Hurricane Matthew Anatomy of a Flood: Impacts and Forecasts

Mike Dutter
National Weather Service

Bill Sammler
National Weather Service

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_16

Repository Citation
https://digitalcommons.odu.edu/hraforum_16/5

This Presentation is brought to you for free and open access by the Hampton Roads Sea Level Rise/Flooding Adaptation Forum at ODU Digital Commons. It has been accepted for inclusion in May 19, 2017: Modeling and Managing Extreme Precipitation by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Hurricane Matthew
Anatomy of a Flood

Impacts and Forecasts

Mike Dutter – Science and Operations Officer
Bill Sammler – Warning Coordination Meteorologist

National Weather Service – Wakefield, VA
Overview

- Third Significant Rainfall Event in 6 weeks
- Interaction with Cold Front Enhanced Winds near the coast (SE VA/NE NC)
 - Matthew Not Truly Tropical
- Storm Surge/Beach Erosion a Problem
 - Tides combined with fresh water a MAJOR problem
- Track Forecasts Were As Not Helpful in Assessing Potential Impacts As They Normally Are
Tropical Cyclone Rainfall

Hurricane Irene – 2011 vs. Floyd - 1999

Hurricane Irene
August 24-30, 2011
3423 sites

Maximum: 15.74"
Bayboro, NC

Hurricane Floyd
September 14-17, 1999

Maximum: 24.06"
Southport 5N, NC
Tropical Cyclone Rainfall

Hurricane Irene – 2011 vs. Isabel - 2003

Hurricane Irene
August 24-30, 2011
3423 sites

Maximum: 15.74"
Bayboro, NC

Hurricane Isabel
Storm Total Rainfall
September 17-21, 2003
3009 stations

Maximum: 20.20"
Upper Sherando, VA
Why did SE VA/NE NC see so much rain, while being 100-200 miles away from the “center” of the storm?
Predecessor Rain Events (PRE)

- Marked by a mid-latitude system interacting with a Tropical System (TC)
- Strong Moisture flux from the TC interacts with the associated mid-latitude cold front and/or coastal front and creates intense precipitation near and on the cool side of the front
Radar Loop – 11 am to 11 am
The Anatomy of the Flood
Salient Points

- Widespread Major Floods Rarely Result from a Single Heavy Rain Event
- Antecedent Moisture Conditions Play a Critical Role
- Heavy Rainfall in September Made Matthew’s Flooding Possible
- Rainfall Pattern Resulted in Unusual Impacts
- *Looking at rainfall climatology (Average Recurrence Intervals) can help us understand the potential severity beforehand*
September Rainfall

September 01, 2016 Monthly Observed Precipitation

Created on: November 22, 2016 - 20:39 UTC
Valid on: October 01, 2016 12:00 UTC

[Map showing precipitation data with a circled area indicating high rainfall]
Hurricane Matthew Rainfall

25”-35” of Rain in 30-45 Days!!!
How Historic Was This 30-45 day period?

