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Abstract The twenty-first century is defined by the social 
and technical hazards we face. A hazardous situation is a 
condition, or event, that threatens the well-being of people, 
organizations, societies, environments, and property. The 
most extreme of the hazards are considered X-Events and are 
an exogenous source of extreme stress to a system. X-Events 
can also be the unintended outputs of a system with both 
positive (serendipitous) and negative (catastrophic) conse-
quences. Systems can vary in their ability to withstand these 
stress events. This ability exists on a continuum of fragility 
that ranges from fragile (degrading with stress), to robust 
(unchanged by stress), to antifragile (improving with stress). 
The state of the art does not include a method for analyzing 
or measuring fragility. Given that “what we measure we will 
improve,” the absence of a measurement approach limits the 
effectiveness of governance in making our systems less frag-
ile and more robust if not antifragile. The authors present an 
antifragile system simulation model, and propose a framework 
for analyzing and measuring antifragility based on system 
of systems concepts. The framework reduces a multidimen-
sional concept of fragility into a two-dimensional continuous 
interval scale.

Keywords complex adaptive systems engineering, extreme 
events, governance, smart grids, system of systems, X-Events

1 Introduction

Systems meet vital needs in our society by providing capa-
bilities that are not possible by discrete components. These 
capabilities are manifested in a host of ways that include 
but are definitely not limited to: human activities; physical 
products; informational products; mechanical functions; 
logical decisions. Designing systems to meet these demands 
is the purpose of systems engineering. Traditional systems 
engineering (SE) is a discipline for solving problems that 
typically conforms to a certain set of assumptions. These 
assumptions often include: fully understood set of defined 
requirements; a single governance body for the development 
and configuration of the system; the relationship between the 

system and the external environment are defined and man-
aged by machine interface specifications. The output of 
systems engineering is an engineered system. These systems 
are composed of multiple components with specific function-
ality, assembled in a hierarchal form and grouped into mod-
ules that perform functions. The systems functions are a sum 
of the functions of its components and modules (Blanchard 
and Fabrycky 2006). For the class of problems and systems 
that do not conform to these assumptions, another approach is 
required. Complex adaptive systems engineering (CASE), 
complexity engineering, and system of system engineering 
(SOSE) are names for the variation on traditional systems 
engineering that addresses the nature of complex systems and 
problems. These disciplines offer a platform that addresses 
technical systems and environments, where traditional SE 
assumptions do not hold (White 2009). Though there is some 
variation in the approaches, they are all based on complexity 
theory and share some common attributers. 

The environment in which systems operate presents a 
variety of hazards (that is, stressors). Hazards can compro-
mise the functions of the systems and jeopardize the success-
ful completion of their missions. When characterizing 
systems in terms of their stress implications, there are several 
approaches to consider: risk, reliability, vulnerability, and 
resiliency. System analysis based on these methods are used 
to improve system designs; compare and select systems; iden-
tify systems that are in jeopardy more or less than others; 
and develop strategies and policies for governance given the 
hazards in our society. The general assumption in all of these 
methods is that the stressful events or hazards will result in 
negative system outcomes. 

Antifragility is an approach that is not based on these 
assumptions; it considers the possibility that some systems 
might actually get better with stress (Taleb 2012). The 
authors’ motivations are to explore methods for analyzing 
engineered systems in the context of the hazards they face. A 
framework is offered with a potential application for analyz-
ing and measuring antifragility based on complex adaptive 
systems theories. The framework reduces a multidimensional 
concept of fragility into a two-dimensional, continuous inter-
val scale. The authors present a systems dynamic model, 
as well as definitions of antifragility attributes in systems. In 
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section 2, a brief literature review and definitions of current 
approaches are presented for analyzing systems and how they 
respond to hazards (that is, stress). Antifragile systems are 
defined in section 3 through a discussion of complex adaptive 
systems (CAS), examples of antifragile systems, and obser-
vations from a simulation model of an antifragile system 
developed by the authors. Section 4 introduces a conceptual 
framework for analyzing hazards and systems based on 
systems engineering concepts and the authors’ model for 
antifragility. The article concludes with observations and 
opportunities for additional study. 

