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ABSTRACT

EXTENDED POISSON MODELS FOR COUNT DATA WITH
INFLATED FREQUENCIES

Monika Arora
Old Dominion University, 2018
Director: Dr. N. Rao Chaganty

Count data often exhibits inflated counts for zero. There are numerous papers

in the literature that show how to fit Poisson regression models that account for the

zero inflation. However, in many situations the frequencies of zero and of some other

value k tends to be higher than the Poisson model can fit appropriately. Recently,

Sheth-Chandra (2011), Lin and Tsai (2012) introduced a mixture model to account

for the inflated frequencies of zero and k. In this dissertation, we study basic prop-

erties of this mixture model and parameter estimation for grouped and ungrouped

data. Using stochastic representation we show how the EM algorithm can be adapted

to obtain maximum likelihood estimates of the parameters. We derive the observed

information matrix which yields standard errors of the EM estimates using ideas

from Louis (1982). We also derive asymptotic distributions to test significance of the

inflation points. We use real life examples to illustrate the procedure of fitting our

model via EM algorithm.

The second part of this dissertation deals with a generalization of this mixture

model where the one parameter Poisson distribution is replaced by a two parameter

Conway-Maxwell-Poisson (CMP) distribution, which unlike the Poisson distribution

accounts for both over and underdispersion in the count data. The CMP distri-

bution has recently gained popularity, and a CMP model for zero inflated count

data was introduced by Sellers and Raim (2016). We discuss properties of the CMP

distribution and propose a new mixture distribution, namely zero and k inflated

Conway-Maxwell-Poisson (ZkICMP) to address inflated counts with over and under-

dispersions. We develop regression models based on ZkICMP and discuss parameter

estimation using analytical and numerical methods. Finally, we compare goodness

of fit of inflated and standard models on simulated and real life data examples.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

1.1.1 POISSON MODELS

Data that counts the number of occurrences of certain events, or the number of

subjects or items that fall in certain categories arise in many scientific investigations,

medical and social science research. The most commonly used models to analyze such

data are developed using Poisson probability distribution. The Poisson distribution

possesses the equidispersion property because the variance which is a measure of

dispersion is equal to the mean for this distribution. However, in real life examples

most often the data is overdispersed or underdispersed. The common solution for

handling overdispersion or underdispersion is to replace the Poisson distribution with

a negative binomial or the simpler geometric distribution.

There could be several reasons that lead to overdispersion in the data. A primary

cause of overdispersion in the count data is an inflated number of zeros in excess of the

number expected under the Poisson distibution. In such cases, an appropriate model

is the zero inflated Poisson (ZIP). There are numerous papers in the literature dealing

with the ZIP model. The earliest paper on the ZIP model was by Cohen (1960). In

a seminal paper, Lambert (1992) introduced and studied the ZIP regression model

using Expectation- Maximization (EM) approach. The ZIP model with random

effects has been studied by ((Yau and Lee, 2001), (Min and Agresti, 2005)). Ghosh

et al. (2006), explored the Bayesian approach for small to moderate sample sizes.

The ZIP models using Bayesian approach for spatial data were studied by Agarwal

et al. (2002). Further, ZIP models for censored data were studied by Saffari and

Adnan (2011) and Yang and Simpson (2012).
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In health science research, zero inflated count models have been shown to per-

form better than traditional count models, for example, see the articles by Umbach

(1981), Gupta et al. (1996), and Yau and Lee (2001). ZIP models have been ap-

plied across a wide spectrum of academic disciplines including biology (Ridout et al.,

1998), ecology (Welsh et al., 1996), psychology ((Atkins and Gallop, 2007), (Loeys

et al., 2012)) and education ((Salehi and Roudbari, 2015)). The ZIP models have

been studied in economics by Cameron and Trivedi (2013), Greene (1994), Gurmu

and Trivedi (1996). In industry, the ZIP models have been applied in manufacturing

and transportation. In manufacturing, Lambert (1992) applied ZIP to the number

of defects in a manufacturing process with covariates like masking, soldering, etc.

See Ghosh et al. (2006) for another application of the ZIP model in manufacturing.

Qin et al. (2004) and Lord et al. (2005)) illustrate the use of ZIP models in trans-

portation. A good review and applications of ZIP models is given in Ridout et al.

(1998) and Bohning and Seidel (2003). The other ZIP like models are zero inflated

negative binomial (ZINB), zero inflated geometric (ZIG), and zero inflated Binomial

(ZIB). Numerous authors have investigated these models. For example, Hall (2000)

illustrated use of ZIP and ZIB in horticulture.

There are two procedures in SAS that deal with zero inflated models. These

procedures are new and in experimental stages. Both, the finite mixture model

(FMM) and count regression (COUNTREG) procedures function like the glm proce-

dure and provide estimates, standard errors, and AIC values. However, tests for the

mixing proportions are unreliable. The high-dimensional count regression procedure

(HPCOUNTREG) in SAS can handle big data. In R, the package ‘pscl’ includes

functions for handling zero inflated discrete distributions with various link options.

The inflated count models are also available in the ‘VGAM’ package.

In addition to zero, some data sets may have an inflated counts of additional

value k as a result of multiple effects including the design of the study. Research

questionnaire studies are examples with zero and k inflated count data sets typically

as a result either in the way the questions were asked or the way the responses were

provided. For example, one study investigating the frequency of pap smear tests in

women for last six years. The survey had large number of women who never had

a pap smear and many who had pap smears on an annual basis. Thus, the survey

resulted in a large frequencies of zero and six. The other source for inflation is the
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nature of the response. For example, consider the study that counts the number of

days per week a subject felt depressed in a sample that consists of depressed and

non-depressed subjects. For several non-depressed the count will be zero and for

many depressed the count will be 7. Thus the data will likely to have 0 and 7 counts

inflated. Lin and Tsai (2012) describe a survey where adults were asked about the

number of cigarettes they consume on a given day. The responses tend to be none or

a pack. Since a pack consists of 20 cigarettes, the data results in inflated frequencies

for 0 and 20. Lin and Tsai (2012) proposed a zero and k inflated Poisson regression

model (ZkIP) to analyze such data. In a PhD dissertation, Sheth-Chandra (2011)

also introduced two forms of ZkIP models, known as doubly inflated Poisson (DIP)

models. In this dissertation, we study the ZkIP form given by Lin and Tsai (2012).

It is the same as the second DIP model proposed by Sheth-Chandra (2011).

The ZkIP is a finite mixture model. It has three components. The first is degen-

erate at zero with probability π1. The second distribution is degenerate at k with

probability π2 and the third distribution is Poisson with mean λ with probability

π3 = (1 − π1 − π2). The mixture leads to heterogeneity in the data which is not

captured by the Poisson model. These components can also be interpreted as three

groups of the population. A special case of ZkIP model is the zero and one inflated

Poisson model (ZOIP). Recently, Zhang et al. (2016) studied the properties and in-

ference on the parameters of the ZOIP distribution without covariates. The inference

of ZOIP without covariates was described by Alshkaki (2016). A Bayesian approach

for the ZOIP model was examined by Tang et al. (2017). Lin and Tsai (2012), in-

troduced the ZkIP regression model and used the non-linear optimization method

to obtain the maximum likelihood (ML) estimates and standard errors. The ZkIP

has also been studied by Finkelman et al. (2011) for grouped psychological data.

In this dissertation we study the ZkIP model using the Expectation-Maximization

(EM) approach. Further we pursue the method outlined by Louis (1982) to obtain

the standard errors for the EM parameter estimates.

1.1.2 CONWAY-MAXWELL-POISSON MODELS

As mentioned in Section 1.1.1, the Poisson distribution is the most commonly
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used distribution for analyzing count data. The popularly used alternate for overdis-

persed data is the negative Binomial distribution. However, this distribution does

not account for underdispersion in the data. A generalization of the Poisson distribu-

tion that can handle both under and overdispersion is the Conway-Maxwell-Poisson

(CMP) distribution that was first published by Conway and Maxwell (1962). The

CMP is a two parameter (λ, ν) extension of the Poisson distribution. The parameter

λ is the rate parameter and ν is the dispersion parameter. The distribution belongs

to the exponential family. Further, it turns out not only Poisson but also Bernoulli

and geometric distributions are special cases of the CMP distribution. Shmueli et al.

(2005) studied extensively the distributional properties of the CMP distribution.

There are numerous papers in the literature that demonstrate the wide appli-

cability of the CMP distribution. Lord et al. (2008) used the CMP distribution to

model the number of motor vehicle crashes. Regression models using CMP were

used by Kadane et al. (2006) in health care research, and by Shmueli et al. (2005)

in marketing, Telang et al. (2004) in eCommerce, Ridout and Besbeas (2004) in bi-

ology. Rodrigues et al. (2009) and Balakrishnan and Pal (2015) studied cure rate

models using CMP distribution. Bayesian analysis of CMP models was undertaken

by Kadane et al. (2006). A review of various extensions of CMP models and their

applications can be found in Sellers et al. (2012).

In a recent paper, Sellers and Raim (2016) introduced an extension ZICMP of

CMP distribution to study zero inflated count data. It is a mixture of a degenerate

distribution at zero with probability π and CMP(λ, ν) distribution with probability

(1 − π). The special cases of ZICMP are zero inflated Poisson (ZIP), zero inflated

bernoulli (ZIB), and zero inflated geometric (ZIG) distributions. The ZICMP model

has been used in psychology (Sellers and Raim, 2016), health (Choo-Wosoba et al.,

2016), and agriculture (Barriga and Louzada, 2014) research. The statistical software

SAS includes CMP and ZICMP in Proc COUNTREG, and Proc HPCOUNTREG.

In this dissertation, we introduce an extension ZkICMP of the ZICMP that ac-

counts for inflated frequencies at zero and k. The ZkICMP is a generalization of

ZkIP. It is a mixture of three distributions, first distribution is degenerate at zero

with probability π1, the second is degenerate at count k with probability π2 and the

third is CMP(λ, ν) with probability π3 = 1− π1 − π2. The proportion of zeros which

are not from CMP distribution are π1, while the proportions of k’s not belonging to
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CMP distribution are π2. The special cases of ZkICMP are ZkIP, zero and k inflated

geometric (ZkIG), zero and k inflated Bernoulli (ZkIB).

1.2 OVERVIEW OF THE DISSERTATION

This dissertation is organized as follows. In Chapter 2, we discuss zero and k

inflated Poisson models for the grouped data. We describe in detail two methods

for parameter estimation, maximum likelihood (ML) and expectation-maximization

(EM). Further, we give formulas to obtain the standard errors for the ML estimates

via Fisher information. For the EM estimates we outline the method originally sug-

gested by Louis (1982) to get the standard errors. Further, we show the asymptotic

distribution of the likelihood ratio statistic is a mixture of chi-squares, when the

mixing parameter falls on the boundary. This result is used to find the significance

for testing whether ZkIP could be reduced to ZIP or ZIP could be reduced to a

Poisson model. We illustrate our theoretical results using two real life data examples

obtained from the National Health Interview Survey (NHIS).

In Chapter 3, we study the zero and k inflated Poisson regression model. We

describe the EM method of estimation for estimating the regression parameter and

follow the method of Louis (1982) to obtain the standard errors of the estimates. We

illustrate our results on the two data sets that we have used in Chapter 2.

In Chapter 4, we construct a zero and k inflated CMP (ZkICMP) regression

model. We present properties of the ZkICMP distribution. We also derive formulas

for ML estimates of the parameters. Details for obtaining the standard errors via

the Fisher information matrix are given in the chapter. We use two data sets from

National Health and Nutrition Examination Survey (NHANES) and perform two

simulations to demonstrate the importance of ZkICMP model to capture double

inflation and over- or underdispersion.

In Chapter 5, we provide a summary and briefly describe possible extensions and

future directions of our research.
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CHAPTER 2

ZERO AND K INFLATED POISSON MODELS

2.1 INTRODUCTION

In this chapter we study the zero and k inflated Poisson (ZkIP) model for the data

that consists of frequencies for counts. We assume the data do not include covariate

measurements and are expressed in the form of a frequency distribution. The outline

of this chapter is as follows. In Section 2.2, we describe the ZkIP distribution and

some of its properties. We present the likelihood function for the ZkIP model in

Section 2.3. In Section 2.4, we discuss two methods for parameter estimation, namely,

the maximum likelihood estimation and expectation and maximization (EM) method

(Dempster et al., 1977). We give details of the Fisher information which provides the

asymptotic standard errors for the maximum likelihood estimates in Section 2.5.1. In

Section 2.5.2 we describe the method first described by Louis (1982) on how to find

the standard errors for the EM estimates for the ZkIP model. In the last Section 2.7,

we illustrate the application of our ZkIP model, parameter estimation and calculation

of standard errors using two real life examples.

2.2 ZKIP PROBABILITY DISTRIBUTION

The probability mass function of a count variable Y that follows a Poisson dis-

tribution is given by

P (Y = y) =
λye−λ

y!
, y = 0, 1, 2, . . . and λ > 0.

A model that accounts for the inflated probability at zero is obtained by mixing the

Poisson distribution with a point mass π1 at zero. The probability density function
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of this model is given by

P (Y = y) =





π1 + (1− π1)e
−λ when y = 0

(1− π1)
λye−λ

y!
when y ≥ 1.

where 0 < π1 < 1 and λ > 0. In addition if the probability is also inflated at another

count value k, we could consider a Poisson distribution that is mixed with two point

masses π1 and π2 at 0 and k respectively. In this case the probability mass function

of Y is a mixture distribution and it is given by

P (Y = y) =





π1 + (1− π1 − π2)e
−λ when y = 0

π2 + (1− π1 − π2)
λke−λ

k!
when y = k

(1− π1 − π2)
λye−λ

y!
when y ≥ 1, y 6= k.

(1)

where 0 < π1 < π1 + π2 < 1 and λ > 0. We will refer to this distribution (1) as the

zero and k inflated Poisson (ZkIP) distribution. The moment generating function of

the ZkIP distribution is

MY (t) = E(etY ) = π1 + π2 e
tk + π3 e

λ(et−1)

and the probability generating function is

GY (z) = E(zY ) = π1 + π2 z
k + π3 e

λ(z−1).

where π3 = (1− π1 − π2). These functions could be used to show that the mean and

variance of the ZkIP distribution are

E(Y ) = k π2 + π3 λ

V ar(Y ) = k2π2(1− π2) + π3λ(1 + π1λ+ π2λ− 2kπ2).

The ZkIP distribution is essentially a mixture of Poisson and two degenerate

distributions at zero and k. It can be elucidated as follows. Consider a latent variable
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z = (z1, z2, z3) which is distributed as multinomial with parameters (1, π1, π2, π3).

Note that z takes values (1, 0, 0) with probability π1; (0, 1, 0) with probability π2

and (0, 0, 1) with probability π3. That is,

P (z = (z1, z2, z3)) =





π1 if z1 = 1, z2 = 0, z3 = 0

π2 if z1 = 0, z2 = 1, z3 = 0

π3 if z1 = 0, z2 = 0, z3 = 1.

(2)

Further, let us assume the conditional distribution of Y |z is

P (Y = y|z = (z1, z2, z3)) =





1 for z1 = 1, y = 0

1 for z2 = 1, y = k

λye−λ

y!
for z3 = 1, y = 0, 1, . . . .

(3)

Thus, the joint distribution of (Y, z), which is obtained by multiplying (2) and (3) is

P (Y = y, z = (z1, z2, z3)) =





π1 for z1 = 1, y = 0

π2 for z2 = 1, y = k

π3
λye−λ

y!
for z3 = 1, y = 0, 1, . . . .

(4)

The marginal of Y can now be obtained from (4) summing over the three possible

values of z. Thus we get

P (Y = 0) = P (Y = 0, z1 = 1) + P (Y = 0, z2 = 1) + P (Y = 0, z3 = 1)

= π1 + π3e
−λ

P (Y = k) = P (Y = k, z1 = 1) + P (Y = k, z2 = 1) + P (Y = k, z3 = 1)

= π2 + π3
λke−λ

k!



9

and

P (Y = y) = P (Y = y, z1 = 1) + P (Y = y, z2 = 1) + P (Y = y, z3 = 1)

= π3
λye−λ

y!
, for y ≥ 1 y 6= k.

which is equivalent to the ZkIP distribution (1). Further, the posterior distribution

P (z|Y ) = P (z)P (Y |z)/P (Y ) can be summarized in Table 1 below. Later, we will

use the displayed conditional probabilities in this table to develop EM algorithm for

estimation of the ZkIP parameters.

Table 1. P (z = (z1, z2, z3)|Y = y) of ZkIP

z = (z1, z2, z3) y = 0 y = k y 6= 0, k

z1 = 1
π1

π1 + π3p0
0 0

z2 = 1 0
π2

π2 + π3pk
0

z3 = 1
π3p0

π1 + π3p0

π3pk

π2 + π3pk
1

NOTE: The sum of entries in any column is one.

2.3 LIKELIHOOD FOR GROUPED DATA

Suppose that we have a vector y = (y1, y2, ..., yn) consisting of a random sample of

n observations from the ZkIP distribution. The frequency distribution of the sample

can be organized in a table as

j 0 1 ... k ... K Total

Observed frequency n0 n1 ... nk ... nK n

where nj = # of yi’s that are equal to j, and K = max{yi}. If the observations are

truly from the ZkIP distribution, the values of n0 and nk will be large compared to

the rest of the frequencies. The vector of observed frequencies (n0, n1, . . . , nK) can

be regarded as incomplete data in the sense n0 is actually na + nb and nk = nc + nd,
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where the unknown na and nc are frequencies from degenerate distributions at 0 and

k respectively.

The likelihood function of the observed frequencies from the ZkIP model is

Lobs(π1, π2, λ|y) ∝ (π1 + π3e
−λ)

n0

(
π2 + π3

λke−λ

k!

