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ABSTRACT 

INVESTIGATING THE RELATIONSHIP BETWEEN LATENT DRIVING PATTERNS AND 

TRAFFIC SAFETY USING SMARTPHONE-BASED MOBILE SENSOR DATA 

 

Kenneth Wynne 

Old Dominion University, 2016 

Director: Dr. Rajesh Paleti  

 

Crash frequency modelling has been used in the past as an attempt to quantify the 

expected number of crashes occurring on a certain segment of roadway given a set of variables 

and factors describing the roadway segment and the traffic along that segment. These models are 

referred to as the Safety Performance Functions (SPFs) in the Highway Safety Manual (HSM). 

In past studies, these SPFs have focused primarily on roadway geometric information along with 

limited traffic exposure data such as traffic volume. Alternate data sources for probe vehicle data 

are increasingly available and this research sought to exploit this new information in order to 

obtain an improved model. Specifically, this research aims to make use of the accelerometer 

sensors in smartphones to extract microscopic traffic measures that can serve as better indicators 

of driving patterns. The study focused on crash frequency along roadway segments in the 

Hampton Roads region. To start-off, mobile sensor data was collected by driving along major 

roadways in the Hampton Roads region during the evening peak period (4 to 6 pm). Next, this 

data was overlaid on the transportation network to map probe data and the roadway segments. 

Then, several acceleration and deceleration metrics were calculated for each roadway using the 

mobile sensor data. Subsequently, these metrics were appended to the VDOT crash data for the 

past one year. Supplementary data sources were used to assemble information regarding roadway 

inventory data and traffic exposure information. Next, statistical model estimation was 



 
 

undertaken to identify the factors affecting crash frequency along major interstates in Hampton 

Roads. 

The results indicate that when comparing a model based solely on roadway geometrics to 

a model including both roadway geometrics and probe vehicle data, the combined model was a 

significant improvement. Several probe vehicle data parameters capturing microscopic traffic 

conditions were significant in the final model. Lastly, elasticity analysis was undertaken to 

quantify the relative impact of different factors in the model. With regard to statistical modeling, 

this research considered both a Poisson and a negative binomial model that served as standard 

models for crash frequency modeling in the literature. The negative binomial model was found to 

be a significant improvement over the Poisson model. Previous research has indicated that 

negative binomial models tend to perform better than Poisson models when there is over-

dispersion present in the dataset. This research supports this claim. Overall, this research has 

determined that the addition of probe vehicle data to roadway inventory data and the usage of a 

negative binomial model have proved to provide a robust crash frequency model. 
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CHAPTER 1 

INTRODUCTION 

 In the United States there were 32,675 fatalities as a result of motor vehicle crashes in 

2014 and current trends show that an increase of about 8.1 percent is expected in 2015 (NHTSA, 

2015). In the year 2014, in Virginia alone, 700 people were killed and 63,384 people were 

injured in a total of 120,282 motor vehicle accidents (DMV, 2014). The Federal Highway 

Administration (FHWA) is anticipating a compound annual growth rate in vehicle miles 

travelled (VMT) of approximately 1.04 percent through the year 2033 (FHWA, 2015). In spite of 

recent vehicle safety improvements, alongside of improved roadway design practices, roadway 

crashes remain a serious issue especially considering the anticipated increase in VMT. These 

crashes not only cause injury and loss of life, but they also cost a considerable amount to the 

people involved. For instance, in 2010, the economic costs of motor vehicle crashes in the United 

States totaled $242 billion. These costs come from not only from the damage to vehicles and the 

medical bills of the injured but, also include items such as $28 billion due to congestion (Blincoe 

et al., 2015).  

