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Figure 5. Map showing the contours of annual mean annual depth to water table and the 

annual mean maximum Normalized Difference Vegetation Index (NDVI) grids. A contour 

interval of 0.2 m was used for depths of less than 2 m, an interval of 1 m for depths between 

3 and 8 m, and an interval of 2 m for depths greater than 8 m. 

Across the meadowlands in the southeastern part of the study area, the water table was only up to  

1.4 m below the surface and was thus covered by well-developed vegetation, as indicated by a value for 

the maximum NDVI of 0.7 or larger. However, toward the northwest and east of the area the vegetation 

deteriorated markedly, as indicated by the decreasing NDVI, because the increasing depth of the water 

table in these areas tended to limit the amount of groundwater available for vegetation transpiration [15,16]. 

Another possible explanation is that intensive human activities (e.g., farming) have destroyed the natural 

vegetation in these areas, resulting in a poorer vegetation cover. The impacts of these human activities 

can be seen most clearly in the eastern region, where although the depth of the water table was less than 

1.4 m there was only a fairly-developed vegetation cover with a maximum NDVI of 0.5 to 0.6. The 

meadowlands in the south, which lie alongside the lake (Figure 5), had a water table depth of less than 

0.8 m but a moderately poor or fair vegetation cover (maximum NDVI = 0.4 to 0.6). This is because 

soils in this region, is subjected to frequent inundation and soil erosion and salinization as a result of 

major fluctuations in the lake water surface level. 

Across the sandy dunes, vegetation cover exhibited fewer spatial patterns, as indicated by the smaller 

variations (0.2 to 0.4) in the maximum NDVI (Figure 5). This can partially be attributed to the depth of 

the water table in this region was too deep (>4 m) for to exert a direct influence on vegetation 

development [15]. Similarly, because the water table in the upper transitional zone was more than 2 m 

deep, the vegetation cover across this zone exhibited slight variations only. In contrast, the vegetation 
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cover across the lower transitional zone, where the depth of the water table was less than 2 m, exhibited 

a noticeable spatial pattern from the east to the west, with the maximum NDVI rising from 0.4 to 0.5 in 

the east to 0.6 in the west. 

For every region within the study area, vegetation cover, as measured by maximum NDVI, varied 

from year to year (Figure 6). A multiple regression analysis revealed that the temporal variation was 

statistically correlated (R2 > 0.99) on the depth of the water table, precipitation, and PET. The depth of 

the water table explained 42%, 38%, and 7% of the variations presented by the maximum NDVI for 

meadowlands, transitional zones, and sandy dunes, respectively, while PET explained 25%, 7%, and 

30%, respectively. Precipitation explained 3%, 17%, and 8% of the variations for meadowlands, 

transitional zones, and sandy dunes, respectively. These results imply that fluctuations in the water table 

are more significant for vegetation in the meadowlands than in the transitional zones, and have the least 

impact on vegetation in the sandy dunes because of the deep water table underneath them. Climate, 

represented in this study by PET, exerted a more direct influence on vegetation in the meadowlands and 

sandy dunes than in the transitional zones. This is probably because the relationship between PET and 

actual transpiration was weak at water table depths of 0.8 m to 2.0 m such as those found in the 

transitional zones [16]. The relatively low influence of precipitation for the meadowlands can be 

attributed to the fact that the already high water table in this region made groundwater always available 

for vegetation transpiration. In contrast, precipitation significantly increased the soil moisture in the thick 

dry soil profiles of the transitional zones and sandy dunes, thus enhancing the relationship between PET 

and actual transpiration. As a result, precipitation had a more direct influence on vegetation in these 

latter two regions. 

 

Figure 6. Plot showing mean annual values for maximum Normalized Difference Vegetation 

Index (NDVI) averaged across the meadowlands (Meadow), the transitional zones 

(Transitional), and the sandy dunes (Sandy) in the study area. 

4. Conclusions 

This study examined spatio-temporal variations in the depth of the water table beneath a 9.71 km2 

area within the semiarid Horqin Sandy Land located in northern China using data collected from 2003 

to 2009, Landsat 4-5 TM and MODIS images, and meteorological data from the Tongliao station. The 

investigation was implemented by cross-comparing various visualization plots and contour maps and 

utilizing a simple regression analysis. The results indicated that for the study area, the spatial patterns in 

the fluctuations in the depth of the water table were mainly controlled by the local topography, localized 

geological settings, and human activities, while the temporal trends primarily depended on precipitation 
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and PET. As a result of long-term reclamation for agriculture, (for example, at site C2(M)), the water 

table was 0.3 m lower than that underneath adjacent areas (in this case, site C2(G)) where human 

disturbance was minimal. Within the study area, a region where the water table was closer to the surface 

tended to have better (i.e., more dense and productive) vegetation cover, as indicated by a higher value 

(>0.7) for maximum NDVI. Furthermore, our results also revealed that vegetation development was 

statistically correlated (R2 > 0.99) with the depth of the water table, precipitation, and PET. In particular, 

the depth of the water table explained 42%, 38%, and 7% of the variations presented by the maximum 

NDVI for meadowlands, transitional zones, and sandy dunes, respectively. This implies that vegetation 

is more sensitive to fluctuations in the depth of the water table in the meadowlands than in the transitional 

zones, and least sensitive in the sandy dunes. 
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