)nk K∏

j 6=0,k

(
π3

λje−λ

j!

)nj

∝ (π1 + π3p0)
n0(π2 + π3pk)

nk

K∏

j 6=0,k

(π3pj)
nj , (5)

where π3 = (1− π1 − π2) and pj =
e−λλj

j!
for j ≥ 0.

Note that when π2 = 0 the ZkIP reduces to ZIP. Thus the likelihood for the ZIP

model is

Lobs(π1, λ|y) ∝ (π1 + (1− π1)e
−λ)

n0

K∏

j 6=0

(
(1− π2)

λje−λ

j!

)nj

.

And if π1 = π2 = 0, the likelihood (5) becomes the likelihood function of the Poisson

distribution

Lobs(λ|y) =
K∏

j=0

(
λje−λ

j!

)nj

.

2.4 ESTIMATION OF ZKIP PARAMETERS

The ZkIP is a three parameter distribution. Based on random sample of n ob-

servations, these three unknown parameters π1, π2 and λ can be estimated using the

popular methods of estimation, the method of moments, and the maximum likelihood

(ML). However, the method of moments procedure has been shown, (McLachlan and

Peel, 2000), to yield inefficient estimates for finite mixture models (FMM) and it is

expected to be the case for ZkIP distribution as well. Therefore, we will not pur-

sue method of moments procedure in this dissertation. As the name suggests, the

ML method involves maximizing the likelihood function. It is a common practice

to deal with the loglikelihood instead of the likelihood, and the ML estimates are
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obtained equating to zero the first order partial derivatives with respect to the un-

known parameters. We also need to ensure that the Hessian matrix of the negative

loglikelihood at the solution is positive definite.

Another popular alternative method for parameter estimation is the Expectation

Maximum (EM) likelihood algorithm. Dempster et al. (1977) illustrated the use of

the EM algorithm to obtain the maximum likelihood estimates for simple mixture

models. Since then the EM method has become a popular method for parameter

estimation in finite mixture models. The EM is an iterative method and has advan-

tages over the ML method. An advantage is that it often uses closed form equations

in the iterative process.

2.4.1 SCORE EQUATIONS FOR ML ESTIMATION

In this section, we provide details of the maximum likelihood estimation of the

three π1, π2 and λ, unknown parameters of the ZkIP distribution. The maximum

likelihood estimates are obtained by maximizing the log of the likelihood function.

Using (5) and taking log on both sides we get the loglikelihood ℓobs of the observed

data as

ℓobs(π1, π2, λ|y) ∝ n0 log(π1 + π3p0) + nk log (π2 + π3pk) +
K∑

j 6=0,k

nj (log π3 + log pj)

or

ℓobs(π1, π2, λ|y) ∝ n0 log(π1 + π3p0) + nk log (π2 + π3pk)

+(n− n0 − nk)(log π3 − λ) + log(λ)
K∑

j 6=0,k

(j nj). (6)

We obtain the score equations for the ML estimation by taking the partial deriva-

tives of (6) with respect to the three unknown parameters. The partial derivative

with respect to π1,
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∂ℓobs(π1, π2, λ)

∂π1

= 0

simplifies to

n0(1− p0)

π1 + π3p0
=

n− n0 − nk

π3
+

nkpk
π2 + π3pk

. (7)

Similarly, the equation

∂ℓobs(π1, π2, λ)

∂π2
= 0

can be seen to be equivalent to

nk(1− pk)

π2 + π3pk
=

n− n0 − nk

π3
+

n0p0
π1 + π3p0

. (8)

Finally, the partial derivative

∂ℓobs(π1, π2, λ)

∂λ
= 0

reduces to

1

λ

K∑

j 6=0,k

(jnj)− (n− n0 − nk) =
n0π3p0

π1 + π3p0
− nkπ3pk

π2 + π3pk

(
k

λ
− 1

)
. (9)

The ML estimates of the three parameters π1, π2, λ are obtained by solving the

three score equations (7), (8), and (9) simultaneously. The ML estimates can also

be obtained directly by minimizing the negative of the loglikelihood function (6)

using the optimization methods that are available in statistical software R and SAS.

However, these optimizations routines may have convergence problems and may fail

to yield the estimates.

2.4.2 ALTERNATIVE METHOD OF ESTIMATION

An alternate and computationally simpler approach for parameter estimation

is the EM method. As noted earlier, the Expectation Maximum (EM) likelihood
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method was introduced by Dempster et al. (1977) in a seminal paper. The algorithm

is a simple modification of the maximum likelihood, and has become a popular al-

ternative for ML estimation in cases where data are missing or incomplete. Zhang

et al. (2016) used the EM approach to study the ZOIP model for grouped data. We

extend their approach to our ZkIP model.

The frequency vector (n0, n1, . . . , nk, . . . , nK) is the “observed” data. It can be

viewed as the “incomplete” data, in the sense n0 = na+nb and nk = nc+nd, where the

data is missing the number nb of zeros and the number nd of k ’s that are from Poisson

distribution are missing. Here na, nc are the unknown number of observations from

degenerates distributions at 0 and k respectively. Thus, the complete data vector

including the missing frequencies is (na, nb, n1, . . . , nc, nd, . . . , nK). The likelihood

function of this complete data vector is

Lcomp(π1, π2, λ|y) ∝ πna

1 πnc

2 π3
(n−na−nc) p0

nb pk
nd

K∏

j 6=0,k

pj
nj (10)

where π3 = (1− π1 − π2) and pj =
e−λλj

j!
for j ≥ 0.

Our interest is to maximum or minimize the negative of the log of the above

likelihood. The loglikelihood, ℓcomp = logLcomp, can be written as

ℓcomp(π1, π2, λ|y) ∝ na log(π1) + nc log(π2) + (n− na − nc) log π3

+nb log p0 + nd log pk +
K∑

j 6=0,k

nj log pj

∝ na log(π1) + nc log(π2) + (n− na − nc) log π3

−nbλ+ nd(−λ + k log λ) +
K∑

j 6=0,k

nj(−λ + j log λ). (11)

Please note the frequencies na and nc are unknown. The expectation step in

the EM algorithm replaces these frequencies with their expected values. These ex-

pected values can be computed by the posterior probabilities given in Table 1. More

specifically,
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n̂a = n0 E(z1/y = 0) = n0 P (z1 = 1/y = 0) = n0
π1

π1 + π3 p0
,

n̂c = nk E(z2/y = k) = nk P (z2 = 1/y = k) = nk
π2

π2 + π3pk
. (12)

The maximization step or the M-step in the EM algorithm involves maximizing the

loglikelihood (11) after substituting these estimates for na and nc. However, this

maximization is easy since the score equations have closed form solutions. Indeed

equating partial derivatives of (11) to zero we get,

∂ℓcomp(π1, π2, λ)

∂π1
= 0 ⇐⇒ π̂1 =

na(1− π2)

n− nc
, (13)

∂ℓcomp(π1, π2, λ)

∂π2

= 0 ⇐⇒ π̂2 =
nc(1− π1)

n− na

, (14)

∂ℓcomp(π1, π2, λ)

∂λ
= 0 ⇐⇒ λ̂ =

∑K
j=0 jnj

n− na − nc
. (15)

Thus we summarize the steps of the EM algorithm as follows:

1. Choose initial values of π0
1, π

0
2 and λ0 for π1, π2 and λ respectively.

2. E-step: Calculate n̂a, n̂c using (12), and set n̂b = n0 − n̂a and n̂d = n1 − n̂c.

3. M-step: Update the estimates of π1, π2 and λ using the formulas in (13), (14)

and (15).

4. Iterate the E-step and M-step until the estimates π̂1, π̂2 and λ̂ converge.

We have developed an R code for this algorithm and use it in two data analysis

examples in Section 2.7.

2.5 STANDARD ERRORS FOR THE PARAMETER ESTIMATES

In this section we will study on how to obtain the standard errors for the param-

eter estimates. It is well known that the ML estimates are asymptotically normal
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with covariance matrix given by the inverse of the Fisher information matrix. We

will derive expressions for the elements of the information matrix.

2.5.1 STANDARD ERRORS FOR ML ESTIMATES

Recall that the maximum likelihood estimates for the given data are obtained

by minimizing the negative of the loglikelihood function ℓobs given in equation (6).

Therefore the asymptotic standard errors of the ML estimates depend on the Fisher

information matrix Iobs computed from the observed data, which is given by

Iobs =




−∂2ℓobs
∂π2

1

− ∂2ℓobs
∂π1∂π2

− ∂2ℓobs
∂π1∂λ

− ∂2ℓobs
∂π2∂π1

−∂2ℓobs
∂π2

2

− ∂2ℓobs
∂π2∂λ

− ∂2ℓobs
∂λ∂π1

− ∂2ℓobs
∂λ∂π2

−∂2ℓobs
∂λ2



. (16)

The specific formulas for the elements of the above matrix are

−∂2ℓobs
∂π2

1

= (n− n0 − nk)

(
1

π3

)2

+ n0

(
1− p0

π1 + π3p0

)2

+ nk

(
pk

π2 + π3pk

)2

− ∂2ℓobs
∂π1∂π2

= − ∂2ℓobs
∂π2∂π1

=
(n− n0 − nk)

π3
2

− n0p0(1− p0)

(π1 + π3p0)2
− nkpk(1− pk)

(π2 + π3pk)2

− ∂2ℓobs
∂π1∂λ

= − ∂2ℓobs
∂λ∂π1

=
−n0(1− π2)p0
(π1 + π3p0)2

+
nkπ2pk

(π2 + π3pk)2

(
k

λ
− 1

)

−∂2ℓobs
∂π2

2

= (n− n0 − nk)

(
1

π3

)2

+ n0

(
p0

π1 + π3p0

)2

+ nk

(
1− pk

π2 + π3pk

)2

− ∂2ℓobs
∂π2∂λ

= − ∂2ℓobs
∂λ∂π2

=
−n0π1p0

(π1 + π3p0)2
+

nk(1− π1)pk
(π2 + π3pk)2

(
k

λ
− 1

)

−∂2ℓobs
∂λ2

=
1

λ2

K∑

j 6=0,k

jnj −
n0π1π3p0

(π1 + π3p0)2
+

nkπ3pk
(π2 + π3pk)

(
k

λ2
− π2

π2 + π3pk

(
k

λ
− 1

)2
)
.
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The matrix Iobs is negative of the Hessian matrix of the loglikelihood of the

observed counts. The square root of the diagonal elements of the inverse matrix I−1
obs

gives the standard errors for the ML estimates of π1, π2, and λ. Please note that

our formulas generalize the results of Zhang et al. (2016) who have derived similar

formulas for zero and one inflated Poisson (ZOIP) model.

2.5.2 STANDARD ERRORS FOR EM ESTIMATES

The optimization algorithms routinely output a numerically computed Hessian

matrix for the functions that are being optimized. However, calculation of the stan-

dard errors will be more accurate if analytical expressions are available. To compute

the standard errors of the estimates obtained by the EM algorithm, we follow the

approach described by Louis (1982). The relation between the likelihood of the

complete, observed and missing data is given

Lcomp(θ |y, z) = Lobs(θ|y) Lmiss(θ | (z|y)) (17)

where y and z stand for the observed and missing data respectively. From (17) taking

logs we get

ℓcomp(θ |y, z) = ℓobs(θ|y) + ℓmiss(θ | (z|y)) (18)

Taking second order partial derivatives, we can see that from equation (18) the

information matrices for the complete, observed and missing data satisfy the following

identity

Icomp = Iobs + Imissing

or

Iobs = Icomp − Imiss. (19)

Since the right hand side of equation (19) depends on the missing data, Louis (1982)

has suggested to take the expected value of the missing data given the observed.
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This gives us the identity

Iobs = E(Iobs|y) = E(Icomp|y)−E(Imiss|y). (20)

In other words, Louis (1982) estimate of the observed information matrix is given by

Îobs = E(Icomp|y)− E(Imiss|y). (21)

Equation (21) could be used to find the standard errors of the EM estimates. Note

that

Icomp =




−∂2ℓcomp

∂π2
1

−∂2ℓcomp

∂π1∂π2
−∂2ℓcomp

∂π1∂λ

−∂2ℓcomp

∂π2∂π1
−∂2ℓcomp

∂π2
2

−∂2ℓcomp

∂π2∂λ

−∂2ℓcomp

∂λ∂π1
−∂2ℓcomp

∂λ∂π2
−∂2ℓcomp

∂λ2



. (22)

From (11), the elements of the information matrix Icomp are

−∂2ℓcomp

∂π2
1

=
na

π1
2
+

(n− na − nc)

π2
3

−∂2ℓcomp

∂π1∂π2
= −∂2ℓcomp

∂π2∂π1
=

(n− na − nc)

π2
3

−∂2ℓcomp

∂π2
2

=
nc

π2
2

+
(n− na − nc)

π2
3

−∂2ℓcomp

∂λ2
=

ndk

λ2
+

∑K
j 6=0,k j nj

λ2
.

The other elements −∂2ℓcomp/∂π1∂λ and −∂2ℓcomp/∂π2∂λ are equal to zero. Since

na and nc are missing, we replace them by their expected values

E(na|n0) =
n0π1

π1 + π3p0
and E(nc|nk) =

nkπ2

π2 + (π3pk)
.

Thus the nonzero elements of E(Icomp|y) = E(Icomp|n0, nk) are

E

[
−∂2ℓcomp

∂π2
1

]
=

n

π2
3

+
n0

π1(π1 + π3p0)
− n0π1

π2
3(π1 + π3p0)

− nkπ2

π2
3(π2 + π3pk)
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and

E

[
−∂2ℓcomp

∂π1∂π2

]
= −∂2ℓcomp

∂π2∂π1

=
n

π2
3

− n0π1

π2
3(π1 + π3p0)

− nkπ2

π2
3(π2 + π3pk)

E

[
−∂2ℓcomp

∂π2
2

]
=

n

π2
3

− n0π1

π2
3(π1 + π3p0)

+
nk

π2(π2 + π3pk)
− nkπ2

π2
3(π2 + π3pk)

E

[
−∂2ℓcomp

∂λ2

]
=

nkk

λ2
− nkkπ2

λ2(π2 + π3pk)
+

1

λ2

K∑

j 6=0,k

jnj .

Next to compute the second term E(Imiss|y) in equation (19), we proceed as follows.

The likelihood of the observed and complete data are given in (5), (10) respectively.

Hence, the likelihood of the missing data is obtained taking the ratio of these likeli-

hoods and it is given by

Lmiss(π1, π2, λ|z) ∝ π1
na π2

nc (p0π3)
nb (pkπ3)

nd

(
1

π1 + π3p0

)n0
(

1

π2 + π3pk

)nk

.

Thus, the loglikelihood of the missing data is

ℓmiss(π1, π2, λ|y) ∝ na log(π1) + nc log(π2)− n0 log(π1 + π3p0)

−nk log(π2 + π3pk) + (nb + nd) log(π3)

−(nb + nd)λ+ (ndk) log(λ). (23)

We can easily check that the first order partial derivatives are

∂ℓmiss

∂π1

=
na

π1

− n0

(
1− p0

π1 + π3p0

)
− nb + nd

π3

− nkpk
π2 + π3pk

∂ℓmiss

∂π2

=
nc

π2

+ n0

(
p0

π1 + π3p0

)
− nb + nd

π3

− nk(1− pk)

π2 + π3pk

∂ℓmiss

∂λ
=

ndk

λ
− (nb + nd) + n0

(
π3p0

π1 + π3p0

)

− nkπ3pk
π2 + π3pk

(
k

λ
− 1

)
.
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and the negative of the second order partial derivatives are

−∂2ℓmiss

∂π2
1

=
na

π2
1

− n0(1− p0)
2

(π1 + π3p0)2
− nkp

2
k

(π2 + π3pk)2
+

(nb + nd)

π2
3

−∂2ℓmiss

∂π1∂π2
=

n0p0(1− p0)

(π1 + π3p0)2
+

nkpk(1− pk)

(π2 + π3pk)2
+

(nb + nd)

π2
3

−∂2ℓmiss

∂π1∂λ
=

n0(1− π2)p0
(π1 + π3p0)2

− nkπ2pk
(π2 + π3pk)2

(
k

λ
− 1

)

−∂2ℓmiss

∂π2
2

=
nc

π2
2

− n0p
2
0

(π1 + π3p0)2
− nk(1− pk)

2

(π2 + π3pk)2
+

(nb + nd)

π2
3

−∂2ℓmiss

∂π2∂λ
=

n0π1p0
(π1 + π3p0)2

− nk(1− π1)pk
(π2 + π3pk)2

(
k

λ
− 1

)

−∂2ℓmiss

∂λ2
=

n0π1π3p0
(π1 + π3p0)2

+
nkπ2π3pk

(π2 + π3pk)2

(
k

λ
− 1

)2

− k

λ2

nkπ3pk
(π2 + π3pk)

+
knd

λ2
.

