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Estimating the benthic efflux of dissolved iron
on the Ross Sea continental shelf
C. M. Marsay1,2, P. N. Sedwick1, M. S. Dinniman3, P. M. Barrett4, S. L. Mack3, and D. J. McGillicuddy Jr.5

1Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, USA, 2Now at Department of Earth and
Ocean Sciences, University of South Carolina, Columbia, South Carolina, USA, 3Center for Coastal Physical Oceanography,
Old Dominion University, Norfolk, Virginia, USA, 4School of Oceanography, University of Washington and NOAA-PMEL,
Seattle, Washington, USA, 5Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Abstract Continentalmargin sediments provide a potentially large but poorly constrained source of dissolved
iron (dFe) to the upper ocean. The Ross Sea continental shelf is one region where this benthic supply is thought
to play a key role in regulating the magnitude of seasonal primary production. Here we present data collected
during austral summer 2012 that reveal contrasting low surface (0.08± 0.07 nM) and elevated near-seafloor
(0.74± 0.47 nM) dFe concentrations. Combining these observations with results from a high-resolution physical
circulation model, we estimate dFe efflux of 5.8× 107mol yr�1 from the deeper portions (>400m) of the Ross
Sea continental shelf; more than sufficient to account for the inferred “winter reserve” dFe inventory at the
onset of the growing season. In addition, elevated dFe concentrations observed over shallower bathymetry
suggest that such features provide additional inputs of dFe to the euphotic zone throughout the year.

1. Introduction

Iron plays a major role in regulating primary production over large areas of the surface ocean, where
concentrations of this essential micronutrient are low enough to limit phytoplankton growth rates. Subsurface
ocean waters are typically depleted in dissolved iron (dFe) relative to macronutrients, with respect to algal
growth requirements, such that inputs of “new” iron to surface ocean waters from atmospheric dust, rivers,
and continental margin sediments are thought to play an essential role in sustaining marine primary
production [Measures et al., 2008; Boyd and Ellwood, 2010]. In this context, there is a pressing need to
constrain these source terms in order to understand and model the biogeochemical cycle of iron, its impact on
the ocean ecosystem and carbon cycling, and its sensitivity to future environmental changes.

The Antarctic continental margins are among the most productive regions in the Southern Ocean [Arrigo
et al., 2008a] and, given the low dust deposition rates and absence of river inputs in these regions, are areas
where benthic sources of iron to the euphotic zone hold particular importance [Wagener et al., 2008; Sedwick
et al., 2011;Measures et al., 2012;Wadley et al., 2014]. In this communication, we focus on the benthic sources
of dFe in the Ross Sea, an Antarctic continental shelf sea that covers an area of almost 500,000 km2 and
sustains annual primary production of around 20 Tg C [Arrigo et al., 2008a; Smith et al., 2012]. This high
regional production, combined with a relatively high export efficiency [Asper and Smith, 1999], and the
formation of oceanic bottom waters in the western Ross Sea [Orsi and Wiederwohl, 2009] imply that the Ross
Sea constitutes a major regional CO2 sink [Arrigo et al., 2008b].

Despite high seasonal production in the Ross Sea, surface macronutrient concentrations are seldom depleted,
and shipboard incubation experiments have demonstrated that low dFe concentrations limit phytoplankton
growth rates during austral summer [Martin et al., 1990; Sedwick and DiTullio, 1997; Sedwick et al., 2000; Coale
et al., 2003]. The limited iron data from this region suggest that there is a seasonal decrease in surface dFe
concentrations following the vertical resupply by convective mixing over winter, with biological uptake and
export responsible for the depletion of early spring concentrations (>0.2 nM) to growth-limiting concentrations
(~0.1 nM) by late spring/early summer [Sedwick and DiTullio, 1997; Fitzwater et al., 2000; Sedwick et al., 2000;
Coale et al., 2005; Sedwick et al., 2011]. However, satellite observations indicate continued accumulation of
phytoplankton biomass throughout the summer, implying that significant inputs of new dFe to surface waters
of this region occur during the growing season. The major sources of dFe to surface waters in this region
are thought to include vertical resupply of iron-rich bottom waters by winter convective mixing, year-round
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benthic inputs from shallow banks and nearshore sediments, inputs from melting sea ice and glacial ice, and
shelfward intrusions of Circumpolar Deep Water, with aerosol inputs thought to be a minor contribution
[Mahowald et al., 2005; Sedwick et al., 2011; de Jong et al., 2013; Smith et al., 2014].