When the spatial distribution of crashes over any transportation network is analyzed, it is 

common to observe hotspots (e.g., major merge areas, bottlenecks) where the crash risk is 

relatively high. These statistics suggest that while certain hotspots may be unsafe primarily due 

to the geometric features of these locations, in many cases the safety risk seems to be an outcome 

of the unsafe driving patterns (e.g., sudden lane changes) along the roadway stretching 

downstream and/or upstream of the actual crash locations. Even though there is plenty of 

research on correlating safety measures to roadway characteristics and some elements of traffic 

flow (e.g., AADT, average speed), there is no significant literature on analyzing the correlation 

between high-resolution dynamic speed and/or acceleration data and crash risks along highway 
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segments. It is important to determine the direct vehicular behavior alongside of the roadway 

characteristics associated with higher crash rates in order to make progress towards reducing the 

total number of crashes. 

Speeding has long been seen as an unsafe driving behavior and historical crash records 

support this claim. In the year 2012, 30% of crash fatalities involved a speeding vehicle 

(NHTSA, 2014). It is within reason to assume that it is possible to predict other driving 

characteristics which contribute to crashes as well. Collecting such high-resolution data is now 

feasible with the mobile consumer devices such as smartphones and on board diagnostic (OBD) 

devices. Smartphones are now equipped with sensors capable of recording vehicle performance 

data at a very fine temporal resolution (Zhen and Qiang 2014). These sensors can provide a rich 

dataset, i.e., high resolution speed and acceleration profiles, that can be used for identifying 

unsafe driving patterns. In fact, several auto insurance firms (e.g., Progressive’s Snapshot) have 

been experimenting with monitoring driving activity (e.g., hard-brakes per mile) through OBD 

devices to assess and valuate the crash risk of individual drivers. However, there is no significant 

research on investigating the potential use of high-resolution data from mobile sensors or 

smartphones in understanding crash risks and safety measures for highway sections.  

Some research has been conducted to predict what type of vehicular behavior and 

roadway characteristics lead to crashes with varying levels of success. Different approaches have 

been taken in regards to data collection, model selection, and model implementation (Mannering 

and Bhat, 2014). In this context, the objective of the current study is to identify unsafe driving 

patterns using mobile sensor data and explore the relationship between these latent driving 

patterns and traffic crash incidences. This research will take a simplistic and direct approach to 

data collection by using these new technologies to obtain data directly from probe vehicles 
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themselves. Unlike most previous research, this information will allow for the most relevant and 

rich data to be made available for statistical analysis. The goal of this approach is to obtain a 

more accurate model which can determine crash frequency for a wide variety of roadway 

segments. This research will seek to achieve the following goals. 

1. Collect a rich and robust dataset of driving behavior from probe vehicles in 

Hampton Roads, Virginia. 

2. Develop a statistical model that can accurately predict the number of expected 

crashes in a year for each segment of interstate roadway in Hampton Roads, 

Virginia. 

3. Develop parameter estimates for this model using the Virginia Department of 

Transportation’s crash database for the region. 

4. Demonstrate the improvement in model fit due to high resolution data from 

smartphone mobile sensors. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Crashes are rare and random events. So, the number of observed crashes at any given 

location can fluctuate year-to-year even if all the observable crash causation conditions remain 

the same between the two years. If the observed crash frequency is very high in one year, then it 

is more likely to be followed by relatively lower crash frequency in the next year, and vice-versa. 

This effect is referred to as the ‘Regression-To-Mean Bias’. This inherent variation in observed 

crash frequency poses a challenge to evaluating the effectiveness of different safety 

countermeasures. For instance, it is unclear if the reduction (or increase) in crash occurrences is 

due to random fluctuation or the safety countermeasure. To address this problem, safety analysts 

rely on estimates of the long term average crash frequency, also referred to as ‘Expected Crash 

Frequency’, as a proxy for crash risk. The observed crash frequency across several locations is 

used to statistically estimate the expected crash frequency. Expected crash frequency modelling 

is a reliable method for determining the safety of a segment of roadway. This technique seeks to 

determine the long term average number of crashes per a given unit of time by developing a 

correlation between certain explanatory variables and the number of observed crashes relating to 

them. The intricacies of these models lie in the determination of which explanatory variables to 

consider and the type of model employed.  

