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ABSTRACT

APPROXIMATION OF QUANTILES OF RANK TEST
STATISTICS USING ALMOST SURE LIMIT THEOREMS

Mark Ledbetter
Old Dominion University, 2018

Director: Dr. Lucia Tabacu

There are many problems in statistics where the analysis is based on asymp-

totic distributions. In some cases, the asymptotic distribution is in an open form or

is intractable. One possible solution is the logarithmic quantile estimation (LQE)

method introduced by Thangavelu (2005) for rank tests and Fridline (2010) for the

correlation coefficient. LQE is derived from an almost sure version of the central limit

theorem using the results of Berkes and Csáki (2001), and it estimates the quantiles

of a test statistic using only the data. To date, LQE has been used in only a few

applications. We extend the use of LQE to three widely analyzed problems.

We investigate the LQE approach using fully nonparametric rank statistics to

test for known trend and umbrella patterns in the main effects of three widely used

factorial designs: a two-factor fixed effect model, a partial hierarchical repeated mea-

sures mixed effect model, and a mixed effect cross-classification repeated measures

model. We also test for patterned alternatives in the interaction between the main

effect and time in the partial hierarchical repeated measures model. We derive the

almost sure central limit theorems for all of these problems and determine the level

and power.

The Pettitt (1979) test is a nonparametric test based on the Mann-Whitney

statistic used to detect a change in distribution in a sequence of random variables.

The proposed statistic has an asymptotic distribution that is the distribution of the

supremum of the absolute value of the Brownian bridge, which has an open form.

We propose an approximation of the quantiles for the test statistic based on LQE.

We provide simulation results for Type I error and power of the logarithmic quantile

estimates for the test statistic, and compare the LQE results with other methods for

two real data examples.

Thangavelu (2005) considered LQE for the nonparametric Behrens-Fisher prob-

lem with some success by introducing new numerically determined coefficients. We



examine the nonparametric two-sample problem using an empirical process of U -

statistic structure (Denker and Puri, 1992). Specifically, we investigate using LQE

with a second order U-statistic for paired averages within each sample. We provide

simulation results to show almost sure convergence of the new test statistic.
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CHAPTER 1

INTRODUCTION

In this dissertation we introduce a new approach called logarithmic quantile es-

timation (LQE) to investigate three different types of statistical problems in a non-

parametric setting: tests for patterned alternatives in factorial designs, detecting

change-points, and the two-sample problem using an empirical process of U -statistic

structure. To be more precise, we use rank tests for three different factorial models

and test for the presence of a pattern across the levels of one of the factors using

LQE. Trend and umbrella shaped patterns are tested in the alternative hypothesis.

Change-point problems involve detecting a change, usually a shift in an (ordered)

sequence of data. We limit our LQE investigation to the Pettitt rank test (Pettitt,

1979). The nonparametric two-sample problem involves testing two independent

samples to determine if they are from the same population. We propose an empirical

second order U -statistic process to investigate the type I error and power for small

samples under the LQE approach.

The LQE approach was introduced by Thangavelu (2005), and it has only been

investigated for a few statistical problems, which makes it an interesting topic to ex-

plore. A brief review of LQE follows immediately, and an extensive literature review

is provided in Chapter 2. Thangavelu (2005) proposed a parametric statistic to test

if the mean is equal to zero in a normally distributed sample; the results were com-

petitive with the t-test. Thangavelu also studied a parametric and a nonparametric

test for the famous Behrens-Fisher problem, which were competitive with the t-test

using the Satterthwaite-Smith approximation and various nonparametric tests, re-

spectively. Parametric confidence interval estimations for the correlation coefficient

were investigated by Fridline (2010) for bivariate normal distributions. The results

were competitive with the bootstrap (Efron, 1979) and classical methods. Tabacu

(2014) developed LQE for multiple sample comparisons and for longitudinal factorial

models using rank tests (see also Denker and Tabacu, 2014, 2015). Our contribution

in this dissertation extends the LQE approach to new and different areas of statistics,
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which show the flexibility and potential of LQE to address complex problems that

may not currently have a viable solution. To understand LQE in this dissertation,

we explore its foundational elements of almost sure limit theorems, rank statistics,

and nonparametric models.

1.1 BACKGROUND

In this section we discuss general concepts for nonparametric LQE, including some

almost sure limit theorems from which LQE is derived. The search for an almost sure

(a.s.) version of the central limit theorem (CLT) eluded statisticians until late last

century, when Fisher (1987), Brosamler (1988), and Schatte (1988) independently

proved an almost sure weak version of the CLT (ASCLT) under varying moment

assumptions. The first attempts to obtain an ASCLT involved Cesàro summation.

It has been proved that an ASCLT does not exist for Cesàro summation (Berkes,

1998). Instead, the ASCLT was originally proven using logarithmic summation. Let

X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random variables with

EX1 = 0, EX2
1 = 1, and partial sums Sn =

∑n
k=1Xk. The simplest form of the

ASCLT was given by Lacey and Philipp (1990)

1

log n

n∑
k=1

1

k
I
(
Sk√
k
≤ t

)
−→ Φ(t), a.s, ∀t ∈ R, (1)

where log is the natural logarithm, I denotes the indicator function, and Φ is the

standard normal distribution function.

It is known that the convergence of logarithmic sums is very slow. Authors such

as Lacey and Philipp (1990) discuss convergence rates, while Hörmann (2005, 2007)

discuss optimal weights and their effects on the rate of convergence, but simulation

studies and results were not provided. Additionally, a search for programs that used

almost sure convergence yielded only one result, a package in R written by Micheaux

and Liquet (2009), and the a.s. convergence graphs provided are limited. To the best

of our knowledge, there is not an empirical or graphical analysis for the convergence

behavior and rate of the ASCLT in literature. To remedy the omission, we provide

the following demonstration of the convergence of the ASCLT.

A single random sample of 109 observations was simulated from a standard normal
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distribution. A sequence of the first n = {103, 5×103, 104, 105, 106, 107, 5×107, 108, 5×
108, 109} observations were used to calculate

G̃n(t) :=
1

log n

n∑
k=1

1

k
I
(
Sk√
k
≤ t

)
(2)

for quantile values t ={−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0}. For ease of

viewing, a smoothed line was generated and plotted against the standard normal

distribution function for the same quantile values. Figure 1 contains profiles for

n = 103, 104, 105, 106. The convergence is very slow, and an increase in n does not

guarantee a move closer to the standard normal distribution in every instance. For

example in Figure 1, the curve for n = 106 is farthest from the standard normal for

small t, and is further away than the curve for n = 105 for most values of t.

Figure 1: ASCLT convergence using log n for n = 103, 104, 105, 106

In Figure 2 with n ≥ 108, each increase in n does result in a shift towards the

standard normal, and the convergence rate increases. The slow convergence rate of

the ASCLT presents a challenge for applications with small to fairly large sample

sizes. Additionally, the values of G̃n(t) exceed one and prevent adequate estimation
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of quantiles.

Figure 2: ASCLT convergence using log n for n = 107, 108, 5× 108, 109

To prevent values greater than one, Thangavelu (2005) proposed replacing log n

with its estimate Cn =
∑n

k=1
1
k

in expression (2), making

Ĝn(t) :=
1

Cn

n∑
k=1

1

k
I
(
Sk√
k
≤ t

)
(3)

an empirical distribution function (EDF). Figures 3-4 contain the plots for values of

n = 103, 104, 105, 106 and n = 107, 108, 5×108, 109, respectively. The behavior is very

similar to that in Figures 1-2. The convergence rate is marginally better, but it still

very slow.
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Figure 3: ASCLT convergence using Cn for n = 103, 104, 105, 106

Figure 4: ASCLT convergence using Cn for n = 107, 108, 5× 108, 109
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To increase the rate of convergence, we introduce random permutations of the

data. We permuted the normally distributed sample of 109 observations p=100

times, and computed Ĝn(t). Due to the increase in convergence and computational

limitations, n = 107 was the largest number of observations analyzed. Figure 5

displays a similar convergence pattern to that in Figure 3 for n ≤ 10000, but the rate

of convergence is much improved. Figure 6 shows an increased rate of convergence

compared to that in Figure 4, but the pattern of convergence has changed suggesting

that the not every increase in n results in a profile closer to the standard normal. The

rate of convergence is significantly improved using p=100 permutations, especially in

the tails of the distribution, which are of particular interest for hypothesis testing. It

becomes apparent that practical applications of the ASCLT for small samples require

the use of permutations.

Figure 5: ASCLT convergence using Cn, p=100, and n = 103, 5× 103, 104
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Figure 6: ASCLT convergence using Cn, p=100, and n = 105, 106, 107

In an attempt to further improve the convergence, p=500 permutations were ap-

plied to the sample. Figure 7 shows an additional increase in the rate of convergence

and a similar convergence pattern to that of Figure 5. The comparison of Figures

7 and 5 for n ≥ 105 also reveal a significantly faster convergence, but the conver-

gence pattern has changed. The rate of convergence and the minimum number of

permutations for each individual almost sure limit theorem (ASLT) investigated in

this dissertation is determined by simulation studies.
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Figure 7: ASCLT convergence using Cn, p=500, and n = 103, 5× 103, 104

Figure 8: ASCLT convergence using Cn, p=500, and n = 105, 106, 107
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Now that we have an understanding of how an asymptotic distribution is esti-

mated by the ASCLT, we briefly introduce the contributions that have been made in

the field of ASLT. We provide a literature review of ASLT in Section 2.1. For clarity,

when the expression convergences almost surely to a normal distribution, it is re-

ferred to as an ASCLT. For any other limiting distribution, the theorem it called an

almost sure limit theorem (ASLT). After the discovery of the ASCLT, proofs of the

ASCLT using alternate methods by authors such as Lacey and Philipp (1990) and

Peligrad and Révész (1991) provided additional insight into almost sure limit theory.

By 1993, authors were noticing the relationship between convergence in distribution

and the corresponding almost sure version (Berkes and Dehling, 1993). Within a few

years, ASLT were proven for dependent data (Peligrad and Shao, 1995). A general

framework of ASLT for i.i.d. random variables was provided by Berkes and Csáki

(2001). The key result of Berkes and Csáki proved that if a convergence in law exists,

then an ASLT converging to the same distribution can be found under some mild

technical conditions. Many other contributions are listed in 2.1.

The result of Berkes and Csáki (2001) provides the framework for LQE. For a

sequence of test statistics, say Tn, if we can prove that its distribution function

P (Tn ≤ t) convergences in law to some distribution function G(t), then we can derive

an ASLT that converges to the same distribution functionG(t). Since the distribution

function of the test statistic converges weakly toG(t), and Ĝn(t) = 1
Cn

∑n
k=1 I(Tn ≤ t)

converges almost surely weakly to G(t), we can use Ĝn(t) to estimate (approximate)

the distribution function P (Tn ≤ t). Note that we are not estimating the asymptotic

distribution function G(t), but the unknown distribution of Tn directly. The quality

of the approximation will depend upon the rates of convergence of both P (Tn ≤ t)

and Ĝn(t) and how close their distributions are to G(t) for small n. More precisely,

the distance between P (Tn ≤ t) and Ĝn(t) is bounded by the sum of their distances

to G(t), but in practice it may be much closer, as known for example in the case of

Edgeworth expansion (Hall , 2013). In Section 2.2, we explore the technical aspects

of LQE in more detail.

Another important element of the nonparametric LQE investigated in this dis-

sertation is the field of rank statistics. Rank statistics have several desirable proper-

ties, including invariance under strictly monotone transformations (Lehmann, 1953),

minimal distributional requirements, and robustness. Rank statistics use the overall
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ranks of the observations in place of their values, which makes the corresponding

tests and quantile estimates nonparametric. Many rank tests employ permutations

of the data to capitalize on the asymptotic distributional properties. The speed of

convergence increases significantly when permutation techniques are applied to clas-

sical (weak) limit theorems. Since the purpose of most tests is to determine if two

or more conditions (treatments, times, levels of treatments, distributions, etc.) are

different, all permutations of the data between, as opposed to within the conditions

of interest will result in similar distributions of the ranks under the null hypothesis

H0 : no difference between conditions. Rank tests employing permutations have the

added benefit of converging to the asymptotic distribution for sufficient sample sizes.

As there are N ! permutations for any single sample of N values, using the total

number of possible permutations is often impractical for computational purposes. It

is standard practice to randomly select a significant number of permutations (e.g.

p = 100, p = 500, or p = 1, 000) when applying rank tests. In some cases, a much

smaller number of permutations are required to approximate the asymptotic distri-

bution (e.g. p = 20 or p = 50). The asymptotic properties of rank tests are critical

to the efficacy of the classical nonparametric methods.

Permutation methods for LQE serve a different purpose than those of classical

nonparametric tests (Tabacu, 2014). In general, the EDF of a test statistic derived

from an ASLT is not symmetric, and the quantiles may depend upon the random

order in which the observations were selected Tabacu (2014). More precisely, the

calculations for lower values of k are given more weight than subsequent calculations

and may dominate the values of Ĝn(t) (Tabacu, 2014). An additional benefit of using

permutations in LQE is a faster convergence rate as shown in Figures 1 to 8. The

specific number of permutations for each test statistic must be determined by the

researcher.

We use rank statistics in the fully nonparametric model developed by Akritas

and Arnold (1994), Brunner and Denker (1994), Brunner and Puri (1996), Akritas

et al. (1997), Akritas and Brunner (1997), among many others. In this framework,

hypothesis are formulated using distribution functions. Let Xij, 1 ≤ i ≤ a, 1 ≤ j ≤ b

be random variables from a statistical experiment, where the values of i, j denote

some set of conditions under which the random variables are generated. The only

distributional assumptions we make is that Xij v Fij, where Fij is a continuous
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marginal distribution function. The hypothesis that the random variables are from

the same population is given by

H0 : F11 = · · · = F1b = · · · = Fa1 = · · · = Fab. (4)

The alternative hypothesis may be expressed specifically to address the desired test.

We provide an omnibus alternative hypothesis as an example

H1 : Fij 6= Fi′j′ , (5)

for at least one (i, j) 6= (i′, j′). Any parametric statement of the hypothesis will be

implied by the nonparametric hypothesis. For example, the test that some parameter

ζ = ζ0 is included in the statement of identical distribution functions in (4). For a

detailed discussion, see Akritas and Arnold (1994), Akritas et al. (1997). Hypotheses

specific to the proposed tests are provided for each model investigated in Chapters

3-5. An overview of the dissertation is provided in the following section.

1.2 OVERVIEW OF THE DISSERTATION

The organization of this dissertation and an overview of the results are now

provided. In Chapter 2, we provide a brief overview of the contributions to almost

sure limit theory after the discovery of the ASCLT by Fisher (1987), Brosamler

(1988), and Schatte (1988), which lead to the seminal work of Berkes and Csáki

(2001). Theorems that are important to the results obtained in Chapters 3 - 5

are also provided. In the second half of the chapter, we present the key concepts

and technical requirements for LQE, along with an investigation of some technical

computational considerations for LQE.

In Chapter 3 we investigate three different factorial models presented in Akritas

and Brunner (1996), and test for the presence of a pattern (trend, umbrella, etc.)

across the levels of one of the factors under the LQE approach. Without loss of

generality, we test the null hypothesis H0: no difference in for the presence of a

pattern across the levels of Factor A in the three models. The models investigated

include a two-way fixed effects model, a partial hierarchical repeated measures model,

and a cross-classification repeated measures model. We also test for the presence of
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interaction with a patterned alternative in the partial hierarchical model. Simulation

studies are provided for type I error and power for trend and umbrella patterns in the

alternative hypotheses for small sample sizes. Real data sets are analyzed for each

model, and the results of the LQE tests agree with known corresponding analyses

(where available). The type I error results are conservative, but power exceeds 80%

for several alternative hypotheses.

Chapter 4 explores LQE for the change-point problem of detecting a change in

distribution in a sequence (or stream) of observations. More precisely, we investigate

LQE for the test proposed by Pettitt (1979) for small to moderate sample sizes. We

analyze several small datasets and compare their results to those of Pettitt (1979),

Lombard (1987), and Gombay (1994) where available. Simulation studies are pro-

vided for type I error and power. The test is liberal for smaller sample sizes but the

type I error approaches the significance level as the sample sizes increase.

A new approach for the two-sample problem is examined in Chapter 5. We con-

sider the ideas in Compagnone and Denker (1996) for increasing the efficiency of the

nonparametric Wilcoxon-Mann-Whitney test with respect to the parametric t-test

using an empirical process of U -statistic structure. We propose a new test statistic

and provide empirical verification that it converges in law and its corresponding AS-

CLT. Simulated type I error and power are provided for small independent samples

of normally distributed random variables.

We summarize the results of the dissertation in Chapter 6, and we indicate some

open problems.
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CHAPTER 2

ALMOST SURE QUANTILE ESTIMATION

2.1 ALMOST SURE LIMIT THEOREMS (ASLT)

Almost sure limit theorems (ASLT) form the basis of logarithmic quantile esti-

mation (LQE). The first result was the almost sure central limit theorem (ASCLT),

independently proved by Fisher (1987), Schatte (1988), and Brosamler (1988) for dif-

ferent moment conditions. Lacey and Philipp (1990) were able to relax the moment

conditions specified by Fisher, Brosamler, and Schatte. The simplest form of the

ASCLT given by Lacey and Philipp (1990) follows. Let (Ω,B,P) be a probability

space. Let X1(ω), X2(ω), . . . , Xn(ω) be a random sample of independent and iden-

tically distributed (i.i.d.) random variables, and let any event ω ∈ Ω be a sequence

ω = (ω1, ω2, . . . ) of outcomes such that P (ω) > 0 (i.e. ω /∈ N where N is the null-set

of Ω). Without loss of generality assume EX1 = 0 and EX2
1 = 1. We denote the

partial sum of the random variables as Sn(ω) =
∑n

k=1Xk(ω). I(·) is the indicator

function, and Φ is the standard normal distribution function. Then the simplest

version of the ASCLT is (Lacey and Philipp, 1990)

1

log n

n∑
k=1

1

k
I
(
Sk(ω)√

k
≤ t

)
a.s−−−→

n→∞
Φ(t), ∀t ∈ R, (6)

where log n is the natural logarithm of n. Brosamler (1988) observed that to verify

a random number generator using the ASCLT, one only has to use a single (typical)

path ω through Ω. In contrast, multiple paths are required for verification using the

classical central limit theorem (CLT). In this dissertation, it is understood that ω is

fixed, and it is omitted to simplify the notation.

There have been many advancements in the field of almost sure limit theory

since the introduction of the ASCLT. Brosamler (1988) proved a functional form

of the ASCLT using ergodic theory; Lacey and Philipp (1990) obtained an almost
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sure invariance principle using a probabilistic method. Lacey and Philipp (1990)

also provided a limit for the rate of convergence for the ASCLT as O
(

1√
logn

)
in

probability. Berkes and Dehling (1993) showed under mild technical conditions that

partial sums Sk of independent but not necessarily identical random variables for

any distribution function G and any Borel set A ⊂ R with boundary ∂A such that

G(∂A) = 0 and such that the P-null set is independent of A , the expression

lim
n→∞

1

log n

n∑
k=1

1

k
I
{
Sk − bk
ak

∈ A
}

= G(A), a.s., (7)

is equivalent to the statement

lim
n→∞

1

log n

n∑
k=1

1

k
P

{
Sk − bk
ak

∈ A
}

= G(A), (8)

where ak > 0 and bk are sequences of real numbers. It is also shown under these

same conditions that the ASLT is implied by the convergence in distribution

Sk − ak
bk

d−→ G.

Thus, under these mild technical assumptions, the ASLT is a weaker statement than

convergence in distribution, unlike ordinary a.s. convergence. Peligrad and Shao

(1995) used the almost sure invariance principle from Lacey and Philipp (1990) to

develop an ASCLT for stationary sequences with finite covariances, stationary mix-

ing sequences, and strong mixing sequences. Fahrner and Stadtmüller (1998) devel-

oped ASLT for the maximum value of a sample. Consider a sequence of functions

Tn(X1, . . . , Xn) = max1≤i≤n{Xi}, where Xi are real-valued i.i.d. random variables

and i, n ∈ N. The ASLT were developed by Fahrner and Stadtmüller (1998) under

three categories of max-stable limiting distributions, which include

Λ(x) = e−e
−x

x ∈ R,
Φα(x) = e−x

−αI(x > 0), x ∈ R, α > 0, and

Ψα(x) = e−(−x)
αI(x ≤ 0) + I(x > 0) x ∈ R, α > 0.

(9)

The specific technical conditions under which each of the three distributions in (9)

are max-stable are provided along with conditions under which Tn does not converge

almost surely. The same extreme-value distributions in (9) were studied by Cheng



15

et al. (1998); however, a much broader scope of convergence was proven. In fact,

whereas Fahrner and Stadtmüller (1998) claimed that only averaging very close to

the logarithmic averaging results in convergence, Cheng et al. (1998) proved that

a.s. convergence occurs for a wide range between logarithmic and Cesàro averaging

(e.g. replacing log n with n or n + 1). Ibragimov and Lifshits (2000) used charac-

teristic functions to prove several ASLT. An ASLT for independent random vectors,

and an ASCLT for i.i.d. random vectors were also confirmed by Ibragimov and Lif-

shits (2000). They proved an ASLT for weakly dependent random vectors. More

precisely, they showed an ASLT for stationary sequences with expectation zero and

finite variance under mild technical conditions. Additionally, an ASLT for a sequence

of random vectors without the assumptions of independence or identical distribution

is provided by Ibragimov and Lifshits (2000). For independent random variables

Berkes and Csáki (2001) provided a key result that generalizes several previous ob-

servations concerning the relationship between limit theorems for convergence in law

and ASLT. The following theorem states that every weak limit theorem (convergence

in distribution) has a weighted almost sure version under mild technical conditions.