2 Analyzing Systems and Hazards

In the most basic form, a system is naively accepted to be a 
collection of interconnected parts. By this definition almost 
everything is a system of some sort. A more engineering 
focused definition includes the concept for an ensemble of 
autonomous elements, achieving a higher level functionality 
by leveraging their shared information, feedbacks, and inter-
actions while performing their respective roles (Zadeh 1969; 
Sokolowski and Banks 2010; Buede 2011; INCOSE 2011). 
The elements of a system can include hardware, software, 
people, processes, policies, tools, doctrine, and virtually any-
thing that is required to be transformed into desired outputs. 

2.1 Hazards and Stressors

When systems are performing their intended purpose or 
otherwise functioning correctly, they are in an intended state. 
When systems are not functioning correctly they are in an 
unintended state. A state can be unintended and known (that 
is, predicable failure states). It can also be unintended and 
previously unknown (failure states or serendipitous state). 
Stressors are those forces outside of the specified operating 
conditions and constraints that threaten to move a system 
from an intended to an unintended state (Turner et al. 2003; 
Chrousos 2009). 

The stress created by these forces can originate from 
internal interaction between system components, like heat 
caused by friction between moving parts or pressure gradu-
ally building up in a water line. Stress can also be the result of 
external hazards. A hazard is a physical condition, or event, 
that threatens the well-being of people, organizations, societ-
ies, environments, and/or property. Extreme hazards are those 
that potentially have catastrophic consequences and are gen-
erally not reducible to cause-effect relationships, which make 
them irreducible. These are the hazards that do not fit normal 
distributions. Their history of severity and frequency is not 
an indicator of their future behavior. These are the unknown 
unknowns, Black Swans, or X-Events (Taleb 2010, 2012; 
Casti 2012). X-Events can also be the unintended output of 
a system with both positive (serendipitous) and negative 
(catastrophic) consequences. System of systems (SOS) and 

complex adaptive systems (CAS), in particular, are designed 
with hazards in mind and are intended to have the ability to 
defend against stressors and hazards (X-Events). Analytical 
frameworks are required in order to assess this ability in 
systems as well as their propensity to produce X-Events.

2.2 Current Assessment Approaches

The threat that hazards pose varies in degree of impact and 
uncertainty of occurrence: for example, driving without a 
seatbelt, smoking, high-cholesterol diets, spending beyond 
ones means; under resourcing projects; and ignoring preven-
tive maintenance. This is a pretty eclectic group of hazards. 
They span the spectrum of personal injury, financial loss, 
personal inconvenience, and even death, with low to almost 
certain occurrence. The impact and uncertainty of occurrence 
posed by a hazard is an exogenous point of view and is 
focused on the hazard rather than the system that experiences 
it. What are the chances that a hazard will occur and if it 
does, how will it impact the system? These questions are 
addressed in the framework of risk analysis. How does the 
system (people, property, and/or environment) respond when 
a hazard (that is, stress) is experienced? There are both 
exogenous and endogenous considerations to this question. 
The answer can be determined by the characteristics of the 
system and its environment: reliability, vulnerability, and 
resiliency (Table 1).

3 Complex Adaptive Systems

When the outputs of a system are predictable and can be 
explained or reduced to the behaviors of its micro level 
components, then the system is resultant. However, when the 
system has unexpected outputs and the behavior is not 
explainable by its components, the system is emergent 
(Goldstein 1999; Bar-Yam 2004). Emergence is both a 
characteristic and a phenomenon in complex systems. As a 
characteristic, emergence is the same as irreducibility, that is, 
the inability to transfer knowledge, methods, causations, or 
explanations about the macro system to its micro system 
components, and vice versa (Menzies 1988; Christen and 
Franklin 2002). As a phenomenon, emergence is an interest-
ing and unpredicted pattern, behavior or otherwise state of the 
system (Holland 2012). 