Once again using the expected values

E(na|n0) =
n0π1

π1 + π3p0
and E(nc|nk) =

nkπ2

π2 + (π3pk)
,

E(nb|n0) =
n0π3p0

π1 + π3p0
and E(nd|nk) =

nkπ3pk
π2 + (π3pk)

,

we get the elements of E(Imiss|y) = E(Imiss|n0, nk) as follows

E

[
−∂2ℓmiss

∂π2
1

]
=

n0

π1(π1 + π3p0)
− n0(1− p0)

2

(π1 + π3p0)2
− nkp

2
k

(π2 + π3pk)2

+
n0p0

π3(π1 + π3p0)
+

nkpk
π3(π2 + π3pk)

E

[
−∂2ℓmiss

∂π1∂π2

]
=

n0p0(1− p0)

(π1 + π3p0)2
+

nkpk(1− pk)

(π2 + π3pk)2

+
n0p0

π3(π1 + π3p0)
+

nkpk
π3(π2 + π3pk)
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and

E

[
−∂2ℓmiss

∂π1∂λ

]
=

n0(1− π2)p0
(π1 + π3p0)2

− nkπ2pk
(π2 + π3pk)2

(
k

λ
− 1

)

E

[
−∂2ℓmiss

∂π2
2

]
=

nk

π2(π2 + π3pk)
− n0p

2
0

(π1 + π3p0)2
− nk(1− pk)

2

(π2 + π3pk)2

+
n0p0

π3(π1 + π3p0)
+

nkpk
π3(π2 + π3pk)

E

[
−∂2ℓmiss

∂π2∂λ

]
=

n0π1p0
(π1 + π3p0)2

− nk(1− π1)pk
(π2 + π3pk)2

(
k

λ
− 1

)

E

[
−∂2ℓmiss

∂λ2

]
=

n0π1π3p0
(π1 + π3p0)2

+
nkπ2π3pk

(π2 + π3pk)2

(
k

λ
− 1

)2

.

The remaining elements follow by symmetry.

2.6 HYPOTHESIS TESTING AND MODEL SELECTION

In statistical inference, estimation of the parameters is usually followed by testing

significance of the parameters and selection of the best model for the data. Hence,

in this section we discuss the hypothesis testing to see whether there is a significant

inflation at k and at zero. In other words, whether ZkIP is significantly fits the data

better than the ZIP or the simpler Poisson model.

There are various criterions to select the best model. We use the Akaike Infor-

mation Criterion (AIC) and likelihood-ratio method to arrive at the best model that

fits the data. These details will be illustrated with a couple of real life data analysis.

2.6.1 HYPOTHESIS TESTING

Recall that the ZkIP is a three parameter distribution. The parameters π1 and π2

represent the proportion of observations that come from degenerate distributions and

the parameter λ represents the mean of the Poisson distribution. Let θ̂ = (π̂1, π̂2, λ̂)

denote the ML or EM estimates of these parameters. Assume the true value θ0 =

(π0
1, π

0
2, λ

0) is in the interior of the parameter space, that is, 0 < π0
1 + π0

2 < 1 and

λ0 > 0. Under usual regularity conditions θ̂ is asymptotically normal with mean θ0

and covariance matrix given by (Îobs)
−1. We can use this result to construct a Wald’s

test for testing the hypotheses that a specified proportion 0 < π0
2 < 1 of observations
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come from a degenerate distribution at k or a specified proportion 0 < π0
1 < 1 come

from the degenerate distribution at zero. Similarly the hypothesis H0 : λ = λ0 > 0

could be tested for significance using the Wald’s test.

The FMM and Countreg procedures in SAS use the parameters γ = log(π1/π3)

and δ = log(π2/π3) and test for the hypothesis H0 : (γ, δ) = (0, 0). This hypothesis

is equivalent to testing H0 : (π1, π2) = (π0
1 = 1/3, π0

2 = 1/3), which we could do

using Wald’s test because π0
1 = 1/3 and π0

2 = 1/3 are values in the interior of the

parameter space.

As we discussed in Section 2.2, the ZkIP, ZIP and the Poisson model form a

group of three nested models in the sense Poisson is a special case of ZIP which

is a special case of ZkIP. Thus one could use the Likelihood ratio test (LRT) to

test the significance of the nested models, that is, whether the ZkIP model could

be replaced by the ZIP model or whether the ZIP model could be replaced by the

Poisson model. We need to test the null hypothesis H0 : π2 = 0 to see whether there

is a significant or insignificant inflated frequency at count k. That is acceptance of

the null hypothesis would imply we could replace ZkIP model with the ZIP model.

Since 0 ≤ π2 ≤ 1, the null hypothesis H0 : π2 = 0 corresponds to testing a parameter

value on the boundary. And therefore standard asymptotic theory for the likelihood

ratio statistic is not applicable. And the asymptotic distribution of the likelihood

ratio statistic in not a χ2 distribution but it is a mixture of χ2 distributions (Chant,

1974; Shapiro, 1985). In the next section we will sketch a general proof to show

indeed the asymptotic distribution of the LRT statistic is a mixture of chi-square

distributions.

2.6.2 ASYMPTOTIC DISTRIBUTION ON THE BOUNDARY

This section is independent of the rest of the dissertation and contains a gen-

eral result on the asymptotic distribution of the likelihood ratio statistic that

is applicable for mixture of any two distributions. Suppose we have a random

sample of y = (y1, y2, . . . , yn) of n observations from the mixture distribution

π f(y, η)+ (1−π) f(y, θ) where f(y, η) and f(y, θ) are two distinct univariate densi-

ties and 0 ≤ π ≤ 1. We assume that η and θ are known and are interested in testing
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the null hypothesis H0 : π = 0 versus H1 : π > 0. The likelihood function is

L(π|y) =

n∏

i=1

(πf(yi, η) + (1− π)f(yi, θ))

=
n∏

i=1

f(yi, θ)

(
π
f(yi, η)

f(yi, θ)
+ (1− π)

)

=

n∏

i=1

f(yi, θ)

(
1 + π

(
f(yi, η)

f(yi, θ)
− 1

))

=
n∏

i=1

f(yi, θ)(1 + πui)

where ui = f(yi, η)/f(yi, θ)− 1. The loglikelihood is

ℓ(π|y) = logL(π|y) =

n∑

i=1

log f(yi, θ) +

n∑

i=1

log(1 + πui)

= ℓ(π = 0|y) + g(π), (24)

where ℓ(π = 0|y) =
∑n

i=1 log f(yi, θ) and g(π) =
∑n

i=1 log(1 + πui). Under H0 : π =

0, we have E(ui) = 0 and let V (ui) = σ2. To derive the likelihood ratio test statistic

we need to maximize (24) and this amounts to maximizing the function

g(π) =

n∑

i=1

log(1 + πui) ≈
n∑

i=1

(
πui −

π2ui
2

2

)

= π
n∑

i=1

ui − π2
n∑

i=1

ui
2

2
(25)

We have used the approximation log(1 + u) ≈ u− u2/2 for small u in equation (25).

It is easy to check that g(π) has a maximum at (
∑n

i=1 ui)/(
∑n

i=1 ui
2). Since π ≥ 0,

the feasible point of maximum for g(π) or equivalently for the loglikelihood is given

by

π̂ =





∑n
i=1 ui∑n
i=1 ui

2
when

∑n
i=1 ui > 0

0 when
∑n

i=1 ui < 0.
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Substituting π̂ in (25) we get

g(π̂) =





1

2

nu2

1
n

∑n
i=1 ui

2
when u > 0

0 when u < 0

(26)

where u = (
∑n

i=1 ui)/n. Thus the maximum of the loglikelihood is

ℓ(π̂|y) = ℓ(π = 0|y) + g(π̂).

Therefore log of the likelihood ratio statistic, Λ, for the hypothesis H0 : π = 0 is

log Λ = ℓ(π = 0|y)− ℓ(π̂|y) = −g(π̂),

where g(π̂) is given by (26). Alternatively,

−2 log Λ = 2 g(π̂) =
σ2

1

n

n∑

i=1

ui
2

nu2

σ2
I(u > 0)

where I(·) is the indicator function. By the central limit theorem
√
nu/σ converges

to the standard normal variable Z as n → ∞. Therefore P (u > 0) converges P (Z >

0) = 1/2. Also, nu2/σ2 converges in distribution to Z2 which is distributed as χ2
1 as

n → ∞. Further by the law of large numbers 1
n

∑n
i=1 u

2
i converges to σ2 as n → ∞.

Putting all these together we can see that under H0 : π = 0 we have as n → ∞,

−2 log Λ
d−→ 1

2
χ2
0 +

1

2
χ2
1.

The above asymptotic distribution is useful to calculate the asymptotic signifi-

cance level for testing H0 : π2 = 0, that is, ZkIP could be reduced to the ZIP model

or for testing H0 : π1 = 0, that is, ZIP could be further reduced to the ordinary

Poisson model.
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2.6.3 GOODNESS OF FIT

For count data the most commonly used statistic for testing the goodness-of-fit

test is the Pearson chi-square statistic χ2 =
∑c

i=1(oi − ei)
2/ei, where oi is observed

frequency and ei is the expected frequency of the of the ith category, and c is the

total number of categories. Asymptotically, the χ2 statistic follows a chi-square

distribution with (c− 1) degrees of freedom. The test is not the best when there are

inflated frequencies. An alternate and a simple measure for checking the goodness-

of-fit among competing models is the Absolute Error (ABE), which is defined as

ABE =
c∑

i=1

|oi − ei|.

Clearly, the model that has minimum ABE has the least deviation between the

observed and expected frequencies. Hence, the model with minimum ABE fits data

the best.

2.6.4 MODEL SELECTION

We can use several criteria for selecting the appropriate model between the three

competing models, Poisson, ZIP and ZkIP. One criteria that we outlined in the

previous section is the ABE. However, the ABE criteria tends to be very subjective. A

popular criteria is the Akaike Information Criteria (AIC). The AIC was introduced by

Akaike (1974) and it is calculated as −2 ℓ+2m, where ℓ is the maximum value of the

loglikelihood and m is the number of parameters for the model under consideration.

The loglikelihood tends to increase as we move from a simpler model to a complex one.

The constant 2m penalizes the complex model since it will have more parameters

than the simple model. This avoids over fitting the model for the data. We select

the model that has the minimum AIC as the best model.
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2.7 EXAMPLES

In this section we illustrate the results presented in Sections 2.4 and 2.5 on two

real life data. These data examples were obtained from the National Health Interview

Survey (NHIS) conducted by the National Center for Health Sciences (NCHS). Since

1957, NCHS has been collecting and archiving data on US residents. The data

are collected annually on various health issues including immunizations, depression,

hepatitis, cancer, use of tobacco and other variables related to health. For our

illustration we took a subset of data that was collected in year 2015. In both examples

we fit zero and k inflated Poisson (ZkIP) model and compare it to the zero inflated

Poisson (ZIP) and ordinary Poisson models. The first example illustrates a ZkIP

model with inflations at 0 and k = 6, while the second example has inflations at 0

and k = 1. The latter model is also known as zero and one inflated Poisson (ZOIP)

model.

2.7.1 PAP SMEAR DATA

Cervical cancer is of a major concern for the female population. A common

preventive and early detection screening procedure for cervical cancer is the pap

smear test. In this example, we looked at the number of pap smear tests a female

took in last six years for females aged more than 18 years. The count variable

represents responses to two questions in the survey: (1) Have you ever had a Pap

smear or Pap test? and (2) How many Pap tests have you had in the last 6 years?.

If the reply to the first question is a ‘No’ then the number of tests done is reported

zero, while if the reply is a ‘Yes ’ then the number of tests done is same as the reply

to the second question.

There were a total of 33672 females interviewed in the survey, out of which about

3.5% choose not to answer or their response was not recorded. We performed a list

wise deletion to clean the data and ended up with a data set consisting of n = 12014

cases. The mean number of the pap smear tests for this clean data is 3.40 and the

variance is 5.25. The percentage (count) of females who never took a pap smear test

was 15.68% (1884) and the percentage (count) of females who had one pap smear

each year for a total of six in the last six years was 29.17% (3504). The observed



26

frequencies are presented in Table 3. Clearly the proportions of zero and six in the

data set are inflated and both these proportions are more than what we would expect

under a Poisson model. Thus an appropriate model for this data is the zero and six

inflated Poisson model or the ZkIP model with k = 6.

Table 2. Results for pap smear grouped data

Parameter ZkIP ZIP Poisson

λ̂ 2.9820 3.9495 3.3957
(0.0241) (0.0197) (0.0166)

π̂1 0.1257 0.1403 –
(0.0026) (0.0022)

π̂2 0.2613 – –
(0.0018)

logLobs -23261.63 -26101.09 -28030.58
AIC 46529.26 52206.17 56063.00

NOTE: The EM standard errors are given in
parenthesis.

The parameter estimates and standard errors for the three models ZkIP, ZIP and

Poisson for the pap smear data are displayed in Table 2. Further, using the estimates

we obtain the expected counts under the three probability models. The observed and

expected frequencies are in Table 3 and a plot of these frequencies is in Figure 1.

Table 3. Frequencies for pap smear grouped data

Count Observed ZkIP ZIP Poisson
0 1884 1883.47 1884.53 402.71
1 1417 1113.23 785.81 1367.44
2 1362 1659.83 1551.79 2321.65
3 1536 1649.89 2042.96 2627.81
4 1115 1230.00 2017.19 2230.76
5 905 733.57 1593.39 1514.97
6 3504 3503.85 1048.86 857.38

> 6 291 155.32 591.79 415.90
ABE 1138.28 5674.97 8079.58
χ2 313.54 7256.70 15311.83

Table 3 shows that the Poisson model terribly under estimates the frequencies

at zero and six. The ZIP model is able to capture the inflation at zero but fails to

capture the inflation at six. We can see this more clearly in Figure 1. Finally, it is

the ZkIP model that is able to capture both the spikes at zero and at six. It has the
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Figure 1. Observed and expected frequencies for pap smear grouped data.

minimum ABE and fits the data best among the three models.

Table 2 displays the AIC values for the three models. These values are 56063

for Poisson, 52206.17 for ZIP and, 46529.96 the smallest AIC for ZkIP. Once again

ZkIP is the preferred model according to the AIC criterion. The LRT statistic for

the hypothesis H0 : π2 = 0 versus H1 : π2 > 0 is given by −2 log Λ = 5678.92,

which is highly significant, and confirms that ZkIP could not be replaced by ZIP.

Similarly, the LRT also shows that ZIP is superior to the Poisson model. Note that

the estimates of π1 and π2 are 12.57% and 26.13% respectively, and these values are

highly significant.

We further verify that the EM estimates of the ZkIP model do maximize the

likelihood function. The negative of the loglikelihood function of the ZkIP model for

0 ≤ λ ≤ 5 and 0 ≤ π2 ≤ 0.4 is plotted in the Figure 2. The Figure shows the EM

estimates are close to λ = 3 and π2 = 0.2. The results agree with the output in the

Table 2. Hence, we conclude the ZIP model is a better count model then Poisson

when there is inflation at zero. However, for inflation at zero and k the mixture
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Figure 3. Loglikelihood function of ER data without covariate for the ZOIP model.

model zero and k inflated Poisson model gives a better fit.

2.7.2 EMERGENCY ROOM DATA

As a second example, we consider another count data that has inflated frequencies

for two count values. This data set is also taken from the NHIS database for the year

2015. The data set consists of children less than 18 years old. The count variable

is the number of visits a child made to an Emergency Room (ER) or an Emergency

Department (ED) during the previous twelve months. We observe inflated number of

zeros with a frequency of 10046, and account for 82% of the sample. The frequency

and proportion of ones are 1466 and 12% respectively. For this data we fit and

compare ZOIP, ZIP and the Poisson models.
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The EM estimates and standard errors for the three models are displayed in

Table 4. Using the AIC measure, the ZOIP model has the minimum AIC of 15502.02.

Hence, ZOIP is the best model. The LRT statistics for H0 : π1 = 0 and H0 : π2 = 0

are respectively −2 log Λ = 1181.66 and −2 log Λ = 28.46. Both these are highly

significant. Thus, according to LRT criterion ZOIP outperforms ZIP which in turn

outperforms the Poisson model for this data. The loglikelihood function of the ZOIP

model is plotted in Figure 3 for values of λ between 0 and 2 and values of π2 between

0 and 0.3. Clearly the loglikelihood is a smooth function with a unique maximum.

Table 4. Results for ER grouped data

Parameter ZOIP ZIP Poisson

λ̂ 1.0618 0.8177 0.2607
(0.0569) (0.0252) (0.0046)

π̂1 0.7518 0.6811 –
(0.0145) (0.0091)

π̂2 0.0455 – –
(0.0352)

logLobs -7748.01 -7762.24 -8353.07
AIC 15502.02 15528.48 16708.00

NOTE: The EM standard errors are given in
parenthesis.

For checking the goodness of fit we compared the observed and expected frequen-

cies for the three models. As seen from Table 5, the ZOIP model has the smallest

ABE and fits the data best. In conclusion as seen in Figure 4, the ZOIP is a clear

winner for this data.

Table 5. Frequencies for ER grouped data

Count Observed ZOIP ZIP Poisson
0 10046 10046.06 10045.86 9417.61
1 1466 1465.93 1407.02 2455.53
2-3 548 483.02 575.24 320.13
4-5 92 170.96 156.78 27.82
6-7 37 45.38 32.05 1.81
8-9 12 9.64 5.24 0.09
10-12 13 1.71 0.71 0.00
> 12 9 0.26 0.08 0.00
ABE 174.85 184.05 1979.06
χ2 417.45 1204.28 573117.10
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Figure 4. Observed and expected frequencies for ER data without covariate.

Hence, we conclude the ZOIP model fits better than ZIP and Poisson model to

the count of number of times a child is taken to ER or ED.
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CHAPTER 3

ZERO AND K INFLATED POISSON REGRESSION

MODELS

3.1 INTRODUCTION

In Chapter 2, we have introduced the zero and k inflated Poisson model, and dis-

cussed estimation of the parameters using maximum likelihood and the expectation

maximization algorithm. However, the discussion was limited to grouped data. In

this chapter we assume besides the count responses the data also consists of covariate

measurements on each subject. In this chapter, we consider the zero and k inflated

Poisson regression models to study the dependence of the response variable on the

covariates.

The outline of the chapter is as follows. We present the zero and k inflated

Poisson regression model in Section 3.2. We describe the maximum likelihood and

expectation maximum algorithm to estimate the regression parameters in Section 3.3.