Theorem 1 (Berkes and Csáki (2001), Theorem 1). Let X1, X2, . . . be independent

rvs satisfying the weak limit theorem

fk(X1, X2, . . . , Xn)
d→ G, (10)

where fk : Rk → R (k = 1, 2, . . . ) are measurable functions and G is a distribution

function. Assume that for each 1 ≤ k < l there exists a measurable function fk,l :

Rl−k → R such that E(|fl(X1, . . . , Xl) − fk,l(Xk+1, . . . , Xl)| ∧ 1) ≤ A (ck/cl) with a

constant A > 0 and a positive, nondecreasing sequence (cn) satisfying cn → ∞ and
cn+1

cn
= O(1). Put dk = log(ck+1/ck), Dn =

∑
k≤n dk. Then

lim
n→∞

1

Dn

n∑
k=1

dkI{fk(X1, . . . , Xk) < x} = G(x) a.s. ∀x ∈ CG, (11)

where CG is the set of continuity points of G. The result remains valid if we replace

the weight sequence (dk) by any (d∗k) 3 : 0 ≤ d∗k ≤ dk,
∑
d∗k =∞.

The mild technical conditions in Theorem 1 may be summarized as follows (see

Berkes and Csáki, 2001):
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(i) The convergence in distribution for measurable functions fk is not affected by

removing finitely many random variables.

(ii) The sequence log (ck+1/ck) is positive, finite, and its infinite sum is infinity for

a nondecreasing sequence ck →∞, where the ratio of successive terms is finite

(i.e. bounded).

Berkes and Csáki (2001) also noted that if we take ck = kε for some ε > 0, then

dk ∼ constant(1/k), and (11) becomes

lim
n→∞

1

log n

n∑
k=1

1

k
I{fk(X1, . . . , Xk) < x} = G(x) a.s. ∀x ∈ CG. (12)

Setting fk(X1, . . . , Xk) = Sk√
k

yields the ASCLT (6). Berkes and Csáki (2001) also

applied their results to show ASLT for special cases, such as, dependent processes

with independent increments, extreme-value distributions similar to those of Cheng

et al. (1998) and Fahrner and Stadtmüller (1998), maxima for partial sums, empirical

distribution functions, U -statistics, local times, return times, and Darling-Erdös type

limit theorems. Lifshits (2001) proved a multivariate ASLT for partial sums of inde-

pendent random vectors. The ASLT for central order statistics was proven by Peng

and Qi (2003). The moment conditions of Berkes and Csáki (2001) for U -statistics

were relaxed by Holzmann et al. (2004). Holzmann et al. (2004) proved an ASLT

with a stable limiting distribution for nondegenerate U -statistics and its functional

version. Hörmann (2005, 2007) proves the convergence of (11) for a broader range

of weights

dk =


1
k
, k ∈ N

(log k)α

k
, α > −1,

e(log k)
α

k
, (0 ≤ α < 1).

(13)

Increasing dk makes the convergence in (6) stronger. A relation between Dk and dk

along with optimal criteria for dk were provided (Hörmann, 2007). Peng et al. (2009)

proved the ASLT for the joint distribution function of all order statistics. The vector

martingale transform was investigated by Bercu et al. (2009). They showed that

the normalized even moments of martingales follow an ASCLT. Denker and Fridline

(2010) proved the following almost sure version of Cramér’s theorem.
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Theorem 2 (Denker and Fridline (2010), Theorem 2.1). Let g : Rd → Rk be a

function which is differentiable in a neighborhood of some µ ∈ Rd and its derivative

g′ is continuous at µ. Let Xn, n ≥ 1 be a sequence of Rd valued random vectors

satisfying the ASLT

1

log n

n∑
k=1

1

k
I{
√
k(Xk − µ) ≤ t} a.s−−−→

n→∞
GX(t), t ∈ D(GX), (14)

where GX is the cumulative distribution function of some random variable X and

D(GX) is the set of continuity points of GX . If there exists a sequence N0 = {nk :

k ∈ N} of integers such that

lim
n→∞

1

log n

n∑
k=1;k/∈N0

1

k
= 0, and (15)

lim
k→∞

Xnk = µ a.e. (16)

then

lim
n→∞

1

log n

n∑
k=1

I{
√
k (g(Xk)− g(µ)) ≤ t} = Gg′(µ)X(t) t ∈ D(Gg′(µ)X), a.e.

(17)

An almost sure version of Cramér’s theorem has the powerful benefit of increasing

the scope of application for almost sure limit theorems. By carefully selecting g so

that the derivative g′ ∈ (0, 1), the resulting asymptotic variance is lower than GX

(Denker and Fridline, 2010). Denker and Tabacu (2015) proved the ASCLT for

linear rank statistics. An ASCLT for the ratio of order statistics from an exponential

distribution was proved by Miao et al. (2016). There are many contributions to

almost sure limit theory not listed, and the body of knowledge continues to progress.

With the large amount of results for almost sure limit theory, an intuitive step was

to use ASLT for statistical analyses, such as quantile estimation and by extension,

hypothesis tests. The method for such analyses was introduced by Thangavelu (2005)

and is called logarithmic quantile estimation (LQE), which is discussed in Section

2.2.
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2.2 LOGARITHMIC QUANTILE ESTIMATION (LQE)

LQE is an approach that uses ASLT to estimate the quantiles of a test statistic

directly from the data without using the asymptotic distribution. Since tests based

on the central limit theorem (CLT) involve estimation of the asymptotic variance,

the LQE approach may be especially attractive when those expressions are complex.

As we mentioned in the Introduction, the goal of this dissertation is to extend the

LQE approach in three directions: analysis of factorial designs for the presence of a

patterned alternative across the levels of one factor (Chapter 3), testing for a change-

point in a sequence of data (Chapter 4), and investigating a new two-sample problem

rank test based on U -statistic structure (Chapter 5). We begin this section with a

literature review, which is followed by a discussion of the technical requirements for

LQE. We empirically investigate the convergence behavior and rate of the ASCLT

in (6), and we explore some technical computational properties of LQE to assist in

understanding of the results in Chapters 3-5.

LQE is a relatively new statistical approach, and this fact allows us to provide a

complete literature review. LQE was introduced by Thangavelu (2005). Thangavelu

proposed a parametric LQE method for testing if the mean of a sample is zero for

small sample sizes (10 and 15 observations), and the simulated type I error of the

test was comparable to that of the t-test and was closer to the significance level when

compared to the bootstrap method. Thangavelu (2005) also investigated a paramet-

ric and a nonparametric (rank statistic) LQE test for the Behrens-Fisher problem

(BFP). The parametric and nonparametric LQE tests for the Behrens-Fisher prob-

lem performed competitively with Welch’s t-test and the Wilcoxon-Mann-Whitney

(WMW) test, respectively for sample sizes of 10, 15, and 30.

A parametric LQE method for estimating the confidence intervals for the corre-

lation coefficient was developed by Fridline (2010). To arrive at an ASCLT for the

Fisher transformation, Fridline proved an almost sure version of Cramér’s theorem

and applied it to a proposed ASCLT for the correlation coefficient. The estimated

quantiles from the ASCLT for the desired significance level were used to calculate

the confidence interval. These LQE confidence intervals were similar in width and

coverage probabilities to confidence intervals generated using the bootstrap method

for large samples with correlation coefficient values between 0.25 and 0.7.
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Tabacu (2014) proved an ASCLT for linear rank statistics, which was used for

developing LQE for the c-sample problem and a longitudinal factorial model. The

c-sample problem compares c samples. Tabacu (2014) did not restrict the analysis to

independent samples, resulting in an unknown asymptotic distribution under the null

hypothesis that the c samples are all from the same distribution. For independent

samples, the LQE quantiles in Tabacu (2014) compared favorably with the asymp-

totic chi-squared quantiles of the Kruskal-Wallis test statistic (Kruskal and Wallis,

1952). The simulated type I error for independent and dependent samples was very

similar, and the results were conservative. Tabacu (2014) derived ASCLT for linear

rank statistics to test a three-way longitudinal factorial design, and successfully used

the LQE approach to analyze a real dataset with 41 subjects in two treatment groups

stratified by gender and having repeated measures. The LQE p-values for the longi-

tudinal study were comparable to those presented in Brunner, Domhof, and Langer

(2002). Simulation studies were provided in Denker and Tabacu (2015). The type I

error results were conservative.

In this dissertation, we restrict our discussion to nonparametric methods for LQE

by replacing observations with their overall rank in the experiment (rank statistics).

We define a sequence of rank test statistics, say Tn, n ∈ N on a common probability

space. The following convergence relations are needed for LQE.

lim
n→∞

P (Tn < t) = G(t), ∀t ∈ R, (18)

lim
n→∞

1

Cn

n∑
k=1

1

k
I(Tk < t) = G(t), a.s., ∀t ∈ R, (19)

where G is a distribution function, and Cn =
∑n

k=1
1
k
. The limiting distributions

G in both (18) and (19) are identical, leading to the concept behind LQE. If the

left-hand sides (LHS) of (18) and (19) converge to exactly the same distribution G,

then it is intuitive to use the logarithmic summation in the LHS of (19) to estimate

the unknown distribution function of the rank test statistic Tn in the LHS of (18).

The logarithmic summation in (19) is calculated directly from the data, and it does

not include an estimation of the asymptotic variance of Tn. Unlike CLT tests, LQE

does not estimate the asymptotic distribution function of Tn, but approximates its

actual distribution function.



20

The use of Cn in the ASCLT (19) instead of log n was proposed by Thangavelu

(2005), because even though∑n
k=1

1
k

log n
−→ 1, a.s.,

this ratio is greater than one for all n > 1. Thangavelu noticed that the LHS of

(19) is an empirical distribution function (EDF), making it an appropriate estimate

for the distribution function of Tn. Fridline (2010) proved that the ASCLT in (19)

is equivalent to the ASCLT when log n is used in place of Cn using an extension of

Slutzky’s theorem. Fridline (2010, Lemma 2.2, page 22) extended Slutzky’s theorem

to the almost sure weak version, and used the lemma to prove that exchanging log n

for Cn resulted in the equivalent ASCLT in (19).

To estimate quantiles for the distribution of Tn, one can invert the EDF defined

by Thangavelu (2005) and refined by Tabacu (2014)

Definition 2.2.1 (Tabacu, 2014, Definition 3.1.3, p. 27). Let (Xn)n∈N be a sequence

of random variables defined on the same probability space. Let Tn = Tn(X1, . . . , Xn)

be a sequence of test statistics where Tn is a function of X1, . . . , Xn. Then the

logarithmic type empirical distribution function is defined as

Ĝn(t) =
1

Cn

n∑
k=1

1

k
I(Tk ≤ t), ∀t ∈ R. (20)

In general, Ĝn(t) converges almost surely to G(t). Logarithmic empirical α-

quantiles (i.e. logarithmic α-quantile estimates) are defined as the inverse of the

logarithmic EDF (Thangavelu, 2005).

Definition 2.2.2 (Logarithmic α-quantile estimates). Let α ∈ [0, 1], n ∈ N, and

Ĝn(t) be defined as in Definition 2.2.1 above. Then the (α, n)- logarithmic quantile

estimate of a sequence of test statistics Tn is

t̂(n)α = Ĝ−1n (α) =


sup{t|Ĝn(t) = 0} , for α = 0

sup{t|Ĝn(t) < α} , for α ∈ (0, 1)

inf{t|Ĝn(t) = 1} , for α = 1.

(21)
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We refer to t̂
(n)
α throughout the dissertation as a logarithmic α-quantile estimate,

where the dependence upon n is understood.

Several properties for logarithmic α-quantile estimates were provided by

Thangavelu (2005) and are stated below for convenience. See Tabacu (2014) for

detailed proofs.

1. Let tα denote the true α-quantile of continuous distribution function G(t), then

lim
n→∞

t̂(n)α = tα, a.s.

2. When using the LQE approach, the type I error of a test converges a.s. to the

significance level under the null hypothesis, which for the nonparametric case

is that all random variables are from the same distribution function.

3. Under any specific alternative hypothesis, the power of the test converges a.s.

to 1.

We now investigate some of the computational properties of LQE by examining

the equations of Ĝn(t) and t̂
(n)
α . In practice, the logarithmic α-quantile estimate in

(21) for all α < 1 becomes

t̂(n)α = max

{
t | 1

Cn

n∑
k=1

1

k
I(Tk ≤ t) ≤ α

}
. (22)

Ĝn(t) has a discrete number of possible values which are determined by n. This

in turn limits the values of α for which t̂
(n)
α can be precisely determined. To fully

understand the potential effects of this restriction, we use a small value of n. For

example, if n = 5, then the two largest possible values Ĝ5(t) can take (rounded to 4

decimal places) are ∑4
k=1

1
k∑5

k=1
1
k

= 0.9124, and 1.

For α = 1 in (21), we choose the smallest value of t such that Ĝn(t) = 1, say t̂
(5)
1 .

Then for any 0 < δ ≤ 1− 0.9124, α = 1− δ in equation (22) results in a t = t̂
(5)
1−δ =

t̂
(5)
0.9124 < t̂

(5)
1 . For example, if a value for α is arbitrarily chosen as, say α = 0.95 when
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n = 5, then the quantile t̂
(5)
0.95 = t̂

(5)
0.9124, and if the value of the test statistic T5 exceeds

t̂
(5)
0.95 for a one-sided test, without any further information, a p-value of less than 0.05

would be reported, instead of p-value < 1− 0.9124 = 0.0876. Hence, we do not have

enough information to determine a p-value < 0.0876, and caution should be used

when selecting values of α for small sample sizes. The minimum p-value that can be

determined for 5 ≤ n ≤ 16 are provided in Table 1 for convenience.

Table 1: Precision of LQE (minimum p-value)

n p-value n p-value n p-value

5 0.0876 6 0.0680 7 0.0551

8 0.0460 9 0.0393 10 0.0341

11 0.0301 12 0.0269 13 0.0242.

14 0.0220 15 0.0201 16 0.0185

The p-values listed are the smallest p-value that can

be precisely determined by LQE for the correspond-

ing value of n.

Another technical computational property was introduced by Fridline (2010). The

random order of the observations may have a significant effect on the calculations,

because we are only selecting observations from one sequence of random variates, and

the largest weights for 1
k

(1, 0.5, 1
3
, . . .) are applied to the earliest selected observations.

Fridline (2010) showed that omitting a small number (relative to n), say k0, of the

initial calculations reduces the impact of the larger weights, which may increase the

rate of convergence, and results in an expression that is an ASLT with the same

limiting distribution.
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2.3 CONCLUSION

In this chapter, we introduced the ASCLT and described important theoretical

developments in almost sure limit theory. We then showed how LQE is an extension

of almost sure limit theory to hypothesis testing. Some properties and technical as-

pects of LQE were reviewed, and are summarized here. The convergence of ASLT is

very slow; however, permutations of the sequence of random variables increase the

symmetry of the logarithmic summation and increases the rate of convergence of the

ASLT. Logarithmic quantile estimates approach the true quantiles of the asymptotic

distribution as the number of observations increase. The type I error and power

estimates approach the significance level and one almost surely, respectively. The

distribution to which the ASLT converges is not affected by removing finitely many

initial random variables (vectors), and the effects of the random order of the obser-

vations on logarithmic quantile estimate convergence may be mitigated if a relatively

small number of calculations (compared to the sample size) are omitted. The preci-

sion of the p-value is restricted by the number of terms in the logarithmic summation,

and consideration of the precision should be considered during decision-making. Now

that the theory and practical aspects of LQE have been explored, in the following

three chapters, we investigate the three statistical analyses described in the Intro-

duction.
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CHAPTER 3

TESTS FOR PATTERNED ALTERNATIVES

3.1 INTRODUCTION

In this chapter we introduce nonparametric tests for patterned alternatives in fac-

torial designs via logarithmic quantile estimation (LQE). It is well known that tests

for patterned alternatives result in higher power compared to global tests. Nonpara-

metric tests for patterned alternatives were developed by Terpstra (1952) and Jonck-

heere (1954) for independent samples. Tests for dependent samples were developed

by Page (1954). The method for independent samples proposed by Hettmansperger

and Norton (1987) was generalized to mixed effects factorial models by Akritas and

Brunner (1996), Brunner and Puri (2001), Brunner, Domhof, and Langer (2002),

Callegari and Akritas (2004), among several others.

Results of tests for increasing trend and umbrella type patterned alternatives are

also provided for three different factorial models in this chapter. The three models

considered are a fixed effects two-way factorial model, a partial hierarchical repeated

measures model with two fixed factors, and a cross-classification repeated measures

model with two crossed fixed factors as described in Akritas and Brunner (1996). The

three models are fully nonparametric factorial designs as proposed and developed by

Akritas and Arnold (1994), Brunner and Denker (1994), Brunner and Puri (1996),

Akritas and Brunner (1997), Akritas et al. (1997), Brunner and Puri (2001), among

others. The hypotheses for fully nonparametric models are formulated using only

the distribution functions, and the test statistics are defined using the overall ranks

of the observations in place of the values. These rank tests have the advantage of

being invariant under monotone transformations of the response variable unlike the

corresponding linear parametric models. Additionally, the assumptions of normality

and homoscedasticity (homogeneity of variances) are not requirements under these

models.
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Our contribution in this chapter is the extension of LQE to patterned alternatives

in fully nonparametric factorial designs. For the models considered in this chapter,

Akritas and Brunner (1996) propose the use of linear rank statistics divided by

the square root of their asymptotic variance to test for patterned alternatives. For

small sample sizes, these tests use a central t-distribution requiring the estimation

of the degrees of freedom using the Satterthwaite-Smith approximation. When using

LQE, there is no need for estimating the asymptotic variance or calculating the

Satterthwaite-Smith degrees of freedom.

The chapter is organized as follows. In Section 3.2 we introduce the models,

the hypotheses, and the test methods. The simulated type one error and power of

the tests along with applications to datasets using LQE are provided in Section 3.3.

Section 3.4 is the conclusion, and Section 3.5 is the appendix containing a sketch of

the proofs.

3.2 MODELS AND TESTS STATISTICS

We investigate three distinct models in this chapter. The two-factor fixed effects

model consists of multiple levels in each of the factors under experimentation. The

individual observations are exposed to exactly one level of each factor (referred to as

cells) and are independent of other observations in the model. The partial hierarchical

design consists of randomly chosen experimental units nested under one treatment

level (say factor B) and measured at multiple time points or locations (factor A)

under the only one treatment level. For simplicity we will refer to the repeated

measurements as time points without loss of generality. The final design is a cross-

classification repeated measures model where each experimental unit is randomly

selected, and measurements are obtained for all combinations of the two fixed-effect

treatments (factors A and B). Both factors A and B are repeated measurements where

factor A is nested within factor B. We look at these models from a nonparametric

point of view in the context given by Akritas and Brunner (1997).

In the fully nonparametric setting, hypotheses are stated in terms of the distri-

bution functions, and the test statistics are expressed in terms of relative treatment

effects. Relative treatment effects describe the tendency of a marginal distribution

function, say for a specific combination of levels of factor A and factor B, with respect
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to the overall distribution function of the experiment. To explain the relationship

between relative treatment effects and the distribution functions, it is first necessary

to define several quantities which will be used throughout the chapter. Let Xijk

represent an observation for the ith level of factor A, the jth level of factor B, and the

kth subject, where i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , n. Although the mod-

els presented are valid for unbalanced designs, we limit our discussion to balanced

models (nij ≡ n), which results in less complex expressions and matches the simu-

lations performed by Akritas and Brunner (1996). We denote the total number of

observations as N = abn. We assume Xijk has the continuous marginal distribution

function Fij(x) = P (Xijk ≤ x), for all real x. The vector of distribution functions

for the experiment is given as

F = (F11, . . . , F1b, . . . , Fa1, . . . , Fab)
′.

The corresponding empirical marginal distribution function is

F̂ij(x) = n−1
n∑
k=1

I(Xijk ≤ x),

where I(A) is the indicator function of set A. The overall distribution function for

the experiment is defined by

H(x) =
1

ab

a∑
i=1

b∑
j=1

Fij(x). (23)

The empirical form of H(t) is expressed by

Ĥ(x) =
1

N

a∑
i=1

b∑
j=1

n∑
k=1

I(Xijk ≤ x). (24)

Let the vector of relative treatment effects be

p = (p11, . . . , p1b, . . . , pa1, . . . , pab),

where

pij =

∫
HdFij.
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Relative treatment effects describe the probabilistic tendency of the marginal distri-

bution function Fij with respect to the overall mean distribution function H (Brun-

ner, Domhof, and Langer, 2002). If pij <
1
2
, then Fij tends to lie in the region to the

left of H. When pil >
1
2
, then Fij tends to lie to the right of H, and if pij = 1

2
, then

Fij does not tend to lie on either side of H (Brunner, Domhof, and Langer, 2002).