3.1 Adaptive Systems

In a dynamic environment, a host of things are always 
changing: conditions, constraints, threats, opportunities, tech-
nology, knowledge, requirements, and so on. The ability to 
make internal adjustments in response to, or in anticipation 
of, external environmental changes, is the essence of being 
adaptive. In less complex systems, these changes take place 
based on pre-established rules in the system that allows 
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the component (or agent) to anticipate the consequences of 
particular actions. The structure of the rules are typically “if 
condition then action.” Based on these rules, the agents in an 
adaptive system autonomously analyze the environment and 
make adjustments, and respond within the constraints of their 
established rules (Lansing 2003). Complex adaptive systems 
(CAS) are not only responsive to environment dynamics; they 
have the ability to learn from experiences (Geli-Mann 1994). 
Learning is distinguished from merely adapting based on 
environmental experiences to predefined structures based on 
internal rule sets. Learning goes further by forming new 
emergent structures that were previously unknown. CAS self-
organize and display Darwinism or natural selection type 
behaviors like those of biological systems (Holland 1992; 
Brandon 2010). The complex adaptive system applies artifi-
cial (or natural) intelligence to adjust its schema and may 
apply a revised set of rules to future environmental experi-
ences. These adjusts over time allow CAS to improve as they 
experience hazards and stress over time.

3.2 An Alternative Framework

How systems respond to X-Events as stressors, or how they 
produce X-Events as unintended outputs, can alternatively 
be characterized on a continuum that ranges from fragile 
(degrading with stress), to robust (unchanged by stress), to 
antifragile (improving with stress) (Taleb 2012).

3.2.1 Robustness

Systems have to perform their functions over a range of 
environmental conditions. These conditions include varying 
levels of stress from a variety of stressors. Robustness is the 
ability of a system (or characteristic of a system) to remain in 
a desired state over a range (magnitude and duration) of stress 
(Stelling et al. 2004; Kriete 2013). The broader the range of 

stress and the more stable the system (or particular attribute 
of the system), the more it is considered to be robust. The 
lack of sensitivity or the increased tolerance to stress makes a 
system more robust than systems that are sensitive or less 
tolerant to stress. Arguably, the concepts of robustness and 
reliability are very similar. However, there is a critical differ-
ence. Reliability is remaining unchanged within specified 
limits while robustness is remaining unchanged outside of 
specified limits (Laprie 2008). To be robust is to withstand 
stress due to X-Events.

3.2.2 Fragility

While robust systems (or system characteristics) remain 
unchanged by stress and continue to function, stress can 
easily cause a fragile system (or system characteristics) to fail 
(Allen and Hoekstra 1993). Like robustness and reliability, 
fragility and vulnerability are similar, but have critical differ-
ences. Vulnerable systems fail because of their degree of ex-
posure to stress of a specific nature, while fragile systems fail 
because they are easily broken regardless of the nature 
of stress they are exposed to. Vulnerability is an exogenous 
matter of susceptibility while fragility is an endogenous 
matter of weakness.

3.2.3 Antifragile

In some cases, not only do some systems develop the ability 
to withstand stress but they actually get better as they are 
exposed to stress or they produce serendipitous outputs; hence 
the term “antifragile” (Taleb 2012). Taleb argues that to some 
extent a system’s ability to withstand stress is a function of 
intended exposures to smaller stress events. Regular exposure 
to smaller doses of stress can strengthen a system and protect 
it from X-Events (or extreme stress). This is an endogenous 
characteristic but unlike any of the other concepts previously 
mentioned.

Table 1. Hazard response characteristics of systems

Characteristic Definition Considerations

Risk Analysis A process of identifying potential hazards based on severity of consequence and likelihood of occurrence (McNeil, 
Frey, and Embrechts 2005). The intent is to sort potential hazards (that is, risk) and prioritize them for action based 
on objective criteria. One method is to grade likelihood and consequence on a scale of 1–5 (Simpleman et al. 2003; 
PMI 2008). 

Exogenous

Vulnerability The openness of a system to lose its design functions or the degree to which a system, subsystem, or component is in 
situations where it is exposed to those specific hazards that would be harmful or damaging to the system (Dowdney 
et al. 1995; Turner et al. 2003; Adger 2006; Gheorghe and Vamanu 2004).

Exogenous

Reliability Determines the probability that a system will remain in an intended or non-failure state while operating (Dowdney 
et al. 1995; Johansson and Hassel 2010; Defense Acquisition University 2012). Systems are reliable to the extent that 
they are able to continue functioning and producing desired outcomes even when operating conditions are at the 
extremes of their specified limits (Kececioglu 1991; Kundur et al. 2004). 

Endogenous

Resiliency The ability of a system to quickly return to its intended or non-failure state (Kjeldsen and Rosbjerg 2004; Laprie 
2008) or the capacity of a system to absorb stress (Gheorghe and Muresan 2011; Gheorghe 2013). The key element 
of resiliency is not the ability to withstand stress by remaining unchanged, but rather the ability to bounce back to a 
desired state after experiencing a stressor. 