The Processes Regulating Iron Supply at the Mesoscale in the Ross Sea study aimed to use water column dFe
data collected during austral summer 2012 and numerical model simulations to quantify the hypothesized
source terms. Here we make use of these new data with a focus on the vertical distribution of dFe near
the seafloor. By combining the dFe data with physical parameters derived from a high-resolution physical
circulation model, we estimate the flux of dFe from the benthos on the Ross Sea continental shelf.

2. Methods

Hydrographic data and seawater samples were collected in austral summer 2012 aboard Research Vessel/
Icebreaker (RVIB) Nathaniel B Palmer (cruise NBP12-01, 24 December 2011 to 8 February 2012). Seawater
samples for dFe analysis were collected in Teflon-lined 5 L Niskin-X samplers (General Oceanics) modified for
trace metal sampling, deployed on a trace metal clean carousel unit (SeaBird Electronics) using a Kevlar line.
Hydrographic data and ancillary samples were collected in separate casts at each station using a standard
rosette sampler fitted with 10 L Niskin bottles, an SBE 911plus conductivity-temperature-depth (CTD) sensor
(SeaBird Electronics), and a C-Star transmissometer sensor (WET Labs).

Seawater samples for dFe analysis were filtered through 0.2 μm pore AcroPak Fluorodyne II filter capsules
(Pall) into acid-cleaned 125mL low-density polyethylene bottles (Nalgene) within 4 h of collection and
acidified to pH 1.7 with 6 N Optima ultrapure hydrochloric acid (Fisher). Subsequent shore-based
determinations of dFe were performed by flow injection analysis with in-line preconcentration and
colorimetric detection [Sedwick et al., 2005, 2011] using a method modified after Measures et al. [1995].
Determinations of dFe in SAFe (Sampling and Analysis of Iron) seawater reference materials S and D2
[Johnson et al., 2007] during the period of analyses yielded mean concentrations of 0.108 ± 0.008 nmol kg�1

(n = 12) and 0.947 ± 0.033 nmol kg�1 (n = 2), respectively, which agree with consensus mean concentrations
of 0.093 ± 0.008 nmol kg�1 (SAFe S) and 0.933 ± 0.023 nmol kg�1 (SAFe D2) as of May 2013. Subsamples of
selected water column samples were filtered through 0.4μm pore polycarbonate track-etch membranes,
which were subsequently analyzed for particulate iron by energy-dispersive X-ray fluorescence spectroscopy
as described by Barrett et al. [2012].

Estimates of station-specific vertical eddy diffusivity coefficients (kz) for the austral summer were extracted
from a Regional Ocean Modeling System physical circulation model of the Ross Sea, similar to that described
by Dinniman et al. [2007, 2011], with the addition of a dynamic sea ice component [Budgell, 2005], tidal
forcing [Padman et al., 2002], and a bottom boundary layer parameterization addition to the base K Profile
Parameterization (KPP) vertical mixing scheme [Durski et al., 2004]. The vertical eddy diffusivity is computed
at every time step between every model vertical layer from the KPP parameterization. The model domain
extends from north of the shelf break at approximately 67.5°S, south to 85°S, including most of the cavity
beneath the Ross Ice Shelf, with horizontal grid spacing of 5 km and 24 vertical levels of varying thickness,
with finer depth resolution toward the sea surface and the seafloor. For this study, a hindcast simulation
was performed for the period 15 September 2010 to 27 February 2012, with daily average kz values extracted
for a 90 day summertime period from 29 November 2011 to 26 February 2012 (i.e., including the period of
cruise NBP12-01). Further details of the model are described in Text S1.