It is of interest to test the null hypothesis that the relative treatment effects are the

same (i.e. no treatment effect exists)

Hp
0 : p11 = · · · = p1b = · · · = pa1 = · · · = pab. (25)

For convenience, we wish to express the hypothesis in terms of distribution functions.

Brunner, Domhof, and Langer (2002) notes that the hypothesis in (25) is implied by

the hypothesis

Hµ
0 : F11 = · · · = F1b = · · · = Fa1 = · · · = Fab. (26)

For an overview of the origins of relative treatment effects, their use in testing non-

parametric models, and the derivation of asymptotically valid inference procedure

having good small sample properties see Brunner et al. (2017).

The use of ranks in place of actual observations for testing nonparametric hy-

potheses results in the robustness of the test statistics when outliers are present

(Akritas and Brunner, 1997) and the invariance of the data under monotone trans-

forms, unlike the corresponding classical linear models where the main effect may

disappear or be reversed (Akritas et al., 1997). Let Rijk be the rank of the observa-

tion Xijk among all N observations in the experiment. We define the average ranks

for cell (i, j) and for treatment i of factor A by

R̄ij· =
1

n

n∑
k=1

Rijk, (27)

R̄i·· =
1

b

b∑
j=1

R̄ij·, (28)

respectively. The unbiased and consistent estimate of the relative treatment effect

pij is expressed in terms of ranks as follows

p̂ij =

∫
ĤdF̂ij = N−1(R̄ij· − 0.5).
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In order to formulate a test statistic for patterned alternatives, Hettmansperger

and Norton (1987) assigned weights to the rank means corresponding to the hypoth-

esized pattern in the factor of interest. Without loss of generality, we assume that

factor A contains the hypothesized pattern, and we assign integer weights in accor-

dance with the recommendations of Hettmansperger and Norton (1987). The vector

of weights is

w = (w1, . . . , wa)
′.

The general form of the test statistic for patterned alternatives (Brunner and Puri,

1996) is given as

PN =
√
Nw′Cp̂, (29)

which under the specific null hypothesis has an asymptotic normal distribution with

mean 0 and variance

σ2 = w′CV C ′w, (30)

where the contrast matrix C is determined by the hypothesis. A general formulation

of the contrast matrices for various hypotheses are provided in Akritas and Brunner

(1997). The structure of asymptotic covariance matrix V of the ranks of the obser-

vations is specific to each factorial model. We refer to Brunner and Puri (2001) for

a detailed discussion. In the sequel, we provide the appropriate form of PN in (29)

for each of the investigated models. The form of w is

wi = i, i = 1, . . . , a, (31)

for the increasing trend alternative and is

wi =

i for i < l,

2l − i for l ≤ i ≤ a.
(32)

for the umbrella pattern, where l corresponds to the known location of the peak, i.e.

the level of factor A demonstrating the greatest relative treatment effect (equivalently

largest average rank). The test statistic used by Brunner and Puri (1996) and Akritas

and Brunner (1996) is LN = PN/σ̂N , where σ̂2
N = w′CV̂NC

′w is a consistent estimator

of σ2 in (30). For brevity, we refer to Akritas and Brunner (1997) for the details of

V and V̂N .
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As we mentioned in the Introduction of this chapter, the aim is to approximate

quantiles of the rank test statistics for patterned alternatives using the almost sure

quantile estimation approach (LQE). The LQE approach uses only the data to esti-

mate the distribution of the test statistic without any estimation of the asymptotic

variance. Hence, we use the expression of PN in (29) to derive the LQE. In the fol-

lowing subsections we discuss each model, explicit forms of the corresponding rank

test statistic, and the main result that allows us to estimate quantiles almost surely.

These results are almost sure central limit theorems (ASCLT) for each rank test

statistic. For the proofs we use the ideas of Denker and Tabacu (2014), and define

a sequence of independent random vectors Zk (which have a closed form for each

design) for which we need to assume the following.

Assumption 1. Each Zk, 1 ≤ k ≤ n, has a finite covariance matrix Σk such that

Σ1 + . . .Σn

n
→ Σ, as n→∞. (33)

3.2.1 TWO-FACTOR FIXED EFFECT MODEL

The two-factor fixed effect model consists of factors A (levels i = 1, . . . , a) and B

(levels j = 1, . . . , b) with the levels chosen or fixed by the researcher. The independent

observations Xijk represent a unique individual that is exposed to exactly one (i, j)

combination of treatments. The n randomly selected individuals in each (i, j) cell

are identically distributed such that Xijk v Fij.

The hypothesis of no main effect of factor A is stated in terms of distribution

functions

HF
0 (A) : F̄1. = · · · = F̄a·, (34)

where F̄i· = b−1
∑b

j=1 Fij. The alternative hypotheses of an increasing trend across

the levels of factor A is given by

HF
1 (A) : F̄1· ≥ · · · ≥ F̄a·, (35)

with at least one strict inequality. Likewise, the hypothesis for an umbrella shaped
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pattern with a peak at level l of factor A may be expressed by

HF
1 (A) : F̄1· ≥ · · · ≥ F̄l· ≤ · · · ≤ F̄a·, for 1 < l < a, (36)

with at least one strict inequality on both sides of F̄l·. Let Pa = Ia − 1
a
1a1

′
a denote

the projection matrix, where Ia is the identity matrix of dimension a and 1a is the

vector of ones with length a. The average weight is defined as w̄ = a−1
∑a

i=1wi. By

using the contrast matrix CA = Pa ⊗ 1
b
1
′

b in (29), we can express the test statistic as

P
(fix)
N (A) =

1√
N

a∑
i=1

(wi − w̄) R̄i··, (37)

where the (fix) denotes the fixed effects model, and A identifies the factor tested.

The asymptotic variance in (30) is consistently estimated (see Akritas and Brunner,

1996) by

σ̂2
N(fix)(A) =

1

Nb2n(n− 1)

a∑
i=1

b∑
j=1

n∑
k=1

[
(wi − w̄)

(
Rijk − R̄ij·

) ]2
. (38)

For small sample sizes, the distribution of P
(fix)
N (A)/σ̂N(fix)(A) proposed by Akritas

and Brunner (1996) is approximated by a central tν(fix)-distribution where the degrees

of freedom ν(fix) are derived from the Satterthwaite-Smith approximation in the form

ν(fix) =
(n− 1)

[∑a
i=1 (wi − w̄)2

∑b
j=1

∑n
k=1

(
Rijk − R̄ij·

)2]2
∑a

i=1 (wi − w̄)4
∑b

j=1

[∑n
k=1

(
Rijk − R̄ij·

)2]2 .

Our goal is to compute the empirical logarithmic quantiles of P
(fix)
N (A) using following

almost sure central limit theorem. In this case there is no need for the calculation of

the variance estimate σ̂2
N(fix)(A) in (38), or the Satterthwaite-Smith approximation

of degrees of freedom, ν(fix).

Proposition 1. For the two-way fixed effects model under Assumption 1 the statistic

P
(fix)
N (A) satisfies the almost sure central limit theorem

lim
N→∞

1

CN

N∑
k=1

1

k
I
(
P

(fix)
k (A) ≤ t

)
= G(t) (39)
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almost surely ∀t ∈ R, where G isN (0, σ2) with σ2 defined in (30), and CN =
∑N

m=1
1
m

with N = abn.

Note that there are N = abn summations corresponding to the number of indepen-

dent random vectors of length one. A sketch of the proof is provided in the appendix.

The simulation results are provided in Section 3.3.2.

3.2.2 PARTIAL HIERARCHICAL MODEL

Akritas and Brunner (1996, 1997) describe the partial hierarchical model as a

three-way model with two fixed factors and a random factor. The fixed factors A

with levels i = 1, . . . , a (repeated measures) and B with levels j = 1, . . . , b (treatment

group/level) are crossed. The individual subjects form the different levels of the

random factor and are nested within factor B. An example occurs when subjects are

randomly divided into several treatment groups and repeated measurements are taken

at several subsequent times. The subjects nested in each group form independent

random vectors. These independent random vectors are given as

Xjk = (X1jk, . . . , Xajk)
′,

where 1 ≤ j ≤ b are the treatment levels of factor B, and 1 ≤ k ≤ n are the

subjects in the jth treatment level. There are bn subjects and hence bn independent

random vectors in the study, and the total number of observations is N = abn. Each

observation Xijk is distributed as Fij(x), 1 ≤ i ≤ a, 1 ≤ j ≤ b. Unlike the two-factor

fixed effects model in Section 3.2.1, the repeated measurements within each subject

may have some level of dependency. We will test for patterned alternatives in factor

A and in the interaction between factors A and B. We now provide the details and

the main results of this section.

Main effect for factor A

We test the null hypothesis in (34) against the patterned alternatives given in

(35) and (36). Using the contrast matrix CA defined in Section 3.2.1, the expression

for PN in (29) for this model may be stated in terms of the independent random
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vectors

P
(ph)
bn (A) =

1

b
√
a

1√
bn

a∑
i=1

b∑
j=1

(wi − w̄)R̄ij·, (40)

where (ph) identifies the partial hierarchical model, A indicates the factor tested,

and the consistent estimate of the asymptotic variance given in (30) is

σ̂2
N(ph)(A) =

1

Nb2n(n− 1)

a∑
i=1

(wi − w̄)2
n∑
k=1

[
b∑

j=1

(Rijk − R̄ij·)

]2
. (41)

The Satterthwaite-Smith estimated degrees of freedom for small sample sizes in the

central tν(ph)-distribution approximation of P
(ph)
bn (A)/σ̂N(ph)(A) is

ν(ph) =

(n− 1)

[∑a
i=1

∑n
k=1

[∑b
j=1(wi − w̄)(Rijk − R̄ij·)

]2]2
∑a

i=1

[∑n
k=1

[∑b
j=1(wi − w̄)(Rijk − R̄ij·)

]2]2 . (42)

The almost sure central limit theorem for testing the main effect across the re-

peated measures is provided in the following Proposition.

Proposition 2. For the partial hierarchical model under Assumption 1 the statistic

P
(ph)
bn (A) satisfies the almost sure central limit theorem

lim
n→∞

1

Cbn

bn∑
k=1

1

k
I
(
P

(ph)
k (A) ≤ t

)
= G(t) (43)

almost surely ∀t ∈ R, where G is N (0, σ2) with σ2 defined in (30), and Cbn =∑bn
m=1

1
m

.

It is important to note that the number of summations has been reduced to bn

due to the dependence structure of the model. The sketch of the proof provided in

the Appendix is similar to that of Proposition 1. Results of simulation studies are

provided in Section 3.3.3.
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Interaction effect

Often, researchers encounter differences in the behavior of subjects across re-

peated measurements depending upon the level of treatment (factor B) to which

they are exposed. We consider a commonly occurring case where factor B has two

levels such as treatment group (j = 1) and control group (j = 2), although the

analysis is valid for any number of levels of factor B. The difference in the profiles of

the treatment groups across repeated measurements (e.g. time) may be tested under

the hypothesis of no interaction between factors A and B:

HF
0 (AB) : Fi1 − Fi2 = F̄·1 − F̄·2, i = 1, . . . , a. (44)

The alternative hypotheses for increasing trend and umbrella patterns, respectively,

are

HF
1 (AB) : F11 − F12 ≥ · · · ≥ Fa1 − Fa2, (45)

with at least one strict inequality, and

HF
1 (AB) : F11 − F12 ≥ · · · ≥ Fl1 − Fl2 ≤ . . . ,≤ Fa1 − Fa2 (46)

where 1 < l < a and F11 − F12 > Fl1 − Fl2 < Fa1 − Fa2. Define the contrast matrix

CAB = Pa ⊗ (1,−1). The test statistic (29) has the form

P
(ph)
bn (AB) =

1√
a

1√
bn

a∑
i=1

(wi − w̄)
(
R̄i1· − R̄i2·

)
, (47)

where AB indicates the test for an interaction between factors A and B. The asymp-

totic variance in (30) is consistently estimated by

σ̂2
N(ph)(AB) =

1

Nn(n− 1)

a∑
i=1

n∑
k=1

[
2∑
j=1

(wi − w̄)(Rijk − R̄ij·)

]2
. (48)

The degrees of freedom for the small sample approximation used by Akritas and

Brunner (1996) are given in (42) with b = 2. We provide the main result for testing

the interaction effect between time and group factors.
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Proposition 3. For the partial hierarchical model under Assumption 1 the test

statistic P
(ph)
bn (AB) satisfies the almost sure central limit theorem

lim
n→∞

1

Cbn

bn∑
k=1

1

k
I
(
P

(ph)
k (AB) ≤ t

)
= G(t) (49)

almost surely ∀t ∈ R, where G is N (0, σ2) with σ2 defined in (30), and Cbn =∑bn
m=1

1
m

.

The proof is similar to the proof of Proposition 2 and a sketch is provided in the

Appendix. Simulation results are provided in Section 3.3.3.

3.2.3 CROSS-CLASSIFICATION REPEATED MEASURES MODEL

The selected cross-classification repeated measures model has n randomly selected

subjects (levels of the random effect) and the repeated measurements are on two

fixed factors A and B with factor A (levels i = 1, . . . , a) nested within factor B

(levels j = 1, . . . , b). Each subject is measured at every (i, j) combination. The

independent random vectors correspond to each subject and are given as

Xk = (X11k, . . . , X1bk, . . . , Xa1k, . . . , Xabk)
′
, k = 1, . . . , n.

The observations have distributions Xijk v Fij. We test the null hypothesis in (34)

against the alternative hypotheses for increasing trend and umbrella patterns in (35)

and (36), respectively. Let the contrast matrix CA be as specified in Section 3.2.1.

The resulting form of the statistic PN given in (29) is

P (cc)
n (A) =

1√
abn

a∑
i=1

(wi − w̄)Ri··, (50)

where the (cc) identifies the cross-classification repeated measures model, A indicates

the factor tested. The asymptotic variance given in (30) is consistently estimated by

σ̂2
N(cc)(A) =

a

b

1

N2(n− 1)

n∑
k=1

[
a∑
i=1

b∑
j=1

(wi − w̄)(Rijk − R̄ij·)

]2
. (51)
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The small sample approximation of P
(cc)
n (A)/σ̂N(cc)(A) in Akritas and Brunner (1996)

is a central tn−1 distribution. The following Proposition allows for the almost sure

quantile estimation using the algorithm in Section 3.3.1.

Proposition 4. For the cross-classification repeated measures model under Assump-

tion 1 the test statistic P
(cc)
n (A) satisfies the almost sure central limit theorem

lim
n→∞

1

Cn

n∑
k=1

1

k
I
(
P

(cc)
k (A) ≤ t

)
= G(t) (52)

almost surely ∀t ∈ R, where G isN (0, σ2) with σ2 defined in (30), and Cn =
∑n

m=1
1
m

.

It is of interest to note that the number of summations match the n independent

random vectors in the model. The proof is similar to the proof of Proposition 2 and

is omitted. Results of simulations studies and the analysis of a dataset are provided

in Section 3.3.4.

3.3 ANALYSES

In this section we provide the algorithm for computing logarithmic quantiles and

the results of simulation studies for power and type I error along with the analysis of a

dataset under the cross-classification repeated measures model. Extensive simulation

studies for type I error and power were performed for each of the three models. We

have provided some of the results in Sections 3.3.2 through 3.3.4.

3.3.1 ALGORITHM

A form of the following algorithm was first proposed by Thangavelu (2005) for

testing the nonparametric Behrens-Fisher problem. Denker and Tabacu (2014 and

2015) used the same type of algorithm to test nonparametric hypotheses for quadratic

rank statistics. We provide the algorithm here for convenience.

1. For a sample of N independent random vectors, permute the order of selection

of the vectors “nper” times.
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2. Calculate the logarithmic α-quantile estimate for the ith permutation using

t̂i,(N)
α = max

{
t

∣∣∣∣∣C−1N
N∑
k=1

k−1I (Pk < t) ≤ α

}
, (53)

where Pk is the appropriate linear rank test statistic for patterned alternatives

of the form given in the corresponding Proposition, and CN =
∑N

k=1
1
k
. Re-

call from Section 2.2 that the summation may start from some small value k0

relative to n, which reduces the influence of the initial observations.

3. Calculate the estimated logarithmic α-quantile for each simulation as

t̄(N)
α =

t̂
i,(N)
α

nper
. (54)

4. Reject the null hypothesis when PN > t̄
(N)
α .

3.3.2 TWO-WAY FIXED EFFECT MODEL

Akritas and Brunner (1996) obtain type I error approximations that agree closely

to the nominal levels (α = 0.10, 0.05, and 0.01) when they use P
(fix)
N (A)/σ̂N(fix)(A)

to test (34) against the increasing trend alternative (35). They use random variables

from a discrete uniform U(1, 3) distribution with small sample sizes n = 6 in each

(i, j) cell, i = 1, . . . , a, j = 1, . . . , b, with b = 2 levels of factor B. They employ 5, 000

simulations. They test designs with a = 3 and a = 20 levels of factor A. We have

included their results in Table 3. Likewise, we use 5000 simulations. The results

are stable for 50 permutations. For sample sizes 6, 8, and 10, we use LQE with the

statistic P
(fix)
N (A) in (37) to test for the same increasing trend alternative under the

same designs and for Gamma(4, 1
2
), N(0, 1), Exp(1), and U(1, 3) random variables

in Table 2. The almost sure results for the exponential, normal, discrete uniform,

and the gamma distributions are slightly conservative at the 0.10 level for a = 3

and slightly liberal for a = 20. The results become increasingly conservative as the

significance level (α) decreases. The same analysis performed for a decreasing trend

pattern achieved similar results.



37

Table 2: Type I error for main effect: trend pattern (fixed effects
model)

a=3 a=20

Distribution n .10 .05 .01 .10 .05 .01

Exp(1)

6 .0702 .0162 .0006 .1138 .0290 .0000

8 .0806 .0226 .0000 .1062 .0296 .0000

10 .0724 .0210 .0000 .1064 .0296 .0002

N(0, 1)

6 .0672 .0134 .0000 .1130 .0256 .0000

8 .0756 .0226 .0006 .1070 .0258 .0000

10 .0716 .0214 .0000 .1052 .0294 .0002

U(1,3)

6 .0754 .0210 .0008 .1072 .0278 .0002

8 .0770 .0220 .0002 .1172 .0280 .0000

10 .0888 .0240 .0008 .1070 .0276 .0000

Gamma(4, 12 )

6 .0788 .0222 .0008 .1084 .0274 .0000

8 .0732 .0198 .0006 .1102 .0268 .0000

10 .0660 .0204 .0002 .1054 .0254 .0000

Results are from S=5,000 simulations with nper=20 permutations, and

b=2.

Table 3: Type I error for main effect in fixed effect
model (Akritas and Brunner, 1996)

Note: table converted from percentile to type I error

b = 2, nij ≡ n = 6

Level a=3 a=20

0.10 .094 .106

0.05 .047 .053

0.01 .010 .009

Note: table converted from percentile to type 1 error.

Simulation results for the small sample approximation

of the null distribution of P
(fix)
N (A)/σ̂N(fix)(A) for a

discrete rectangular distribution (5,000 simulations).

Table 4 contains the type I error simulation results when an umbrella pattern

is specified in factor A with the peak located at i = 2 and i = 11 for the models
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with a = 3 and a = 20, respectively. The results are similar to those in Table 2, but

slightly less conservative. Simulation results for a corresponding u-shaped alternative

are very similar to those in Table 4.

Table 4: Type I error for main effect: umbrella pattern (fixed
effects model)

a=3 a=20

Distribution n .10 .05 .01 .10 .05 .01

Exp(1)

6 .0804 .0214 .0006 .1050 .0232 .0000

8 .0820 .0246 .0004 .1098 .0280 .0000

10 .0864 .0238 .0002 .1086 .0302 .0000

N(0, 1)

6 .0780 .0202 .0006 .1124 .0258 .0002

8 .0800 .0230 .0002 .1032 .0278 .0000

10 .0844 .0234 .0002 .0964 .0282 .0000

U(1,3)

6 .0866 .0210 .0008 .1104 .0302 .0002

8 .0926 .0292 .0000 .1164 .0270 .0000

10 .0916 .0278 .0008 .1166 .0340 .0004

Gamma(4, 12 )

6 .0866 .0230 .0006 .1086 .0302 .0000

8 .0774 .0206 .0004 .0964 .0282 .0000

10 .0894 .0302 .0006 .1084 .0300 .0002

Results are from S=5,000 simulations with nper=20 permutations, and

b=2.

