 

economic the feasibility in this present work as it controls the yield and consequently 

affects the product price of protein concentrate. To enhance attractiveness of this work, 

more research and development should be geared towards the cultivation of high 

proteinaceous microalgae.                                 

Though ultrafiltration, a membrane separation process, contributes almost 40% 

of the total energy demand in this work, it is more promising in producing protein 

concentrate.  
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APPENDIX 
 
 
A1.  Calculation of Direct Cost (DC)  

Piping (A) = 0.35 x PC 

Instrumentation (B) = 0.4 x PC 

Insulation (C) = 0.03 x PC 

Electricals Facilities (D) = 0.1 x PC 

Buildings (E) = 0.45 x PC 

Yard Improvement (F) = 0.15 x PC 

Auxiliary (G) = 0.4 x PC 

Installation = Installation of listed equipment + Installation of Unlisted (overlooked) 

equipment. 

Unlisted equipment installation cost = 0.5 x unlisted equipment cost 

⟹DC = PC + Installation + A + B + C + D + E + F + G 

 

A2. Indirect Cost (IC) is calculated as follows: 

Engineering (H) = 0.25 x DC 

Construction (I) = 0.35 x DC 

 

A3. Other Cost (OC) is calculated as follows: 

Contractor’s fee = 0.05 (DC + IC) 

Contingency = 0.1 (DC + IC) 
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A4. Financial Calculations 
 
Inputs  

Tax rate 40% 

Interest rate 10% 

Project life 15yr 

  

Cash flow  

Land in zero years -21.5 

30% of the FCI in 1st yr -79.05 

40% of the FCI in 2nd yr -105.4 

30% of the FCI In the 3rd yr -79.05 

Annual COP, $M 145 

  

Revenue  

Price of protein, $/ton Unknown (y) 

Total protein produced, ton/yr 50688 

Energy, $M 13.31 

Annual Revenue =50688y+13.31x106    - 145*106 

  Annual Income                                            = (50688y-131.69*106)*(1-Tax rate) 

                                                                     =30412.8y -79.014x106 

                                                                    = (0.030413y-79.014)*106  
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Table A1 Calculation of minimum protein concentrate 

End of 
year 

Annual 
(nondiscounted 

Discount 
 factor 

Discounted cash Cumulated 
discounted 

n Cash Flow)/$ 
Milllion 

1
(1 + 𝐶𝐶)𝑛𝑛

 
flow in $ MM Cash flow ($MM) 

0 -21.5 1.000 -21.5 -21.5 

1 -79.05 0.909 -71.8644 -93.4 

2 -105.4 0.826 -87.1026 -180.5 

3 -79.05 0.751 -59.3903 -239.9 

4 (0.0304y-79.0) 0.683 0.0208y-53.96 0.0208y-293.81 

5 (0.0304y-79.0) 0.621 0.0189y-49.05 0.0396y-342.87 

6 (0.0304y-79.0) 0.564 0.0172y-44.60 0.0568y-387.46 

7 (0.0304y-79.0) 0.513 0.0156y-40.54 0.0724y-428.00 

8 (0.0304y-79.0) 0.467 0.0142y-36.85 0.0866y-464.86 

9 (0.0304y-79.0) 0.424 0.0129y-33.50 0.0995y-498.36 

10 (0.0304y-79.0) 0.386 0.0117y-30.45 0.1112y-528.82 

11 (0.0304y-79.0) 0.350 0.0107y-27.69 0.1218y-556.50 

12 (0.0304y-79.0) 0.319 0.0097y-25.17 0.1315y-581.67 

13 (0.0304y-79.0) 0.290 0.0088y-22.89 0.1403y-604.56 

14 (0.0304y-79.0) 0.263 0.0080y-20.80 0.1483y-625.36 

15 (0.0304y-79.0) 0.239 0.0073y-18.91 0.1556y-644.27 
                                                             Sum =        (0.1556y-644.27) 
 
The value of y can be solved by equating the sum of discounted cash flow, NPV, to 

zero gives y to be $4.14/kg. i.e. the minimum price of protein concentrate. 
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Table A2 Simulation based on production of different capacities 

Algae 

MT/day 

Protein 

MT/day 

FCI 

$M 

AOC, 

$M 

AC 

$M 

Power (gen) 

MW 

Power(used) 

MW 

Water 

MT/h 

Unit Cost 

$/kg 

Price, 

$/kg 

CO2 Captured 

MT/h 

Land 

acres 

Natural 

Gas MT/h 

105 60 110 64 78 9 7 250 3.37 4.76 10 2692 5 
168 78 138 80 98 13 10 344 3.24 4.57 13 3544 7 
336 161 264 146 180 21 19 649 2.86 4.13 27 7177 12 
420 202 325 177 220 26 24 802 2.8 4.05 33 8971 14 
504 239 385 209 259 30 29 952 2.77 4.04 40 10765 17 
588 285 444 240 299 35 34 1105 2.71 3.95 46 12559 19 
694 335 523 281 350 41 40 1294 2.69 3.93 55 14802 22 
778 373 583 313 390 46 45 1454 2.67 3.89 61 16596 25 
883 423 658 353 440 52 51 1642 2.65 3.87 70 18839 28 
970 466 723 386 481 57 55 1800 2.65 3.87 76 20633 31 

1051 504 784 419 522 63 60 1960 2.65 3.87 83 22427 34 
1157 557 857 458 571 69 66 2148 2.62 3.83 91 24669 37 
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Table A3. Prices of Protein Concentrates on the market 

Protein  
Type Quantity 

Price,  
$ 

Price 
$/kg 

% 
protein Market 

Whey Protein Isolate powder 5 lb 57 25.11 90 Amazon 

Soy Protein Isolate powder 2 lb 23 25.33 >90 Amazon 

Fish Protein Powder 1kg 35 35.00 >90 Alibaba 

Rice Protein Powder 1 ton 3800 3.80 >80 Alibaba 

Spirulina powder (algae) 1kg 10 10.00 60 Alibaba 

Sacha Inchi Powder (organic) 1kg 8.5 8.50 60 Alibaba 
Source: Alibaba Group Holding Limited; Amazon.com, Inc. 
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 Figure A1. Production of 95 wt.% protein concentrate via flash hydrolysis modelled 
by SuperPro Designer v.9. 
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