3. Analysis and Discussion

Water column profiles of dFe concentration were obtained from 47 stations over the Ross Sea continental
shelf during cruise NBP12-01 (Figure 1a and Figure S1 in the supporting information). Twenty-six of these
profiles include water samples collected within 20m of the seafloor, and an additional 10 include samples
collected within 25m of the seafloor (Table 1). To our knowledge, this data set represents the first detailed
sampling of near-bottomwaters for dFe over the Ross Sea shelf and thus represents a significant contribution to
the water column iron data that have been collected from this region.

Measured dFe concentrations ranged from 0.03 to 2.19 nM (Table S1), in general agreement with the
range of previous dFe measurements from the Ross Sea [Sedwick and DiTullio, 1997; Fitzwater et al., 2000;
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Sedwick et al., 2000; Coale et al., 2005; Sedwick et al., 2011]. The lowest dFe concentrations were measured in
the upper 50m of the water column (Figures 1b and S1), with an average concentration of 0.084 ± 0.074 nM
(n = 169). A small number of stations showed slightly elevated dFe concentrations in near-surface waters (~10m
depth), most notably at the three easternmost stations that were in, or adjacent to, melting pack ice, which
has previously been identified as a source of iron to surface waters in this region [Sedwick and DiTullio, 1997].

Below 100m depth, the profiles typically showed an increase in dFe concentration with depth. For the majority
of stations (n = 37), with seafloor depths greater than 400m, the dFe profiles displayed a quasi-exponential
increase in concentration with depth, with a pronounced concentration gradient toward the sea floor. The dFe
concentrations of samples collected within 50m of the seafloor were variable, but generally high relative to
upper ocean concentrations (Figure 1b and Figure S1), with an average value of 0.74± 0.47 nM (n = 55). These
deep waters account for a substantial proportion of the total water column dFe inventory over the Ross Sea
continental shelf: based onmedian concentrations of 50mdepth intervals, approximately 35% of this inventory
resides within 100m of the seafloor (Figure 2).

Some of the increase in dFe concentration with depthmay reflect the progressive remineralization of particulate
matter exported from overlying surface waters. However, this increase is much sharper than observed in open-
ocean settings [e.g., Johnson et al., 1997; Tagliabue et al., 2012], suggesting that the concentration gradient is
instead maintained by the upward diffusion of dFe from benthic sources, as it has been similarly interpreted in
other continental shelf settings [Nédélec et al., 2007; Cullen et al., 2009; de Jong et al., 2012]. In a study focused
on the sources of dissolved iron to the Atlantic sector of the Southern Ocean, de Jong et al. [2012] attributed high
dFe concentrations in bottom waters to diffusion of iron-rich pore water across the sediment-water interface
and/or by mobilization of these pore waters into the water column by resuspension of seafloor sediments. By
using the observed near-seafloor gradients in dFe from four water column profiles, together with a literature
estimate of the deep sea vertical eddy diffusivity coefficient, they estimated dFe fluxes of 1.3–15.5μmolm�2 d�1.

Here we apply a similar approach to estimate the vertical diffusive flux of dFe from the benthos to overlying
waters, using our considerably larger dFe data set and location-specific summertime kz values derived from
the physical circulationmodel hindcast. In doing so, we apply a one-dimensional approach to each station and
assume that the observed profiles of water column dFe concentration, with low “background” subsurface
values of ~0.1 nM and elevated near-seafloor concentrations, represent a steady state feature during the

summer season that is maintained by
turbulent diffusion of dFe from the
benthos into the low-iron overlying
waters. Here the benthic dFe sources are
likely to include both sedimentary inputs
and the remineralization of organicmatter
near the seafloor, although our data do
not allow us to discriminate between the
two. For kz, we use mean values from
the top surface of the deepest model