The simulated power for increasing trend and umbrella patterns are provided in

Tables 5 and 6, respectively. We use a shift parameter δi to denote the amount of shift

in the mean of the selected distribution at level i of factor A from the distribution

at level 1 (δ1 = 0). The amount of change between consecutive levels i and i+ 1

are equal (i.e. |δi+1 − δi| = |δi+2 − δi+1| for 1 ≤ i ≤ a) in all models. For the trend

alternative with a = 3 levels of factor A, the total shift from the first to last levels

is two: δ1 = 0, δ2 = 1, and δ3 = 2. The power is close to one at the 10% and 5%

levels for all three sample sizes. For the 1% level, the power does not consistently

exceed 80% unless n ≥ 10. For a = 20, the total shift from first to last levels is one:

δ1 = 0, δ2 = 1
19

, . . ., and δ20 = 1 for Table 5. The results are very similar to those

with a = 3.
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Table 5: Power for main effect: trend pattern (fixed effects model)

a=3 (δ3 = 2) a=20 (δ20 = 1)

Distribution n .10 .05 .01 .10 .05 .01

Exp(1)+δi
6 .9988 .9810 .6732 1.0000 .9996 .7702

8 1.0000 .9980 .7424 1.0000 1.0000 .9438

10 1.0000 .9998 .9166 1.0000 1.0000 .9918

N(δi, 1)
6 .9964 .9782 .6266 .9980 .9798 .3166

8 1.0000 .9984 .7136 1.0000 .9966 .5976

10 1.0000 .9996 .9158 1.0000 .9996 .8150

U(1, 3)+δi
6 1.0000 .9998 .9164 .9996 .9938 .4708

8 1.0000 1.0000 .9670 1.0000 .9998 .7578

10 1.0000 1.0000 .9986 1.0000 1.0000 .9258

Gamma(4, 12 )+δi

6 .9980 .9822 .6496 .9998 .9912 .4410

8 1.0000 .9960 .7174 .9998 .9988 .7226

10 1.0000 .9998 .9148 1.0000 1.0000 .9014

Results are from S=5,000 simulations with nper=20 permutations, and b=2.

Note δ1 = 0.

For an umbrella alternative, the maximum shift from the first level of factor A to

the peak l is one for a = 3 and a = 20. For an odd number of levels, such as a = 3,

with a peak located at the median level, δ1 = δa = 0. For a = 20 and l = 11, δ11 = 1

and δ20 = 0.1. In general, the power is lower for the umbrella alternative when

compared with the trend alternative. For the 10% level, the power is consistently

above 80%. For a = 3 and n ≤ 8, the power exceeds 80% for the 5% level; however,

at the 1% level, sample sizes of at least 20 are required to assure power is greater

than 80%. As the number of levels of factor A increases, the power typically increases

with the same or smaller overall shift in location across those levels. For a = 20, a

sample size of 10 consistently results in power of more than 80%.
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Table 6: Power for main effect: umbrella pattern (fixed effects model)

a=3, l = 2 a=20, l = 11

Distribution δl n .10 .05 .01 .10 .05 .01

Exp(1)+δi 1

6 .9782 .9110 .4350 1.0000 .9990 .7244

8 .9956 .9736 .5408 1.0000 1.0000 .9266

10 .9992 .9966 .7842 1.0000 1.0000 .9876

N(δi, 1) 1

6 .8566 .6662 .1806 .9966 .9646 .2788

8 .9350 .8180 .2094 .9996 .9962 .5304

10 .9704 .9016 .3790 1.0000 .9992 .7572

U(1, 3)+δi 1

6 .9492 .8324 .3058 .9998 .9940 .4750

8 .9832 .9244 .3690 .9998 .9986 .6634

10 .9942 .9716 .5978 1.0000 1.0000 .8656

Gamma(4, 12 )+δi 1

6 .9268 .7762 .2526 .9992 .9886 .3876

8 .9756 .9022 .3066 1.0000 1.0000 .6766

10 .9914 .9608 .5478 1.0000 1.0000 .8644

Results are from S=5,000 simulations with nper=20 permutations, and b=2. Peak

location is denoted as l. δ1 = 0.

In Montgomery (2013), pages 227-228, a study from a manufacturer of men’s

shirts is provided in which the product quality of fabric in the manufacturer’s dyeing

process is measured and compared to a standard for fabric dyed at three cycle times

(Factor A) and two operating temperatures (Factor B). Let the levels of factor A

(i = 1, 2, 3) correspond to cycle times 40, 50, and 60, respectively. Let the levels of

factor B (j = 1, 2) denote operating temperatures 300oC and 350oC, respectively. The

data is presented in Table 7. Figure 9 illustrates the potential for an umbrella pattern

across the cycle times. Table 8 provides the logarithmic quantile estimates using the

vector of weights w = (1, 2, 1)′. We obtain a test statistic of P
(fix)
N (A) = 1.5839

corresponding to a p-value=0.005. There exists evidence to support the claim of an

umbrella pattern across the levels of cycle time with peak corresponding to a cycle

time of 50.
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Table 7: Fabric quality score data (Mont-
gomery, 2013, page 228)

Temperature

Cycle Time 300oC 350oC

40

23 27 31 24 38 34

24 28 32 23 36 36

25 26 29 28 35 39

50

36 34 33 37 34 34

35 38 34 39 38 36

36 39 35 35 36 31

60

28 35 26 26 36 28

24 35 27 29 37 26

27 34 25 25 34 24

Figure 9: Main effect for fabric quality study
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Table 8: Logarithmic quantiles for fabric study cycle times

LQE Quantiles

n N a b nper P
(ph)
bn (AB) 10% 5% 1%

9 54 3 2 20 1.5839 1.2900 1.4150 1.5325

The test statistic value corresponds to a p-value=0.005.

3.3.3 PARTIAL HIERARCHICAL DESIGN

The partial hierarchical model given in Section (3.2.2) allows for dependence

within each subject across the repeated measures of factor A. It is customary to use

an AR(1) covariance structure to model repeated measures which accounts for the

diminishing association as the distance or time between measurements increases. In

order to create the AR(1) dependence structure we simulated a multivariate normal

distribution with the specified covariance matrix (see Rizzo, 2008 for more details)

for each level of factor B. For the exponential and gamma distributions, we used

the Gaussian copula to transform the observations from multivariate normal to the

multivariate exponential distribution with the same dependence structure using the

ideas of Cario and Nelson (1997). The differences in means for the multivariate

gamma and exponential distributions were accomplished by adding a shift parameter.

Main effect

Tables 9-12 present the type I error and power results for both increasing trend

and umbrella pattern alternatives in factor A under an AR(1) covariance matrix

with correlation coefficient values ρ = (0.3, 0.6, 0.9), which represent weak to strong

associations within each subject. The type I error results for the test statistic P
(ph)
bn (A)

given in (40) are provided for the trend and umbrella alternatives in Tables 9 and

10, respectively. The simulated type I error is quite conservative for all significance

levels. The trend and umbrella patterns result in similar type I error levels. However,

the type I error decreases significantly as ρ increases from 0.6 to 0.9. Additionally, as

the number of repeated measures increase from a = 3 to a = 10, the error increases
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slightly, where the increase is more notable when ρ = 0.9. Similar results were

obtained when a constant shift exists between the two groups (levels of factor B).

Simulations with n = 10 subjects per group resulted in very similar values for type I

error. The simulated power (Tables 11 and 12) is presented for the trend and umbrella

alternatives where the total change in the shift parameter is of magnitude two across

the levels of the repeated measurements of factor A. The power at the 10% and 5%

levels are above 0.9. Among the many simulations performed, it was observed that if

a shift is introduced between the levels of factor B, the power decreases significantly.

As expected, an increase in amount of shift δi across the repeated measures results in

a higher power. An increase in sample size to n = 10 results in only a slight increase

in power.

Table 9: Type I error for main effect: trend pattern (partial
hierarchical model)

a=3 a=10

ρ Distribution .10 .05 .01 .10 .05 .01

0.3

Exp(1) .0341 .0105 .0001 .0347 .0082 .0000

N(0, 1) .0357 .0090 .0000 .0317 .0079 .0001

Gamma(4, 12 ) .0340 .0109 .0004 .0318 .0076 .0000

0.6

Exp(1) .0225 .0046 .0001 .0266 .0060 .0000

N(0, 1) .0244 .0054 .0003 .0312 .0075 .0000

Gamma(4, 12 ) .0203 .0040 .0001 .0327 .0088 .0000

0.9
Exp(1) .0030 .0004 .0000 .0132 .0021 .0000

N(0, 1) .0024 .0002 .0000 .0105 .0021 .0000

Gamma(4, 12 ) .0036 .0005 .0000 .0106 .0015 .0000

Results are from 10,000 simulations with 20 permutations, b=2, and

n = 6 with AR(1) covariance structure between levels of factor A.
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Table 10: Type I error for main effect: umbrella pattern (partial
hierarchical model)

a=3 a=10

ρ Distribution .10 .05 .01 .10 .05 .01

0.3

Exp(1) .0343 .0100 .0007 .0292 .0074 .0000

N(0, 1) .0352 .0102 .0006 .0339 .0079 .0000

Gamma(4, 12 ) .0369 .0113 .0012 .0342 .0074 .0074

0.6

Exp(1) .0232 .0055 .0007 .0250 .0049 .0000

N(0, 1) .0214 .0054 .0002 .0248 .0061 .0000

Gamma(4, 12 ) .0213 .0045 .0007 .0268 .0064 .0000

0.9
Exp(1) .0050 .0006 .0006 .0082 .0015 .0000

N(0, 1) .0050 .0007 .0001 .0089 .0012 .0000

Gamma(4, 12 ) .0057 .0012 .0001 .0085 .0007 .0000

Results are from 10,000 simulations with 20 permutations, b=2, and n =

6 with AR(1) covariance structure between levels of factor A.

Table 11: Power for main effect: trend pattern (partial hierarchical
model)

a=3, δ3 = 2 a=10, δ10 = 2

ρ Distribution .10 .05 .01 .10 .05 .01

0.3
Exp(1)+δi .9935 .9639 .5077 .9997 .9944 .2550

N(δi, 1) .9931 .9628 .5073 .9976 .9776 .1520

Gamma(4, 12 )+δi .9925 .9615 .5167 .9990 .9868 .1916

0.6

Exp(1)+δi .9956 .9649 .4897 .9971 .9662 .1526

N(δi, 1) .9978 .9798 .5271 .9860 .9169 .0851

Gamma(4, 12 )+δi .9968 .9743 .5192 .9923 .9362 .1120

0.9

Exp(1)+δi .9979 .9746 .4610 .9866 .9046 .1026

N(δi, 1) .9999 .9933 .5449 .9874 .9005 .0424

Gamma(4, 12 )+δi .9995 .9863 .5219 .9879 .9007 .0665

Results are from 10,000 simulations with 20 permutations, b=2 treatment

groups, and n = 6 with AR(1) covariance structure between levels of factor

A. Note: δ1 = 0.
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Table 12: Power for main effect: umbrella pattern (partial hierar-
chical model)

a=3, l = 2 a=10, l = 5

ρ Distribution .10 .05 .01 .10 .05 .01

0.3

Exp(1)+δi .9825 .9248 .5122 .9780 .8850 .0787

N(δi, 1) .8739 .7006 .2433 .8528 .6318 .0208

Gamma(4, 12 )+δi .9462 .8324 .3698 .9105 .7167 .0315

0.6

Exp(1)+δi 1.0000 .9995 .8847 1.0000 .9987 .3986

N(δi, 1) 1.0000 .9999 .9079 .9999 .9941 .3150

Gamma(4, 12 )+δi .9869 .9248 .4848 .8802 .6700 .0242

0.9
Exp(1)+δi 1.0000 .9989 .7978 1.0000 .9913 .2552

N(δi, 1) 1.0000 .9999 .8785 .9999 .9950 .2259

Gamma(4, 12 )+δi .9913 .9272 .4346 .9370 .7247 .0189

Results are from 10,000 simulations with 20 permutations, b=2, and n = 6

with AR(1) covariance structure between levels of factor A. Peak location is

denoted by l. For both a = 3 and a = 10, δ1 = 0 and δl = 2. For a = 10,

δ10 = −0.5.

We now provide analysis of an example, which we will also analyze for interaction

in the following section. When the CD4 cell count in a persons blood stream drops

below 200, the person is diagnosed with autoimmune deficiency syndrome (AIDS).

Table 13 contains data for 22 males subjects with AIDS selected from a study pub-

lished in Abrams et al. (1994). The subjects within each drug treatment group are

indexed by k = 1, . . . , 11. The values in Table 13 are the square root of the CD4

cell counts. The subjects included in the study were either non-responsive or in-

tolerant to the drug AZT. The subjects were randomly assigned to one of two drug

treatment groups: ddC or ddl (factor B). The CD4 cell counts measurements were re-

peated at four times (factor A) for each subject: start of study and every six months

for a total of 18 months. A successful treatment would result in a stable level of

CD4 counts or even an increase in CD4 counts in the best case. After reviewing

the relative treatment effects for each level of factor A (see Figure 10), we analyzed

the data with the LQE approach for a decreasing trend across time using a vector

of weights w = (4, 3, 2, 1)′. The results of the analysis are contained in Table 14.

The values of the test statistic for a partial hierarchical repeated measures model is
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P
(ph)
bn (A) = 2.8516 and corresponds to a p-value of 0.062.

Table 13: Square root of CD4 cell counts for 22 male subjects with
AIDS (see Abrams et al., 1994)

Drug ddC ddl

Observation Time (months) Observation Time (months)

k 0 6 12 18 0 6 12 18

1 4.123 2.236 1.414 1.732 6.325 8.124 4.583 5.000

2 2.000 1.414 4.583 4.359 17.176 20.273 17.059 13.601

3 8.062 6.782 2.236 6.083 12.530 7.141 6.856 6.325

4 14.036 11.619 10.488 5.568 9.434 6.557 3.000 2.449

5 6.481 5.477 3.317 3.873 5.657 6.782 5.477 5.831

6 10.954 10.954 11.402 8.944 7.348 4.796 3.742 4.359

7 16.763 12.649 8.426 7.874 4.000 3.162 1.414 2.000

8 3.464 5.831 3.742 3.742 2.828 4.123 3.464 2.828

9 17.321 17.029 16.432 18.439 16.523 8.062 6.164 4.583

10 1.732 2.828 2.449 1.732 7.211 9.165 7.937 4.472

11 3.606 2.449 2.646 2.646 11.747 12.410 10.954 11.225

Analysis was performed on original data using six decimal places.

Table 14: Logarithmic quantiles for main effect in AIDS
study (Abrams et al., 1994)

Level

n N a b nper P
(ph)
bn (A) 10% 5% 1%

11 88 4 2 20 2.8516 2.7075 2.9175 3.1075

The test statistic value corresponds to a p-value of 0.062.
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Figure 10: Main effect: AIDS study

Interaction effect

In this section, we explore the simulated significance level and power for the

interaction test statistic P
(ph)
bn (AB) provided in (47) when a pattern in the main effect

factor A (repeated measurements) exists. Tables 15 and 16 provide the simulated

type I errors when the distributions are the same across the levels of factor B (i.e.

group) but experience a trend or umbrella pattern across the levels of factor A. To be

more precise, the same pattern exists for both levels of factor B: identical profiles for

relative treatment effects. The covariance structure within each treatment group is

AR(1), where the value of rho is provided in the table. We denote the shift parameter

for the ith time point in the jth group as δij, 1 ≤ j ≤ 2, where δ1j = 0. The simulated

type I error levels are quite conservative. The type I error increases as ρ increases

for a = 3 levels of factor A under both the trend and umbrella alternatives. As the

number of levels of factor A increases to a = 10, the simulated type I error levels

for ρ = 0.9 becomes less conservative. Results for n = 10 subjects in each group are

very similar to those provided. In additional simulations, we observed that the type
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I error decreases when a constant difference in means between the levels of factor B

is introduced while maintaining parallel profiles.

Table 15: Type I error for interaction effect: trend pattern (partial hierarchical
model)

a=3 a=10

ρ Distribution δ3j .10 .05 .01 δ10,j .10 .05 .01

0.3

Exp(1)+δij

2

.0288 .0073 .0000

2

.0327 .0081 .0000

N(δij , 1) .0293 .0083 .0001 .0314 .0058 .0000

Gamma(4, 12 )+δij .0288 .0073 .0000 .0292 .0068 .0000

0.6

Exp(1)+δij

2

.0385 .0101 .0004

2

.0301 .0078 .0000

N(δij , 1) .0372 .0099 .0005 .0301 .0060 .0000

Gamma(4, 12 )+δij .0173 .0041 .0001 .0287 .0076 .0001

0.9

Exp(1)+δij

2

.0680 .0229 .0014

2

.0349 .0089 .0000

N(δij , 1) .0623 .0202 .0017 .0301 .0073 .0000

Gamma(4, 12 )+δij .0014 .0002 .0000 .0121 .0020 .0000

Results are from 10,000 simulations, 20 permutations, b=2 groups, and n = 6.

Table 16: Type I error for interaction effect: umbrella pattern
(partial hierarchical model)

a=3, l = 2 a=10, l = 5

ρ Distribution .10 .05 .01 .10 .05 .01

0.3

Exp(1)+δij .0271 .0066 .0005 .0308 .0062 .0000

N(δij , 1) .0278 .0080 .0001 .0304 .0075 .0000

Gamma(4, 12 )+δij .0268 .0071 .0001 .0329 .0069 .0000

0.6

Exp(1)+δij .0495 .0160 .0023 .0296 .0069 .0000

N(δij , 1) .0541 .0207 .0031 .0308 .0069 .0001

Gamma(4, 12 )+δij .0161 .0040 .0001 .0259 .0052 .0000

0.9

Exp(1)+δij .0861 .0385 .0095 .0454 .0102 .0000

N(δij , 1) .0725 .0303 .0099 .0485 .0128 .0001

Gamma(4, 12 )+δij .0025 .0002 .0000 .0098 .0013 .0000

Results are from 10,000 simulations, 20 permutations, b=2 groups, and

n = 6. l is the peak location. Note: δ1j = 0 and δlj = 2. For a = 3,

δ3j = 0. For a = 10, δ10,j = −0.5.
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There are many examples of studies where individuals from the same population

are randomly assigned to two treatment groups (e.g. placebo and treatment), and

it is therefore reasonable to assume that the distributions of the two groups are

identical initially at time point i = 1 of factor A. If the treatment is effective we may

expect an increasing trend, whereas the subjects in the placebo group are expected

to experience a decline in condition. Similarly, the treatment group may experience

an umbrella pattern while the placebo group experiences a slightly decreasing trend.

As a result of the above reasoning, Tables 17 and 18 contain the simulated power

levels when the distributions at the first level of factor A are identical. The second

group (placebo, i.e. baseline) follows a slightly decreasing trend while the first group

(e.g. treatment) follows the specified pattern (trend and umbrella, respectively).

The overall main effect has the specified pattern, albeit slightly different from the

treatment group due to the averaging across the groups for each level of factor A. The

covariance structure between the levels of factor A within each group is AR(1). The

shift parameter for the ith time point in the jth group is denoted as δij, 1 ≤ j ≤ 2. The

results indicate that the power is above 0.8 for α = 0.10 under a trend alternative.

For α = 0.05, the power is marginal under the trend model with a = 3 levels in factor

A. The corresponding power under an umbrella model is smaller and is marginal for

α = 0.05. As the number of levels in factor A increases, the power decreases when

the change in means across A is maintained. Results for n = 10 subjects per group

have only slightly higher power than that for n = 6. There is a higher level of power

for higher values of ρ. Additional simulations showed that the power is significantly

diminished when the placebo group has a constant mean across the levels of A (i.e.

no change in condition). A potential solution for the situation where an umbrella

pattern and interaction coexist is to rearrange the levels of factor A to form a trend

pattern and perform the analysis with a higher resulting power as suggested by

Akritas and Brunner (1996).
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Table 17: Power for interaction effect: trend pattern (partial hier-
archical model)

a=3 a=10

ρ Distribution .10 .05 .01 .10 .05 .01

0.3

Exp(1)+δij .9183 .7481 .1144 .9765 .8653 .0300

N(δi, 1) .8732 .6460 .0535 .9465 .7744 .0137

Gamma(4, 12 )+δij .8842 .6677 .0610 .9564 .7940 .0159

0.6

Exp(1)+δij .9371 .7737 .1285 .9226 .7256 .0149

N(δi, 1) .9023 .6720 .0535 .8593 .5961 .0051

Gamma(4, 12 )+δij .9141 .7012 .0655 .8774 .6222 .0076

0.9

Exp(1)+δij .9752 .8535 .1836 .8845 .6294 .0117

N(δi, 1) .9524 .7531 .0688 .8042 .4793 .0025

Gamma(4, 12 )+δij .9595 .7846 .1032 .8203 .5142 .0032

Results are from 10,000 simulations, 20 permutations, b=2 groups, and

n = 6. Note: δ1j = 0, δa1 = 2, and δa2 = −1.

Table 18: Power for interaction effect: umbrella pattern (partial
hierarchical model)

a=3, l = 2 a=10, l = 5

ρ Distribution .10 .05 .01 .10 .05 .01

0.3

Exp(1) + δij .7685 .5065 .0768 .7593 .4488 .0022

N(δij , 1) .7836 .5422 .0980 .7615 .4662 .0043

Gamma(4, 12 )+δij .7728 .5182 .0878 .7532 .4510 .0031

0.6

Exp(1) + δij .8739 .6500 .1221 .7070 .3866 .0019

N(δij , 1) .8885 .6870 .1596 .7156 .4208 .0032

Gamma(4, 12 )+δij .8853 .6675 .1408 .7048 .3985 .0027

0.9

Exp(1) + δij .9540 .8104 .2720 .7622 .4461 .0026

N(δij , 1) .9620 .8227 .2705 .8062 .5158 .0054

Gamma(4, 12 )+δij .9560 .8075 .2744 .7793 .4700 .0039

Results are from 10,000 simulations, 20 permutations, b=2 groups, and

n = 6. Peak locations are denoted as l. Note: δ1j = 0, δl1 = 2, and

δa2 = −1. For a = 3, δ31 = 0. For a = 10 δ10,1 = −0.5.
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We now revisit the AIDS data introduced in 3.3.3 (Table 13) and test for inter-

action between drug and time. The relative treatment effects for each drug plotted

across the observation times is provided in Figure 11. The general pattern is a

downward trend for both drugs; however, the profiles are not parallel suggesting the

potential presence of interaction. Table 19 contains the logarithmic quantile esti-

mates. The test statistic P
(ph)
bn (AB) = 1.8171 corresponds with a p-value < 0.001,

providing evidence to support the claim of the presence of interaction between drug

and time where a decreasing trend exists across observation time.