<table>
<thead>
<tr>
<th>Duration</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>0.415</td>
<td>0.481</td>
<td>0.534</td>
<td>0.623</td>
<td>0.701</td>
<td>0.776</td>
<td>0.842</td>
<td>0.905</td>
<td>0.977</td>
<td>1.05</td>
</tr>
<tr>
<td>10 min</td>
<td>0.652</td>
<td>0.769</td>
<td>0.855</td>
<td>0.906</td>
<td>1.12</td>
<td>1.24</td>
<td>1.34</td>
<td>1.43</td>
<td>1.56</td>
<td>1.66</td>
</tr>
<tr>
<td>15 min</td>
<td>0.828</td>
<td>0.966</td>
<td>1.08</td>
<td>1.26</td>
<td>1.42</td>
<td>1.57</td>
<td>1.69</td>
<td>1.81</td>
<td>1.94</td>
<td>2.08</td>
</tr>
<tr>
<td>30 min</td>
<td>1.14</td>
<td>1.34</td>
<td>1.54</td>
<td>1.83</td>
<td>2.10</td>
<td>2.35</td>
<td>2.65</td>
<td>2.92</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>60 min</td>
<td>1.42</td>
<td>1.97</td>
<td>2.38</td>
<td>2.79</td>
<td>3.20</td>
<td>3.57</td>
<td>3.95</td>
<td>4.44</td>
<td>4.92</td>
<td></td>
</tr>
<tr>
<td>2 hr</td>
<td>1.66</td>
<td>1.99</td>
<td>2.38</td>
<td>2.92</td>
<td>3.49</td>
<td>4.07</td>
<td>4.61</td>
<td>5.19</td>
<td>5.74</td>
<td>6.48</td>
</tr>
<tr>
<td>3 hr</td>
<td>1.81</td>
<td>2.14</td>
<td>2.56</td>
<td>3.10</td>
<td>3.82</td>
<td>4.50</td>
<td>5.15</td>
<td>5.86</td>
<td>6.80</td>
<td>7.70</td>
</tr>
<tr>
<td>6 hr</td>
<td>2.19</td>
<td>2.99</td>
<td>3.11</td>
<td>3.84</td>
<td>4.05</td>
<td>5.51</td>
<td>6.34</td>
<td>7.25</td>
<td>8.46</td>
<td>9.72</td>
</tr>
<tr>
<td>12 hr</td>
<td>2.59</td>
<td>3.06</td>
<td>3.69</td>
<td>4.57</td>
<td>5.60</td>
<td>6.77</td>
<td>7.73</td>
<td>8.91</td>
<td>10.5</td>
<td>12.2</td>
</tr>
<tr>
<td>24 hr</td>
<td>3.02</td>
<td>3.67</td>
<td>4.74</td>
<td>5.64</td>
<td>6.98</td>
<td>8.14</td>
<td>9.41</td>
<td>10.8</td>
<td>12.9</td>
<td>14.7</td>
</tr>
<tr>
<td>2 day</td>
<td>3.48</td>
<td>4.22</td>
<td>5.42</td>
<td>6.45</td>
<td>8.00</td>
<td>9.35</td>
<td>10.8</td>
<td>12.5</td>
<td>15.0</td>
<td>17.2</td>
</tr>
<tr>
<td>3 day</td>
<td>3.68</td>
<td>4.46</td>
<td>5.70</td>
<td>6.76</td>
<td>8.32</td>
<td>9.66</td>
<td>11.1</td>
<td>12.8</td>
<td>15.2</td>
<td>17.4</td>
</tr>
<tr>
<td>4 day</td>
<td>3.88</td>
<td>4.70</td>
<td>5.99</td>
<td>7.07</td>
<td>8.64</td>
<td>9.97</td>
<td>11.4</td>
<td>13.0</td>
<td>15.3</td>
<td>17.5</td>
</tr>
<tr>
<td>7 day</td>
<td>4.54</td>
<td>5.48</td>
<td>6.89</td>
<td>8.06</td>
<td>9.75</td>
<td>11.2</td>
<td>12.7</td>
<td>14.4</td>
<td>16.7</td>
<td>18.7</td>
</tr>
<tr>
<td>10 day</td>
<td>5.11</td>
<td>6.13</td>
<td>7.60</td>
<td>8.81</td>
<td>10.5</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 day</td>
<td>6.03</td>
<td>8.25</td>
<td>10.0</td>
<td>11.5</td>
<td>13.5</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 day</td>
<td>7.70</td>
<td>10.3</td>
<td>12.2</td>
<td>13.8</td>
<td>16.1</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 day</td>
<td>8.62</td>
<td>11.5</td>
<td>13.5</td>
<td>16.0</td>
<td>18.3</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 day</td>
<td>12.6</td>
<td>14.9</td>
<td>17.5</td>
<td>19.6</td>
<td>22.4</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. PDS-based precipitation frequency estimates with 90% confidence intervals (in inches).

Average recurrence interval (years):