Table 1. Proximity of Deepest Hydrocast Sample to the Seafloor at
Each Station

Height Above Seafloor (m) Number of Stations

≤20 26
21–25 10
26–30 4
31–40 2
41–50 2
>50 3

Figure 1. (a) Map showing Ross Sea stations sampled for dissolved iron during cruise NBP12-01: data from stations outlined in red are shown in (b) a zonal section of dFe
concentration in the south-west Ross Sea, illustrating the contrast between low surface values and relatively high and variable benthic dFe concentrations. Contours
define concentrations of 0.1, 0.3 (thin lines), 0.5, and 1.0 (thick lines) nM dFe. Dots indicate water samples. Figure prepared using Ocean Data View [Schlitzer, 2012].
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layer at each station (3.8–10.7m above
the seafloor, depending on water
column depth), averaged over the
90 day summer hindcast period of 29
November 2011 to 26 February 2012.
These model-derived kz values range
from 1.1 × 10�4 to 57.7 × 10�4m2 s�1

(Figure 3a and Table S2), with a median
value of 6.7× 10�4m2 s�1; this value is
roughly an order of magnitude lower
than the abyssal value used by de Jong
et al. [2012], but is in accord with
estimates made in other regions of
the Southern Ocean and Antarctic
continental margin [Law et al., 2003;
Blain et al., 2007; Gerringa et al., 2012],
and with near-bottom kz estimates
derived from radon concentrations
(2 × 10�4 to 50 × 10�4m2 s�1)
measured in various oceanic locations
[Broecker et al., 1968].

We calculate the upward diffusive flux
of dFe from the benthos, FdFe, using
Fick’s first law of diffusion:

FdFe ¼ kz∂ dFe½ �=∂z (1)

where ∂[dFe]/∂z is the vertical gradient
in dFe concentration near the seafloor.
In doing so, we assume that vertical and
horizontal advection can be neglected.
To estimate ∂[dFe]/∂z, a least squares fit

was applied to dFe concentration data below 200m depth (to avoid influence from any near-surface features)
for each profile, using the general exponential formula:

dFe½ � ¼ 0:1 nMþ AeBz (2)

where [dFe] is the dFe concentration at depth z meters, 0.1 nM is the assumed ambient subsurface dFe
concentration in the absence of benthic input, and A and B are adjustable parameters that are calculated
to yield the best fit for each individual profile. The form of equation (2) has no physical basis, other than
that the dFe concentration profiles appear to follow an exponential increase with depth; the inclusion of
parameters A and B allows the flexibility to obtain reasonable fits to all of the dFe profiles considered.
Differentiation of equation (2) with respect to z yields

∂ dFe½ �=∂z ¼ BAeBz (3)

For each station with water depth greater than 400m, the resulting best fit expressions for equations (2) and (3)
were extrapolated to calculate [dFe] and ∂[dFe]/∂z near the seafloor. The estimated seafloor dFe concentrations
vary from 0.26 to 2.68 nM, which are similar to near-bottom concentrations in samples collected near the Celtic
Sea shelf edge [Nédélec et al., 2007] and over the Kerguelen Plateau [Blain et al., 2007], although lower than
concentrations in near-bottom samples collected off the west coast of Canada (up to ~6 nM; Cullen et al. [2009])
or in off-shelf, near-seafloor samples from the Atlantic sector of the Southern Ocean (~2–20 nM) [de Jong et al.,
2012]. Applying our approach to calculate seafloor dFe concentration gradients for these other locations, where
data allow, yields values of 11 × 10�4 to 33 × 10�4μmolm�4 for the Kerguelen Plateau [Blain et al., 2007;
Gerringa et al., 2008], which are near the lower end of our Ross Sea range (7 × 10�4 to 732 × 10�4μmolm�4;

Figure 2. Measured dFe concentration as a function of height above sea-
floor for all stations sampled on cruise NBP12-01. Circles and triangles
represent measurements made at “deep” (>400m) and “shallow” (<400m)
stations, respectively; filled symbols indicate samples collected within the
benthic nepheloid layer, as determined by transmissometer readings from
accompanying hydrographic CTD casts.
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Figure 3b), and a larger range of 2×10�4 to 1490×10�4μmolm�4 for the Atlantic sector of the Southern Ocean
[Löscher et al., 1997; de Jong et al., 2012].