Figure 11: Interaction effect for AIDS study

Table 19: Logarithmic quantiles for interaction effect in
AIDS study (Abrams et al., 1994)

Level

n N a b nper P
(ph)
bn (AB) 10% 5% 1%

11 88 4 2 20 1.8171 1.500 1.5200 1.5350

The test statistic value corresponds to a p-value < 0.001.
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3.3.4 CROSS-CLASSIFICATION REPEATED MEASURES DESIGN

We begin with the analysis of an example of a cross-classified repeated measures

design. The study involved 14 volunteers. Saliva α-amylase levels of each volunteer

were measured on two fixed days at four fixed time points throughout the day. The

α-Amylase study data (Brunner, Domhof, and Langer, 2002) is provided in Table 20

below. Researchers from a previous study postulated that the α-amylase levels are

lower in the morning, increase until late afternoon, and then decrease. α-amylase

levels were also surmised to change over the course of the week. Quantile-quantile

plots of the data reveal severe departures from normality and support the choice of

nonparametric methods for analysis.

Table 20: α-amylase activity data (see Brunner, Domhof, and
Langer, 2002, p. 132)

Monday Thursday

Time of Day (hours) Time of Day (hours)

Subject 8 12 17 21 8 12 17 21

1 146.8 167.0 107.2 161.8 90.8 151.6 123.0 142.8

2 818.2 1314.2 1578.8 932.5 378.8 759.5 1881.2 572.6

3 394.4 1157.4 585.2 629.2 171.0 538.4 729.8 412.1

4 100.2 140.4 234.4 244.8 121.6 154.6 221.8 170.6

5 169.8 99.9 184.2 168.8 103.0 170.0 342.0 162.2

6 107.2 262.8 198.4 465.1 178.8 312.6 261.6 450.5

7 272.0 551.2 265.2 453.2 133.4 560.4 977.9 402.0

8 51.8 144.4 125.4 203.8 122.2 71.4 434.9 191.2

9 273.6 351.6 510.0 354.0 403.0 665.4 420.4 566.0

10 367.2 435.6 783.3 523.1 221.8 601.2 1028.5 713.4

11 519.2 264.6 321.4 1433.8 137.2 345.6 884.9 331.8

12 88.6 135.0 88.6 86.2 164.2 190.4 301.0 173.2

13 218.0 109.2 167.6 179.4 162.8 185.6 193.6 183.2

14 117.2 151.0 150.0 218.0 178.2 151.0 165.2 170.0

The values are in U/ml representing α-amylase units per milliliter. An α-

amylase unit is defined as the amount that will liberate 1.0 mg of maltose

from starch in 3 minutes at pH=6.9 at 20◦.

In our design we designate factor A as the time of day and factor B as the day

of the week. Let the levels of factor A be denoted as i = 1, 2, 3, 4 corresponding to
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8 a.m., 12 p.m., 5 p.m., and 9 p.m., respectively. The levels of factor B are Monday

(j = 1) and Thursday (j = 2). The vector of weights applied to the levels of factor A

are w = (1, 2, 4, 3)′ for both days matching the test in Akritas and Brunner (1996).

The plot of relative treatment effects by time of day is shown in Figure 12, and

suggests an umbrella pattern across the time of day. We tested the null hypothesis

in (34) against the umbrella alternative in (36). We obtained P
(cc)
n (A) = 3.996

for the test statistic in (50) and an estimated logarithmic α−quantile of 3.89 and

p−value < 0.022, which supports the umbrella patterned alternative. The p−value
obtained by Akritas and Brunner (1996) is 0.000044 and agrees with our results.

Figure 12: Main effect for α-amylase data

Results from 5000 simulations with 50 permutations are provided for type I er-

ror and power in the Tables 21-24 below. The data was simulated with an AR(1)

covariance structure within each level of factor B, where ρ denotes the correlation

coefficient. Since the measurements between levels of factor B belong to the same

subject, a constant correlation φ = 0.2, φ = 0.5, and φ = 0.8 was assigned between

the levels of factor B for ρ = 0.3, ρ = 0.6, and ρ = 0.9, respectively. The results for

n = 5 and n = 10 subjects are provided. In Tables 21 and 22, we observe that the
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type I error becomes more conservative as ρ increases. In general, there is very little

difference in type I error for the different levels of factor A and for both the trend

and umbrella alternatives. However, as the number of levels for factor A increases

from a = 3 to a = 5 for small sample sizes, the type I error decreases slightly. The

umbrella alternative results are slightly less conservative than the trend alternative

results.

Table 21: Type I error for main effect: trend pattern (cross-classification
repeated measures model)

a=3 a=4 a=5

ρ Distribution n .10 .05 .10 .05 .10 .05

0.3

Exp(1)
5 .0556 .0082 .0536 .0072 .0526 .0064

10 .0434 .0184 .0472 .0154 .0430 .0134

N(0, 1)
5 .0574 .0118 .0526 .0058 .0554 .0036

10 .0460 .0164 .0444 .0158 .0484 .0146

Gamma(4, 12 )
5 .0556 .0082 .0536 .0072 .0526 .0064

10 .0434 .0184 .0472 .0154 .0430 .0134

0.6

Exp(1)
5 .0308 .0034 .0324 .0026 .0318 .0016

10 .0220 .0056 .0242 .0060 .0230 .0048

N(0, 1)
5 .0282 .0030 .0330 .0034 .0312 .0010

10 .0226 .0074 .0246 .0064 .0240 .0090

Gamma(4, 12 )
5 .0308 .0034 .0344 .0026 .0318 .0016

10 .0220 .0056 .0242 .0060 .0230 .0048

0.9

Exp(1)
5 .0084 .0006 .0058 .0006 .0072 .0004

10 .0024 .0000 .0040 .0004 .0024 .0002

N(0, 1)
5 .0060 .0006 .0056 .0002 .0028 .0002

10 .0014 .0002 .0024 .0000 .0028 .0000

Gamma(4, 12 )
5 .0084 .0006 .0058 .0006 .0072 .0004

10 .0024 .0000 .0040 .0004 .0024 .0002

Results are from 5,000 simulations with 50 permutations, b=2 levels of factor B

having an AR(1) covariance structure between levels of factor A within each group

with correlation values 0.3, 0.6, and 0.9 (ρ), and with constant correlation values

between each group of φ = 0.2, φ = 0.5, and φ = 0.8, respectively.
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Table 22: Type I error for main effect: umbrella pattern (cross-
classification repeated measures model)

a=3 a=4 a=5

ρ Distribution n .10 .05 .10 .05 .10 .05

0.3

Exp(1)
5 .0630 .0160 .0550 .0084 .0598 .0076

10 .0478 .0196 .0424 .0134 .0420 .0148

N(0, 1)
5 .0658 .0172 .0566 .0074 .0658 .0088

10 .0474 .0180 .0470 .0162 .0472 .0152

Gamma(4, 12 )
5 .0630 .0160 .0550 .0084 .0598 .0076

10 .0478 .0196 .0424 .0134 .0420 .0148

0.6

Exp(1)
5 .0386 .0106 .0338 .0106 .0386 .0040

10 .0242 .0070 .0232 .0042 .0206 .0054

N(0, 1)
5 .0372 .0084 .0334 .0056 .0306 .0040

10 .0226 .0066 .0258 .0066 .0242 .0060

Gamma(4, 12 )
5 .0386 .0106 .0338 .0084 .0386 .0040

10 .0242 .0070 .0232 .0042 .0206 .0054

0.9

Exp(1)
5 .0144 .0048 .0082 .0010 .0100 .0014

10 .0030 .0010 .0026 .0006 .0018 .0000

N(0, 1)
5 .0130 .0048 .0086 .0006 .0076 .0006

10 .0024 .0006 .0038 .0008 .0034 .0008

Gamma(4, 12 )
5 .0144 .0048 .0082 .0010 .0100 .0014

10 .0030 .0010 .0026 .0006 .0018 .0000

Results are from 5,000 simulations with 50 permutations, b=2 levels of factor B

having an AR(1) covariance structure between levels of factor A within each group

with correlation values 0.3, 0.6, and 0.9 (ρ), and with constant correlation values

between each group of φ = 0.2, φ = 0.5, and φ = 0.8, respectively.

Table 23 contains the power under a trend alternative with a total shift of two

across the levels of factor A. For the 10% level, the power is well above 0.8 for n = 5.

A sample size of at least n = 8 is necessary to assure the power is above 80%. As the

number of levels of factor A increases the power generally decreases slightly. Table

24 contains the simulated power under an umbrella alternative with a shift of one

from the first level of factor A to the peak l. A sample size of n = 10 is necessary to

assure the power is above 0.8 for the 5% level.
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Table 23: Power for main effect: trend pattern (cross-classification re-
peated measures model)

a=3 a=4 a=5

ρ Distribution n .10 .05 .10 .05 .10 .05

0.3

Exp(1)+δi
5 .9806 .6894 .9782 .6264 .9844 .6132

10 1.0000 .9980 .9998 .9986 1.0000 .9996

N(δi, 1)
5 .9848 .7388 .9792 .6376 .9800 .5922

10 1.0000 .9996 1.0000 .9996 1.0000 .9994

G(4, 12 )+δi
5 .9826 .7176 .9784 .6492 .9838 .6070

10 1.0000 .9994 1.0000 .9998 1.0000 .9998

0.6

Exp(1)+δi
5 .9260 .6326 .9438 .5352 .9404 .4944

10 1.0000 .9970 .9994 .9950 1.0000 .9962

N(δi, 1)
5 .9774 .6706 .9634 .5420 .9558 .4710

10 1.0000 1.0000 1.0000 .9988 1.0000 .9978

G(4, 12 )+δi
5 .9692 .6568 .9586 .5558 .9438 .4994

10 1.0000 .9982 .9996 .9962 1.0000 .9968

0.9

Exp(1)+δi
5 .9144 .5788 .8760 .4700 .8638 .4100

10 1.0000 .9942 .9998 .9842 .9994 .9766

N(δi, 1)
5 .9450 .5356 .8878 .3734 .8656 .3280

10 1.0000 .9994 1.0000 .9972 1.0000 .9920

G(4, 12 )+δi
5 .9266 .5556 .8932 .4204 .8618 .3696

10 1.0000 .9978 .9996 .9914 .9998 .9946

Note: G(4,12 ) represents the Gamma(4, 12 ) distribution.

Results are from 5,000 simulations with 50 permutations, b=2 levels of factor B

having an AR(1) covariance structure between levels of factor A within each group

with correlation values 0.3, 0.6, and 0.9 (ρ), and with constant correlation values

between each group of φ = 0.2, φ = 0.5, and φ = 0.8, respectively. Note: δ1 = 0

and δa = 2.
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Table 24: Power for main effect: umbrella pattern (cross-classification re-
peated measures model)

a=3, l = 2 a=4, l = 2 a=5, l = 3

ρ Distribution n .10 .05 .10 .05 .10 .05

0.3

Exp(1)+δi
5 .9506 .6692 .9838 .6788 .9072 .3994

10 1.0000 .9956 1.0000 .9998 .9978 .9806

N(δi, 1)
5 .8384 .4824 .9858 .6882 .7482 .2372

10 .9904 .9620 1.0000 .9990 1.0000 .9976

G(4, 12 )+δi
5 1.0000 .9518 1.0000 .9796 .9976 .8000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.6

Exp(1)+δi
5 .9256 .5812 .9558 .5986 .8348 .3104

10 .9996 .9952 .9998 .9978 .9962 .9640

N(δi, 1)
5 .8312 .4652 .9706 .6206 .6998 .1996

10 .9982 .9850 1.0000 .9996 .9714 .8900

G(4, 12 )+δi
5 .9976 .9140 .9998 .9490 .9904 .7018

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.9

Exp(1)+δi
5 .8026 .4264 .8962 .4880 .6354 .2016

10 .9984 .9678 1.0000 .9902 .9804 .8536

N(δi, 1)
5 .6800 .2820 .9012 .4024 .4590 .1250

10 .9936 .9564 1.0000 .9976 .9512 .8004

G(4, 12 )+δi
5 .9860 .8060 .9980 .8824 .9262 .4784

10 1.0000 1.0000 1.0000 1.0000 1.0000 .9978

Note: G(4, 12 ) represents the Gamma(4, 12 ) distribution.

Results are from 5,000 simulations with 50 permutations, b=2 levels of factor B

having an AR(1) covariance structure between levels of factor A within each group

with correlation values 0.3, 0.6, and 0.9 (ρ), and with constant correlation values

between each group of φ = 0.2, φ = 0.5, and φ = 0.8, respectively. δa = 0 for a = 3, 5

and δa = −1 for a = 4. δ1 = 0 and δl = 1 for a = 3, 4, 5.

3.4 SUMMARY

In this chapter, the LQE approach has been considered for testing three different

complex fully nonparametric factorial designs for patterned alternatives. Unlike the

proposed methods of Akritas and Brunner (1996), the LQE approach presented does
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not require the calculation of the asymptotic variance estimate or the Satterthwaite

degrees of freedom for small samples. The type I error simulation results are generally

conservative to very conservative depending upon the design. The only exception

is for the two way fixed effects factorial model at the α = 0.10 significance level

for a = 20 levels of factor A, which has slightly liberal results. The simulated

power is acceptable for small sample sizes under reasonable alternatives in most

cases. The analysis of a clinical data set with n = 14 subjects supports an umbrella

alternative hypothesis and agrees with the findings of Akritas and Brunner (1996).

LQE for testing patterned alternatives is a viable approach for complex fixed effects

and repeated measures factorial designs.

3.5 PROOFS OF PROPOSITIONS

We sketch the proofs of Propositions 1 through 4 following the ideas from Denker

and Tabacu (2014, 2015). For convenience, we present here the formulas from Denker

and Tabacu (2014) that we use in our derivations. Denker and Tabacu (2014) showed

that a simple linear rank statistic based on n independent random vectors of possibly

unequal lengths satisfies the almost sure central limit theorem. In our case we use

n independent random vectors of equal length X1, . . . , Xn, having components Xu =

(Xu1, . . . , Xum) (u = 1, . . . , n) and N(n) = nm total number of observations. We

now define the simple linear rank statistic

Tn =
1

N(n)

n∑
u=1

m∑
v=1

λ(n)uv

Ruv(n)

N(n) + 1
−
∫ ∞
−∞

HdFn, (55)

which has the following term that appears in its Taylor decomposition

Bn =

∫ ∞
−∞

Hd(F̂n − Fn) +

∫ ∞
−∞

(Ĥn −H)dFn, and (56)

σ2
n = N2(n)V ar(Bn). (57)

Ruv(n) denotes the rank of observation Xuv v Fuv among all N(n) random vari-

ables, and λ
(n)
uv are known regression constants satisfying the constraint

max
1≤u≤n,1≤v≤m

|λ(n)uv | = 1.
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We define the distribution function weighted by the regression constants for the n

independent random vectors

Fn(x) =
1

mn

n∑
u=1

m∑
v=1

λ(n)uv Fuv(x), (58)

and its empirical form

F̂n(x) =
1

mn

n∑
u=1

m∑
v=1

λ(n)uv I(Xuv ≤ x). (59)

In the proofs equations (55) through (59) are specified for each model and used to

prove the almost sure central limit theorems.

Proof of Proposition 1:

In the two way fixed-effects model introduced in Section 3.2.1, XijkvFij are inde-

pendent random variables, and N =abn is the total number of subjects. We define

independent random vectors Xik =(Xi1k,. . . ,Xibk)
′, 1 ≤i ≤a, 1 ≤k ≤n. Let 1 ≤l ≤a

denote the lth level of factor A and define

λ
(n)
ij =

1, i = l, j = 1, . . . , b

0, otherwise.
(60)

Equations (58) and (59) become

F (l)
n (x) =

1

ab

b∑
j=1

Flj(x), and

F̂ (l)
n (x) =

1

abn

b∑
j=1

n∑
k=1

I(Xljk ≤ x),

which are the average distribution function across the levels of factor B (groups) for

a fixed time (i = l) of factor A, and its empirical analog, respectively. The linear

rank statistic is

T (l)
n =

1

abn(abn+ 1)

b∑
j=1

n∑
k=1

Rljk −
1

ab

b∑
j=1

∫ ∞
−∞

H(x)dFlj(x),
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where H(x) is defined in (23), and

B(l)
n =

1

N

n∑
k=1

b∑
j=1

H(Xljk)−
2

N

n∑
k=1

b∑
j=1

∫ ∞
−∞

H(x)dFlj(x)

+
1

N

n∑
k=1

a∑
s=1

b∑
j=1

∫ ∞
−∞

I(Xsjk ≤ x)d

(
1

ab

b∑
t=1

Flt(x)

)
.

We note that under HF
0 (A) in (34) the test statistic P

(fix)
N (A) in (37) can be expressed

as

P
(fix)
N (A) =

a(N + 1)√
N

a∑
i=1

(wi − w̄)T (i)
n . (61)

The almost sure weak convergence of the vector

T̃n =

(
a(N + 1)√

N
(wi − w̄)T (i)

n

)
1≤i≤a

(62)

can be obtained by showing the almost sure weak convergence of the vector

B̃n =

(
a(N + 1)√

N
(wi − w̄)B(i)

n

)
1≤i≤a

. (63)

As in Denker and Tabacu (2014), we can express B̃n as a sum of a dimensional

independent random vectors Zk, which are bounded with EZk = 0

B̃n =

√
a

b

(
abn+ 1

abn

)
1√
n

n∑
k=1

Zk, (64)

where Zk has components

Zki =

(wi − w̄)
b∑

j=1

[
H(Xijk)− 2

∫
HdFij +

1

ab

a∑
s=1

∫
I (Xsjk ≤ x) d

(
b∑
t=1

Fit

)]
.

By the multivariate central limit theorem (MVCLT) and under Assumption 1, the

vector

B̃n
d−→ N

(
0,
a

b
Σ
)
, as n→∞. (65)
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It can be verified using Theorem 3.1 of Lifshits (2001) that

lim
n→∞

1

log n

n∑
k=1

1

k
I

(
1√
k

k∑
l=1

Zl ≤ x

)
= GX(x), a.s., ∀x ∈ R, (66)

where GX is the distribution function of X v N (0,Σ). Lemma 2.2 of Fridline (2010)

implies

lim
n→∞

1

log n

n∑
k=1

1

k
I
(
B̃k ≤ x

)
= GX

(
x

√
a

b

)
, a.s., ∀x ∈ R. (67)

For the continuous function f : Ra −→ R, f(x1, . . . , xa) =
∑a

i=1 xi, and by Lifshits

(2001) and the techniques in Tabacu (2014) equation (67) is equivalent to

lim
n→∞

1

log n

n∑
k=1

1

k
I
(
f(T̃k) ≤ x

)
= Gf(X)

(
x

√
a

b

)
, a.s., ∀x ∈ R. (68)

Hence, the almost sure weak convergence of the test statistic (61) follows.

Proof of Proposition 2:

Recall that each of the bn subjects in the partial hierarchical model of Section 3.2.2

can be expressed as independent random vectors Xjk = (X1jk, . . . , Xajk)
′, 1 ≤ j ≤

2, 1 ≤ k ≤ n, where Xijk v Fij. For fixed l,v such that 1 ≤ l ≤ a, 1 ≤ v ≤ b let

λ
(n)
ij =

1, i = l, j = v

0, otherwise.
(69)

Then the linear rank statistic has the form

T (l,v)
n =

1

N

n∑
k=1

Rlvk

N + 1
− n

N

∫ ∞
−∞

H(x)dFlv(x), (70)

and

B(l,v)
n =

1

N

n∑
k=1

[
H(Xlvk)− 2

∫
HdFlv +

1

N

a∑
s=1

b∑
t=1

n∑
u=1

∫
I (Xstu ≤ x) dFlv

]
. (71)
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The test statistic in (40) can be written

P
(ph)
bn (A) =

√
a

b

(abn+ 1)√
n

a∑
i=1

b∑
j=1

(wi − w̄)T (i,j)
n . (72)

Consider the vectors

T̃n =

(√
a(N + 1)(wi − w̄)√

bn
T (i,j)
n

)
1≤i≤a,1≤j≤b

, (73)

and

B̃n =

√
a(abn+ 1)√

bn

(
wi − w̄)B(i,j)

n

)
1≤i≤a,1≤j≤b . (74)

B̃n can be expressed as a sum of a dimensional independent random vectors

B̃n =

√
a

b

(abn+ 1)

abn

1√
n

n∑
k=1

Zk, (75)

where components of the vector Zk are

Zki =

(
(wi − w̄)

[
H(Xijk) +

1

N

a∑
s=1

b∑
t=1

n∑
u=1

∫
I(Xstu ≤ x)dFij

])
1≤j≤b

, (76)

for 1 ≤ i ≤ a. By the multivariate central limit theorem (MVCLT) and under

Assumption 1, the vector

1√
n

n∑
k=1

Zk → N (0,Σ), as n→∞, (77)

and hence,

B̃n → N (0,
a

b
Σ), as n→∞. (78)

The proof follows as in Proposition 1 by taking the function f : Rab → R,

f(x1, . . . , xab) =
∑ab

i=1 xi.