2.1 Explanatory Variables 

Choosing which explanatory variables to consider is an important aspect of modelling 

crash frequency. Previous studies have looked at explanatory variables primarily in two 

categories, physical characteristics of the roadway and data collected regarding vehicles 

travelling along the roadway of study. According to Ogle (2005), the majority of these early 
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studies focused on physical characteristics of the roadway due to a lack of consistent and 

accurate data collection means. New studies have been conducted as vehicular data collection 

has become more accessible due to vehicles having cheap on board sensors. 

Eustace, Aylo, and Mergia (2015) conducted research which focused solely on the 

physical conditions of the roadway and the driver’s age. This type of data is was easy to collect 

due to it already being included with the crash data they had obtained for their study. Each of 

their explanatory variables, other than traffic volume counts, was categorical in nature. 

Considering the nature of the data source, their research could come to limited conclusions. 

Research conducted by Shankar et al. (1997) considered roadway geometry for the majority of 

explanatory variables when modelling accident frequencies but, this research also included 

factors such as annual average daily traffic and truck volumes. This information is more detailed 

than simply looking at roadway geometry because it begins to explore the road users themselves. 

Unfortunately, data such as this is unable to capture the actual flow and movements of individual 

vehicles. It is difficult to develop an accurate representation of expected crash frequencies when 

the characteristics of the actual vehicles travelling the corridor are not considered. Moreover, 

according to research by Mekker et al. (2015), the overall congested crash rate in the state of 

Indiana is 24.1 times greater than the uncongested crash rate. According to this finding it is 

important to be able to capture data in a congested roadway state. Simple aggregate measures 

such as average daily traffic and truck volumes cannot capture these differences between 

congested and uncongested conditions. Probe vehicle data, on the other hand, can be used to 

capture the acceleration and deceleration profiles that serve as reliable indictors of congested 

traffic conditions. Naturalistic driving behavior is data that is collected regarding the movements 

of the actual vehicle itself through space and time. Previous studies have relied on simulation 
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models to capture this type of data. Gettman and Head (2003) used microscopic simulations to 

develop surrogate safety measures in order to model crash frequency. This method of data 

collection allows the researcher to control for every aspect of the simulation while being able to 

alter the simulation to fit different scenarios. Multiple simulation inputs may be evaluated in a 

short period of time to get the most accurate results. A limitation in simulation based models is 

the fact that real world, real time observations are not directly accounted for.  

Recent studies have focused on obtaining and using data collected directly in the field to 

develop more accurate crash frequency models (Mannering and Bhat, 2014). Onboard 

diagnostics (OBD) systems were originally developed to reduce vehicle emissions but, are now 

regularly used in transportation research to obtain the aforementioned naturalistic driving 

behavior data (Jun, 2006). Ogle (2005) focused primarily on data obtained using an OBD which 

collected vehicle travel data from the vehicle’s on board computer and The Global Positioning 

System (GPS) which collected data through a satellite receiver in the vehicle. These were 

relatively new tools which could collect data directly from the vehicle instead of relying solely 

on outside sensors. Ogle (2005) determined that GPS is a reliable tool for measuring speed given 

an adequate number of connected satellites but, GPS can be unreliable in areas of bad weather or 

overhead obstacles such as in tunnels. 

Another option when considering probe vehicle data is using data that is crowd-sourced, 

collected, and combined into a dataset by a third party source. Mekker et al. (2015) relied on 

crowd-sourced data for their research on determining crash rates based on traffic congestion. 

This data source has the benefit of allowing the researchers to have a more robust dataset that 

encompasses a greater length of time. The data can be collected and stored for multiple years 

rather than only being available for the duration of research period. This allows the researcher to 
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have access to probe vehicle data that was collected around the time that actual accidents 

occurred. A negative aspect of this source of data lies within the fact that all data is collected in 

an uncontrolled manner. This may cause some bias in the dataset if an overly passive or overly 

aggressive driver has collected the majority of the data that the researcher is using. 