Computation of the standard errors for the regression estimates using the method

described by Louis (1982) is presented in Section 3.4. Lastly, we illustrate our theory

on two real life data sets in Section 3.5 including the identification of significant

covariates. Finally, we compare the various Poisson models and find the best fit

model using the AIC criterion.

3.2 ZKIP REGRESSION MODEL

In Section 2.2, we introduced and motivated the ZkIP distribution through a

latent variable formulation. Recall, the probability density of the ZkIP distribution
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is given by

P (Y = y) =





π1 + π3 p0(λ) when y = 0

π2 + π3 pk(λ) when y = k

π3 pj(λ) when y ≥ 1, y 6= k.

(27)

where pj(λ) = λy e−λ/y! for y ≥ 0 and π1 + π2 + π3 = 1. Note that the ZkIP is a

distribution with three parameters π1, π2 and λ. It is a mixture of three distributions.

The first distribution is degenerate at zero with probability π1 and the second is

degenerate at k with probability π2, and the third is the Poisson with mean λ and

probability π3. Clearly, the ZkIP distribution is reduced to ZIP when π2 = 0 and

Poisson distribution is a special case of ZIP for π1 = 0. Some distributional properties

of the ZkIP distribution are given in the Section 2.2.

Suppose that we have a vector y = (y1, y2, . . . , yn) of n independent count re-

sponses from a ZkIP distribution. Associated with each yi, we assume a vector

xi
T = (xi1, . . . , xip) of covariates has been observed. The layout of the observed data

can be written in the following table where we assume the number of yi’s that are

equal to 0 (or k) is high.

Observation Response Covariates

1 y1 x11 . . . . . . x1p

2 y2 x21 . . . . . . x2p

...
...

...
...

i yi xi1 . . . . . . xip

...
...

...
...

n yn xn1 . . . . . . xnp

From (27), the likelihood function of the observed data is

Lobs(π1, π2, λ|y) =
∏

i:yi=0

(π1 + π3p0i(λi))
∏

i:yi=k

(π2 + π3pki(λi))
∏

i:yi 6=0,k

(π3 pyi(λi))

(28)
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where λ = (λ1, λ2, . . . , λn) and pyi(λi) = e−λiλi
yi/yi! for yi ≥ 0. To connect the pa-

rameters with the covariates we follow the standard generalized linear model (GLM)

framework for the multinomial distribution. The three mixing distributions can be

viewed as three nominal categories. Thus the probabilities of the three (degener-

ate(0), degenerate(k), Poisson) categories are π1, π2 and π3 respectively. Following

the GLM baseline category logits model for the multinomial we re-parametrize and

set

log

(
π1

π3

)
= γ and log

(
π2

π3

)
= δ. (29)

Here we were treating the Poisson distribution as the baseline category and thus we

have (3− 1) = 2 equations for the other two categories. As in log-linear models, our

ZkIP regression model assumes the Poisson parameter λi is a loglinear function of

the covariates and it is given by

log(λi) = xT

i
β.

where β = (β1, β2, . . . , βp)
T is a p dimensional unknown regression parameter. For

simplicity we assume the parameters γ and δ are constants. The generalization where

these two parameters are functions of the covariates is straight forward. Thus the

parameters of our ZkIP regression model are β, γ and δ, and we consider estimation

of these parameters in the next section.

3.3 ESTIMATION OF THE REGRESSION PARAMETERS

In this section we will study methods for estimating the parameters of the ZkIP

regression model. The two popular methods are the maximum likelihood (ML) and

expectation maximization (EM) method. The ML technique involves optimizing the

likelihood or the loglikelihood function with respect to the unknown parameters β,

γ and δ. Substituting the reparametrizations (29) in the likelihood function (28) we



35

get

ℓobs(β, γ, δ) = logLobs(β, γ, δ|y)
=

∑

i:yi=0

log (eγ + p0i(λi)) +
∑

i:yi=k

log (eδ + pki(λi))

+
∑

i:yi 6=0,k

log(pyi(λi))− n log(1 + eγ + eδ) (30)

where log λi = xT
i β. The ML estimates can be obtained maximizing the loglikelihood

(30) directly with respect to the parameters or taking the partial derivatives and

solving the three score equations (Lin and Tsai, 2012) given below,

∑

i:yi=0

eγ

eγ + p0i(λi)
=

neγ

(1 + eγ + eδ)

∑

i:yi=k

eδ

eδ + pki(λi)
=

neδ

(1 + eγ + eδ)
(31)

∑

i:yi 6=0,k

(yi − λi)xi =
∑

i:yi=0

λi p0i(λi)

eγ + p0i
xi −

∑

i:yi=k

(k − λi) pki(λi)

eδ + pki(λi)
xi.

These equations (31) can be solved iteratively using the Newton-Raphson method to

obtain the ML estimates.

An alternative and popular method for parameter estimation is the expectation-

maximization (EM) approach. The EM approach treats the observed data y =

(y1,y2, . . . ,yn) as part of a complete data that includes z = (z1, z2, . . . , zn) which

is regarded as missing. Here each zi = (zi1, zi2, zi3) is a three component vector with

probability distribution given by (2) and the conditional distribution of yi given zi

is given by (3). Thus the joint distribution of the observed and missing is given by

P (yi, zi) =





π1 for yi = 0, z1i = 1

π2 for yi = k, z2i = 1

π3 pyi(λi) for yi = 0, 1, . . . , z3i = 1.

where pyi(λi) is the Poisson probability mass function with mean λi.
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Therefore the complete data likelihood function of the ZkIP model is

Lcomp(π1, π2,λ|y, z) =
∏

i:yi=0

(π1)
z1i
∏

i:yi=k

(π2)
z2i

n∏

i=1

(π3pyi(λi))
z3i ,

and the loglikelihood of the complete data, (y, z) for the ZkIP model is

ℓcomp(π1, π2,λ|y, z) =
∑

i:yi=0

(
z1iπ1 + z3i(log π3 + log p0i(λi))

)

+
∑

i:yi=k

(
z2i log π2 + z3i(log π3 + log pki(λi))

)

+

n∑

i=1

(
z3i log π3 + log pyi(λi)

)

=
n∑

i=1

(z1iγ + z2iδ − log(1 + eγ + eδ)) +
n∑

i=1

z3i log pyi(λi).

(32)

When π2 = 0, the ZkIP is reduced to the ZIP model. From (32), the loglikelihood

of the ZIP for the complete data is

ℓcomp(π1,λ|y, z1) =
∑

i:yi=0

(
z1iπ1 + (1− z1i)(log(1− π1) + log p0i(λi))

)

+
∑

i:yi>0

(
(1− z1i) log(1− π1) + log pyi(λi)

)
(33)

=

n∑

i=1

(z1iγ − log(1 + eγ) +

n∑

i=1

(1− z1i) log pyi(λi).

Note that Lambert (1992) used equation (33) as the complete data loglikelihood for

the ZIP model to get the EM estimates.

We now proceed to describe the EM algorithm for the ZkIP model. The first

step in the EM algorithm involves selecting some starting values for the unknown

parameters. The choice of the initial values are important for the convergence of the

algorithm. A wrong choice of the initial values could result in slow convergence or

breakdown of the algorithm. We recommend using the proportions of zeros and k’s
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respectively from the observed data as initial values for the parameters π1 and π2

and use the relations (29) to get initial values γ0 and δ0 for the parameters γ and δ

respectively. The next step involves filling the latent values zi by their expectations,

which is the E-step. We will use the conditional expected values of E(z|y) given in

Table 6 to generate zi’s. Recall that Table 6 is a reparametrized version of Table 1

given in Chapter 2.

Table 6. E(z|y) for the ZkIP regression model

z y = 0 y = k y 6= 0, k

z1
eγ

eγ + p0i(λi)
0 0

z2 0
eδ

eδ + pki(λi)
0

z3
p0i(λi)

eγ + p0i(λi)

pki(λi)

eδ + pki(λi)
1

NOTE: The sum of entries in any column is one.

We use Table 6 to estimate the missing values in the expectation step of the EM

algorithm as follows

ẑ1i = E(z1i|yi = 0) =
eγ

eγ + p0i(λi)
and ẑ1i = E(z1i|yi = k) = 0,

ẑ2i = E(z2i|yi = k) =
eδ

eδ + pki(λi)
and ẑ2i = E(z21i|yi 6= k) = 0. (34)

For the maximization step in the EM algorithm, instead of maximizing the com-

plete likelihood directly, we solve the score equations

∂ℓcomp

∂β
=

n∑

i=1

ẑ3i(yi − ex
T

i
β) xi = 0

∂ℓcomp

∂γ
=

n∑

i=1

ẑ1i −
neγ

(1 + eγ + eδ)
= 0 (35)

∂ℓcomp

∂δ
=

n∑

i=1

ẑ2i −
neδ

(1 + eγ + eδ)
= 0,
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where ẑ3i = (1− ẑ1i− ẑ1i). In summary the EM algorithm to estimate the parameters

γ, δ and the regression parameter β for the ZkIP regression model is as follows.

1. Select initial values β0, γ0, δ0 for the parameters β, γ, and δ respectively.

2. E-step: Estimate ẑ1i, ẑ2i using equations (34).

3. M-step: Solve the score equations (35) and obtain an updated estimates β1,

γ1, δ1.

4. Repeat the E-step and the M-step until the parameter estimates converge.

In the next section we will discuss how to obtain the standard errors of the

estimates obtained by the EM algorithm.

3.4 STANDARD ERRORS FOR THE EM ESTIMATES

The most commonly used method to get the standard errors in the mixture mod-

els is to compute the matrix of partial derivatives of the loglikelihood for the observed

data, that is, to calculate the information matrix from the observed data. Lambert

(1992) used this method for computing the standard errors for ZIP regression model.

Lin and Tsai (2012) used the Hessian matrix to get the standard errors for the ZkIP

model without actually computing second order partial derivatives of the loglikeli-

hood. Recall that the Hessian matrix comes out as a byproduct of the nonlinear

optimization methods in the statistical software.

However, for the EM framework that we have used, an appropriate and easier ap-

proach for obtaining the standard errors is the method outlined by Louis (1982) that

we had discussed in Section 2.5.2. The Louis (1982) method is based on the complete

and missing data loglikeihoods and it is given by the relation (21) in Section 2.5.2

and for convenience we reproduce that equation here.

Îobs = E(Icomp|y)− E(Imiss|y). (36)
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Recall that the loglikelihood of the complete data for the ZkIP regression model is

given by (32) and the first order derivatives of this loglikelihood are given in equations

(35). The elements of the matrix E(Icomp|y) are the expected values of the negative

of second order partial derivatives of the complete data loglikelihood (32) and they

are given by

E

[−∂2ℓcomp

∂β∂βT

]
=

n∑

i=1

[p0i(λi) pki(λi)− eγ+δ]λi

[eγ + p0i(λi)] [eδ + pki(λi)]
(xix

T

i
)

E

[−∂2ℓcomp

∂γ2

]
=

neγ(1 + eδ)

(1 + eγ + eδ)2

E

[−∂2ℓcomp

∂γ∂δ

]
=

−neγ+δ

(1 + eγ + eδ)2

E

[−∂2ℓcomp

∂δ2

]
=

neδ(1 + eγ)

(1 + eγ + eδ)2
.

The two elements −∂2ℓcomp/∂β∂γ and −∂2ℓcomp/∂β∂δ are equal to zero and the

other elements are obtained by symmetry. The loglikelihood of the missing data for

the ZkIP regression model is

ℓmiss(β, γ, δ) =

n∑

i=1

(z1iγ + z2iδ + z3i log pyi(λi))−
∑

i:yi=0

log(eγ + p0i(λi))

−
∑

i:yi=k

log(eδ + pki(λi))−
∑

i:yi 6=0,k

log pyi(λi). (37)

The elements of the matrix E(Imiss|observed) are the negative of the expected value

of second order derivatives of (37). These are given by the following equations
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E

[−∂2ℓmiss

∂β∂βT

]
= −E

[( n∑

i=1

z3iλixix
T

i
−
∑

yi 6=0,k

λixix
T

i

−
∑

i:yi=0

eγp0i(1− λi) + p0i
2

(eγ + p0i)2
λixix

T

i

−
∑

i:yi=k

eδpki(λi − (k − λi)
2) + pki

2λi

(eδ + pki)2
xix

T

i

)∣∣y
]

=

n∑

i=1

p0ipki − eγ+δ

(eγ + p0i)(eδ + pki)
λixix

T

i
−
∑

i:yi=0

eγp0i(1− λi) + p0i
2

(eγ + p0i)2
λixix

T

i

−
∑

i:yi=k

eδpki(λi − (k − λi)
2) + pki

2λi

(eδ + pki)2
xix

T

i

and

E

[−∂2ℓmiss

∂β∂γ

]
=

∑

i:yi=0

eγp0iλixi

(eγ + p0i)2

E

[−∂2ℓmiss

∂β∂δ

]
= −

∑

i:yi=k

eδpki(k − λi)xi

(eδ + pki)2

E

[−∂2ℓmiss

∂γ2

]
=

∑

i:yi=0

eγp0i
(eγ + p0i)2

E

[−∂2ℓmiss

∂γ∂δ

]
= 0, E

[
−∂2ℓmiss

∂δ2

]
=
∑

i:yi=k

eδpki
(eδ + pki)2

.

All the above expected values are taken with respect to the missing values conditional

on the observed data. Using these formulas we can compute Îobs given in equation

(36). The square root of diagonal elements of
(
Îobs

)−1

are the standard errors of the

EM estimates.

3.5 EXAMPLES

In this section we illustrate the results presented in Sections 3.3 and 3.4 on two

real life data. These data examples were obtained from the National Health Interview

Survey (NHIS) conducted by the National Center for Health Sciences (NCHS). Since
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1957, NCHS has been collecting and archiving data on US residents. The data

is collected annually on various health topics including immunizations, depression,

hepatitis, cancer, use of tobacco and other variables related to health. For our

illustration we took a subset of data that was collected in year 2015. In both examples

we fit zero and k inflated Poisson (ZkIP) model and compare it to the zero inflated

Poisson (ZIP) and ordinary Poisson models. The first example illustrates a ZkIP

model with inflations at 0 and k = 6, while the second example has inflations at 0

and k = 1, and the model is also known as zero and one inflated Poisson (ZOIP)

model.

3.5.1 PAP SMEAR DATA

We revisit the pap smear data discussed in Section 2.7.1. In this example, we

looked at the number of pap smear tests a female took in last six years for females

aged more than 18 years. The data also consists of age of the female respondent

and her answer to the question ever received HPV shot or vaccine?. The age is

a continuous variable whereas the response to HPV shot/vaccine is a dichotomous

variable. Both these variables could be treated as covariates in the model. As we

mentioned before these data were obtained from NHIS adult survey files.

The mean number of the pap smear tests for this clean data is 3.40 and the

variance is 5.25. The percentage (count) of females who never took a pap smear test

was 15.68% (1884) and the percentage (count) of females who had one pap smear

each year for a total of six in the last six years was 29.17% (3504). The observed

frequencies are presented in Table 8. Clearly the proportions of zero and six in the

data set are inflated and both these proportions are more than what we would expect

under a Poisson model. Thus an appropriate model for this data is the zero and six

inflated Poisson model or the ZkIP model with k = 6.

For the pap smear data using the methods described in Sections 3.3 and 3.4 we

fit the ZkIP, ZIP and the Poisson models. We tested the significance of the two

covariates in the models using Wald’s test. It turned out that the variable age was

not significant in the ZkIP and ZIP models. Age was removed in subsequent analysis

and we reran the models with only HPV shot as the covariate. The shape of the

loglikelihood function fixing the regression parameter for various values of π2, π1
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for the ZkIP model is shown in Figure 5. As seen in the figure the loglikelihood is

concave and appears to have a unique peak. The regression parameter is significant

for all the models at α = 0.10. The estimates obtained by the EM algorithm and

the corresponding standard errors for the EM estimates described in Section 3.4 are

presented in Table 7. For the ZkIP model the mixing parameter estimates were π̂1 =

0.126, and π̂2 = 0.26, meaning about 12.6% of the zeros were from the degenerate

distribution and 26% of the observed frequencies of six pap smear count were from a

degenerate distribution at six. The table also has the AIC value and maximum value

of the loglikelihood function for different models. The AIC value of the ZkIP, ZIP

and Poisson models are 46523.89, 52205.70, 56061.88 respectively. The ZkIP model

has minimum AIC and the difference between the AIC of ZkIP and ZIP model is

greater than 5000. Thus, adding one more distribution which is degenerate at six to

the model or the ZkIP with k = 6 is a better model than the ZIP for this data.

Table 7. Estimates and SE for pap smear

Parameter ZkIP ZIP Poisson
Intercept 1.0837* 1.3696* 1.2192*

(0.0086) (0.0054) (0.0053)
HPV shots 0.0727* 0.0333* 0.0276*

(0.0235) (0.0154) (0.0152)
γ̂ -1.5844 -1.8132 –

(0.0331) (0.0184)

δ̂ -0.8526 – –
(0.0235)

π̂1 0.1257 0.1402 –
(0.0026) (0.0022)

π̂2 0.2613 – –
(0.0018)

logLobs -25363.93 -26098.85 -28028.94
AIC 46523.89 52205.70 56061.88

NOTE: The regression parameters significant
at α = 0.10 are asterisk marked. The
standard errors are in parenthesis.

Recall that the three models Poisson, ZIP and ZkIP are nested models and we

could use the likelihood ratio criterion described in the Section 2.6 to decide whether

the complex model could be reduced to the simpler model. The LRT statistic which

compares Poisson model with the ZIP is −2 log Λ = 3860.18 and the p-value com-

puted using the limiting distribution, which is a mixture of two χ2’s with equal

weights, is less than 0.0001. This implies that the inflation at zero is significant
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Figure 5. Loglikelihood of the ZkIP model for observed pap smear data.