Proof of Proposition 3: Partial Hierarchical Model (Interaction).

Due to the similarity of the proof to that of Proposition 2, we provide only those

formulas that differ from those in the preceding proof. The test statistic in (47) when
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expressed in terms of (70) using i and j = 1, 2 in place of l and v, respectively is

P
(ph)
nb (AB) =

√
ab(N + 1)√

n

a∑
i=1

(wi − w̄)
[
T (i,1)
n − T (i,2)

n

]
. (79)

Define the vectors

T̃ (AB)
n =

(
(−1)j−1

√
2a(N + 1)√
n

(wi − w̄)T (i,j)
n

)
1≤i≤a,1≤j≤2

, (80)

B̃(AB)
n =

(
(−1)j−1

√
2a(N + 1)√
n

(wi − w̄)B(i,j)
n

)
1≤i≤a,1≤j≤2

. (81)

We can express (81) as a sum of independent random vectors Z
(AB)
k

B̃n =
√
ab

(abn+ 1)

abn

1√
n

n∑
k=1

Z
(AB)
k . (82)

The vector elements of the vector Z
(AB)
k are

Z
(AB)
ki =

(wi − w̄)

(−1)j−1

[
H(Xijk) +

1

N

a∑
s=1

2∑
t=1

n∑
u=1

∫
I(Xstu ≤ x)dFij

]
, (83)

for 1 ≤ j ≤ 2. Following the ideas in the proof of Proposition 1 above, taking a

function f : Rab → R, the result follows.

Due to the similarity of the proof of Proposition 4 to that of Proposition 2, it has

been omitted.
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CHAPTER 4

CHANGE POINT ANALYSIS

4.1 INTRODUCTION

One of the basic questions for many applications is whether a process has changed.

In particular, it is desired to know if a process has changed across either time or

space. Without loss of generality, we limit our discussion to the concept of time.

The general category of analysis for these questions is referred to as change-point

problems. The change-point problem originated from the need to control the quality

of manufactured goods (Ferger, 1994). Our motivation for applying the logarithmic

quantile estimation method to change-point problems involves the ability to estimate

the quantiles of test statistics with intractable asymptotic distributions in a relatively

simple manner. In this chapter we investigate the logarithmic quantile estimation ap-

proach for a change-point problem. More precisely, we focus on estimating quantiles

for Pettitt’s rank test (Pettitt, 1979). In Pettitt (1979) the rank statistic for testing

for a change in distribution converges weakly to the supremum of the absolute value

of the Brownian bridge. In this chapter we propose the almost sure limit theorem

for Pettitt’s rank test, provide simulation results for the significance level and power,

and compute approximations of quantiles of this test for several data sets.

There is an extensive literature on parametric and nonparametric statistics for

hypothesis testing and estimation in change-point analysis. Initial literature focused

upon parametric or semi-parametric assumptions for continuous distributions, such

as Page (1954, 1955, 1957). Hinkley (1970) introduced maximum likelihood esti-

mation of the change point. Later McGilchrist and Woodyer (1975) explored using

nonparametric cumulative sums to detect a single change in the median. Sen and

Srivastava (1975) introduced the supremum of normalized partial sums of indicator

functions of the observations relative to the sample median as a nonparametric test

statistic whose Monte Carlo power evaluations outperformed Bayesian methods of
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the time. Pettitt (1979) modified the famous two-sample test of Mann and Whit-

ney (1947) to develop a nonparametric test based upon the maxima of partial sums.

Nearly a decade later methods for abrupt, smooth single and multiple changes in both

scale and location were developed by Lombard (1987). From a hypothesis testing

perspective, permutation and bootstrap methods were developed to obtain approx-

imations of the critical values for different test statistics. Hušková (2004) gives a

survey of permutation tests and resampling techniques for detecting one or multiple

changes in location models with i.i.d. data. Hušková and Slabý (2001), Antoch and

Hušková (2001) provide approximations to the critical values for kernel generated

tests for multiple changes in location or scale models. Permutation methods applied

to cumulative sum and moving sum were studied by Berkes et al. (2004) and permu-

tation methods for U-statistics type tests were investigated by Horváth and Hušková

(2005). To detect changes in monthly precipitation, Gombay and Horváth (1999)

proposed tests based on empirical distributions and Kendall’s tau (Kendall, 1938)

for random vectors and approximated their distributions using weighted bootstrap.

Permutation methods for abrupt and gradual changes for dependent data were stud-

ied by Kirch and Steinebach (2006). To the existing methods we add the logarithmic

quantile estimation as another way of approximating quantiles of change-point test

statistics.

The chapter is organized as follows. In Section 4.2 we introduce the rank test

from Pettitt (1979) and propose its almost sure limit theorem. Section 4.3 contains

the numerical results for a several data sets along with simulations for significance

level and power.

4.2 ALMOST SURE LIMIT THEOREM FOR PETTITT’S RANK

TEST

Let X1, X2, ..., Xn be a sequence of independent random variables. Testing for a

change-point is equivalent to testing the null hypothesis

H0 : X1, ..., Xn are identically distributed
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against the alternative

H1 : X1, ..., Xτ ∼ F (x) and Xτ+1, ...., Xn ∼ G(x).

If the change point τ is unknown, Pettitt (1979) introduced the test statistic

Kn = max
1≤j<n

|Uj,n|, (84)

where

Uj,n =

j∑
i=1

n∑
l=j+1

sgn(Xi −Xl)

and sgn(x) = 1 if x > 0, 0 if x = 0,−1 if x < 0. The statistic can be expressed

as Kn = max(K+
n , K

−
n ), where K+

n = max1≤j<n Uj,n and K−n = −min1≤j<n Uj,n are

tests for change in one direction.

For continuous observations, Pettitt (1979) re-expressed Uj,n as a rank statistic

Uj,n = 2Wj − j(n+ 1), where Wj =

j∑
i=1

Ri

and R1, ..., Rj are the ranks of the first j observations X1, ..., Xj in the overall sample

of n observations. Thus, the nonparametric test

1

n

√
3

n+ 1
Kn =

1

n

√
3

n+ 1
max
1≤j<n

|2
j∑
i=1

Ri − j(n+ 1)|, (85)

has the limiting distribution given by the supremum of the absolute value of the

Brownian bridge and the significance probabilities associated with the value k of Kn

are approximated by

pOA = 2
∞∑
r=1

(−1)r+1 exp{−6kr2/(T 3 + T 2)} ≈ 2 exp{−6k2/(T 3 + T 2)}. (86)

The approximation is valid only for small p-values, and often results in values greater

than 1 for samples with no change-point. The test introduced by Pettitt (1979)

performs two roles: test for the presence of a change-point τ and then provides an

estimate of τ when H0 is rejected. The estimated value of τ is the value of j for

which the maximum value of |Uj,n| is obtained. It is important to note that LQE
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only estimates quantiles for the test statistic at specified levels of significance, and

hence does not influence the estimation of τ .

We now introduce some notation and terminology to be more precise. For a score

function φ satisfying 0 <
∫ 1

0
φ2(t)dt <∞, let

φ̄ = n−1
n∑
i=1

φ(i/(n+ 1)) and A2 = (n− 1)−1
n∑
i=1

[φ{i/(n+ 1)} − φ̄]2,

and define the rank score of Xi as

s(Ri) =
φ{Ri/(n+ 1)} − φ̄

A
, for i = 1, ..., n. (87)

Lombard (1987) and Koziol (1987) showed that under the null hypothesis of no

change in distribution, the process

Yn(t) =
1√
n

[nt]∑
i=1

s(Ri)

converges in distribution to the Brownian bridge (B(t))0≤t≤1, as n → ∞. This

convergence holds in space of cadlag functions D[0, 1] (continuous on the right with

left limits), and it is obtained using Theorem 24.1 in Billingsley (1968). If the

Wilcoxon’s score function φ(t) = t is considered, then the process Yn(t) becomes

Yn(t) =
1√
n

[nt]∑
i=1

√
12(n+ 1)

n

(
Ri

n+ 1
− 1

2

)
(88)

which is equivalently written as

Yn(t) =


1
n

√
3

n+1
Uj,n, if j

n
≤ t < j+1

n
, 1 ≤ j < n

0, if t = 1 or 0 ≤ t < 1
n

(89)

and the limiting distribution of 1
n

√
3

n+1
max1≤j<n |Uj,n| is that of sup0≤t≤1 |B(t)|,

where

P ( sup
0≤t≤1

|B(t)| ≤ a) = 1 + 2
∞∑
i=1

(−1)i exp(−2i2a2).
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As we mentioned in the introduction, the aim is to obtain approximations for

the quantiles of Pettitt’s rank test and propose an almost sure limit theorem for the

statistic 1
n

√
3

n+1
max1≤j<n |Uj,n|. We propose the following almost sure limit theorem

without proof, and we verify it empirically using simulation studies for type I error

and power.

Proposition 5. Let X1, ..., Xn be a sequence of independent random variables from

a continuous distribution F . The statistic 1
n

√
3

n+1
max1≤j<n |Uj,n| satisfies the almost

sure limit theorem:

lim
n→∞

1

log n

n∑
k=1

1

k
I

(
1

k

√
3

k + 1
max
1≤j<k

|Uj,k| ≤ x

)
= G(x) a.s. ∀x, (90)

where G(x) is the distribution function of sup0≤x≤1 |B(x)| and B(x) is the Brownian

bridge.

4.3 NUMERICAL RESULTS

We present numerical results for the Pettitt test using simulated data, some data

sets from Pettitt (1979) and Lombard (1987), and the logarithmic quantile estima-

tion. When an almost sure limit theorem and a weak convergence for a test statistic

hold with the same limiting distribution, Thangavelu (2005), Denker and Tabacu

(2014, 2015) showed that the logarithmic quantile estimation method approximates

the true quantiles almost surely. The weak convergence for the test in (85) was given

in Pettitt (1979) and in Propositon 5 we propose its almost sure version with the

same limiting distribution:

lim
n→∞

P

(
1

n

√
3

n+ 1
max
1≤j<n

|Uj,n| ≤ t

)
= P ( sup

0≤u≤1
|Bn(u)| ≤ t)

lim
n→∞

1

log n

n∑
k=1

1

k
I

(
1

k

√
3

k + 1
max
1≤j<k

|Uj,k| ≤ t

)
= G(t) a.s. for any t,

where G(t) is the distribution of sup0≤t≤1 |B(t)|.

We compare our results with the approximation given in equation (86) using

Page’s data set (see Page, 1955) and the industrial data as they appear in Pettitt
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(1979). We also compute quantiles for the data set from Lombard (1987) and compare

the results with the conclusions from Gombay (1994). For our final data analysis,

we estimate the quantiles for the Dow Jones Industrial Average (DJIA) immediately

around the stock market crash of 2008-2009 with a known change-point at March 9,

2009. Various simulation results for type I error and power are presented at the end

of the section.

Recall from Chapter 2 that both weak convergence and the almost sure version of

the weak convergence are independent of a finite number of initial random variables.

More precisely, the convergence of the ASLT in Propositions 1-5 is unaffected by

excluding values of 1
k

√
3

k+1
max1≤j<k |Uj,k| for k = 1, . . . , k0, where k0 << n. Frid-

line (2010) observed that smaller values of k correspond to larger weights 1
k
, which

may have a significant influence on the values of the estimated quantiles, especially

for smaller sample sizes. Fridline (2010) proposed a modification to the logarithmic

quantile estimation algorithm to reduce the influence of the initial weights on the

estimates without changing the asymptotic properties of the ASLT. Using the same

theoretical principles for exchanging log n with
∑n

k=1
1
k
, Fridline (2010) proposed us-

ing Cn =
∑n

k=k0
1
k

and starting the algorithm using k = k0 for k0 suitably smaller

than n. The modified version of the algorithm for computing the logarithmic quan-

tiles introduced in Thangavelu (2005) and employed by Fridline (2010), Denker and

Tabacu (2014, 2015) follows.

The upper and lower α/2 empirical logarithmic quantiles of 1
k

√
3

k+1
max1≤j<k |Uj,k|

in Proposition 5 for the ith permutation of the data are estimated by

t̂
i,(n)
α/2 = max

{
t | 1

Cn

n∑
k=k0

1

k
I

(
1

k

√
3

k + 1
max
1≤j<k

| Uj,k |< t

)
≤ α/2

}
, and (91)

t̂
i,(n)
1−α/2 = max

{
t | 1

Cn

n∑
k=k0

1

k
I

(
1

k

√
3

k + 1
max
1≤j<k

| Uj,k |< t

)
≤ 1− α/2

}
, (92)

respectively, where Cn =
∑n

i=1
1
i
, and 2 ≤ k0 << n (note the test statistic is 0 when

k = 1). The upper and lower α/2 logarithmic quantiles are estimated by

t̄
(n)
α/2 =

∑p
i=1 t̂

i,(n)
α/2

p
, and (93)
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t̄
(n)
1−α/2 =

∑p
i=1 t̂

i,(n)
1−α/2

p
, (94)

respectively, where p is the number of permutations chosen by the user. Unlike the

approximation given in (86), the significance probabilities computed from the LQE

cannot exceed one.

4.3.1 EXAMPLES

Page’s Data

Table 25 contains a modified version of Page’s data (Page, 1955) from Table 1 in

Pettitt(1979, page 130). The first 20 values were generated from a N (5, 1) distribu-

tion. The remaining 20 values were generated from a N (6, 1) distribution. Pettitt

(1979) subtracted five from all values.

Table 25: Page’s data (see Pettitt, 1979, Table 1, p. 130)

i 1 2 3 4 5 6 7 8 9 10

xi -1.05 0.96 1.22 0.58 -0.98 -0.03 -1.54 -0.71 -0.35 0.66

i 11 12 13 14 15 16 17 18 19 20

xi 0.44 0.91 -0.02 -1.42 1.26 -1.02 -0.81 1.66 1.05 0.97

i 21 22 23 24 25 26 27 28 29 30

xi 2.14 1.22 -0.24 1.6 0.72 -0.12 0.44 0.03 0.66 0.56

i 31 32 33 34 35 36 37 38 39 40

xi 1.37 1.66 0.1 0.8 1.29 0.49 -0.07 1.18 3.29 1.84

Note: Values displayed have been reduced by a value of 5 to match Table 1

in Pettitt (1979).

Figure 13 provides a plot of the data along with the sample means for the first

and last 20 values. Table 26 provides the estimated logarithmic quantiles for Page’s

data (n = 40). Pettitt (1979) obtained an estimated p-value pOA = 0.014 and a

corresponding estimated change-point location τ = 17. Pettitt noted that Page’s

test also estimated τ = 17 with a p-value of approximately 0.01. Using logarithmic

quantile estimation we obtain a p-value < 0.0152 which agrees with Pettitt (1979).
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Figure 13: Page’s data

Table 26: Logarithmic quantiles for Page’s data

1− α/2 α/2

n k0
1
n

√
3

n+1Kn 0.9924 0.975 0.950 0.050 0.025 0.0076

40 2 1.5689 .4169 .4257 .4396 .9935 1.0442 1.0922

Values were obtained for a two-sided test with p=500 permutations. k0 is

the minimum number of observations used to calculate t̂
i,(n)
α/2 in (91) and

t̂
i,(n)
1−α/2 in (92).

Pettitt’s Industrial Data Pettitt (1979) provides industrial data of the percentage

of a certain material from 27 batches taken in order from a production source, and

no other information is provided. Table 27 contains the Industrial Data provided by

Pettitt (1979).
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Table 27: Pettitt’s industrial data (see Pettitt,
1979, Table 3, p. 133)

i 1 2 3 4 5 6 7 8 9

xi 7.1 8.1 8.2 11.1 6.6 4.9 4 17.7 6.5

i 10 11 12 13 14 15 16 17 18

xi 4.6 8.8 11.6 6.8 7.5 6.9 8.1 9.3 7.5

i 19 20 21 22 23 24 25 26 27

xi 10 8.7 9.1 8.9 9.1 9.6 8.1 9.8 8.2

A value of Kn = 90 with a change-point location τ = 16 corresponding to a two-

sided test significance probability pOA = 0.185 was obtained by Pettitt (1979). In

order to support a change in the data to match indications from graphical analyses,

Pettitt (1979) used a one-sided test with a corresponding significance probability

pOA = 0.092. The logarithmic quantile estimates are provided in Table 28. Using

the LQE approach, the value of the test statistic corresponds to a p-value < 0.0256

providing evidence to support the claim that a change in distribution exists.

Table 28: Logarithmic quantiles for Pettitt’s industrial data

1− α/2 α/2

n k0
1
n

√
3

n+1Kn 0.9872 0.975 0.950 0.050 0.025 0.0128

27 2 1.0911 .4106 .4166 .4299 .9431 .9969 1.0284

Values were obtained for a two-sided test with p=500 permutations. k0 is

the minimum number of observations used to calculate t̂
i,(n)
α/2 in (91) and

t̂
i,(n)
1−α/2 in (92). Observed p-value < 0.0256.

A plot of the data is provided in Figure 14. The lines for the average of the first

16 values, the average of the last 11 values, and the estimated change-point τ = 16

are provided in the plot.
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Figure 14: Pettitt’s industrial data

Lombard’s Data

Lombard (1987) provided a dataset from a manufacturing process. A circular inden-

tation was cut into each part using a milling machine. The radii in centimeters were

measured for n = 100 consecutive parts. A constant value of 3.9 was subtracted

by Lombard from the measurements provided in Table 29. It was known that two

servicing and resetting routines were performed during the production. The times

(or parts) at which the routines were performed were either unknown or were not

provided. A plot of the data is provided in Figure 15. A review of the plotted data

does not readily reveal any possible change-point locations.

Lombard (1987) introduced several tests for change-points including smooth and

abrupt changes for known and unknown change-point locations. For abrupt changes,

he introduced a general test for multiple changes change-points. Lombard analyzed

the dataset for one, two and thre change-points. For a single change-point, he ob-

tained a p-value < 0.20. The test for two changes in distribution provided a p-value

approximately 0.1, while his test for three possible change-points resulted in a p-value

approximately 0.05. Gombay (1994) proposed a test which confirmed the presence
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of one change in Lombard’s data with p-value = 0.0131. Gombay also performed

a two-sided Pettitt test and obtained pOA = 0.1324. Table 30 lists the estimated

logarithmic quantiles, and the corresponding p-value = 0.0538 for a two-sided test of

change in distribution.

Table 29: Lombard’s data (Lombard, 1987, Table 3, p. 620)

1.010 1.066 0.975 0.921 1.165 1.027 1.100 0.981 0.977 1.106

0.932 0.990 0.940 0.877 0.987 0.958 1.112 0.878 1.029 0.971

1.004 1.087 1.038 1.119 0.768 1.096 1.114 1.007 0.978 0.957

0.884 1.004 1.032 1.130 0.961 1.066 1.029 1.107 1.150 1.190

1.152 1.049 1.183 0.933 1.161 0.988 1.087 1.034 0.889 1.109

1.196 1.098 0.954 0.986 0.943 1.058 0.960 1.073 0.904 1.171

1.060 1.189 1.019 1.213 1.204 1.148 1.033 1.023 1.145 0.994

1.147 1.054 1.059 0.972 1.141 1.082 0.931 0.848 1.039 1.043

1.016 1.027 0.932 0.879 0.754 0.911 0.971 1.180 0.849 0.870

1.003 0.834 1.018 1.145 0.995 0.895 1.085 1.055 0.992 1.141

Table 30: Logarithmic quantiles for Lombard’s data

1− α/2 α/2

n k0
1
n

√
3

n+1Kn 0.995 0.975 0.950 0.050 0.025 0.005

100 2 1.1116 .4143 .4297 .4517 1.0581 1.1183 1.1893

Values were obtained for a two-sided test for one change-point using Pettitt’s

method with p=500 permutations. k0 is the minimum number of observa-

tions used to calculate t̂
i,(n)
α/2 in (91) and t̂

i,(n)
1−α/2 in (92). Observed p-value

< 0.0538.
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Figure 15: Lombard’s data

Dow Jones Industrial Average (DJIA) Data

The daily closing values for the DJIA from August 8, 2008 through April 23, 2010

were obtained from The Wall Street Journal website (quotes.wsj.com). It is well-

known that the market reached its lowest closing value during that crisis on March 10,

2009 (change-point). The logarithmic quantile estimates are provided in Table 31 for

the entire data and for two shorter periods of time around the bottom of the market.