Calculated benthic dFe fluxes at the Ross Sea stations span 0.028–8.2μmolm�2 d�1 (Figure 3c), with a geometric
mean of 0.36μmolm�2 d�1. Integrating this mean flux over the 4.48× 1011m2 of Ross Sea continental shelf
that is deeper than 400m [Smith et al., 2012] yields a cumulative input for the 90day summertime period of
~1.4 × 107moles dFe. Assuming that the same conditions can be extrapolated to the entire year, which assumes
both that the average kz values at each station are representative of annual averages and that there is no
seasonal change in dFe gradient at the seafloor, this would give an annual benthic efflux of ~5.8× 107 moles
dFe. Fluxes of dFe calculated both for individual stations and for the regional mean depend on the kz value used
at each station and the calculated dFe concentration gradient near the seafloor. As discussed, the choice of
fitting data to equation (2) has no physical basis other than to allow estimation of the dFe concentration
gradient near the seafloor. Using the alternate method of a straight line fit to dFe concentrations of the two
deepest samples, the calculated dFe fluxes cover a similar range (0.002–3.33μmolm�2 d�1), with a geometric
mean of 0.15μmolm�2 d�1, approximately half of the mean value derived from the fitted profiles. This
approach, along with other variations on estimating ∂[dFe]/∂z at the seafloor and the effect of varying the kz
value are discussed in Text S2: in each case the calculated mean dFe flux for the shelf lies within the range
0.12–0.52μmolm�2 d�1, giving annual benthic Fe supply estimates of between 2×107 and 8.5× 107 moles.

Our flux estimates are generally lower than values estimated by de Jong et al. [2012] but greater than that
estimated by Blain et al. [2007] for the Kerguelen Plateau (0.03μmolm�2 d�1), with some of the differences
clearly due to the choice of kz values. Our dFe benthic flux estimates are at the lower end of published
estimates for other shelf regions, which were derived from in situ incubations or pore water dFe profiles,

Figure 3. Distribution by station of (a) average summertime benthic kz values for all stations, based on the bottom vertical layer of the physical circulation model;
(b) vertical gradient of dFe concentration at the seafloor; (c) calculated benthic efflux of dFe for stations in water depths >400m; and (d) particulate iron concen-
tration in the deepest water column samples (not measured at all stations). Dashed line represents the 1000m isobath, with on-shelf isobaths at every 250m and at
100m depth. Figure prepared using Ocean Data View [Schlitzer, 2012].

Geophysical Research Letters 10.1002/2014GL061684

MARSAY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 7580



and range from <0.02 to 1000μmolm�2 d�1 [Elrod et al., 2004; Pakhomova et al., 2007; Severmann et al., 2010;
Homoky et al., 2012, 2013]. Elrod et al. [2004] suggested a global mean benthic dFe efflux of 8.16μmolm�2 d�1,
based on a global mean carbon oxidation rate of 12mmolm�2 d�1 and an average Fe/C flux ratio of 0.68μmol
Fe/mmol oxidized carbon. This is over 20 times greater than our geometric mean estimate of 0.36μmolm�2 d�1

for the Ross Sea. However,DeMaster et al. [1996] calculated amuch lower flux of remineralized carbon from Ross
Sea sediments of 0.2–2.7mmolm�2 d�1. Substituting these values into the Elrod algorithm gives a benthic flux
of iron from the Ross Sea shelf of 0.16–1.86μmolm�2 d�1, which brackets the values estimated using our
approach. Thus, assuming that the California coast Fe/C ratio used by Elrod et al. [2004] can be broadly applied,
the application of their algorithm is supported by our data and suggests that a low rate of benthic carbon
oxidation is responsible for the relatively low dFe fluxes estimated for the Ross Sea.