Endogenous
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3.3 Antifragile Examples

Most of us are familiar with the Greek mythological creature 
Hydra and her many heads. When Hercules attempted to 
kill the monster by cutting off its head, two would grow in 
its place (Linebaugh and Rediker 1990). This may be the 
ultimate example of antifragility as there were no limits to the 
expanding generation of Hydra’s heads. This section presents 
several real world antifragile examples. Though not a com-
prehensive list, the examples demonstrate that antifragility is 
more than a mythical concept.

3.3.1 Living Systems

We can look to the field of biology for real life versions of 
Hydra. Danchin, Binder, and Noria (2011) describe how after 
attempts to destroy life, many new forms evolve. Living sys-
tems possess the characteristic of “novelty creation.” When 
confronted with stress (that is, attempts to destroy them), they 
form previously unknown strains and structures. In other 
words they are emergent. Living systems use information 
management to enable successive generations to get stronger 
by learning from metadata about the stressors (antibiotics, 
antivirals, and so on.) experienced by previous generations. 

Consider forest fires. Forest fires destroy trees, but they 
also enable trees and other desirable vegetation to flourish 
(Certini 2005). The overgrowth of ground cover plants can 
prevent the germination of seeds from trees and ultimately 
stop their growth. Excessive overgrowth also is a source of 
fuel for more intense fires which not only destroy more trees 
but cause damage to the soil. Forest fires help the growth of 
trees by removing ground cover so seeds can germinate, and 
by removing excessive fuel so the fires will not grow stronger 
and do more damage. 

3.3.2 Industry and Technology

Airplane crashes can be tragic events. However, these crashes 
are “the fuel” for continuous improvement in aviation. The 
Aviation Safety Information Analysis and Sharing (ASIAS) 
system connects over 131 databases of aviation safety inci-
dents (Duquette 2013). Though in more recent years there has 
been very modest improvement, the aviation industry has 
successfully used data about failures to improve flight safety 
by 139 times over the last sixty years (Graham 2010; Pasztor 
2013). In contrast to its information systems (safety data, 
traffic control, and so on) which are highly coupled, the avia-
tion industry’s components (planes, pilots, airports, airlines 
companies, and so on) are loosely coupled. This means the 
safety of one flight is not directly dependent on another flight 
and the failures do not ripple through the system. This allows 
one flight to tragically crash and the other flights to benefit 
from the postcrash analysis. Under these conditions, a short-
term increase in aviation accidents can lead to greater overall 
safety in the industry. 

Netflix is well known for being an inexpensive source for 
online movies. However, they are also pioneers in the area of 
antifragile internet based systems. This may not be the official 
title of their effort, but it is an appropriate fit. Netflix created 
“Chaos Monkey,” a software application that intentionally 
generates real system outages with the intent that engineers 
will fix small outages and apply lessons learned to prevent 
larger outages in their video streaming business (Bennett 
and Tseitlin 2012). They also use the approach as a form of 
Hormesis and natural selection to weed out weak components 
and subsystems. Their original efforts were limited to small 
sectors of their network, but have expanded to include 
city-wide outages. Netflix is currently experimenting with 
“Chaos Gorilla” which will take down entire states. Netflix is 
applying the principle of supplying small amounts of stress 
to build up resistance against future stressors that could be 
catastrophic to their network. 

3.4 The Antifragility Model

Based on the examples and definitions previously discussed, 
a model of an antifragile system can be constructed. Using the 
stock and flow structure from systems dynamic modeling 
(Sterman 2000), the authors represent antifragile systems in 
Figure 1 and simulation output of the model in Figure 2.

3.4.1 Model Description

System stress is generically represented by the boxed variable 
(that is, a stock) “stress.” Stress is increased by the variable 
“change in stress.” From the definitions and examples dis-
cussed, stress has an impact on “system performance.” The 
positive impact of stress does not exist in perpetuity; there are 
limits before the impact will turn negative. System perfor-
mance is also a stock variable and is increased by the variable 
“increase in performance” when the impact from stress is 
positive and decreased by the variable “decrease in perfor-
mance” when the impact from stress is negative. System 
performance can represent the entire system or particular 

Figure 1. System dynamic model of antifragility
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Figure 2. Antifragile system dynamic simulation

attributes of the system. The other variables in the model are 
necessary for the structure and simulation of the model.