Wåhlberg (2004) looked at the acceleration profiles of busses as a potential indicator of 

crash frequency. This study concluded that driver acceleration behavior could be used as a 

predictor of accidents but, due to some discrepancies between samples it is difficult to determine 

the validity of this finding. For this study the acceleration data was recorded on-board using a g-

analyst which measured the acceleration at 10 Hertz to 100th of 1g (9.81 m/s2) accuracy. This 

tool did not measure the acceleration from the vehicle directly but, simply measured the g-force 

felt by the bus starting and stopping. This may have resulted in errors due to the vehicle not 

producing the data itself. 

A potential source for speed data could be crash reports that were completed at the scene 

of an accident by the police. This would appear to be a simple way to obtain a piece of driving 

behavior but, according to Shinar et al. (1983) speed should not be obtained from a police crash 

report. This research concluded that the police may be under a lot of stress during incident 

investigations and may not be able to accurately determine the speed at which the driver was 

going. Also, the driver himself may underreport the estimated speed which they were travelling 

in an attempt to lessen the likelihood of receiving additional infractions for an incident. 

Alternatively, speed limit may serve as a better proxy for traffic speed.  

Due to the insight that the roadway attributes and traffic characteristics provide for crash 

frequency modelling, it is important to consider both of these types of data simultaneously. Many 

recent studies have done this to create a more comprehensive model.  
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2.2 Crash Data  

The previously mentioned explanatory variables are considered to attempt to predict the 

occurrence of a vehicular crash. The actual crash data the model uses is an important aspect of a 

successful crash frequency model. The majority of previous works relied on police crash reports 

for crash data. Using this data allows the researcher to assign a specific crash location to each 

incident recorded (Mannering and Bhat, 2014). After geo-coding crash locations, all crash 

occurrences within a certain geographical boundary (eg: roadway segment, intersection, or 

county) over a one year time period are aggregated to obtain to the observed yearly crash 

frequency. In cases when the time period is different from one year, the effective yearly crash 

frequency rate is calculated by dividing the aggregated crash frequency with the number of years 

in the time period.  

Unfortunately, this data is not always accurate and, more importantly, not all crash data is 

reported in the first place. Literature suggests that underreporting in crash data may result in 

significant bias if this phenomenon is not considered in the model. Previous research has 

indicated that underreporting is most likely to occur in incidents where little to no damage occurs 

(Yamamoto et al., 2008). Amoros et al. (2006) conducted research which attempted to measure 

the amount of underreporting in crashes in France by comparing the reported crashes to the 

Rhône road trauma registry. This registry contains information regarding all road crashes within 

the Rhône County where the occupants sought medical attention. The study concluded that 

according to its research the police reporting rate within this county is only 37.7%. Research by 

Kim et al. (1995) reflected this idea that crashes where minor to no injury occurred are 

sometimes not reported by the police.  This measurement of underreporting should be considered 
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when conducting any sort of crash frequency analysis. Not all crashes may be accounted for and 

this will be a source of error in the model. 

A benefit of using crash databases that were created using police reports is the amount of 

data that is included in the report itself. Mekker et al. (2015) used crash reports provided through 

a state crash database. The crash data provided included specific information such as the number 

of vehicles involved, number of trailers involved, and whether or not a construction zone was 

associated with the crash. This information was able to be included in the model due to the detail 

of the crash database itself. If this information were not present then the study would not be able 

to include such factors in the analysis. 

2.3 Crash Frequency Modelling Techniques 

Crash-frequency data is count in nature, i.e., observed crash frequency is a non-negative 

integer number without a pre-specified upper limit (i.e., it is not bounded from above). So, 

simple regression techniques that deal with continuous data are not suited for modeling crash 

frequency. The Poisson and Negative Binomial models have served the standard workhorse 

models for modeling count data. In transportation safety, count models are used to develop 

Safety Performance Functions (SPFs) that quantify the frequency of crash occurrences at any 

given location or region (Qin et al., 2005; Ahmed et al., 2011; Narayanamoorthy et al., 2013). 

