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Reconstructing the parameters from the given observables, referred to as the
iInverse problem, plays a central role in a variety of science and engineering ap-
plications. The mapping of parameters to observables is a well-posed problem
with unique solutions, and can therefore be solved directly with differential equa-
tion solvers or linear algebra solvers. In contrast, the inverse problem requires
backward mapping from observable space to parameter space, which is often
non-unique. Consequently, solving inverse problems is ill-posed and a far more
challenging computational problem.

As shown in Figure. 1, VAIM [1] adopts the architecture of an autoencoder com-
posed of two neural networks, a forward mapper ¥(-) from parameter space to
observable space and a backward mapper ®(-) observable space to parame-
ter space. In between of the forward and backward mappers, A latent layer is
Incorporated whose purpose is to capture the lost information in the parame-
ter—observable forward mapping. During forward training, the variables in the
latent layer are restricted to certain well-known distributions, such as a Gaussian
or uniform distribution. When the proposed architecture is appropriately trained,
sampling the variables in the latent layer allows the inverse mapper to rebuild the
posterior parameter distribution, given the observables.
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Fig. 1: VAIM architecture
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Fig. 2: Left to right, predicted solutions on f(x) = x*> when f(x) = 0.36, f(x,y) = x*> +y* when f(x,y) = 1.0 and

f(x) = sin(x) when f(x) =0

We first test VAIM on three toy inverse problems with different solution patterns :
1. f(x) =x* xe[-3,3],
2. f(x) =sin(x), x € [-2x,2x]|, and
3. f(x)=x5+x7, x0,x1 € [—2,2].

The results for these examples is shown figure. 2.

Then, we apply VAIM to a simplified version of an substantial application in fundamental
nuclear physics: QCD analysis. For this application, we aim to construct the inverse function
mapping the quantum correlation functions to observables. The preliminary results is shown
in Figure. 3. one can find that VAIM predicts a few solution clusters for each control sample
and the parameter vector of the control sample falls right into one of these clusters. This
illustrate that VAIM precisely predicts the parameter solution distributions.
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Fig. 3: Parameter distributions generated by VAIM in four control samples
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Comparison

1. comparison with Mixture Density Networks (MDN)

« MDN [2] is often used to solve inverse problems. The goal of the MDN is
to construct a conditional probability distribution of the parameters given
the observable inputs, which addresses the one-to-many mapping issue
In inverse problems.

« Compared to MDN, VAIM does not need to rely on the assumption of a
Gaussian mixture model.
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Fig. 4: Predicted solution samples with C = 2, 4, 10, and 100 mixing components on f(x) = x5 + x7 with respect to
f(x) = 1.0 using MDN.
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