The most important characteristic of the model is its rein-
forcing and balancing loops. The green circle with the clock-
wise arrow represents the system’s tendency to be antifragile: 
as the rate of change in system performance is increased by 
stress, it causes the stock of performance to grow which in 
turn increases the rate of change in performance and causes 
even more performance growth. Performance would continue 
to grow indefinitely if it were not for the balancing loop (the 
red circle with the counterclockwise arrow). The balancing 
loop has the opposite effect on system performance and 
represents the system’s tendency to be fragile: the rate of 
decreasing performance is increased by the negative impact 
of stress and causes the stock of performance to decline. Since 
the rate of decline is a function of the existing performance 
level, the rate of decline is initially high but declines as level 
of performance gets lower. Performance continues to decline 
but at ever decreasing rates as the level approaches zero. 

3.4.2 Simulation Results

There are three variables represented in Figure 2: impact of 
stress on system performance (blue line); stress level (red 
line); and system performance (green line). Running a simu-
lation of the model, several observations can be made that 
further support the definition of an antifragile system. When 
the slope of the three variables is relatively flat, the system is 
in a robust state. It is remaining unchanged by stress. As the 
slopes begin to increase the system moves into an antifragile 
state. During this phase, performance increases beyond the 
system’s initial level. As observed in the examples presented, 
there is a limit to system improvement caused by stress. 
Once the stress level reaches a “tipping point” the slope of the 
impact variable starts to decrease and the system enters a 
fragile state. During this phase the impact of stress is nega-
tive, the system’s performance continues to decline and 
approaches zero (complete failure).

3.5 The Antifragility Curve

The relationship between the impacts of stress on system 
performance can be expressed graphically as seen in Figure 3.

When the system is in the Robust zone, all outcomes are 
known and intended. The system is functioning according to 
its design and the stakeholder’s expectations. As the curve 
moves to the regions left of Robust and into the Fragile zone, 
forces from stressors eventually overcome the system and it 
rapidly declines into a failure state. All outcomes in the fragile 
zone are unintended but may include known failure states as 
well as previously unknown failure states (or X-Events). All 
outcomes to the right of Robust are positive outcomes that 
were previously unknown (or positive X-Events).

4 Assessing Antifragility in Complex 
Adaptive Systems

In order to determine where a system fits on the antifragility 
curve, a set of analytical criteria must be identified. For 
each criterion, given the strategies, policies, and design of 
the system, the question is: how will the system respond to an 
X-Event or other stressor? 

4.1 Analytical Criteria

Complex systems can be characterized by a set of common 
attributes that they tend to possess. Analyzing systems in 
terms of these attributes can provide insight into how the sys-
tem will respond to stressors. Several concepts are presented 
on which to base the analysis of complex systems in terms of 
their response to stress (or X-Events). In their books X-Events: 
The Collapse of Everything and Antifragile: Things that Gain 
from Disorder, Casti (2012) and Taleb (2012) discuss system 
attributes based on theories of system responses to X-Events. 
Jackson and Ferris (2012) offer a list of criteria based on 
domain expert analysis of 10 case studies on system of system 

Figure 3. Antifragility curve
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Table 2. Antifragility analytical criteria

Attribute Theory

Entropy Systems tend to increase in complexity over time. In doing so they lose the ability to use information to transform inputs into 
desired outputs; the number of potential system states relative to known system states increase (that is, disorder grows); and 
X-Events emerge (Chakrabarti and De 2000; Atkins 2003; Bradnick 2008).

Emergence The relationship between the outputs of a system at the macro level and the actions of the micro level components in the system 
is either resultant or emergent (Goldstein 1999). When system outputs can be directly traced to activities or functions of its 
components and there are cause-effect relationships between micro level component activity and macro level results, then the 
system output is said to be resultant. However, when no such traceability can be constructed, the output is said to be emergent 
and X-Events are produced (Menzies 1988; Christen and Franklin 2002).

Efficiency vs. Risk Efficiencies are gained at the expense of increased potential for harm due to stress. For example, redundant components may 
reduce the potential for system failure, but at the expense of more resources without more functionality or output. Less redundant 
systems designs are more efficient but are more fragile. 