44

and ZIP model is significantly better than the Poisson model. Similarly, we also

used LRT to compare ZkIP with ZIP model. The value of the test statistic is

−2 log Λ = 1469.85, which is again highly significant with a p-value less than 0.0001.

Hence, ZkIP is significantly better than the ZIP model. Further, we checked the

goodness-of-fit of the models by comparing the observed frequencies and the ex-

pected frequencies. Table 8 shows that the Poisson model has highest ABE and does

not provide a good fit to the data. The error 5685.69 of the ZIP model is lower than

that of the Poisson model 8086.16. And the sum of the absolute difference between

the observed and expected frequency is minimum (1130.93) for the ZkIP model. Fig-

ure 6 shows that the ZkIP model is a good fit to the observed data. Thus the ZkIP

which is able to capture inflated frequencies at both zero and 6 is a superior model

for this data compared with ZIP and the Poisson model.

Table 8. Frequency comparisons for pap smear

Count Observed ZkIP ZIP Poisson
0 1884 1884.24 1883.47 402.81
1 1417 1112.73 785.54 1366.85
2 1362 1661.47 1553.79 2323.12
3 1536 1648.59 2043.78 2627.90
4 1115 1228.13 2016.95 2230.12
5 905 732.45 1592.78 1514.29
6 3504 3504.14 1048.87 857.41

> 6 291 162.46 600.28 421.80
ABE 1130.93 5685.69 8086.16
χ2 297.64 7263.93 15312.36

3.5.2 EMERGENCY ROOM DATA

The data for this example was taken from the NHIS 2015 database on children

aged less than 18 years. The count variable in this data is the number of visits of

children to an emergency room (ER) in an year. For the covariates we chose age (0-

17) and gender (Male/Female). We have removed the cases were the response or the

covariates are missing, and ended up with a clean set of data for n = 12223 children.

The average number of visits to the ER in our sample was 0.26, and the variance was

0.45. In the data the count values were 0 and 1 have frequencies 10046 and 1466.

These frequencies are high because they account for 82.19 and 11.99 percentages of

the total sample.
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For this data we fit zero and one inflated Poisson (ZOIP), zero inflated Poisson

(ZIP), and the Poisson model. The significance of the regression variables is tested

using Wald Test. In the first iteration, the gender variable was found to be insignif-

icant in all three models so it was removed from the models. The analysis is again

performed with only age as the covariate. The model estimates and standard errors

are presented in Table 9.

Table 9. Estimates and SE for ER data

Paramter ZkIP ZIP Poisson
Intercept 0.1173* -0.0314* -1.0512*

(0.0610) (0.0395) (0.0312)
Age -0.0217* -0.0252* -0.0358*

(0.0044) (0.0039) (0.0033)
γ̂ 1.0959 0.7098 –

(0.1210) (0.0427)

δ̂ -2.0450 – –
(0.3853)

π̂1 0.7260 0.6704 –
(0.0213) (0.0094)

π̂2 0.0314 – –
(0.0679)

logLobs -7736.62 -7741.19 -8295.23
AIC 15481.24 15488.39 16594.00

NOTE: The regression parameters significant
at α = 0.05 are asterisk marked. The
standard errors are given in parenthesis.

The AIC value of the ZOIP, ZIP and Poisson models are

15481.24, 15488.39, 16594.00 respectively. Using the AIC measure, we see the ZIP

model performs better than the Poisson model. Further, the ZOIP model seems to

have a slight edge over the ZIP model. We also performed the likelihood ratio test

for model selection. The LRT statistic for testing Poisson model over ZIP is given by

−2 log Λ = 1108.08, which is highly significant. The LRT statistic −2 log Λ = 9.15

shows that the ZOIP model is significantly better than the ZIP. Thus both the AIC

and LRT criterion shows that ZOIP fits best for this data.

The observed and expected frequencies of the ZOIP, ZIP and Poisson models are

in Table 10 and they are plotted in Figure 7. The ZIP model is able to capture the

inflation at count zero. However, the ZOIP model is able to capture the inflation at

count zero and one as well. The conclusion is also supported by the ABE measure.
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Figure 7. Observed and Expected Frequencies for ER data.

Table 10. Frequency comparisons for ER data

Count Observed ZOIP ZIP Poisson
0 10046 10047.60 10049.72 9450.22
1 1466 1465.98 1436.96 2499.80
2-3 548 523.82 588.65 356.52
4-5 92 170.26 162.21 34.31
6-7 37 41.01 33.08 2.43
8-9 12 6.92 4.65 0.12
10-12 13 0.86 0.47 0.00
> 12 9 0.21 0.10 0.00
ABE 134.07 176.32 1947.20
χ2 586.40 1150.84 304381.20
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CHAPTER 4

ZERO AND K INFLATED

CONWAY-MAXWELL-POISSON MODELS

4.1 INTRODUCTION

In Chapter 3 we constructed ZkIP regression model for a two point inflated count

data. The ZkIP is a mixture of three distribution, one of which is the Poisson. In

this chapter, we replace the Poisson with Conway-Maxwell-Poisson (CMP), which

is a two parameter extension of the ordinary Poisson. Before embarking on this

generalization we first introduce the CMP distribution and its basic properties. A

nice summary of the CMP distribution can also be found in Shmueli et al. (2005). In

a recent paper, Sellers and Raim (2016) introduced the zero inflated CMP (ZICMP),

which extends the CMP to handle excess zeros in the data. We give a brief summary

of ZICMP model. While this model can handle excess zeros it is not an appropriate

model when there is another count with a high frequency. To handle inflations at two

points zero and k, we introduce in this chapter zero and k inflated Conway-Maxwell-

Poisson (ZkICMP) distribution. This ZkICMP distribution extends ZkIP and it is

much more flexible model to account two point inflations in the count data. We study

first basic properties of ZkICMP including a stochastic representation. To study the

relationship between the count response and explanatory variables we construct the

ZkICMP regression model. We discuss estimation of the regression parameter and

the mixing probabilities using maximum likelihood variable in Section 4.3.1. The

formulas needed to calculate the standard errors are given in Section 4.3.2. In the

following section we discuss inferential issues and model selection. We also study

performance of the ZkICMP using two simulated data sets. We conclude the chapter

with application of the ZkICMP regression model on two real-life examples from

National Health and Nutrition Examination Survey (NHANES).
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4.2 ZKICMP PROBABILITY DISTRIBUTION

We say that a count response Y follows the Conway-Maxwell-Poisson (CMP)

distribution if its probability mass function is given by

P (Y = y) =
λy

(y!)ν Z(λ, ν)
, for y = 0, 1, 2, . . . (38)

where

Z(λ, ν) =
∞∑

j=0

λj

(j!)ν
and ν ≥ 0, λ > 0.

Here, λ is the rate parameter and ν is the dispersion parameter. Note, the function

Z(λ, ν) is an infinite series. We can check that this series converges for any λ >

0, ν > 0 and when ν = 0 it converges for 0 < λ < 1. Recently, Shmueli et al.

(2005) brought the CMP distribution into the limelight. They gave various statistical

properties of the distribution, and we will discuss those properties here briefly. The

dispersion parameter ν = 1 corresponds to equidispersion and the CMP distribution

reduces to the Poisson distribution. While ν < 1 corresponds to overdispersion and

ν > 1 indicates underdispersion. Further, when ν = 0 and λ < 1 the CMP becomes

the geometric distribution with success probability p = (1 − λ). And the CMP

distribution converges to Bernoulli(p = λ/(1 + λ)) distribution when ν → ∞. The

moment generating function of the distribution (38) is given by

MY (t) =
Z(λet, ν)

Z(λ, ν)
.

It could be used to derive the raw moments of the distribution. The mean and

variance of the CMP distribution are

E(Y ) = λ
∂ logZ

∂λ
, V (Y ) =

∂E(Y )

∂ log λ
.

Shmueli et al. (2005) gave the following approximations

E(Y ) ≈ λ1/ν − ν − 1

2ν

V (Y ) ≈ 1

ν
λ1/ν .
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These approximations are good when ν ≤ 1 or λ > 10ν. Another useful function is

the probability generating function. For the CMP this function is

GY (t) = Z(λt, ν)/Z(λ, ν).

The CMP distribution belongs to the exponential family. Indeed we can rewrite (38)

as

P (Y = y) = exp (y log λ− ν log y!− logZ(λ, ν)).

Clearly, the sufficient statistics are (y, log y!) for (λ, ν). The CMP distribution also

belongs to the scale family. If X = σY then

P (X = y) =
1

σ

λy/σ

(y/σ!)νZ(λ, ν)

=
1

σ
CMP

(y
σ

)
.

An appropriate model for underdispersed or overdispersed count data with excessive

zeros is the zero inflated Conway-Maxwell-Poisson (ZICMP) distribution that was

introduced by Sellers and Raim (2016). The ZICMP distribution is an extension of

the ZIP distribution that we discussed in Chapter 2. It is a mixture of degenerate

distribution at zero with probability π1 and a CMP distribution with probability

(1− π1). The probability mass function of ZICMP distribution is

P (Y = y) =





π1 + (1− π1)
1

Z(λ, ν)
when y = 0

(1− π1)
λy

(y!)νZ(λ, ν)
when y ≥ 1.

where 0 < π1 < 1, λ > 0 and ν ≥ 0. The mean and variance of ZICMP distribution

are

E(Y ) = (1− π1) λ
∂ logZ(λ, ν)

∂λ
,

V (Y ) = (1− π1)

(
λ
∂E(Y )

∂λ
+ π1 (E(Y ))2

)
.
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An extension of ZICMP is the ZkICMP distribution. Similar to ZkIP, it is a mixture

of three distributions including point masses at 0 and k. The probability mass

function of ZkICMP distribution is

P (Y = y) =





π1 + (1− π1 − π2)
1

Z(λ, ν)
when y = 0

π2 + (1− π1 − π2)
λk

(k!)νZ(λ, ν)
when y = k

(1− π1 − π2)
λy

(y!)νZ(λi, ν)
when y ≥ 1, y 6= k,

(39)

where 0 < π1 < π1 + π2 < 1 , λ > 0 and ν ≥ 0. The mean and variance of (39) are

E(Y ) = kπ2 + π3λ
∂ logZ

∂λ

V (Y ) = π2

(
k2(1− π2)− 2kπ3λ

∂ logZ(λ, ν)

∂λ

)

+π3

(
∂E(Y )

∂ log λ
+ (1 + π3)(λ

∂ logZ(λ, ν)

∂λ
)2
)
.

where π3 = (1− π1 − π2). The moment generating function is

MY (t) = π1 + π2e
tk + π3

Z(λet, ν)

Z(λ, ν)
,

and the probability generating function is

GY (t) = π1 + π2t
k + π3

Z(λt, ν)

Z(λ, ν)
.

When ν = 1, we have Z(λ, ν) = eλ and (39) reduces to

P (Y = y) =





π1 + π3e
−λ when y = 0

π2 + π3
λke−λ

k!
when y = k

π3
λye−λ

y!
when y ≥ 1, y 6= k,

which is the ZkIP that we discussed in Chapter 2. When ν = 0, we have Z(λ, ν) =
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1/(1− λ) and ZkICMP reduces

P (Y = y) =





π1 + π3(1− λ) when y = 0

π2 + π3λ
k(1− λ) when y = k

π3λ
y(1− λ) when y ≥ 1, y 6= k.

which is same as ZkIG. Next, Z(λ, ν) → (1 + λ) as ν → ∞, and therefore we have

P (Y = 0) → π1 + π3
1

1 + λ
,

P (Y = 1) → π2 + π3
λ

1 + λ
.

P (Y > 1) → 0.

Thus the ZkICMP distribution reduces to Bernoulli distribution with success prob-

ability λ/(1 + λ) as ν → ∞.

4.3 ZKICMP REGRESSION MODEL

In this section we will study the ZkICMP regression model. Assume that we have

a vector y = (y1, y2, . . . , yn) of n independent observations. Associated with each yi

we have a p dimensional covariate vector xi = (xi1, xi2, . . . , xip)
T . We set xi1 = 1

for the regression model with an intercept. The general layout of the observed data

is in Table 11. Assuming a possible model for yi is the ZkICMP distribution with

parameters (π1, π2, λi, ν), the likelihood function is

Lobs(π1, π2,λ, ν|y) ∝
∏

i:yi=0

(
π1 + π3

1

Z(λi, ν)

) ∏

i:yi=k

(
π2 + π3

λi
k

(k!)νZ(λi, ν)

)

∏

i:yi 6=0,k

(
π3

λi
yi

(yi!)νZ(λi, ν)

)

∝
∏

i:yi=0

(π1 + π3 p0i)
∏

i:yi=k

(π2 + π3 pki)
∏

i:yi 6=0,k

(π3 pyi), (40)

where π3 = (1− π1 − π2), λ = (λ1, λ2, . . . , λn) and pyi = λi
yi/[(yi!)

νZ(λi, ν)].

For the regression we set log(λi) = xT

i
β, a linear function of the covariates and
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Table 11. General Layout of the count data

Observations Response Covariates
1 y1 x11 . . . . . . x1p

2 y2 x21 . . . . . . x2p
...

...
...

...
i yi xi1 . . . . . . xip
...

...
...

...
n yn xn1 . . . . . . xnp

the regression parameter β. While it is possible to link the parameters π1, π2 and

ν to the covariates but for simplicity we assume they are unknown constants. For

obtaining maximum likelihood estimates and to use the optimization routines we

reparametrize them as follows

log

(
π1

π3

)
= γ, log

(
π2

π3

)
= δ, and log(ν) = η. (41)

When π2 = 0 the likelihood function (40) simplifies to

Lobs(π1,λ, ν|y) ∝
∏

i:yi=0

(
π1 + (1− π1)

1

Z(λi, ν)

) ∏

i:yi>0

(
(1− π1)

λi
yi

(yi!)νZ(λi, ν)

)
,

which is the likelihood function of the ZICMP model (Sellers and Raim, 2016). When

π2 = 0 and π1 = 0 equation (40) becomes

Lobs(λ, ν|y) =
n∏

i=1

λi
yi

(yi!)νZ(λi, ν)
,

which is the likelihood function of the CMP distribution (Shmueli et al., 2005).

4.3.1 ESTIMATION OF ZKICMP PARAMETERS

In this section we discuss estimation of the ZkICMP regression model parameters

given by the vector θ = (β, γ, δ, ν). The dimension p of the regression parameter

vector β depends on the number of covariates included in the model. The parameters
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γ and δ quantify the zero and k inflations respectively. The dispersion parameter in

the ZkICMP model is ν. Please note that both ZkICMP and ZkINB have the same

number of parameters, and they have one less than ZICMP and ZkIP models.

The loglikelihood function of the observed data for the ZkICMP model is given by

ℓobs(θ) =
∑

i:yi=0

log(π1 + π3 p0i) +
∑

i:yi=k

log(π2 + π3 pki) +
∑

i:yi 6=0,k

(log π3 + log pyi)

where pyi = λi
yi/[(yi!)

νZ(λi, ν)]. Substituting π1 = eγ/(1 + eγ + eδ) and π2 =

eδ/(1 + eγ + eδ), the loglikelihood can be rewritten as

ℓobs(θ) =
∑

i:yi=0

log(eγ + p0i) +
∑

i:yi=k

log(eδ + pki) +
∑

i:yi 6=0,k

log pyi

−n(log(1 + eγ + eδ)). (42)

Taking the partial derivatives of (42) with respect to the parameters we obtain the

following score functions. For notational convenience we write Z instead of Z(λi, ν).

∂ℓobs(θ)

∂β
=

(
−
∑

i:yi=0

p0i
eγ + p0i

1

Z

∂Z

∂λi

+
∑

i:yi=k

pki
eδ + pki

(
k

λi

− 1

Z

∂Z

∂λi

))
λixi

+
∑

i:yi 6=0,k

(
yi
λi

− 1

Z

∂Z

∂λi

)
λixi

∂ℓobs(θ)

∂γ
=

∑

i:yi=0

eγ

eγ + p0i
− neγ

1 + eγ + eδ

∂ℓobs(θ)

∂δ
=

∑

i:yi=k

eδ

eδ + pki
− neδ

1 + eγ + eδ

∂ℓobs(θ)

∂ν
= −

∑

i:yi=0

p0i
eγ + p0i

1

Z

∂Z

∂ν
−
∑

i:yi=k

pki
eδ + pki

(
log(k!) +

1

Z

∂Z

∂ν

)

−
∑

i:yi 6=0,k

(
log(yi!) +

1

Z

∂Z

∂ν

)

The score equations do not have closed form solutions, and thus have to be solved
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numerically using routines for solving non-linear equations. There are several rou-

tines available in R software including nlminb, optim, box-constraint quasi-newton

(L-BGFS-B), conjugate gradient (CG), simulated annealing algorithm (SANN). We

have used nlminb, which essentially is an implementation of Newton-Raphson. The

estimate of β that we obtain from fitting a Poisson model is taken as the initial

value of β. The initial values for γ, δ are obtained from the sample proportions of

zeros and ks and we take one as the initial value for ν. We did not encounter any

convergence problems with these initial values. Details for obtaining the standard

errors of parameter estimates will be discussed in the next section.