Alternatively, the relatively low values of our dFe flux estimates may reflect the well-oxygenated nature of
subsurface waters on the Ross Sea continental shelf relative to the other regions [Elrod et al., 2004; Severmann
et al., 2010]. Microbial reduction of Fe(III) to the more soluble Fe(II) leads to the release of dFe into sediment
pore waters during the early stages of diagenesis [Burdige, 2006]. This Fe(II) is then transferred from the
sediment pore waters into the overlying water column via diffusion and sediment resuspension, where its
residence time in solution is largely determined by the oxygen content of the near-bottomwaters [Lohan and
Bruland, 2008; Homoky et al., 2012]. In well-oxygenated waters, unless stabilized by organic complexation,
dissolved Fe(II) will be oxidized to Fe(III), which may then be removed to the sediments via precipitation,
aggregation, and/or particle scavenging. Indeed, a recent study of benthic dFe exchange suggests that
resuspended particulate material may regulate the benthic efflux of dFe, both through mobilizing high-iron
pore waters and by removal of released dFe [Homoky et al., 2012]. Such processes may occur in our study
region, where nearly all of the stations sampled in waters deeper than 400m showed evidence of a benthic
nepheloid layer (Figure 2), based on CTD transmissometer profiles and elevated particulate iron concentrations
(often>10 nM) in near-seafloor samples (Figure 3d). Verification of whether sediment resuspension represents
an additional source of dFe to the water column or a sink for dFe released by diffusion from sediments is
beyond the scope of the current study. Such processes would undoubtedly perturb the dFe concentration
gradient, although higher-resolution measurements of near-bottom dFe concentrations and/or direct
characterization of iron biogeochemical cycling within the benthic nepheloid layer would be required to
assess such effects.

At 10 stations with relatively shallow bathymetry (<400m), the dFe concentration profiles did not show the
same quasi-exponential increase in concentration with depth; rather, dFe concentrations either increased
in an approximately linear fashion with depth from a near-surface minimum or varied little between the
deepest two or three samples. Studies of the distribution of seafloor sediments in the Ross Sea suggest that
the banks and shoals are typically characterized by coarse glacial-marine sediments, rather than the siliceous
muds and oozes that dominate deeper areas of the shelf [Dunbar et al., 1985; Anderson, 1999]. As such,
sediments in these shallower areas would be expected to contain a smaller proportion of organic matter,
thereby creating conditions that are less effective at reducing and releasing iron into pore fluids and overlying
bottom waters, and explaining the smaller gradients in dFe concentration at these stations. Nonetheless,
middepth dFe concentrations at these shallower stations were often elevated relative to the same depths at
stations in deeper areas of the shelf: over the 100–300m depth interval, the median dFe concentration for
samples collected at the 10 shallow stations was significantly greater than that for the 37 deeper stations
(>400m depth), based on the Mann-Whitney Rank Sum Test (0.19 nM versus 0.13 nM; p < 0.001).

During the winter months, deep convective mixing vertically redistributes benthic dFe throughout the water
column, providing a “winter reserve” of dFe in the euphotic zone at the onset of the growing season. Using a
water column dFe inventory estimated from the mean concentrations over 100m depth intervals, and
assuming that winter mixing homogenizes the water column over most of the shelf (as indicated by the model
hindcast), yields 0.22 nM as an estimate of the water column dFe concentration at the start of the growing
season, consistent with values reported for early spring [Coale et al., 2005]. Assuming an average summermixed
layer depth of 25m (based on the climatology at http://www7320.nrlssc.navy.mil/nmld/nmld.html), and using
our observed mean late summer dFe concentration for the upper 25m (0.08 nM) as a post growth season
surface mixed layer concentration, suggests an annual shelf-wide winter resupply of 1.6 × 106 moles dFe into
the surface mixed layer (3.5μmolm�2 yr�1). This represents only one tenth of our calculated summertime
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benthic input of 1.4 × 107 moles dFe for the deeper areas of the shelf. Assuming that the winter benthic dFe
flux is similar to our summertime estimate, the annual benthic efflux of 5.8 × 107 moles dFe appears to be
far in excess of the winter vertical resupply to surface waters and may thus constitute a significant supply of
dFe to offshore regions of the Southern Ocean via lateral advection from the Ross Sea shelf, a process that
has been described for other regions [Elrod et al., 2004; Lam et al., 2006; Tagliabue et al., 2009]. In addition,
some fraction of the efflux of dFe from the shallower areas of the Ross Sea shelf will presumably enter the
euphotic zone episodically during the summer, as a result of tidal, eddy, and wind-driven mixing, thereby
providing a further source of benthic dFe to phytoplankton during the growing season.
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