Balancing Constraints 
vs. Freedom 

The optimum condition for a system is a balance of constraints and degrees of freedom. A system that is too open (that is, high 
degrees of freedom, minimum constraints, maximum interactions and dependencies with other systems, and so on) has increased 
exposure to X-Events.

Coupling 
(Loose/Tight)

Failures can reverberate through tightly coupled (that is, linked) systems increasing in amplitude and potentially leading to 
catastrophic failure. The greater the degree of coupling between systems and system components, the more fragile the system 
becomes.

Requisite Variety There are regulators in a SOS that attempt to control the outcome and behaviors of the agents in the system. When the number of 
regulators is insufficient relative to the number of agents, the behavior of the system becomes unpredictable and extreme 
hazardous events emerge. In other words, a gap in complexity of the systems and its agents or subsystems causes X-Events to 
occur.

Stress Starvation Withholding stress from systems or attempting to reduce uncertainty in them can cause weakness, fragility, and expose them to 
hazardous X-Events. Applying regular and controlled stress to a system can increase its robustness and potentially lead to 
antifragility. 

Redundancy Having duplicate components that are required for a function or duplicate functions to meet the same objective, are to create 
excess system capacity and are effective hazard defenses. This is good for building robustness to a degree, but falls short when it 
is based on estimates from historical worse case events. When X-Events reoccur, they can do so with an impact that is more or 
less than the historical levels. Redundancy tends to stabilize systems and make them more robust (that is, less fragile but not 
antifragile).

Non-Monotonicity Learning from mistakes can be an effective defense against stressors. Mistakes and failures can lead to new information. As new 
information becomes available it defeats previous thinking, which can result in new practices and approaches (Augusto and 
Simari 2001; Nute 2003; Governtori and Terenziani 2007). In this case, stressors can actually cause the system to improve.

Absorption Systems shall have design margins that can encompass (that is, absorb) the magnitude and duration of the potential stress it may 
encounter and continue in an intended state. The greater the absorption, the greater the robustness and the less the fragility. 
Absorption does not increase antifragility.

interventions intended to improve a system’s ability to sur-
vive a threat. These theories and related system complexity 
theories are summarized in Table 2.

4.2 Evaluating Systems

Systems are evaluated based on systems attributes that are of 
interest to its stakeholders: strategies, policies, governance 
structure, components, subsystems, processes, and so on. 
Questions are framed about a system in terms of how the 
system would respond to stress and answered based on the 
criteria in Table 2. The question should require a quantitative 
response on an interval scale. Many methods can be used to 
collect and aggregate responses. For example, the inventory 
of questions can be answered by subject matter experts or 
stakeholder focus groups, and the responses aggregated using 
Delphi methods (Ishikawa et al. 1993; Rowe and Wright 
2001) and quantified using fuzzy logic (Zadeh 1975; Klir and 
Yuan 1995). For example, Likert type questions could be 
posed for one or more system attributes:

A. The system performance will improve if it experiences 
stress
 Strongly disagree (1)
 Somewhat disagree (2)
 Somewhat agree (3)
 Agree (4)
 Strongly agree (5)

B. If the system experiences stress, it will
Significantly degrade (1)
 Moderately degrade (2)
 Remain the same (3)
 Moderately improve (4)
 Significantly improve (5)

The specific questions are less important than the format 
in which they are framed. The interval responses maintain 
order and distance. Having responses on an interval scale 
is most important to be able to aggregate responses for 
each criterion (and multiple responders if necessary), apply 
statistics, and draw inferences (see Section 5).
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5 Smart Grid Example 

The smart grid electrical power system and space weather 
hazard are used here to demonstrate the application of the 
antifragility analysis framework.

5.1 Applying Antifragility Analysis 

The electric power grid refers to a system that performs four 
major operations for electricity: generation, transmission, dis-
tribution, and control (Kappenman 2001; Fang et al. 2011). 
The basic system consists of a power generation plant, power 
transmission substations, power distribution substations, and 
power consumers (commercial, residential, and industrial) 
(Gheorghe and Muresan 2011; Gao et al. 2012). Space weathe r 
is solar induced disturbances as meteorological phenomenon 
(Gold 1959; Kane 2006). The electric currents produced 
by space weather storms have the most potential for damage 
to electrical power grids. These powerful currents have the 
potential to penetrate almost any natural or man-made struc-
ture: power lines, stone, rock, metal, and brick, for example 
(Fry 2012).