4.3.2 STANDARD ERRORS FOR THE PARAMETER ESTIMATES

Under standard regularity conditions according to Cramèr’s theorem, the max-

imum likelihood estimates are asymptotically normal with covariance matrix given

by the inverse of Fisher information. For the ZkICMP model the Fisher information

is given by

Iobs =

[
−∂2ℓobs(θ)

∂θ∂θT

]

where ℓobs(θ) is given by (42). The elements of Iobs can be obtained taking the partial

derivatives of the score functions and they are given by

−∂2ℓobs(θ)

∂β∂βT
= −

∑

i:yi=0

p0i
eγ + p0i

1

Z

(
2λi

Z

(
∂Z

∂λi

)2

− p0i
eγ + p0i

λi

Z

∂Z

∂Z
− ∂λi

∂λi
− λi

∂2Z

∂λi
2

)

× λixix
T

i

−
∑

i:yi=k

pki
eδ + pki

(
eδ

eδ + pki
λi

(
k

λi
− 1

Z

∂Z

∂λi

)2
)
λixix

T

i

−
∑

i:yi=k

pki
eδ + pki

(
λi

((
1

Z

∂Z

∂λi

)2

− 1

Z

∂2Z

∂λi
2

)
− 1

Z

∂Z

∂λi

)
λixix

T

i

+
∑

i:yi 6=0,k

(
λi

((
1

Z

∂Z

∂λi

)2

− 1

Z

∂2Z

∂λi
2

)
− 1

Z

∂Z

∂λi

)
λixix

T

i
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−∂2ℓobs(θ)

∂β∂γ
= −

∑

i:yi=0

eγ

(eγ + p0i)2
p0iλixi

−∂2ℓobs(θ)

∂β∂δ
=

∑

i:yi=k

eδ

(eδ + pki)2
pki(k − λi)xi

−∂2ℓobs(θ)

∂β∂ν
=

∑

i:yi=0

p0i
eγ + p0i

1

Z

(
∂2Z

∂ν∂λi

− 1

Z

∂Z

∂ν

∂Z

∂λi

− eγ

eγ + p0i

1

Z

∂Z

∂ν

∂Z

∂λi

)
λixi

+
∑

i:yi=k

pki
eδ + pki

(
1

Z

∂2Z

∂ν∂λi
− 1

Z

∂Z

∂ν

∂Z

∂λi

)
λixi

+
∑

i:yi=k

pki
eδ + pki

(
eδ

eδ + pki

(
log k! +

1

Z

∂Z

∂ν

)(
k

λi

− 1

Z

∂Z

∂λi

))
λixi

+
∑

i:yi 6=0,k

1

Z

(
∂2Z

∂ν∂λi

− 1

Z

∂Z

∂ν

∂Z

∂λi

)
λixi

−∂2ℓobs(θ)

∂γ2
=

neγ(1 + eδ)

(1 + eγ + eδ)2
−
∑

i:yi=0

eγp0i
(eγ + p0i)2

−∂2ℓobs(θ)

∂γ∂δ
=

− neγ+δ

(1 + eγ + eδ)2

−∂2ℓobs(θ)

∂γ∂ν
= −

∑

i:yi=0

eγp0i
(eγ + p0i)2

1

Z

∂Z

∂ν

−∂2ℓobs(θ)

∂δ2
=

neδ(1 + eγ)

(1 + eγ + eδ)2
−
∑

i:yi=k

eδpki
(eδ + pki)2

−∂2ℓobs(θ)

∂δ∂ν
= −

∑

i:yi=k

eδpki
(eδ + pki)2

(
log k! +

1

Z

∂Z

∂ν

)

−∂2ℓobs(θ)

∂ν2
=

∑

i:yi=0

p0i
eγ + p0i

1

Z

(
∂2Z

∂ν2
− p0i + 2eγ

eγ + p0i

1

Z

(
∂Z

∂ν

)2
)

+
∑

i:yi=k

pki
eδ + pki

(
1

Z

∂2Z

∂ν2
−
(
1

Z

∂Z

∂ν

)2

− eδ

eδ + pki

(
log k! +

1

Z

∂Z

∂ν

)2
)

+
∑

i:yi 6=0,k

(
1

Z

∂2Z

∂ν2
−
(
1

Z

∂Z

∂ν

)2
)
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4.4 HYPOTHESIS TESTING AND MODEL SELECTION

In the previous section we have studied maximum likelihood estimation of the

ZkICMP regression model parameters. Under standard regularity conditions, the

parameter estimates are asymptotically normal with standard errors given by the

inverse Fisher information. We can use this asymptotic result to construct test of

hypothesis for the significance of the regression coefficients. For model selection as

in Chapter 2, we can use Akaike Information Criterion (AIC) or the likelihood-ratio

test statistic to select the model that best fits the data. The adequacy of the selected

model can be validated using the goodness of fit criteria or by studying the residuals.

We discuss testing of hypothesis in Section 4.4.1, residual analysis in Section 4.4.2,

and model selection in Section 4.4.3.

4.4.1 HYPOTHESIS TESTING

Testing the impact of jth covariate on the count response is equivalent to testing

H0 : βj = 0 versus H1 : βj 6= 0. This is straightforward and can be done using

standard Wald’s statistic, z = β̂j/SE(β̂j), which is asymptotically standard normal

under the null hypothesis. The other parameter of interest is the dispersion parameter

ν. We would be interested in testing either H0 : ν = 1 against H1 : ν > 1 or

H1 : ν < 1. The former hypothesis is indicative of overdispersion and the latter

indicative of underdispersion in the data. Recall that when ν = 1 the ZkICMP

distribution is same as the ZkIP distribution. Therefore to check if we could replace

ZkICMP model with ZkIP, we could test null hypothesis H0 : ν = 1 versus the two

sided alternative H1 : ν 6= 1. Once again all these hypothesis could be tested using

the Wald’s test statistic, z = ν̂/SE(ν̂) which is asymptotically standard normal. An

alternative for testing H0 : ν = 1 is the likelihood ratio test. The test statistic is

−2 log Λ = −2 log
Lobs(

ˆ̂
β, ˆ̂γ,

ˆ̂
δ, ν = 1)

Lobs(β̂, γ̂, δ̂, ν̂)
, (43)

which is asymptotically distributed as chi-square with one degree of freedom. In the

above
ˆ̂
β, ˆ̂γ and

ˆ̂
δ are the ML estimates for the ZkIP model.

The LRT test could also be used to test for inflations at zero and at k. As in
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Chapter 2, the asymptotic distribution of the LRT statistic is a mixture of chi-squares

under the null hypothesis H0 : π1 = 0 or under the null hypothesis H0 : π2 = 0.

4.4.2 RESIDUAL ANALYSIS

For grouped data a popular measure of goodness-of-fit is the Pearson statistic.

However, the measure is not suitable for ungrouped or subject specific data. The

differences between the observed and fitted values for each subject or observation

are best studied in the residual analysis. Dunn and Smyth (1996) showed that usual

residuals may not be the best choice for non-normal models. And they recommend

the use of randomized quantile residuals for non-normal responses, in particular, for

count responses. The randomized quantile residuals for the ZICMP models were used

by Sellers and Raim (2016) to check for goodness-of-fit. They developed ’COMPois-

sonReg’ package in R to calculate the residuals for the ZICMP and CMP models.

We have modified their code to calculate the quantile residuals for ZkICMP to check

for goodness-of-fit in the examples discussed in Section 4.6.

4.4.3 MODEL SELECTION

We have seen there are various models ZkICMP, ZICMP, ZkINB, ZkIP, and ZIP,

that one could use for a given count data with inflated frequencies. Besides test of

hypothesis using the likelihood ratio test, we could select the best and appropriate

model using the Akaike Information Criterion (AIC) defined in Section 2.6.4. The

AIC safeguards over fitting by adding a penalty term for the number of parameters

in the model. The best model is the one with minimum AIC value.

4.5 SIMULATIONS

In this section we check our parameter estimation methods for ZkICMP model

on simulated count data that contains inflated frequencies at zero and at k. The

data is simulated from ZkICMP distribution for various values of θ = (λ, ν, π1, π2).

The value of ν > 1 in all the simulations which symbolizes underdispersion. In

the simulated data zeros and k’s are inflated because π1 and π2 are positive. We

tried various sample sizes n = 200, 500, 1000, 2000. We fit other count models for
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the simulated data and show using various criterion ZkICMP fits best among the

competing models.

4.5.1 SIMULATED DATA I

For our first simulated data sets we chose λ = 8, ν = 2, π1 = 0.5, and π2 = 0.2.

Thus fifty percent of the simulated data comes from the degenerate distribution at

zero and twenty percent comes from the degenerate distribution at k = 1, and the rest

from an underdispersed CMP distribution since ν = 2. Four different sample sizes

n = 200, 500, 1000, 2000 were used. We obtain the maximum likelihood estimates

and standard errors of the parameters for various count models. The results are

shown in Table 12 for various sample sizes n.

We observe for simulated data with sample size n = 500, the Poisson model gives

an estimate λ̂ = 1.11, which is far from the true value λ = 8. The ZIP model

accounts for the inflation at zero but gives a poor estimate (1.80) for λ. The ZkIP

and ZkINB models underestimate inflations both at zero (π̂1 = 0.45) and at one

(π̂2 = 0.14). The CMP and ZICMP models estimates correctly neither the rate λ

nor the dispersion ν. The ZkICMP model captures the inflation at zero(π̂1 = 0.49),

at k = 1 (π̂2 = 0.20) and underdispersion (ν̂ = 2.46). The estimated values are

close to the true values. However, the estimate of the rate parameter (λ̂ = 17.56)

is not close to the true value of the parameter (λ = 8) and it has a high standard

error. The ZkICMP model has AIC 1430.32 which is slightly less than the AIC values

1437.60 and 1437.65, respectively, of ZkINB and ZkIP models. Pairwise comparisons

using the likelihood ratio tests for the simulated data reveal (1) CMP model fits

better than the Poisson, (2) ZICMP fits better than ZIP, and (3) ZkICMP fits better

than ZICMP model. Thus using LRT we conclude the CMP models fit significantly

better than their Poisson counterparts, and among the CMP models it is the doubly

inflated model, ZkICMP that beats the other models as expected. The results from

AIC criterion concur with the LRT.

We also notice the results of ZkINB and ZkIP models are comparable. In the

ZkINB model the estimates, standard errors, log likelihood and AIC are similar to

the ZkIP model. Both the ZkIP and ZkINB models capture the inflations at zero and

k, but they fail to capture the underlying underdispersion in the data. We obtain
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similar results when we increase the sample size to 1000 and 2000. Notably, for large

sample sizes not only the ZkICMP outperforms the other models, the parameter

estimates get closer to the true values.

4.5.2 SIMULATION II

For the second simulated data we have used the parameter values λ = 3, ν =

1.5, π1 = 0.4 and π2 = 0.1 for the ZkICMP distribution. The simulated data is

underdispersed since ν > 1 and inflated at zero (π1 = 0.4) and at k = 2 (π2 = 0.1).

Unlike the previous example, we have simulated data for small sample sizes. But

we did not see inflated frequencies until the sample size increased to about 200, and

thus we have done our simulations for sample sizes n = 200, 500, 1000 and 2000.

The results of our analysis are summarized in Table 14.

The estimate of λ is far from the true value for all sample sizes and for all models

other than the ZkICMP. For the ZkICMP, the estimate of λ get closer to the true

value as the sample size increases. The two models ZkIP and ZkINB capture both

the inflations at zero and at 2 even for a sample of size 200. The estimates of π1

and π2 for these models are close to the true values. However, ZkINB model fails to

capture the dispersion, for all sample sizes the estimate r̂ is approximately 0. The

CMP model gives incorrect estimates for both the rate and dispersion parameters

λ and ν for all sample sizes. The estimates do not seem to get closer to the true

values even if the sample size increases. The zero inflated extension of the CMP

model, ZICMP is able to capture the inflation at zero even for a small sample size,

π̂1 = 0.3924 is very close to the true value 0.4. However the estimates of λ̂ = 7.6011

and ν̂ = 2.4206 are far from the true values of 3 and 1.5 respectively. The estimates

of all the parameters for the ZkICMP model are close to their true values even for

a small size. The AIC value is also the least for the ZkICMP model for any sample

size.

The results from likelihood ratio test for pairwise comparisons between the models

are given in Tables 16 and 17. These tables show results for all sample sizes, we can

see ZkICMP is better than ZICMP, which is better than CMP. Similarly, ZkIP is

better than ZIP, which is better than Poisson for all sample sizes. The goodness of

fit results are displayed in Table 15. The Poisson model fits the worst for all sample
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sizes. We observe the ZkIP and ZkICMP models fit equally well for n = 200 and 500.

But as we increase the sample size the inflated frequencies increase leading to the

increment in the error in the frequencies for the ZkIP model. This happens because

the ZkIP model does account for the inflation at zero and k = 2 correctly but fails

to capture the underdispersion which is captured by the ZkICMP model.

In summary the Poisson model is obviously the wrong model as it is unable

to capture the inflations and underdispersion in the data. The ZIP model fails to

account for the inflation at count 2 but not the inflation at 0. In most cases ZkIP does

capture the inflation at zero and k but the rate parameter λ is estimated incorrectly.

The ZkINB fails to capture the underdispersion in the data. In some cases, the

CMP model does estimate accurately the rate and dispersion parameters. But the

AIC of CMP model is higher than that of ZICMP. The ZICMP model allows the

flexibility of capturing inflation at zero along with underdispersion. Finally we can

easily conclude that the ZkICMP model outperform the other competing models. It

not only captures the inflations at zero and k but also the underdispersion in the

simulated data sets. The AIC turns out to be the be minimum for the ZkICMP

model.

4.6 EXAMPLES

In this section we illustrate the application of the zero and k inflated Conway-

Maxwell-Poisson (ZkICMP) model to analyze two real life data. The first data is

an example where zero and one are inflated, and the second example has inflated

frequencies for zero and count k = 5. Both the data were obtained from the National

Health and Nutrition Examination Survey (NHANES). The NHANES has been col-

lecting data related to the health and nutrition of children and adults in USA since

early 1960s. And since 1999, it has been collecting annually, demographic, dietary

information, and laboratory data of the sampled subjects.

4.6.1 DRUGS DATA

In this example the response variable is the number of joints/pipes of a drug

smoked by the adults without a prescription from a doctor. Subjects aged between
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18 and 59, were asked two questions in a survey. The first question was ‘Have

you ever used marijuana or hashish?’. If the answer was negative, the value of

response variable is taken as zero. If it was positive, a follow up question ‘How many

joints/pipes did you smoke in a day?’ was asked and the response was recorded.

There are four covariates included in the survey. They are BMI, age, gender and

family income as measured by the ratio to poverty level. More than 4000 people

were surveyed but complete data was available for only 2481 subjects. The mean

and variance of the count response were 0.70 and 1.20 respectively. The percentage

of people who never smoked was 64.05%, and among the adults who smoked, 15.12%

did so on an average of one joint, and 20.83% smoked more than a joint per day.

Clearly, counts zero and one have high frequencies. Therefore this data is a perfect

candidate for the models that we have been studying in this dissertation.

We fit the count models ZkICMP, ZICMP, CMP, ZkINB, ZkIP, ZIP and Poisson

for this drug usage data. The parameter estimates and standard errors of ZkICMP,

ZICMP models were computed in R using the non-linear optimization methods men-

tioned in Section 4.3.1. While, the results of CMP and Poisson models were obtained

using SAS software count regression (Countreg) and Generalized linear model (GEN-

MOD) procedures respectively. The results of ZkINB, ZkIP and ZIP models were

obtained from finite mixture model (FMM) procedure in SAS. The maximized log-

likelihood function and AIC values to compare the models were obtained as described

in Section 4.4.3. The parameter estimates and standard errors for the models are

displayed in Table 18.

The variance of the negative binomial (NB) distribution, after proper

reparametrization, can be written as λ + rλ2. If r = 0 then the NB has equidis-

persion similar to Poisson distribution. From Table 18, we can see that the results

are similar for the three models ZkINB, ZkIP and ZIP because r̂ = 0, and also be-

cause δ̂ = −0.8456 which indicates the estimate of π2 is small. The AIC values are

also similar for the three ZkINB, ZkIP and ZIP models. Here, it is irrelevant to

perform an LRT to compare ZkIP to ZIP model as the value of test statistic will be

zero. Theoretically, ZkINB is not nested within ZkIP or ZIP model so we do not

perform a test to compare ZkINB to ZkIP or ZIP models. Thus ZIP is preferable

among these three models since it has the least number of parameters.

For testing H0 : ν = 1, the LRT test in (43) from Section 4.4.3 gives −2 log Λ =
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21.66, which has a p-value that is less than 0.0001. Thus we reject H0 : ν = 1

and conclude that ZkICMP model is significantly better than ZkIP. Similarly, LRT

test also shows that ZICMP fits better than ZIP. The countreg procedure in SAS

gives ν̂ = 0.0019 for the CMP model, but it gave a singular Hessian matrix and we

could not get the standard error. The estimate of the dispersion parameter of the

ZICMP model is ν̂ = 1.50 while, in ZkICMP model it is ν̂ = 3.84 and both values

are statistically significant. This indicates existence of significant underdispersion in

both the models.

We also performed LRT test as described in Section 4.4.3 to test for the inflation

probabilities. The LRT test statistic is −2 log Λ = 180.34 with a p−value< 0.0001. It

implies that the ZICMP model is significantly better than the CMP model. Also, the

inflation at zero is significant. The LRT also showed π2 is significant, thus ZkICMP

is better than ZICMP (−2 log Λ = 10.82, p − value = 0.0005). It is not possible to

use LRT to compare ZkINB and ZkIP model as they are not nested. Similarly, we

cannot compare ZkINB and ZIP model using the LRT criterion. While, here the

ZkIP reduces to ZIP so the test of π2 = 0 is not required. Comparing ZIP to Poisson

we get, −2 log Λ = 563.42, p− value < 0.0001. Thus ZIP model fits better than the

Poisson model.