Analysis of all n = 430 values resulted in a test statistic of 6.0485 corresponding to an

LQE p-value = .00082 (Pettitt’s pOA = 1.67×10−32). The change-point was identified

as October 7, 2008 (see Figure 16). A shorter interval of time from January 05, 2009

to April 1, 2009 (n = 61) was chosen, and a test statistic of 3.3320 was obtained

corresponding to an LQE p-value = .0152 (pOA = 2.27 × 10−10). The change-point

was identified as Feb 13, 2009 (see Figure 17). Finally, a shorter interval of time was

chosen between February 23, 2009 and March 11, 2009 (n = 13). The test statistic

value 1.4243 corresponds to a p-value < .0704 (pOA = .0346).The indicated change-

point is on February 27, 2009. This analysis demonstrates the ability of the Pettitt

test to detect a change-point when the change occurs as a trend instead of abruptly.

The plot of the DJIA data clearly shows a decreasing trend followed by an increasing

trend. Two open problems are to extend the LQE approach to change-point analysis

of multiple changes and to time series data.
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Figure 16: Dow Jones Industrial Average data (08/08/2008 - 04/23/2010)

Table 31: Logarithmic quantiles for Dow Jones Industrial Average data

1− α/2 α/2

n k0
1
n

√
3

n+1Kn 0.995 0.975 0.950 0.050 0.025 0.005

430 2 6.0485 .4016 .4222 .4512 1.1416 1.2114 1.3079

61 2 3.3320 .4156 .4289 .4459 1.0288 1.0841 1.1555

13 2 1.4243 .4416∗ .4416∗ .4502 .8738 .9104∗∗ .9104∗∗

∗ The smallest quantile occurred for α/2 = .0352.
∗∗ The largest quantile occurred for 1− α/2 = .9648

Values were obtained for a two-sided test with p=500 permutations. k0 is the

minimum number of observations used to calculate t̂
i,(n)
α/2 in (91) and t̂

i,(n)
1−α/2 in

(92).
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Figure 17: Dow Jones Industrial Average data (01/05/2009 - 04-04/2009)

Figure 18: Dow Jones Industrial Average data (02/23/2009 - 03/11/2009)
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4.3.2 SIMULATION RESULTS

Tables 32 and 33 provide the type I error simulation results for the Exp(1),

N (0, 1), and Gamma(4, 1
2
) distributions from 1000 simulations and 500 permutations

each. The simulated type I error results are liberal. The test is more liberal for small

n, but slowly approaches the true level as n increases. One possible solution to

address the liberalness of the test was to start with larger values of k0 to reduce the

influence of the first few terms. Simulation studies were performed for each selected

distribution for 1 ≤ k0 ≤ 10. Tables 32 and 33 include values of k0 ≤ 9 for brevity.

A review of the effects of k0 on the type I error in Tables 32 and 33 reveal that

the type I error gets lower as k0 increases to some value and then increases again. In

both tables, the lowest (i.e. closest to target) values for each combination of level,

n, and distribution have been placed in boldface. There is not a consistent value for

k0 that delivers the best type I error. More importantly, the amount of reduction in

type I error provided by fine tuning k0 is not significantly closer to the true level than

it is for k0 = 2. The most significant improvement is provided at n = 500, yet the

true values remain at best 40% above the target value. Addressing the liberalness of

the results is an area for future investigation.
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Table 32: Simulated type I error for Pettitt’s test (n = 30, n = 50)

n = 30 n = 50

Level Level

Distribution k0 10% 5% 1% 10% 5% 1%

Exp(1)

2 0.266 0.210 0.178 0.251 0.199 0.141

3 0.255 0.206 0.178 0.236 0.192 0.146

4 0.247 0.201 0.174 0.223 0.185 0.150

5 0.243 0.204 0.183 0.219 0.180 0.147

6 0.253 0.208 0.189 0.222 0.183 0.154

7 0.267 0.220 0.206 0.224 0.185 0.157

8 0.274 0.234 0.223 0.232 0.189 0.167

9 0.291 0.242 0.242 0.235 0.195 0.170

10 0.302 0.260 0.26 0.246 0.204 0.175

N(0,1)

2 0.255 0.207 0.182 0.240 0.184 0.138

3 0.241 0.198 0.184 0.230 0.187 0.143

4 0.228 0.198 0.187 0.222 0.182 0.140

5 0.226 0.201 0.190 0.219 0.180 0.141

6 0.244 0.211 0.197 0.217 0.177 0.145

7 0.259 0.229 0.217 0.224 0.186 0.152

8 0.269 0.248 0.240 0.230 0.185 0.163

9 0.283 0.248 0.248 0.240 0.199 0.168

10 0.294 0.268 0.268 0.242 0.200 0.176

Gamma(4, 12 )

2 0.312 0.261 0.210 0.251 0.201 0.143

3 0.296 0.244 0.214 0.241 0.193 0.149

4 0.290 0.252 0.217 0.230 0.188 0.146

5 0.294 0.253 0.225 0.230 0.180 0.149

6 0.298 0.265 0.236 0.236 0.187 0.159

7 0.305 0.273 0.250 0.236 0.195 0.162

8 0.311 0.267 0.257 0.245 0.199 0.172

9 0.324 0.269 0.269 0.254 0.211 0.181

10 0.345 0.296 0.296 0.265 0.214 0.185

Note: k0 is the minimum number of observations used to calculate t̂
i,(n)
α/2 in (91) and

t̂
i,(n)
1−α/2 in (92). The change-point is denoted by τ .Values were obtained from 1000

simulations and 500 permutations each.
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Table 33: Simulated type I error for Pettitt’s test (n = 100, n = 500)

n = 100 n = 500

Level Level

Distribution k0 10% 5% 1% 10% 5% 1%

Exp(1)

2 0.192 0.148 0.099 0.164 0.115 0.070

3 0.185 0.143 0.093 0.160 0.111 0.067

4 0.185 0.139 0.094 0.152 0.109 0.070

5 0.182 0.136 0.096 0.149 0.107 0.070

6 0.186 0.140 0.101 0.149 0.108 0.070

7 0.181 0.139 0.101 0.150 0.111 0.070

8 0.197 0.145 0.103 0.148 0.112 0.072

9 0.199 0.149 0.105 0.149 0.111 0.073

10 0.202 0.156 0.108 0.153 0.112 0.072

N(0,1)

2 0.201 0.151 0.099 0.160 0.096 0.052

3 0.183 0.140 0.095 0.153 0.104 0.060

4 0.182 0.138 0.095 0.146 0.099 0.060

5 0.179 0.134 0.097 0.145 0.097 0.060

6 0.180 0.141 0.099 0.143 0.098 0.059

7 0.186 0.139 0.100 0.145 0.092 0.058

8 0.190 0.144 0.106 0.150 0.092 0.058

9 0.198 0.145 0.107 0.150 0.091 0.059

10 0.200 0.151 0.112 0.155 0.093 0.057

Gamma(4, 12 )

2 0.196 0.142 0.100 0.176 0.122 0.078

3 0.194 0.141 0.098 0.157 0.111 0.063

4 0.189 0.139 0.100 0.151 0.110 0.062

5 0.179 0.137 0.103 0.152 0.107 0.063

6 0.185 0.143 0.099 0.154 0.109 0.064

7 0.186 0.148 0.108 0.141 0.096 0.069

8 0.197 0.146 0.109 0.144 0.099 0.069

9 0.201 0.150 0.112 0.144 0.104 0.070

10 0.200 0.163 0.115 0.146 0.107 0.071

Note: k0 is the minimum number of observations used to calculate t̂
i,(n)
α/2 in (91) and

t̂
i,(n)
1−α/2 in (92). The change-point is denoted by τ .Values were obtained from 1000

simulations and 500 permutations each.

The liberal results for type I error led to an investigation of the type I error for

the Pettitt test (not LQE). A simulation study for the type I error is not found in

the literature to the best of our knowledge. Hence, we performed a simulation study

in order to compare the type I error of the Pettitt test to the type I error of the LQE
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approach. The simulation study was implemented for the Pettitt test at the 10%, 5%,

and 1% levels using sample sizes n = 10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10000,

with 2000, 5000, and 10,000 simulations for same three distributions Exp(1), N (0, 1),

and Gamma(4, 1
2
).

Figures 19-21 contain the results for the N (0, 1) distribution. Results for the

Exp(1) and Gamma(4,1
2
) were very similar. All graphs have the same scale to prevent

misleading interpretations, but for the 1% level graphs, the differences due to the

number of simulations is difficult to visually detect. The type I error approaches the

actual level of the test around n = 2000.

For larger sample sizes (n ≥ 2000) the values for 2000 and 5000 simulations

fluctuate between liberal and conservative results (see Figures 19-21) . The line for

10000 simulations generally remains near the actual level or slightly conservative.

Figure 19: Type I error for Pettitt’s test, 10% level, N (0, 1)
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Figure 20: Type I error for Pettitt’s test, 5% level, N (0, 1)

Figure 21: Type I error for Pettitt’s test, 1% level, N (0, 1)
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The results for sample sizes in the range investigated for LQE (n ≤ 500) appear to

be very conservative, opposite to the liberal LQE results. To better understand the

type I error of the Pettitt test for n ≤ 500, Figures 22-24 are provided for the N (0, 1)

distribution. The results are significantly conservative for n ≤ 100 at the 10% and

5% levels. As samples sizes approach 500, the test diverges from the level, unlike the

LQE type I error results which converge to the level as n approaches 500. For the

1% level, the simulated type I error converges to the level when n is approximately

200. The results for Gamma(4,1
2
) and Exp(1) were similar. These simulation studies

show that the Pettitt test is not liberal, and hence is not the cause for the liberal

LQE results.

Figure 22: Type I error for Pettitt’s test, 10% level, n ≤ 500, N (0, 1)
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Figure 23: Type I error for Pettitt’s test, 5% level, n ≤ 500, N (0, 1)

Figure 24: Type I error for Pettitt’s test, 1% level, n ≤ 500, N (0, 1)
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The simulated power for the 10%, 5%, and 1% levels for the Exp(1), Gamma(4,1
2
),

and N (0,1) distributions are presented in Tables 34-36, respectively. The values of τ

denote the change-point position at 10%, 25%, 50%, 75%, and 90% of n. The amount

of shift in the distribution at the change-point is given by δ. Two amounts of shift are

provided: δ = 0.5 and δ = 0.75. The power is highest when the change-point occurs

near the middle of the sample, and it decreases symmetrically as the change-point

location approaches either the beginning or end of the data stream. The difference

in power when the change-point occurs between 0.25n and 0.75n is fairly small. The

power is significantly lower when τ occurs outside of this range.

Table 34: Power for various τ (exponential distribution)

Exp(1), Exp(1)+δ

δ = 0.5 δ = 0.75

n τ 10% 5% 1% 10% 5% 1%

30 3 0.298 0.229 0.192 0.339 0.269 0.223

30 7 0.546 0.498 0.422 0.697 0.637 0.570

30 15 0.659 0.618 0.579 0.850 0.822 0.816

30 22 0.559 0.484 0.476 0.746 0.686 0.692

30 27 0.286 0.231 0.190 0.323 0.260 0.207

50 5 0.328 0.272 0.201 0.428 0.360 0.269

50 12 0.629 0.583 0.531 0.846 0.803 0.760

50 25 0.838 0.797 0.737 0.977 0.965 0.923

50 37 0.697 0.635 0.560 0.916 0.879 0.841

50 45 0.312 0.252 0.194 0.384 0.310 0.236

100 10 0.431 0.357 0.247 0.616 0.526 0.394

100 25 0.862 0.818 0.764 0.976 0.969 0.945

100 50 0.974 0.961 0.926 1.000 0.999 1.000

100 75 0.897 0.870 0.816 0.997 0.991 0.984

100 90 0.375 0.308 0.242 0.565 0.480 0.400

500 50 0.908 0.874 0.815 0.996 0.992 0.983

500 125 0.999 0.999 1.000 1.000 1.000 1.000

500 250 1.000 1.000 1.000 1.000 1.000 1.000

500 375 1.000 1.000 1.000 1.000 1.000 1.000

500 450 0.972 0.946 0.892 1.000 1.000 0.999

Note: k0 = 2 was used in (91) and (92). τ is the change-point.

Values were obtained from 1000 simulations, p=500.
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For the following statements, we restrict our considerations to change-points near

the middle of the data stream. When the amount of shift is δ = 0.5, the power

achieves 0.8 for a sample size somewhat larger than 100. For δ = 0.75, the power

exceeds 0.8 for the 10% and 5% level tests for n ≥ 50. To achieve a power of at least

0.8 at the 1% level, a sample size of n ≥ 100 is required. An additional simulation

study using δ = 1 results in power very close to one for n ≥ 30.

Table 35: Power for various τ (gamma distribution)

Gamma(4, 12 ), Gamma(4, 12 )+δ

δ = 0.5 δ = 0.75

n τ 10% 5% 1% 10% 5% 1%

30 3 0.286 0.231 0.211 0.308 0.241 0.218

30 7 0.427 0.366 0.331 0.566 0.515 0.476

30 15 0.552 0.489 0.449 0.750 0.699 0.697

30 22 0.451 0.382 0.324 0.634 0.572 0.507

30 27 0.268 0.214 0.175 0.286 0.223 0.177

50 5 0.299 0.236 0.162 0.336 0.282 0.207

50 12 0.505 0.439 0.374 0.719 0.665 0.598

50 25 0.653 0.603 0.541 0.890 0.862 0.832

50 37 0.525 0.454 0.405 0.777 0.727 0.671

50 45 0.280 0.218 0.177 0.320 0.254 0.195

100 10 0.297 0.236 0.181 0.434 0.354 0.301

100 25 0.696 0.645 0.559 0.916 0.899 0.862

100 50 0.829 0.796 0.771 0.987 0.977 0.953

100 75 0.720 0.651 0.533 0.940 0.919 0.887

100 90 0.334 0.257 0.186 0.463 0.378 0.304

500 50 0.757 0.676 0.543 0.973 0.958 0.920

500 125 0.997 0.995 0.990 1.000 1.000 1.000

500 250 1.000 1.000 1.000 1.000 1.000 1.000

500 375 0.998 0.997 0.997 1.000 1.000 1.000

500 450 0.773 0.684 0.554 0.992 0.985 0.967

Note: k0 = 2 was used in (91) and (92). τ is the change-point.

Values were obtained from 1000 simulations, p=500.
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Table 36: Power for various τ (normal distribution)

N (0,1), N (δ,1)

δ = 0.5 δ = 0.75

n τ 10% 5% 1% 10% 5% 1%

30 3 0.291 0.234 0.198 0.314 0.248 0.229

30 7 0.402 0.333 0.289 0.534 0.470 0.420

30 15 0.506 0.442 0.405 0.701 0.653 0.621

30 22 0.393 0.339 0.311 0.583 0.520 0.476

30 27 0.286 0.234 0.203 0.310 0.252 0.217

50 5 0.272 0.220 0.163 0.329 0.273 0.201

50 12 0.428 0.369 0.318 0.628 0.571 0.526

50 25 0.590 0.537 0.445 0.834 0.805 0.743

50 37 0.471 0.408 0.351 0.678 0.621 0.572

50 45 0.264 0.205 0.164 0.303 0.248 0.212

100 10 0.302 0.253 0.166 0.423 0.350 0.254

100 25 0.617 0.559 0.486 0.887 0.852 0.807

100 50 0.798 0.758 0.707 0.972 0.962 0.954

100 75 0.629 0.562 0.464 0.883 0.853 0.822

100 90 0.305 0.247 0.174 0.413 0.343 0.278

500 50 0.670 0.571 0.420 0.959 0.931 0.879

500 125 0.995 0.992 0.993 1.000 1.000 1.000

500 250 0.999 0.999 0.999 1.000 1.000 1.000

500 375 0.995 0.993 0.984 1.000 1.000 1.000

500 450 0.690 0.610 0.472 0.965 0.937 0.892

Note: k0 = 2 was used in (91) and (92). τ is the change-point.

Values were obtained from 1000 simulations, p=500.
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4.4 SUMMARY

LQE estimates the quantiles of the test statistic directly using only the data,

and without using the asymptotic distribution. In this chapter, we have investigated

the change-point problem from the logarithmic quantile estimation approach. To

be more precise, we have proposed an almost sure limit theorem using the statistic

proposed by Pettitt (1979) to test for a change in distribution in a sequence of data.

We then provided an algorithm for estimating quantiles of the statistic for a two-

sided test. Four datasets were tested for the presence of a change-point. Results

agreed with previous analyses where available. The DJIA dataset clearly displayed

a decreasing trend followed by an increasing trend instead of an abrupt change, and

the Pettitt test detected a change-point. Simulation results for type I error are liberal

for small sample sizes and approach the level of the test as the sample sizes increase.

The power was simulated with change-points at several locations within the data.

For change-points near the center of the data, power is higher, and power decreases

symmetrically as the change-point location nears the edges of the sequence of values.

For change-points at the center of the data, the power of the test requires large sample

sizes when the shift in distribution is only 0.5. For a shift of 0.75 at the change-point,

sample sizes of 50 or more had power exceeding 0.8. LQE is a competitive approach

for detecting change-points, and warrants investigation for multiple change-points in

stable processes and in time-series.
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CHAPTER 5

TWO-SAMPLE PROBLEM USING PAIRED AVERAGES

5.1 INTRODUCTION

The two-sample problem has been studied extensively in literature. In general,

let X1, . . . , Xn v F and Y1, . . . , Ym v G be i.i.d. random variables, and F , G are

distribution functions. The original parametric two-sample problem tested for the

equality of means. The nonparametric two-sample problem studied in this disserta-

tion tests for the equality of the two distributions. If the variances of the two samples

are not assumed equal, the problem is referred to as the famous Behrens-Fisher prob-

lem. In this dissertation, we limit our investigation to the nonparametric analysis of

the two-sample problem. Our motivation for revisiting the nonparametric two-sample

problem follows from the fact that the Wilcoxon-Mann-Whitney (WMW) test (Mann

and Whitney, 1947) is not as efficient as the t-test, and hence requires larger sample

sizes to obtain a similar power. In many medical applications, it is either impractical

or cost-prohibitive to obtain larger sample sizes, hence an alternative approach is

required.

In order to provide insight into the logic behind our proposed solution, a brief

literature review follows. Three well-known nonparametric tests for the equality

of distribution functions are the WMW, the Kolmogorov-Smirnov (KS) (Smirnov,

1939), and the Cramer-von Mises (Mises, 1947) tests. The latter two require con-

tinuous distribution functions, whereas an adjustment for ties exists for the WMW

test. Brunner and Neumann (1986) investigated the asymptotic properties of the

WMW test when the variances are unequal assuming continuous distribution func-

tions. Baumgartner et al. (1998) proposed a modification of the Cramer-von Mises

test weighted by its variance. This test was shown to have power comparable to the

WMW, Cramer-von Mises and KS tests for continuous distributions.

Brunner and Munzel (2000) relaxed the requirement for continuity, and developed
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a rank test using a consistent estimate of the asymptotic variance. An extensive sim-

ulation study on the WMW test was performed for different scenarios: variance

ratios (ratio of the variance of the first sample to the variance of the second sample),

modality, and skewness. The study revealed that the MWM test was conservative if

the larger sample size had higher variance and was liberal for the reverse situation,

where the results were determined by the ratio of the variances and the ratios of the

sample sizes not the combined sample size (preserved asymptotically). The perfor-

mance of their proposed test statistic was accurate for large sample sizes, but was

liberal for sample sizes less than 50. Their small sample approximation used the cen-

tral t-distribution and the Satterthwaite-Smith-Welch (SSW) approximation for the

degrees of freedom. This small sample approximation provided type I error results

comparable to the parametric t-test using the SSW approximation for samples sizes

greater than 10.

Denker and Puri (1992) proved the asymptotic normality of the two-sample linear

rank test statistic under an empirical process of U -statistic structure and provided

an upper bound for the asymptotic variance along with an estimate for the Pittman

efficiency. Compagnone and Denker (1996) extended the proof to the generalized lin-

ear rank statistic and provided explicit forms of the expectation and variance. They

also show that an increase of one in the smallest sample-size results in a significant

increase in the efficiency of the test.

We propose using kernel functions of order two to generate paired averages within

each sample thus effectively increasing the sample size to
(
n
2

)
. With this test, we

hope to remedy the results of the study in Brunner and Munzel (2000) where they

state that accurate tests for sample sizes less then 10 cannot be expected in the

general nonparametric model. In Section 5.2, we introduce the model and notation

under the U -statistic structure for rank tests , and we propose a test statistic using

paired averages. In Section 5.3 we provide the algorithms for verifying both its

convergence in distribution and the convergence of the proposed ASCLT. We then

show empirically the convergence along with simulation results of type I error and

power. Section 5.4 is a summary of our findings and the open problems.
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5.2 NOTATION AND MODEL

The empirical process of U-statistic structure (Denker and Puri, 1992) is given

by(
N

m

)−1 ∑
1≤i1<i2<···<im≤N

(I (Ψ(Xi1 , Xi2 , · · · , Xim) ≤ t)− P ({Ψ(X1, . . . , Xm) ≤ t})) ,

where n = n + m is the total number of observations in the experiment, and Ψ

is a symmetric measurable function in m variables. We limit our discussion to a

two-sample problem, and provide the model below.

We define independent random variables X1, X2, . . . , Xn∼ F , and Y1, Y2, . . . , Ym∼
G from stationary processes. Let

ΨX
q : Rq → R,

ΨY
p : Rp → R

be two symmetric measurable functions. We consider the case where n = m and

p = q = 2, and define new random variables

Xt1,t2 := ΨX
2 (Xt1 , Xt2) =

Xt1 +Xt2

2
, 1 ≤ t1 < t2 ≤ n,

Ys1,s2 := ΨY
2 (Ys1 , Ys2) =

Ys1 + Ys2
2

, 1 ≤ s1 < s2 ≤ n.