5.1.1 Implications of Space Weather on Smart Grid 
Development

Space weather is episodic, with long periods of calm between 
storms followed by rare periods of extreme events that can 
have catastrophic impacts on technology (Hapgood 2011). 
The major classes of power system failures that can have 
space weather implications are: voltage collapse, frequency 
collapse, loss of synchronism, large power swings, and 
cascade of overloads (Singh 2012). Smart grid technologies 
improve the efficiency and performance of electrical power 
systems. However, these technologies are still vulnerable to 
space weather events, as much or possibly more so than the 
basic power grid. Smart grids are complex adaptive systems 
that are highly interconnected and dependent upon communi-
cation systems (wireless networking and internet). The 
dependencies among artifacts expose them to the risk of cas-
cading failures (Bar-Yam 2005; DeWeck, Roos, and Magee 
2012). Even if geomagnetically-induced currents (GICs) or 
electromagnetic energy from solar flares only made localized 
contact with the power grid, the interdependencies of the 
smart grid can lead to broad cascading failures. Space weathe r 
is inevitable and cannot be prevented. It is not a question of 
if, but when a space storm will occur. Even though the storm 
cannot be avoided, societies can take defensive measures 
to mitigate the risk. An effective defense plan for smart grid 
systems against space weather must address the speed and 
breadth of the space storm event as well as the interdependent 
nature of the power system artifacts. Important aspects of an 
effective defense plan include (Singh 2012; RAE 2013): 

Intelligent Electronic Devices (IEDs)—High-speed 
protective relays, and programmable logic controllers 
(PLCs) can shut down segments of the power grid tens 

of milliseconds to protect the system from cascading 
failures. 

Wide Area Monitoring Protection and Control 
(WAMPAC)—Rather than local protection of individua l 
equipment (transformer, generator, line, and so on), 
the WAMPAC strategy attempts to protect the whole 
power system. WAMPAC uses Wide Area Measure-
ment Systems (WAMS) to monitor the system and 
identify opportunities for proactive interventions, and 
Wide Area Control (WAC) to implement automated 
actions to minimize the spread of negative events in the 
system.

Temporary interconnectivity—Create paths in the 
power grid that can be proactively disconnected if there 
is a threat of a solar storm.

More robust components—Advanced materials help 
make transformers, transmission lines, and circuits 
resistant to spikes in electromagnetic currents and 
high-voltage strikes.

Modeling and simulation (M&S)—M&S can be an 
effective tool to better understand the risk, and to test 
potential grid modifications.

Weather event forecasting—Much like the terrestrial 
weather forecasting system, implementing forecasting 
for space weather could provide early warning of 
impend ing storms. This will allow suppliers, businesse s, 
and individuals to be better prepared for a space 
weather X-Event: increasing power reserves, staging 
spare components, and relocating critical systems to 
unthreatened sections of the grid.

5.1.2 Antifragility Analysis of Smart Grid Power 
Systems

The antifragility analysis of smart electrical grids in the 
United States is summarized in the following section. For 
demonstration purposes, following expert discussions, a 
scale from −10 to 10 is used to represent fragility, robustness, 
and antifragility: −10≤ fragility <−3; −3≤ robustness ≤3; 
3< antifragility ≤10. The results represent a hypothetical sur-
vey of domain experts: red where the assessment finds 
exposure to an X-Event will cause the system to degrade (that 
is, system is fragile); yellow where there is no expected 
impact (that is, the system is robust); and green where the 
findings suggest the system may actually improve (that is, the 
system is antifragile). The antifragility measurement is an 
average of the impact score for each criterion: Average 
(entropy, emergence, efficiency vs. risk, balancing constraints 
vs. freedom, coupling, requisite variety, stress starvation, 
redundancy, non-monotonicity, absorption) = Fragility Score.

5.2 Summary

The application of the antifragility analysis framework to 
the U.S. smart power grid is summarized in Table 3 and 
Figure 4.
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For six of the ten analytical criteria (or 60%), it was deter-
mined that a space weather X-Event would have a negative 
impact on the U.S. smart power grid. There was only one case 
of antifragility, and three cases of robustness. The average 
score on the antifragility analysis was −4.3. Based on this 
result, we can conclude that the space weather defense plan 
and smart grid technology, in general, are not having the 
intended effect of reducing the threat of space weather. In 
terms of the fragility continuum, U.S. power grid systems 
would be considered fragile and would degrade with 
exposure to the stress of a space weather X-Event. 