Table 18, also includes the AIC values of the models. According to the AIC

criterion, the CMP models perform better than their Poisson counterparts. Further,

we see the inflated models perform better than the standard models, both CMP and

Poisson. The smallest AIC values are for ZkICMP, ZICMP, CMP and ZIP models.

Using the LRT and AIC criterions, the ZIP performs better than the Poisson, ZkIP

and ZkINB models. Also, we see that the ZkICMP and ZICMP models are better

than CMP model.

To select the best fit model we further analyze the residuals and compare the fitted

and observed frequencies. The observed and expected frequencies for the comparable

models are shown in the Table 19. The ZIP model does not give a good fit to the

data. The predicted frequencies of zero and one in the ZICMP model are close to the

observed values but ZkICMP outperforms it by predicting closer values for all the

count values. Figure 8 shows that the closest frequencies are predicted by ZkICMP

model.
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Figure 8. Observed and Expected Frequencies for drugs data.

The residual analysis is performed for the comparable models, ZIP, ZICMP,

ZkICMP and Poisson. Figure 9 shows that the residuals of Poisson model have

a pattern. They are concentrated in between zero and three. The QQ plot in Fig-

ure 10 clearly shows deviation from a straight line. Hence, Poisson does not give a

good fit to the data. The residual plots of ZIP model are not concentrated around

zero. This is further supported by the QQ plot. Thus, the residuals of ZIP are not

from standard normal. The residual plot of ZICMP is nearly random with some

deviation in the QQ plot. Here, the best model is ZkICMP model as the residual

plot looks completely random and the QQ plot has most of the quantiles agreeing

with the standard normal quantiles apart from some deviation which might be due

to few outlier observations.

In summary, for this data the empirical mean (0.70) is slightly lower than variance

(1.20). But there is an underlying underdispersion in the data which is overtaken by

the excess number of zeros. There is also a significant peak at k = 1. The standard

Poisson and negative binomial have the ability to capture only over or equidisper-

sion. They lack the ability to account for the underdispersion. The ZkICMP model
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(a) Residual plot of Poisson
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(b) Residual plot of ZIP
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(c) Residual plot of ZICMP
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(d) Residual plot of ZkICMP

Figure 9. Randomized quantile residual plots for drugs data.
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(a) QQ plot of Poisson
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(b) QQ plot of ZIP

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

(c) QQ plot of ZICMP

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

(d) QQ plot of ZkICMP

Figure 10. QQ plots for drugs data.
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successfully captures not only the inflated frequencies at zero and k but also the

underdispersion in the data. It turns out to be the best model for the observed data.

4.6.2 EXERCISE DATA

The data for this example were also obtained from NHANES. In this example the

response variable is number of times a subject did vigorous or moderate activities

in a week. The variable is constructed using the following four questions on the

questionnaire survey: (1) Have you done vigorous activity during the week? (2)

Have you done moderate activity during the week? (3) How many days did you do

vigorous activity in the week? and (4) How many days did you do moderate activity

during the week? The response variable is taken as zero if the answer to the first

two questions is negative. Otherwise the response variable is taken as the sum of the

values obtained for questions three and four.

There were several relevant covariates that we could take into consideration. How-

ever, the data were incomplete for several covariates. We have selected the variables

where complete data was available and they are age, body mass index (BMI), body

weight, ratio of family income to poverty (ratio), gender, average systolic blood pres-

sure (BP) and average diastolic blood pressure (BP). The variables age, ratio and

gender were in the demographic file of the survey. While, BMI and weight were saved

as ‘BMXWT’ and ‘BMXBMI’ respectively in the body measure file. The average BP

data was obtained by averaging the four readings of the examined subjects. The

readings were in the blood pressure file under the examination data section.

The respondents of both genders included in the study were between 12 to 80

years old. The total number of subjects included in the data were 6122. In the data

62.15% never did any activity, while 7.87% subjects did either vigorous or moderate

or both of the exercises five times a week. Thus zero and count 5 occur with high

frequencies in the data. The range of the responses varied between zero and 13.

The sample mean and variance were 2.03 and 10.18 respectively. Clearly, the data

is overdispersed. Also, the observed frequencies of the counts zero and five are more

than that expected under a Poisson regression model.

We checked the correlations between the covariates and found a significant high

(0.9) correlation between BMI and weight, and made a decision to drop weight from



68

further analysis. As in the previous example, we fit various models to the data. The

results are given in Table 20. The table shows the covariates age and average systolic

BP are insignificant for ZIP, ZkIP, ZkINB, ZICMP and ZkICMP models. We refit

all the models removing these covariates and including only BMI, ratio, gender and

average diastolic BP. The parameter estimates and standard errors along with the

loglikelihood and AIC of the models are given in Table 21.

We observe, the estimate ν̂ for the CMP model is close to zero and SAS software

failed to give a standard error. For the ZICMP and ZkICMP models, the estimate of

ν is less than 1 indicating the presence of overdispersion in the data. The estimate

r̂ = 0.2108 for the ZkINB model is significant which also supports the existence of

overdispersion in the data. For all the models the covariates exhibit similar relation

with the number of times a subject did activity/activities in a week. The covariates

BMI, gender (male) and average diastolic blood pressure have positive relation with

the response variable whereas the variable ratio of family income to poverty has a

negative relation.

Table 21 also shows the AIC values of CMP models are smaller than their Poisson

analogs for both the inflated (single and double) and non-inflated cases. The LRT

tests also show the CMP models are significantly different than their corresponding

Poisson models. Thus the CMP models are better than their Poisson counterparts as

they have the ability to capture underlying overdispersion in the data. From Table

21, we can see the AIC value of the inflated models is less than that of the standard

CMP and classical Poisson model. A comparison between observed and expected

frequencies is given in Table 22. The expected frequencies from the ZkICMP model

have ABE of 614.79 and a chi-square value of 434.72, and these values are the smallest

among the competing models. Thus the ZkICMP model fits the data best, which

can also be seen from the graph in Figure 11.

For a postmortem analysis we plotted the randomized residuals as described in

Sellers and Raim (2016). If the model fits the data correctly the plots in Figure 12

should exhibit a random behavior. We observe, the residuals for the ZkIP model do

not appear completely random. However, the residuals plots of other models, ZkINB,

ZICMP and ZkICMP appear to be random. We also notice that most of the residuals

lie between -3 and 3. Figure 13 shows the QQ plots for the ZkIP, ZkINB, ZICMP

and ZkICMP models. The sample quartiles of the ZkIP model do not agree with its
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Figure 11. Observed and Expected Frequencies for exercise data.

theoretical quartiles. The plot of ZICMP model does not provide good comparison of

the quartiles in the lower and upper tail. The plots of ZkINB and ZkICMP models

are mostly comparable except from some difference in the tails. The QQ plot of

ZkICMP gives a better fit apart from a small deviation from the straight line.

We conclude for this data, the models capturing overdispersion and double infla-

tion would be the most appropriate. Using the AIC criterion, ZkINB model performs

better than ZICMP. But it is the ZkICMP model that captures not only the peaks

at zero and 5 but also the dispersion in the data. The ZkICMP provides the best fit

to the observed data here.

4.7 SUMMARY

In summary, in this chapter we introduce a new regression model to capture in-

flation at zero and a count value k and model under (over) dispersion in the data.

We refer to it as zero and k inflated Conway-Maxwell-Poisson (ZkICMP) model. The

model is an extension of ZICMP model. The special cases of ZkICMP model are ZkIP,
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(a) Residual plot of ZkIP
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(b) Residual plot of ZkINB

0 1000 2000 3000 4000 5000 6000

−
3

−
2

−
1

0
1

2

Observation Number

Q
u
a
n
ti
le

 R
e
s
id

u
a
ls

(c) Residual plot of ZICMP
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(d) Residual plot of ZkICMP

Figure 12. Randomized quantile residual plots for exercise data.
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(a) QQ plot of ZkIP
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(b) QQ plot of ZkINB
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(c) QQ plot of ZICMP

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

(d) QQ plot of ZkICMP

Figure 13. QQ plots for exercise data.

ZkIG. The advantage of ZkICMP model over ZkINB model is that ZkINB can only

capture overdispersion but ZkICMP provides the flexibility to capture underdisper-

sion as well. Note, both models have the same number of parameters, but ZkICMP

provides an extra feature without any extra cost. The ZkICMP model is easy to

construct and understand. In this chapter we assumed only the rate parameter λ

depends on the covariates. Possible extensions of this model are straightforward. We

could for example let log (π1/π3) = xT

i
γ and log (π2/π3) = xT

i
δ and study the de-

pendence of the inflations on the covariates. Few more extensions of ZkICMP model

similar to Shmueli et al. (2005) and Sellers and Raim (2016) could also be pursued.
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Table 12. Estimates and standard errors for simulated data I

n Parameter ZkICMP ZICMP CMP ZkINB ZkIP ZIP Poisson

2000 λ̂ 9.2069 0.8597 0.5302 2.0903 2.0903 1.6099 0.9960
(3.5742) (0.1001) (0.0193) (0.0829) (0.0829) (0.0467) (0.0223)

ν̂ 2.0851 0.4412 0.0699 – – – –
(0.2874) (0.0976) (0.0385)

π̂1 0.5001 0.2469 – 0.4540 0.4540 0.3813 –
(0.0187) (0.0408) (0.0144) (0.0144) (0.0157)

π̂2 0.1948 – – 0.1333 0.1333 – –
(0.0198) (0.0082) (0.0083)

r̂ – – – < 0.0001 – – –
–

logLobs -2726.83 -2754.49 -2765.30 -2735.25 -2735.27 -2768.28 -2957.60
AIC 5461.67 5514.98 5534.61 5476.50 5476.54 5540.55 5917.19

1000 λ̂ 7.9076 0.8371 0.5665 1.8714 1.8715 1.4685 0.9730
(4.7587) (0.1469) (0.0303) (0.1143) (0.1143) (0.0629) (0.0312)

ν̂ 2.0774 0.4825 0.1682 – – – –
(0.4549) (0.1527) (0.0609)

π̂1 0.4826 0.1992 – 0.4205 0.4205 0.3374 –
(0.0318) (0.0662) (0.0239) (0.0239) (0.0240)

π̂2 0.1992 – – 0.1280 0.1280 – –
(0.0350) (0.0144) (0.0144)

r̂ – – – < 0.0001 – – –
–

logLobs -1350.23 -1360.17 -1363.16 -1353.50 -1353.52 -1365.12 -1430.21
AIC 2708.46 2726.34 2730.32 2713.0 2713.04 2734.23 2862.42

500 λ̂ 17.5561 1.0181 0.5532 2.3219 2.3220 1.8048 1.1060
(12.7659) (0.2217) (0.0387) (0.1621) (0.1621) (0.0956) (0.0470)

ν̂ 2.4564 0.5076 0.0556 – – – –
(0.5315) (0.1773) (0.0691)

π̂1 0.4864 0.2868 – 0.4470 0.4470 0.3872 –
(0.0294) (0.0639) (0.0257) (0.0257) (0.0291)

π̂2 0.2021 – – 0.1347 0.1347 – –
(0.0292) (0.0150) (0.0150)

r̂ – – – < 0.0001 – – –
–

logLobs -711.16 -723.06 -728.21 -715.80 -715.82 -726.37 -787.73
AIC 1430.32 1452.12 1460.42 1437.60 1437.65 1456.74 1577.46

200 λ̂ 5.4587 1.1827 0.5247 1.8256 1.8255 1.5936 0.9600
(6.9954) (0.4907) (0.0614) (0.2475) (0.2476) (0.1493) (0.0693)

ν̂ 1.8191 0.7289 0.0819 – – – –
(0.9656) (0.3632) (0.1274)

π̂1 0.5056 0.3467 – 0.4416 0.4416 0.3976 –
(0.0861) (0.1000) (0.0608) (0.0608) (0.0499)

π̂2 0.1365 – – 0.0719 0.0719 – –
(0.0870) (0.0306) (0.0306)

r̂ – – – < 0.0001 – – –
–

logLobs -267.97 -268.93 -271.41 -268.40 -268.38 -269.19 -288.85
AIC 543.95 543.87 546.83 542.80 542.76 542.39 579.71

NOTE: Standard errors are given in parenthesis. Here k = 1 and the generating values of the
parameters are λ = 8, ν = 2, π1 = 0.5, π2 = 0.2.
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Table 13. Frequency comparisons for simulated data I

n Count Observed ZkICMP ZICMP ZkIP Poisson
2000 0 1010 1010.00 1010.00 1010.00 738.71

1 480 480.00 443.77 213.33 735.75
2 198 196.10 281.00 222.97 366.40
3 177 182.70 148.79 155.36 121.65
4 98 93.43 69.40 81.19 30.29
5 31 30.00 29.33 33.94 6.03
6 4 6.59 11.44 11.82 1.00
7 2 1.05 4.17 3.53 0.14

ABE 16.71 187.32 342.39 848.34
χ2 2.33 50.67 348.73 578.97

1000 0 490 490.00 490.00 490.00 377.95
1 258 258.00 243.44 258.00 367.74
2 112 110.17 145.86 121.69 178.91
3 83 88.91 71.87 75.91 58.03
4 46 39.47 30.82 35.52 14.11
5 8 11.02 11.87 13.29 2.75
6 3 2.11 4.18 4.15 0.45

ABE 18.18 79.79 33.70 353.37
χ2 2.71 19.53 6.95 198.47

500 0 244 244.00 244.00 244.00 165.44
1 115 115.00 102.41 115.00 182.98
2 47 44.62 73.34 55.30 101.19
3 46 52.71 42.75 42.80 37.30
4 36 30.72 21.54 24.85 10.31
5 10 10.35 9.69 11.54 2.28
6 2 2.23 3.97 4.47 0.42

ABE 14.95 58.93 26.65 244.40
χ2 1.92 21.96 8.06 189.61

200 0 104 104.00 104.00 104.00 76.58
1 23 24.29 29.25 26.12 35.29
2 22 17.97 15.53 15.90 11.29
3 4 7.88 6.69 7.25 2.71
4 3 2.30 2.45 2.65 0.52
5 1 0.48 0.78 0.81 0.08

ABE 10.41 18.18 13.03 85.62
χ2 3.65 5.39 4.27 59.44

NOTE: ABE is absolute error. Here k = 1.
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Table 14. Estimates and standard errors for simulated data II

n Parameter ZkICMP ZICMP CMP ZkINB ZkIP ZIP Poisson

2000 λ̂ 3.3416 7.6842 0.7449 1.8049 1.8049 1.7538 1.1750
(0.6286) (1.2603) (0.0285) (0.0531) (0.0531) (0.0455) (0.0242)

ν̂ 1.5633 2.3812 0.3642 – – – –
(0.1734) (0.1559) (0.0429)

π̂1 0.4040 0.4259 – 0.3637 0.3637 0.3300 –
(0.0157) (0.0122) (0.0130) (0.0130) (0.0149)

π̂2 0.1114 – – 0.1359 0.1359 – –
(0.0161) (0.0082) (0.0082)

r̂ – – – < 0.0001 – – –
–

logLobs -2788.86 -2811.44 -2957.01 -2794.85 -2794.87 -2860.37 -3044.38
AIC 5585.72 5628.87 5918.01 5595.70 5595.73 5724.73 6090.77

1000 λ̂ 2.8471 7.4459 0.7781 1.5904 1.5905 1.5912 1.1230
(0.8582) (1.8122) (0.0434) (0.0706) (0.0706) (0.0617) (0.0335)

ν̂ 1.5488 2.4968 0.4616 – – – –
(0.2862) (0.2407) (0.0667)

π̂1 0.3788 0.4138 – 0.3282 0.3282 0.2943 –
(0.0255) (0.0178) (0.0197) (0.0197) (0.0226)

π̂2 0.1080 – – 0.1331 0.1331 – –
(0.0234) (0.0124) (0.0124)

r̂ – – – < 0.0001 – – –
–

logLobs -1369.53 -1378.40 -1437.91 -1371.60 -1371.62 -1402.54 -1465.19
AIC 2747.06 2762.81 2879.82 2749.20 2749.23 2809.07 2932.38

500 λ̂ 3.7276 7.0113 0.7215 1.8874 1.8873 1.8242 1.1920
(1.3399) (2.2265) (0.0542) (0.1071) (0.1071) (0.0927) (0.0488)

ν̂ 1.6161 2.2362 0.3133 – – – –
(0.3284) (0.2956) (0.0818)

π̂1 0.4160 0.4310 – 0.3756 0.3756 0.3466 –
(0.0300) (0.0246) (0.0261) (0.0261) (0.0290)

π̂2 0.0929 – – 0.1199 0.1199 – –
(0.0316) (0.0159) (0.0159)

r̂ – – – < 0.0001 – – –
–

logLobs -705.10 -709.33 -746.68 -707.10 -707.12 -720.10 -773.82
AIC 1418.19 1424.67 1497.36 1420.20 1420.24 1444.20 1549.64

200 λ̂ 2.8648 7.6011 0.8323 1.7307 1.7307 1.6960 1.2150
(1.7051) (3.9083) (0.1029) (0.1618) (0.1618) (0.1383) (0.0779)

ν̂ 1.4642 2.4206 0.4751 – – – –
(0.5506) (0.4956) (0.1419)

π̂1 0.3607 0.3924 – 0.3213 0.3213 0.2836 –
(0.0538) (0.0388) (0.0409) (0.0409) (0.0481)

π̂2 0.1284 – – 0.1496 0.1496 – –
(0.0514) (0.0287) (0.0287)

r̂ – – – < 0.0001 – – –
–

logLobs -282.10 -284.86 -297.85 -282.50 -282.49 -289.98 -303.58
AIC 572.19 575.71 599.71 571.00 570.99 583.96 609.15