The corresponding U-statistic structure empirical distribution functions are

F̂n(t) =

(
n

2

)−1 ∑
1≤t1<t2≤n

I (Xt1,t2 ≤ t) , EF̂n(t) = Fn(t),

Ĝn(t) =

(
n

2

)−1 ∑
1≤s1<s2≤n

I (Ys1,s2 ≤ t) , EĜn(t) = Gn(t).

We now define the overall (average) empirical distribution function

Ĥn(t) =

(
n
2

)
1 + 2n(n− 1)

(
F̂n(t) + Ĝn(t)

)
,
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where its expectation is Hn(t). The general form of the two-sample linear rank

statistic may be expressed by

Tn(J) =

(
n

2

)−1 ∑
1≤t1<t2≤n

J

(
Rt1,t2

1 + n(n− 1)

)
−

∞∫
−∞

J(Hn(t))dFn(t),

where J is a continuous score function, Rt1,t2 is the rank of Xt1,t2 among all n(n− 1)

random variables from the combined samples. Throughout this chapter, we use the

Wilcoxon score function J(u) = u. The asymptotic variance of Tn(J) is

σ2
n =

4τ 21
n

+
4τ 22
n
.

The components are defined by

τ 21 =

∫ ∞
−∞

h21(x)dF (x), τ 22 =

∫ ∞
−∞

g21(y)dG(y),

where

h1(x) = E{Hn(Ψ(x,X2))−
∫ ∞
−∞

Hn(t)dFn(t)}

+
1

2

∫ ∞
−∞

(P (Ψ(x,X2) ≤ t)− Fn(t))dFn(t),

and g1(y) =
1

2

∫ ∞
−∞

(P (Ψ(y, Y2) ≤ t)−Gn(t))dGn(t).

Denker and Puri (1992) proved that the ratio

Tn(J)

σn

d−→ N (0, 1).

Due to its open form, an upper bound for the asymptotic variance was provided.

Specifically for p, q = 2, m = n, and with some constant C independent of n, we

have

σ2
n ≤ C ‖J‖2 (0.5)

(
4

n

)
= O

(
1

n

)
.

In practice, it is very difficult to use an open form for the variance, so we propose

a test statistic formulated with the upper bound of σ2
n for use in an almost sure
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central limit theorem. This new test statistic should converge to a N (0, σ2) for some

unknown σ2 instead of the standard normal distribution. The proposed test statistic

is given by

Ln =
Tn(J)

1/
√
n

=
√
n

(
1(
n
2

) ∑
1≤t1<t2≤n

Rt1,t2

1 + n(n− 1)
− 1

2

)
. (95)

The hypotheses of interest are

H0 : F (t) = G(t) vs. H1 : F (t) 6= G(t) ∀t. (96)

LQE requires the existence of a weak law and an almost sure limit theorem converging

to the same distributions.

Ln in (95) may be used to test the hypotheses in (96), the convergence in distri-

bution and the corresponding convergence of the ASCLT must be investigated.

5.3 CONVERGENCE OF THE TEST STATISTIC

For the new test statistic we proposed in (95), we need to show the following

required convergences in order to use the LQE approach, which has not previously

been done.

Ln =
Tn(J)

1/
√
n

d−→ N (0, σ2), (97)

and

lim
n→∞

1

Cn

n∑
k=1

1

k
I (Ln < t) = N (0, σ2), a.s. ∀t ∈ R, (98)

where σ2 < ∞ is unknown, and Cn =
∑n

m=1
1
m

. Convergence in both distribu-

tion and almost surely were verified empirically using the two following algorithm.

The algorithm for convergence in distribution follows standard methodology found

in many texts (see Rizzo, 2008). The algorithm to verify the convergence of the AS-

CLT is modified from Thangavelu (2005), Fridline (2010), and Denker and Tabacu

(2014,2015).
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Algorithm 1: Convergence in Distribution for the Test Statistic

1. Simulate S pairs of independent random samples each of size n.

2. For each simulation

(a) Create all unique paired averages within each sample,

(b) Combine the samples and rank,

(c) Calculate the test statistic for the ith simulation

L(i)
n (t) =

√
n

(
1(
n
2

) ∑
1≤t1<t2≤n

R
(i)
t1,t2

1 + n(n− 1)
− 1

2

)
,

where Rt1,t2 is the rank of Xt1,t2 among all n(n − 1) random variables

(paired averages) in both samples.

3. Calculate empirical quantiles of the test statistic.

4. Calculate the Monte Carlo estimate of variance, σ2
mc.

5. Repeat for larger sample sizes until the results converge.

The results are graphically compared to the quantiles for the distribution function

of N (0, ˆσ2
mc) (see Section 5.3.1). The convergence of the almost sure central limit

theorem was confirmed using the algorithm below.

Algorithm 2: Almost Sure Weak Convergence of Test Statistic

1. Simulate S pairs of two independent samples of size n.

2. For the ith simulation, permute each sample independently p times, where p is

chosen by the user.

3. For the jth permutation of the ith simulation,

(a) Calculate

L
(i,j)
k =

√
k

(
1(
k
2

) ∑
1≤t1<t2≤k

R
(i,j)
t1,t2

1 + k(k − 1)
− 1

2

)
, k = k0, . . . , n,

(99)
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where R
(i,j)
t1,t2 is the rank of Xt1,t2 among all k(k − 1) random variables in

both samples in the jth permutation of the ith simulation.

(b) Select a range of values of t covering the values obtained for L
(i,j)
k . Calcu-

late the test statistic empirical distribution function (EDF) values for the

jth permutation of the ith simulation:

Ĝ(i,j)(t) =
1

Cn

n∑
k=k0

1

k
I(L(i,j)

k < t), (100)

where Cn =
∑n

k=1
1
k
.

4. For each value of t, calculate the test statistic EDF values for the ith simulation

Ĝ(i)(t) =
1

p

p∑
j=1

Ĝ(i,j)(t). (101)

5. Estimate the distribution function for each value of t

Ĝ(t) =
1

S

S∑
i=1

Ĝ(i)(t). (102)

6. Compare the graphs of Ĝ(t) and the distribution function

F (t) =

∫ t

−∞

1√
2πσ̂2

mc

e(−u
2/2σ̂2

mc)du.

7. Repeat for larger values of n until the results converge.

5.3.1 EMPIRICAL RESULTS FOR CONVERGENCE

We present the empirical results of the convergence investigation. The verifica-

tion of a convergence of the ASCLT first requires a convergence in distribution. A

sequence of sample sizes n = (5, 10, 15, 20, 40, 60) was used for the Algorithm 1. The

number of simulations employed were 1,000, 2,000, 5,000, and 10,000. The Monte

Carlo variance estimate σ̂2
mc was calculated by taking the sample variance of the val-

ues of L
(i)
n in Algorithm 1 above. The values of σ̂2

mc converge to 0.080 as the number
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of simulations is increased for n = 5, 10, 15 in each sample. In Figure 25 we plot the

empirical distribution function for the estimated quantiles from Algorithm 1 and the

distribution function at the same quantiles for N (0, σ̂2
mc = 0.08) with 1,000. The

plots for 10,000 simulations are provided in Figure 26. The plot for n = 5 (10 paired

averages per sample) for 1,000 simulations agrees with the plot for N (0, 0.080), and

the results empirically confirm the convergence in distribution of the test statistic.

Figure 25: Convergence in distribution L
(i)
n (x), 1000 simulations
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Figure 26: Convergence in distribution L
(i)
n (x), 10,000 simulations

For the almost sure convergence, we plotted the values of Ĝ(t) calculated in

Algorithm 2 above for a sequence of quantiles between -0.50 and 0.50 using incre-

ments of 0.01 on the same graph containing a plot of the distribution function for

N (0, σ̂2
mc = 0.08). Initial results for the convergence of the ASCLT were not as close

as desired. We explored improving convergence by starting the calculations with

more observations from each sample denoted by k0 (see Section 2.2 for a detailed

explanation). For n = 5 (10 paired averages per sample), simulation studies were

performed for k0 = 2, 3, 4, 5 and p = 20, 100, 500 permutations. Due to the poor

results for k0 = 6, ..., 10, the graphs provided only contain profiles for k0 ≤ 5. The

graphs in Figures 27-29 show the plots of distribution curves of Ĝ(t) for n = 5 ob-

servations per sample under p = 20, 100, 500 permutations for k0 = 2, . . . , 5. The

profile for k0 = 2 is closest to the curve for the N (0, 0.08) distribution in all three

graphs. Results for n = 10 to n = 25 for k0 = 2, . . . , 5 were very similar to those for

n = 5 and are omitted. In Figures 27-29 it is difficult to determine if larger numbers

of permutations improve the convergence, leading to additional investigations.
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Figure 27: ASCLT convergence of L
(i)
n (x), p=20, n=5, k0 = 2, . . . , 5

Figure 28: ASCLT convergence of L
(i)
n (x), p=100, n=5, k0 = 2, . . . , 5
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Figure 29: ASCLT convergence of L
(i)
n (x),p=500, n=5, k0 = 2, . . . , 5

The plots in Figure 30 shows the curves of Ĝ(t) for k0 = 2 and for p=500, 1000,

and 10,000 permutations. The curves for 1000 and 10,000 permutations are very

similar and are significantly closer to the distribution curve for N (0, 0.08) than the

curve for 500 permutations. This result suggests that 1000 permutations may be

needed to obtain satisfactory results for sample sizes of n = 5.

Figure 31 contains the results for n = 10, k0 = 2 for permutations up to 10,000.

The curves for 1,000 and 10,000 are nearly identical, indicating that 1,000 permuta-

tions may be needed for adequate analysis. However, the distance of the curves from

the target distribution suggests that a larger sample size may be required for valid

analyses.
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Figure 30: ASCLT convergence of L
(i)
n (x), n=5, k0 = 2, p=500, 1000, 10000

Figure 31: ASCLT convergence of L
(i)
n (x), n=10, k0 = 2, p=500, 1000, 10000
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The results for n = 15 (Figure 32) are slightly closer to the target distribution,

and the conclusion is the same as that for n = 10. The curves for 1,000 and 10,000

are nearly coincident, indicating that 1,000 permutations may be ideal for analyses.

However, profile for the 1,000 and 10,000 curves do not appear to be closer to the

target distribution than those for n = 5, suggesting that n = 15 is not a large enough

sample size for valid analyses.

Figure 32: ASCLT convergence of L
(i)
n (x), n=15, k0 = 2, p=500, 1000, 10000

For n = 25, the convergence is also questionable (Figure 33). In fact, the profiles

curves are further from the curve for the N (0, 0.08) distribution than the correspond-

ing profiles for n = 10 and n = 15, which indicates that n = 25 is not a large enough

sample size for analysis. An examination of Figure 33 shows that convergence does

not improve for permutations over 1,000.
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Figure 33: ASCLT convergence of L
(i)
n (x), n=25, k0 = 2, p=500, 1000, 10000

Figures 34-35 show that the ASCLT is converging to the N (0, 0.08) distribution

function. For n = 50, the profiles for 1,000 and 10,000 permutations are similar and

indicate that 1000 permutations is sufficient for valid analysis. In Figure 35, the

profiles for 500, 1,000, and 10,000 permutations are approximately coincident, which

suggests that 500 permutations may provide satisfactory analyses.
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Figure 34: ASCLT convergence of L
(i)
n (x), n=50, k0 = 2, p=500, 1000, 10000

Figure 35: ASCLT convergence of L
(i)
n (x), n=100, k0 = 2, p=500, 1000, 10000
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We have confirmed convergence for sample sizes n ≥ 50. We now explore the rate

of convergence for larger samples (n = 1000, 2000, 3000) in Figures 36-41 in order

to determine the minimum number of permutations needed. The idea is that larger

sample sizes should require lower numbers of permutations to achieve similar results

to those for smaller sample sizes. Various values for the initial number of observations

k0 used for calculating the test statistic in its ASCLT. The results for k0 = 2 and

k0 = 20 are provided.

Without permutations, the convergence is very slow. Viewing Figures 36-37 alone

would not provide confidence in the convergence. Recall (Section 1.1) that because

we are using only one sequence of data (or sample) not multiple sequences (samples),

the random order of the observations can have a significant effect on the rate of

convergence in the absence of permutations. The profiles for k0 = 2 in Figure 36 are

closer to the target distribution than those for k0 = 20 in Figure 37.

Figure 36: ASCLT convergence of L
(i)
n (x), k0 = 2 (no permutations)
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Figure 37: ASCLT convergence of L
(i)
n (x), k0 = 20 (no permutations)

Adding 20 permutations significantly improves the rate of convergence (Figures

38-39). The curves for k0 = 2 are closer to the N (0, 0.08) distribution curve than

the curves for k0 = 20. The profile for n = 1000 is not close to the target curve,

suggesting that more permutations are required for valid analyses.
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Figure 38: ASCLT convergence of L
(i)
n (x), k0 = 2 (20 permutations)

Figure 39: ASCLT convergence of L
(i)
n (x), k0 = 20 (20 permutations)
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Increasing the number of permutations to 50 (Figures 40-41) improves the con-

vergence rate as anticipated. The profile curve for all three sample sizes are close to

the target normal distribution curve in both tails for k0 = 2. The minimum number

of permutations that may be required for adequate test results is 50. The profiles for

all three sample sizes using k0 = 2 are closest to the N (0, 0.08) distribution function

profile curve for all the permutation levels all the values of k0 investigated.

Simulation studies for larger permutation quantities are an on-going endeavor as

the computational time for such large quantities
(
n
2

)
is very slow. Simulation studies

for unequal variances (Behrens-Fisher Problem) remain an open problem and a next

step.

Figure 40: ASCLT convergence of L
(i)
n (x), k0 = 2 (50 permutations)
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Figure 41: ASCLT convergence of L
(i)
n (x), k0 = 20 (50 permutations)

5.3.2 SIGNIFICANCE LEVEL AND POWER

Using the convergence results from Section 5.3.1, we explore the type I error

for sample sizes n = 5, 10, 15, 25, 50, 100. We apply 1000 permutations for n ≤
50 and 500 permutations for n = 100. The type I error results will determine

which analyses are performed for power. Table 37 contains the simulation results for

variables generated from the N (0, 1). Recall that for small sample sizes, the curves

for the EDF contain sharp jumps and obtain the value of one for much lower quantile

values compared to those of the distribution ofN (0, 0.08); the results for n = 5, 10, 15

reflect this behavior. The type I error values for n = 50, 100 are conservative at the

10% level and strongly conservative at the 5% and 1% levels, indicating that larger

sample sizes may be needed to obtain satisfactory results.
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Table 37: Simulated type I error for the two-
sample problem N (0, 1)

N (0, 1)

Level

n p k0 10% 5% 1%

5
500

2
0.117 0.117 0.117

1000 0.117 0.117 0.117

10
500

2
0.024 0.024 0.024

1000 0.024 0.024 0.024

15
500

2
0.047 0.012 0.012

1000 0.043 0.012 0.012

25
500

2
0.045 0.006 0.000

1000 0.045 0.006 0.000

50
500

2
0.042 0.012 0.000

1000 0.040 0.013 0.000

100
500

2
0.044 0.007 0.000

1000 0.045 0.006 0.000

Note: k0 is the minimum number of observations

used to calculate L
(i,j)
k in (99). Values were ob-

tained from 1000 simulations, where p denotes

the number of permutations of each simulation.

Table 38 contains the power for normally distributed data where the difference in

means between the samples is δ = 1. The power was obtained from 1000 simulations

with p=500 permutations each for sample sizes n = 5, 10, 15, 25, 50, 100 and calcula-

tions were started at k0 = 2 observations per sample. The power for n ≤ 25 is lower

than the type I error, indicating that satisfactory results may not be obtainable with

the proposed test statistic for these small values of n. The power for n = 50, 100 is

close to one for the 10% level is above 0.85 for the 5% level. It appears that larger

sample sizes are needed to obtain an acceptable power at the 1% level.
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Table 38: Simulated power for the
two-sample problem

N (0, 1), N (1, 1)

(Level)

n N 0.10 0.05 0.01

5 10 0.003 0.003 0.003

10 20 0.000 0.000 0.000

15 30 0.215 0.000 0.000

25 50 0.767 0.022 0.000

50 100 0.992 0.872 0.000

100 200 1.000 1.000 0.001

Note: k0 = 2 is the minimum number of

observations used to calculate L
(i,j)
k . Val-

ues were obtained from p=1000 permuta-

tions of 1000 simulations.

5.4 SUMMARY

In this chapter, we investigated a new approach to increase the effective sample

size in the two-sample problem with LQE. We introduced a modification to the test

statistic in Denker and Puri (1992). Due to the open form for the estimate of the

asymptotic variance of the linear rank statistic, we proposed using the upper bound of

the variance given in Denker and Puri (1992) in its place. We hypothesized that the

new test statistic converges to a normal distribution with some unknown variance.

Empirically we verified the convergence in distribution for this new statistic to a

N (0, 0.08) distribution, and we verified the convergence of its corresponding ASCLT

to the same distribution. Simulation results indicate that p=1000 permutations are

needed for stable results. Type I error for sample sizes n = 50, 100 from standard

normal distributions was conservative at the 10% level and very conservative at the

5% and 1% levels. For power, we simulated the data from normally distributed

populations with a difference in means of one. The power for n = 50, 100 was well

above 0.8 for the 10% and 5% levels. It appears that a larger sample size is needed

for adequate power at the 1% level. Analysis for this problem is on-going. Some

future next steps ar provided in Section 6.1.
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CHAPTER 6

CONCLUSION

In this dissertation, we introduced a new approach called logarithmic quantiles es-

timation for analyzing three different types of statistical problems in a nonparametric

setting.

In Chapter 3 we investigated three factorial for the presence of a pattern (trend,

umbrella, etc.) across the levels of one of the factors under the LQE approach.

The models investigated were a two-way fixed effects model, a partial hierarchical

repeated measures model, and a cross-classification repeated measures model. The

presence of an umbrella pattern in the factor for cycle time was confirmed in the

two- factor fixed effect study of the quality of shirts in a manufacturing process. A

study for the effectiveness of two drugs in patients diagnosed with AIDS had a partial

hierarchical model and showed strong evidence of a decreasing trend across time when

interaction between drug treatment and time was considered. The α-Amylase study

introduced by Akritas and Brunner (1996) was analyzed with a cross-classification

repeated measures model and the test for an umbrella pattern in the α-Amylase

levels across the time of day agreed with the results of Akritas and Brunner (1996).

The type I error for the three models were conservative; however, high levels of power

were achieved for reasonable alternatives.

LQE for the change-point problem was studied in Chapter 4 for the test proposed

by Pettitt (1979) for small to moderate sample sizes. We analyzed several small

datasets and compared their results to existing results where other analyses were

available. The LQE approach to the Pettitt test was liberal for smaller sample sizes

but the type I error approaches the significance level as the sample sizes increase.

High levels of power were obtained for relatively small sample sizes when a shift in

location of 0.75 occurred near the middle of the sequence of values.

A new approach for the two-sample problem was proposed in Chapter 5. We

pursued the ideas in Compagnone and Denker (1996) for increasing the efficiency
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of the nonparametric Wilcoxon-Mann-Whitney test (Wilcoxon, 1945 and Mann and

Whitney, 1947) with respect to the parametric t-test using an empirical process of

U -statistic structure. We proposed a new test statistic based on a linear rank statistic

using a second order empirical U -statistic process to generate paired averages within

each independent sample divided by the upper bound for the asymptotic variance.

The process effectively increased the sample size from n to
(
n
2

)
. We empirically

confirmed the convergence in distribution of the new statistic, and the convergence of

the corresponding ASCLT for samples sizes n ≥ 50. Simulated type I error and power

were provided for small to moderate independent samples (n ≤ 100) of normally

distributed random variables. The type I error results were conservative. The power

for n = 50, 100 at the 5% and 10% levels exceed 0.8 for a difference in means of one.

The use of the LQE approach in the three different statistical problems above

significantly expands the body of knowledge for LQE. The results obtained in this

dissertation confirm the potential viability of LQE for many additional analyses. We

include some open problems and areas for future exploration in the following section.

6.1 FUTURE WORK AND OPEN PROBLEMS

We discuss several open problems and topics for future investigations under the

LQE approach. The conservativeness of LQE in nonparametric models has been

an open problem since its introduction by Thangavelu (2005). Another open is-

sue involves addressing the liberal results of the model for the change-point problem.

Change-point and time series are two areas that are quickly advancing to keep abreast

of the need to analyze large data streams generated in this era of rapid technolog-

ical advancement. The LQE approach may be suited to address both change-point

problems and time series analyses for large datasets.

We continue to explore the two-sample problem introduced in Chapter 5. Our

next steps include investigating more efficient computational approaches, and explor-

ing modifications to the test statistic to improve type I error and power in smaller

sample sizes. We will also consider testing for equal variances of the two-samples

using the test proposed in Compagnone and Denker (1996) with the LQE approach.

The field of LQE is relatively new, and the results of this dissertation begin to

reveal the potential for its extension to many statistical areas.
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