The Poisson model makes the restrictive assumption that the mean and variance in the count data 

are the same – referred to as the ‘equi-dispersion’ property. So, Poisson model cannot handle 

situations where the mean is less than variance (under-dispersion) or mean is greater than 

variance (over-dispersion). In fact, crash-frequency data typically exhibits over-dispersion. 

Under-dispersion is rarer than over-dispersion but, it is sometimes present in crash-frequency 

data.  Typically, under-dispersion in crash-frequency data is observed when the sample mean 
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value is low and the sample size is small (Lord and Mannering, 2010; Mannering and Bhat, 

2014; Hinde and Demétrio, 1998; Lord, Geedipally, and Guikema, 2010; Li et al., 2013). 

Some research has turned to a negative binomial distribution model after noting the 

limitations of Poisson regression models. Specifically, the negative binomial distribution is better 

suited to handle over-dispersed datasets. For instance, Eustace, Aylo, and Mergia (2015) 

assumed a negative binomial distribution for their generalized linear model when attempting to 

predict crashes that were occurring at merging and diverging areas on an interstate freeway. This 

method was chosen primarily as a means to account for over-dispersion in the dataset. The 

negative binomial model l is by far the most commonly used model in crash frequency modeling. 

However, the limitation of the negative binomial distribution is the fact that it cannot handle 

under-dispersed data which tends to occur when there are small sample sizes or low sample 

mean values (Lord and Mannering 2010).  

 Research conducted by Miaou (1994) concluded that it is important to keep in mind both 

the Poisson and negative binomial modelling techniques when develop crash frequency models. 

This research indicated that the Poisson model should first be considered as an initial model to 

develop the relationship between the explanatory variables and crashes. If there is high over-

dispersion present then negative binomial or other more advanced models should be considered. 

2.4 Summary 

Researchers have taken various approaches to crash frequency modelling over the years. 

Recent advances in technology have allowed researchers to collect more accurate data than ever 

before. Data is now able to be obtained through sensors that reside within the vehicles 

themselves. Based on this literature review it is important to consider vehicle trajectories instead 

of just roadway characteristics when modelling crash frequency. Researchers have found that 
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using emerging data sources such as naturalistic driving behavior may provide a more accurate 

model (Mannering and Bhat 2014). This research will seek to build upon previous research by 

employing a negative binomial model using OBD and GPS data collected from probe vehicles as 

well as roadway geometric characteristics and incident data to develop a comprehensive crash 

frequency model.  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Poisson Regression Model 

 The most simplistic starting point for crash frequency modelling lies in the Poisson 

regression model. Typical regression modelling starts with a least-squares model but, this type of 

model cannot be applied to crash frequency models due to the dataset being count in nature. 

Crashes are non-negative integer values and are therefore not continuous values. A least-squares 

regression requires the data to be continuous and is not applicable to crash data. Let s be the 

index for the roadway segment (s = 1,2 …, S) and S be the total number of roadway segments in 

the study area. When applied to crashes along a roadway segment the probability of observing a 

number of crashes y in one year is given by:  

𝑃(𝑌 = 𝑦𝑠) =
𝑒−𝜆𝑠(𝜆𝑠)𝑦𝑠

𝑦𝑠!
                  Equation (1) 

Where P(ys) is equal to the expected number of crashes in a year and λ is the Poisson parameter 

for that specific roadway segment. Poisson models are parameterized by specifying a value for λ 

as a function of a set of explanatory variables. This allows the model to predict the number of 

crashes based on that set of explanatory variables. The probability mass function (PMF) for a 

Poisson distribution can be seen in Figure 1. As can be observed, as lambda increases, the count 

outcome associated with peak probability continues to shift to the right. 
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Figure 1. Probability Mass Function for Poisson Distribution 

 

When using a Poisson model it is assumed that the expected value and the variance both equal λ. 

If this is not true then a Poisson model is not the best fit model for the dataset. Researchers have 

also discovered that the Poisson model does not fit well with data that exhibits over- or under-

dispersion (Lord and Mannering 2010). It is not uncommon for crash data to represent these 

characteristics and therefore, other models should be considered. 