NOTE: Standard errors are given in parenthesis. Here k = 2 and true values of the parameters
are λ = 3, ν = 1.5, π1 = 0.4, π2 = 0.1.
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Table 15. Frequency comparisons for simulated data II

n Count Observed ZkICMP ZICMP ZkIP Poisson
2000 0 892 892.00 892.00 892.00 617.64

1 281 280.54 309.37 297.10 725.72
2 540 540.00 456.30 540.00 426.36
3 188 190.29 256.29 161.32 166.99
4 75 72.80 72.56 72.79 49.05
5 19 19.65 12.08 26.28 11.53
6 5 3.99 1.30 7.90 2.26

ABE 6.60 193.41 55.18 889.89
χ2 0.37 50.71 8.44 449.23

1000 0 438 438.00 438.00 438.00 325.30
1 169 168.49 180.08 174.62 365.31
2 272 272.00 237.56 272.00 205.12
3 82 85.15 113.87 73.62 76.78
4 32 28.32 26.61 29.27 21.56
5 6 6.67 3.56 9.31 4.84
6 1 1.18 0.30 2.47 0.91

ABE 8.19 85.91 21.51 392.80
χ2 0.69 18.96 3.44 172.04

500 0 226 226.00 226.00 226.00 151.81
1 68 67.05 73.52 72.12 180.95
2 128 128.00 109.41 128.00 107.85
3 46 51.49 65.76 42.82 42.85
4 26 20.43 20.77 20.20 12.77
5 6 5.65 3.98 7.63 3.04

ABE 12.36 51.12 14.73 226.63
χ2 2.14 11.85 2.48 127.34

200 0 83 83.00 83.00 83.00 59.34
1 31 31.13 34.31 32.45 72.10
2 58 58.00 48.72 58.00 43.80
3 20 18.53 25.92 16.20 17.74
4 4 6.98 6.87 7.01 5.39
5 4 1.89 1.06 2.43 1.31

ABE 6.67 24.33 9.83 85.30
χ2 3.73 12.77 3.27 43.64

NOTE: ABE is absolute error. Here k = 2.
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Table 16. Testing zero inflation for simulated data II

n ZICMP v/s CMP ZIP v/s Poisson
2000 Likelihood Ratio 291.14 368.02

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value < 0.0001 < 0.0001

1000 Likelihood Ratio 119.02 125.30

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value < 0.0001 < 0.0001

500 Likelihood Ratio 74.70 107.44

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value < 0.0001 < 0.0001

200 Likelihood Ratio 25.98 27.20

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value < 0.0001 < 0.0001

NOTE: The test is H0 : π1 = 0 against H1 : π1 > 0 at α = 0.05.
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Table 17. Testing k inflation for simulated data II

n ZkICMP v/s ZICMP ZkIP v/s ZIP
2000 Likelihood Ratio 45.16 851.44

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value < 0.0001 < 0.0001

1000 Likelihood Ratio 17.74 392.36

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value < 0.0001 < 0.0001

500 Likelihood Ratio 8.46 192.46

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value 0.0018 < 0.0001

200 Likelihood Ratio 5.52 27.20

asy. dist. 0.5χ2

0
+ 0.5χ2

1

p-value 0.0094 < 0.0001

NOTE: The test is H0 : π2 = 0 against H1 : π2 > 0 at α = 0.05. Here k = 2.
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Table 18. Estimates and standard errors for drugs data

Parameters ZkICMP ZICMP CMP ZkINB ZkIP ZIP Poisson
Intercept 4.5274* 1.1522* -0.7962* 0.5678* 0.5678* 0.5678* -0.1647*

(0.7977) (0.2196) (0.0635) (0.0984) (0.0984) (0.0984) (0.0834)

Age -0.0163* -0.0093* -0.0059* -0.0081* -0.0081* -0.0081* -0.0103*
(0.0050) (0.0028) (0.0015) (0.0024) (0.0024) (0.0024) (0.0020)

Income -0.1854* -0.1038* -0.0368* -0.0787* -0.0787* -0.0787* -0.0637*
(0.0390) (0.0224) (0.0120) (0.0181) (0.0181) (0.0181) (0.0157)

Gender 0.4945* 0.4881* 0.3357* 0.4444* 0.4444* 0.4444* 0.5675*
(0.1223) (0.0719) (0.0391) (0.0609) (0.0609) (0.0609) (0.0501)

γ̂ 0.9279 0.2562 – 0.0447 0.0447 0.0447 –
(0.0745) (0.0738) (0.0609) (0.0609) (0.0609)

δ̂ -0.8456 – – -16.1765 -16.5838 – –
(0.1867) (377.00) (462.14)

ν̂ 3.8416* 1.4968* 0.0019 – – – –
(0.5674) (0.1608) –

r̂ – – – 0.0000 – – –
–

π̂1 0.6389 0.5637 – 0.5112 0.5112 0.5112 –
(0.0172) (0.0182) (0.0152) (0.0152) (0.0152)

π̂2 0.1084 – – 0.0000 0.0000 – –
(0.0181) (< 0.0001) (< 0.0001)

logLobs -2709.42 -2714.83 -2805.00 -2720.25 -2720.25 -2720.25 -3001.96

AIC 5432.85 5441.66 5619.00 5452.50 5452.50 5450.50 6011.93

NOTE: Standard errors are given in parenthesis. Also, the significant regression and dispersion
parameters at α = 0.05 are marked with an asterisk.

Table 19. Frequency comparisons for drugs data

Count Observed ZkICMP ZICMP ZIP Poisson
0 1589 1589.01 1593.65 1596.63 1295.34
1 375 383.99 383.89 405.12 822.19
2 250 276.54 316.05 290.04 325.35

3− 5 206 201.14 167.99 157.15 98.24
> 5 61 76.40 82.86 87.87 33.01
ABE 55.80 139.46 153.51 951.94
χ2 5.98 28.39 31.21 469.17
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Table 20. Estimates and standard errors for exercise data

Parameters ZkICMP ZICMP CMP ZkINB ZkIP ZIP Poisson
Intercept 0.3419* 0.4814* -0.6003* 1.2415* 1.3109* 1.3221* 0.0483

(0.0668) (0.0673) (0.0399) (0.1194) (0.0772) (0.0755) (0.0726)

Age -0.0006 -0.0006 -0.0026* -0.0010 -0.0005 -0.0005 -0.0079*
(0.0004) (0.0004) (0.0003) (0.0009) (0.0006) (0.0006) (0.0005)

BMI 0.0025* 0.0025* 0.0034* 0.0052* 0.0041* 0.0039* 0.0115*
(0.0010) (0.0010) (0.0007) (0.0022) (0.0014) (0.0013) (0.0012)

Ratio -0.0113* -0.0112* -0.0118* -0.0229* -0.0191* -0.0183* -0.0372*
(0.0045) (0.0045) (0.0032) (0.0092) (0.0060) (0.0059) (0.0056)

Gender 0.0641* 0.0635* 0.1253* 0.1225* 0.0979* 0.0946* 0.3864*
(0.0143) (0.0144) (0.0106) (0.0296) (0.0193) (0.0188) (0.0185)

Avg. Systolic -0.0003 -0.0003 -0.0007* -0.0006 -0.0003 -0.0003 -0.0016*
(0.0005) (0.0005) (0.0004) (0.0011) (0.0007) (0.0007) (0.0007)

Avg. Diastolic 0.0027* 0.0027* 0.0036* 0.0052* 0.0044* 0.0042* 0.0108*
(0.0006) (0.0006) (0.0004) (0.0013) (0.0008) (0.0008) (0.0008)

γ̂ 0.5169 0.4301 – 0.5451 0.5321 0.4865 –
(0.0298) (0.0277) (0.0291) (0.0286) (0.0265)

δ̂ -2.2577 – – -2.2708 -3.0736 – –
(0.1090) (0.1129) (0.2406)

ν̂ 0.3799* 0.4588 * 0.0012 – – – –
(0.0220) (0.0221) –

r̂ – – – 0.2114* – – –
(0.0163)

π̂1 0.6029 0.6059 – 0.6099 0.6194 0.6193 –
(0.0071) (0.0066) (0.0063) (0.0064) (0.0062)

π̂2 0.0376 – – 0.0365 0.0168 – –
(0.0039) (0.0040) (0.0015)

logLobs -9613.15 -9676.54 -11609.00 -9633.60 -9885.30 -9895.70 -17466.45

AIC 19246.30 19371.08 23234.00 19287.20 19788.60 19807.40 34946.90

NOTE: Standard errors are given in parenthesis. Also, the significant regression and dispersion
parameters at α = 0.05 are marked with an asterisk.
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Table 21. Significant estimates and standard errors for exercise data

Parameters ZkICMP ZICMP CMP ZkINB ZkIP ZIP Poisson
Intercept 0.3215* 0.4644* -0.6683* 1.1956* 1.2856* 1.2993* -0.1191*

(0.0566) (0.0567) (0.0312) (0.0915) (0.0596) (0.0582) (0.0557)

BMI 0.0022* 0.0022* 0.0026* 0.0048* 0.0038* 0.0037* 0.0081*
(0.0010) (0.0010) (0.0007) (0.0021) (0.0013) (0.0013) (0.0012)

Ratio -0.0122* -0.0121* -0.0162* -0.0243* -0.0200* -0.0191* -0.0500*
(0.0044) (0.0045) (0.0032) (0.0091) (0.0060) (0.0058) (0.0056)

Gender 0.0632* 0.0625* 0.1254* 0.1206* 0.0967* 0.0934* 0.3830*
(0.0142) (0.0142) (0.0106) (0.0291) (0.0190) (0.0186) (0.0183)

Avg. Diastolic 0.0023* 0.0023* 0.0024* 0.0046* 0.0040* 0.0038* 0.0075*
(0.0006) (0.0006) (0.0004) (0.0011) (0.0008) (0.0007) (0.0007)

γ̂ 0.5191 0.4319 – 0.5460 0.5322 0.4866 –
(0.0298) (0.0276) (0.0291) (0.0285) (0.0265)

δ̂ -2.2581 – – -2.2714 -3.0767 – –
(0.1092) (0.1130) (0.2413)

ν̂ 0.3817* 0.4605* 0.0009 – – – –
(0.0220) (0.0221) –

r̂ – – – 0.2108* – – –
(0.0162)

π̂1 0.6034 0.6063 – 0.6101 0.6194 0.6193 –
(0.0071) (0.0066) (0.0063) (0.0064) (0.0062)

π̂2 0.0375 – – 0.0365 0.0168 – –
(0.0039) (0.0015) (0.0015)

logLobs -9614.88 -9678.00 -11661.00 -9634.65 -9886.15 -9896.45 -17628.99

AIC 19245.75 19369.99 23335.00 19285.30 19786.30 19804.90 35267.97

NOTE: Standard errors are given in parenthesis. Also, the significant regression and dispersion
parameters at α = 0.05 are marked with an asterisk.
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Table 22. Frequency comparisons for exercise data

Count Observed ZkICMP ZICMP ZkINB ZkIP
0 3805 3805.21 3805.15 3804.32 3804.81
1 181 181.86 176.08 163.39 61.76
2 252 236.90 250.72 240.91 157.45
3 306 271.06 303.80 285.41 280.68
4 200 272.14 315.67 285.17 362.90
5 482 482.05 297.58 482.14 482.47
6 143 222.79 263.40 222.16 342.38
7 254 180.38 211.40 176.13 256.97
8 79 148.93 170.96 141.95 186.59
9 40 113.97 127.16 107.70 116.01
10 229 84.71 90.93 79.84 65.72

11-12 90 58.44 59.95 55.89 31.98
13-14 61 42.67 41.56 41.53 16.61
ABE 614.79 838.31 625.70 1219.90
χ2 434.72 563.45 471.05 1054.30
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CHAPTER 5

SUMMARY AND EXTENSIONS

5.1 SUMMARY

Count data occur frequently in a wide variety of scientific studies. The most

popular model to analyze such data is the Poisson distribution. When the data

consists of large number of observations which are zero, an appropriate model is the

zero inflated Poisson (ZIP), which was made popular in a seminal paper by Lambert

(1992). However, there are several situations where count data, besides zero, consists

of high frequency for another positive count k. In this dissertation we examined two

statistical models for such doubly inflated count data. First, we studied the zero

and k inflated Poisson (ZkIP) model, which is an extension of ZIP. We discussed the

distributional properties of ZkIP distribution, including a stochastic representation

which facilitates parameter estimation. For grouped observations, we discussed two

parameter estimation methods, maximum likelihood and expectation maximization

(EM) algorithm. The elements of the Fisher information matrix to get the standard

errors were also derived. We also studied in detail an alternative method, originally

given by Louis (1982), to get the standard errors of the parameter estimates obtained

using the EM algorithm.

For conducting test of hypothesis, we derived the asymptotic distribution of the

likelihood ratio test statistic for testing the mixing probability on the boundary.

The limiting distribution turns out to be a mixture of chi-square distributions with

equal weights. For subject-specific count data that consists of covariates as well, we

studied regression models that link the rate parameter of the Poisson distribution

to the covariates. Other extensions where the mixing probabilities are allowed to

depend on the covariates are straightforward. The methodologies that we studied

have various applications in areas like manufacturing, transportation, econometrics,

ecology etc. We have used two real life examples from health science to illustrate our
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methods. The AIC, absolute error (ABE), and likelihood ratio (LRT) criteria were

used to find the model that fits the given data.

The second part of this dissertation deals with zero and k inflated Conway-

Maxwell-Poisson (ZkICMP) model. It is an extension of the ZkIP model. It is

more flexible than ZkIP model as it not only captures inflation at zero and k but

also the under and overdispersion that may be present in the count data. We stud-

ied the distributional and probabilistic properties of the ZkICMP distribution. The

ZkICMP regression model is constructed to study the relationship between the ex-

planatory variables and the count responses. We derived the maximum likelihood

estimates and Fisher information matrix to get the standard errors of the unknown

parameters. The ZkICMP could also be used for statistical analysis of count data

with inflated frequencies. We have illustrated application of the ZkICMP on two

count data examples from the National Health and Nutrition Examination Survey

(NHANES).

In the next section we will discuss a brief overview of our ongoing research, pos-

sible extensions, and future research topics that are related to this dissertation.

5.2 EXTENSIONS

There are many possible extensions of the research in this dissertation that one

could pursue. In this section we will describe our work in progress and future research

problems that we intend to pursue.

5.2.1 ESTIMATION OF ZKICMP USING EM ALGORITHM

Maximum likelihood estimation of the parameters for ZkICMP could pose con-

vergence problems, and the standard errors could be difficult to obtain. In Chapter 3

we described expectation maximization (EM) algorithm to get the ML estimates for

ZkIP model. We also described on how to obtain the standard errors for the EM

estimates using the method described by Louis (1982). We are currently pursuing

extensions of these methods to the ZkICMP model. Here, we briefly outline the EM

algorithm for the ZkICMP model. Let u = (u1, u2, u3) be the vector of latent indi-

cator variables for the three distributions in the mixture. Treating u as the missing
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data, the likelihood function of the complete data (y,u) for the ZkICMP model is

given by

Lcomp(π1, π2,λ, ν|y) ∝
∏

i:yi=0

(
π1π3

1

Z(λi, ν)

)u1i ∏

i:yi=k

(
π2π3

λi
k

(k!)νZ(λi, ν)

)u2i

∏

i:yi 6=0,k

(
π3

λi
yi

(yi!)νZ(λi, ν)

)u3i

∝
∏

i:yi=0

(π1π3 p0i)
u1i

∏

i:yi=k

(π2π3 pki)
u2i

∏

i:yi 6=0,k

(π3 pyi)
u3i

where π3 = (1 − π1 − π2), pyi = λi
yi/[(yi!)

νZ(λi, ν)] and yi ≥ 0. The loglikelihood

function of the complete data is

ℓcomp(θ) = log Lcomp(θ|y) =
∑

i:yi=0

(u1i log(π1) + u3i(log(π3) + log(p0i)))

+
∑

i:yi=k

(u2i log(π2) + u3i(log(π3) + log(pki)))

+
∑

i:yi 6=0,k

(log π3 + log pyi) (44)

where θ = (π1, π2,λ, ν) is the unknown parameter vector. To implement the EM

algorithm, we can replace the uij’s by their posterior means (E-step) and maximize

equation (44) (M-step) to estimate θ. We can also obtain the standard errors using

the method due to Louis (1982) outlined in Chapter 2. Implementation of the EM

method for the ZkICMP regression model is straightforward.

5.2.2 ANALYSIS OF DOUBLY INFLATED COUNT DATA USING ANN

Recently, Haghani et al. (2017) analyzed the zero inflated count data using arti-

ficial neural networks (ANN). We plan to extend their ANN techniques to the ZkIP

and ZkICMP models, for subject-specific as well as for grouped data. Also, we are

interested in implementing ANN for both univariate and multivariate doubly inflated

count data. The neural networks have been proved to be very reliable in many areas

and implementing them for inflated count data will be an invaluable and cutting edge

tool. The combination of classical methods and ANN will provide not only efficient

results but also simple explanations leading to wider utility.
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5.2.3 EXTENSIONS TO MULTIVARIATE ZKICMP

The focus of this dissertation has been on the univariate count responses. In a

recent paper Sengupta et al. (2016) studied doubly inflated bivariate Poisson models

for bivariate count response data. An extension of the bivariate Poisson model is the

bivariate CMP given in Sellers et al. (2016). We are currently extending our results

to the bivariate zero and k inflated CMP models. Our results can be regarded as a

generalization of the paper by Sengupta et al. (2016). In general a multivariate CMP

distribution can be constructed using copulas. We are in the process of extending our

ZkICMP to the multivariate case using the Gaussian copula with ZkICMP marginals.

These results will be generalization of the paper by Sen et al. (2017).
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