<table>
<thead>
<tr>
<th>Duration</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>0.375</td>
<td>0.435</td>
<td>0.533</td>
<td>0.623</td>
<td>0.701</td>
<td>0.776</td>
<td>0.842</td>
<td>0.905</td>
<td>0.977</td>
<td>1.05</td>
</tr>
<tr>
<td>10 min</td>
<td>0.601</td>
<td>0.695</td>
<td>0.855</td>
<td>0.966</td>
<td>1.12</td>
<td>1.24</td>
<td>1.34</td>
<td>1.43</td>
<td>1.56</td>
<td>1.66</td>
</tr>
<tr>
<td>15 min</td>
<td>0.754</td>
<td>0.874</td>
<td>1.08</td>
<td>1.26</td>
<td>1.42</td>
<td>1.57</td>
<td>1.69</td>
<td>1.81</td>
<td>1.94</td>
<td>2.08</td>
</tr>
<tr>
<td>30 min</td>
<td>1.08</td>
<td>1.39</td>
<td>1.64</td>
<td>1.83</td>
<td>2.10</td>
<td>2.35</td>
<td>2.65</td>
<td>2.92</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>60 min</td>
<td>1.25</td>
<td>1.62</td>
<td>1.97</td>
<td>2.38</td>
<td>2.79</td>
<td>3.20</td>
<td>3.57</td>
<td>3.95</td>
<td>4.44</td>
<td>4.92</td>
</tr>
<tr>
<td>2 hr</td>
<td>1.52</td>
<td>1.99</td>
<td>2.38</td>
<td>2.92</td>
<td>3.49</td>
<td>4.07</td>
<td>4.61</td>
<td>5.19</td>
<td>5.74</td>
<td>6.48</td>
</tr>
<tr>
<td>3 hr</td>
<td>1.63</td>
<td>2.14</td>
<td>2.56</td>
<td>3.10</td>
<td>3.82</td>
<td>4.50</td>
<td>5.15</td>
<td>5.86</td>
<td>6.80</td>
<td>7.70</td>
</tr>
<tr>
<td>6 hr</td>
<td>1.97</td>
<td>2.62</td>
<td>3.11</td>
<td>3.84</td>
<td>4.05</td>
<td>5.51</td>
<td>6.34</td>
<td>7.25</td>
<td>8.46</td>
<td>9.72</td>
</tr>
<tr>
<td>12 hr</td>
<td>2.32</td>
<td>3.06</td>
<td>3.69</td>
<td>4.57</td>
<td>5.60</td>
<td>6.77</td>
<td>7.73</td>
<td>8.91</td>
<td>10.5</td>
<td>12.2</td>
</tr>
<tr>
<td>24 hr</td>
<td>2.77</td>
<td>3.67</td>
<td>4.74</td>
<td>5.64</td>
<td>6.98</td>
<td>8.14</td>
<td>9.41</td>
<td>10.8</td>
<td>12.9</td>
<td>14.7</td>
</tr>
<tr>
<td>2 day</td>
<td>3.19</td>
<td>4.22</td>
<td>5.42</td>
<td>6.45</td>
<td>8.00</td>
<td>9.35</td>
<td>10.8</td>
<td>12.5</td>
<td>15.0</td>
<td>17.2</td>
</tr>
<tr>
<td>3 day</td>
<td>3.36</td>
<td>4.46</td>
<td>5.70</td>
<td>6.76</td>
<td>8.32</td>
<td>9.66</td>
<td>11.1</td>
<td>12.8</td>
<td>15.2</td>
<td>17.4</td>
</tr>
<tr>
<td>4 day</td>
<td>3.55</td>
<td>4.70</td>
<td>5.99</td>
<td>7.07</td>
<td>8.64</td>
<td>9.97</td>
<td>11.4</td>
<td>13.0</td>
<td>15.3</td>
<td>17.5</td>
</tr>
<tr>
<td>7 day</td>
<td>4.35</td>
<td>5.48</td>
<td>6.89</td>
<td>8.06</td>
<td>9.75</td>
<td>11.2</td>
<td>12.7</td>
<td>14.4</td>
<td>16.7</td>
<td>18.7</td>
</tr>
<tr>
<td>10 day</td>
<td>4.76</td>
<td>6.13</td>
<td>7.60</td>
<td>8.81</td>
<td>10.5</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 day</td>
<td>5.71</td>
<td>8.25</td>
<td>10.0</td>
<td>11.5</td>
<td>13.5</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 day</td>
<td>6.94</td>
<td>10.2</td>
<td>12.2</td>
<td>13.8</td>
<td>16.1</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 day</td>
<td>9.91</td>
<td>13.5</td>
<td>16.0</td>
<td>18.3</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 day</td>
<td>11.5</td>
<td>14.9</td>
<td>17.5</td>
<td>19.6</td>
<td>22.4</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What prompted us to issue this?

Remember, we had flood warnings and flash flood warnings throughout the evening.
Precipitation Frequency and Average Recurrence Intervals (ARI)

- Can be found in NOAA Atlas 14: (http://www.nws.noaa.gov/oh/hdsc/index.html)
- Gives us various precipitation estimates and confidence levels for various time intervals, and their return periods
 - i.e. What is the amount of rainfall that needs to fall over 24 hours which would lead to a 1 in 100 event
- Important to note that even though you can get information for any place in the region, the data is valid for a point – not a region.
 - There may be several “100 year” events in the region throughout a given year
24h Average 100yr Recurrence Interval
So, the overall event suggested that it was a 1 in 200 event (0.5% probability). This is one of the reasons why there was such widespread and persistent flooding.
This information prompted the issuance of a Flash Flood Emergency.
Where Does the Water Go?

Max Rainfall September through Matthew
Lawrenceville, VA - 9/15 to 10/18

- ~2 ft.
- ~3 ft.
- ~4 ft.
- ~+20 ft.
Franklin, VA - 9/15 to 10/18

~+6 ft.
~+13 ft.
~3.5 ft.
How can we better communicate flooding from the combination of tides and freshwater???
Tidal vs. River Graphs

Site Time (EDT)
- Graph Created (12:31PM Oct 12, 2016)
- Observed

PSQN7 (plotting HGIRG) "Gage 0" Datum: -5.5'

Observations courtesy of US Geological Survey
Tidal vs. River Graphs

South Mills, NC - 9/15 to 10/18

“Record” Stage

~6.5 ft.

~7.5 ft.

6 Days above “record” stage!!
Post Disaster Photos
Thank You!

Any Questions?

michael.dutter@noaa.gov
william.sammler@noaa.gov