6 Conclusion

The antifragility analysis framework has the potential to 
provide new insight about systems and system characteristics 

Table 3. Summary of the U.S. smart power grid system analysis

Attribute Analysis Impact

Entropy Efficiency of information in the power grid system declines as the interconnectedness and the number of components 
increase. Given the growing interconnectedness, the increasing demand curve for power and the entrance of new 
suppliers as a result of deregulation there appear to be indications of growing entropy. Therefore, a space weather 
X-Event will likely still cause the system to degrade.

−8

Emergence Significant efforts are being made to increase the system’s robustness through component improvements. These 
attempts are not likely to work as space weather is complex and not reducible to a predicable vector for which 
component design criteria can be established. Consequently, a space weather X-Event will likely cause the system to 
degrade. 

−7

Efficiency vs. Risk Reducing power usage far below the capacity of the system would create power reserves that could be transferred to 
damaged areas of the grid in the event of a power interruption. However, the trend in the power industry is in the other 
direction toward: greater capacity consumption, reductions in safety margins, increased efficiencies, and therefore 
increased risk. A space weather X-Event will likely cause the system to degrade.

−7

Balancing Constraints 
vs. Freedom 

Regulations promote safety in the power grid system by controlling who can distribute power, and standards for how 
power is distributed. As the industry moves toward greater deregulation there will be more distributors, fewer controls 
on standards for use, and greater opportunities for dangerous practices that make it easier to break the system. These 
practices make the system more fragile. A space weather X-Event will likely cause the system to degrade.

−6

Coupling Integration of internet technologies is increasing the coupling of components and agents in power grid systems. 
However, temporary interconnectivity and the implementation of Intelligent Electronic Devices (IEDs) are among the 
strategies to lessen the likelihood that cascading failures will occur. A space weather X-Event will likely have little to 
no impact on the system.

−1

Requisite Variety Privatization of the utility industry through deregulation is increasing the variety of suppliers in the power grid system 
and decreasing the variety for the U.S. government as a controlling body. This puts the system at risk of not having 
enough controls to keep the power grid system stable. A space weather X-Event will likely cause the system to 
degrade. 

−7

Stress Starvation There is no evidence that e.g. the United States has a practice of intentionally exposing its power grid system to 
regular and sustained stress in an effort to build its resilience. In fact, our technologies are intended to reduce 
uncertainty and make the system less exposed to stress. A space weather X-Event will likely cause the system to 
degrade.

−8

Redundancy Technology has been used to create multiple paths to transport power, and process information. If one subsystem fails, 
power can be diverted to or from another source. However, the redundancies are only good if the X-Event does not 
exceed the excess capacity they create. A space weather X-Event will likely have little to no impact on the system.

−1

Non-Monotonicity 
(Learning from 
Mistakes)

The transparency created by the openness of U.S. society creates an opportunity for society to learn from its mistakes. 
The free market economy creates motivation to learn from past mistakes and create profitable business opportunities. 
Innovations are created based on these mistakes and the prospects of profiting from innovation. A space weather 
X-Event will ultimately have a positive impact on the system.

+4

Absorption Advanced materials in smart grid power systems help make transformers, transmission lines, and circuits more 
resistant to spikes in electromagnetic currents. The components allow the design margins to be increased, which 
improves the system’s ability to withstand stress form space weather. A space weather X-Event will likely have no 
impact on the system.

−2

Figure 4. Smart power grid antifragility analysis for e.g. the 
United States
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in terms of their ability to withstand or improve when they 
experience stress. The antifragile simulation model demon-
strates the antifragile concept. However, the model assumes 
first order relationships between stress and system perfor-
mance when in fact the relationships might be of higher 
orders. The model can be improved by formally defining 
these relationships. More work also needs to be done to 
define the standards for selecting the evaluation criteria, and 
methods for aggregating evaluation results. Though the anti-
fragility evaluation has been presented as a two-dimensional 
analysis, in reality a multidimensional construct may be more 
appropriate. The authors are investigating the application 
of multiattribute decision-making and evidential reasoning 
as potential methods to address the issues of aggregation and 
representation of multidimensional considerations.
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