3.2 Geometric Model 

 According to the Geometric model, the probability of observing 𝑦𝑠 crashes conditional on 

the probability parameter 𝑝𝑠 is given by: 

𝑃(𝑌 = 𝑦𝑠) = 𝑝𝑠
𝑦𝑠(1 − 𝑝𝑠); 𝑝𝑠 ∈ [0,1]                    Equation (2) 

The expected value and variance of geometric distribution are given by: 

𝐸(𝑌) = 𝑝𝑠(1 − 𝑝𝑠)−1 𝑎𝑛𝑑 𝑉𝑎𝑟(𝑌) = 𝑝𝑠(1 − 𝑝𝑠)−2                                                    Equation (3) 
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3.3 Negative Binomial Regression Model 

 Researchers have turned to the negative binomial regression model as a solution to the 

Poisson regression’s limitations. This model has an added dispersion parameter, rs, which is an 

assigned value greater than zero. The probability of observing ys crashes in a given year is given 

year conditional on the expected value parameter λs is given by: 

𝑃(𝑌 = 𝑦𝑠) = (
𝑟𝑠

𝑟𝑠+𝜆𝑠
)

𝑟𝑠 Г(𝑟𝑠+𝑦𝑠)

Г(𝑦𝑠+1)Г(𝑟𝑠)
(

𝜆𝑠

𝑟𝑠+𝜆𝑠
)

𝑦𝑠

                                                                  Equation (4) 

Where Г is the gamma function defined as follows: 

Г(𝑡) = {
∫ 𝑥𝑡−1𝑒−𝑥𝑑𝑥

∞

𝑥=0
 for positive non − integer 𝑡

(𝑡 − 1)! for positive integer 𝑡
                                               Equation (5) 

The variance of the negative binomial distribution is 𝜆𝑠 +
𝜆𝑠

2

𝑟𝑠
 which is always greater than the 

expected value parameter λs. This condition allows the negative binomial distribution to be well 

suited for over-dispersion; when considering crash data the variance is often higher than the 

mean. Figure 2 shows how changes in lambda effects the probability mass function while Figure 

3 shows how changes in the over-dispersion parameter, r, effects the probability mass function. 
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Figure 2. Probability Mass Function for Negative Binomial Distribution – r Constant 

  

 

Figure 3. Probability Mass Function for Negative Binomial Distribution – Lambda Constant 
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As r approaches large values the negative binomial model reverts back into the Poisson model. 

This effect can be observed in Figure 4.

 

Figure 4. PMF for Negative Binomial Distributions Compared to Poisson 

 

A limitation of the negative binomial model is when the count data is considered under-dispersed 

because the negative binomial model assumes an over-dispersed dataset. 
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CHAPTER 4 

DATA ANALYSIS 
 

4.1 Crash Database 

Vehicle crash data was obtained through a Virginia Department of Transportation 

(VDOT) database that includes all reported crashes from October 2014 to October 2015 for the 

entire Hampton Roads Region. There were many records in the database which were affiliated 

with disabled vehicles. These records were omitted because the study is only interested in actual 

vehicle crashes. This raw data contained 111 characteristics for each crash. Some of this 

information is administrative in nature such as who recorded the crash, how it was recorded, and 

who last modified the report; these variables were not beneficial in the analysis. The database 

also recorded the type of crash (vehicle accident, multi-vehicle accident, or tractor trailer 

accident) and time impact severity of the crash (< 30 min., 30 min. to 2 hours, or > 2 hours). 

However, this study considered only total crash frequency instead of crash frequency by type and 

severity. So, these variables were not used in the analysis. One variable of particular importance 

in the crash database was the location (latitude and longitude) of crash occurrence. The location 

of the crash was used to overlay the crash data onto the transportation network of Hampton 

Roads region. Next, each crash was geocoded to one of the roadway segments (i.e., spatial unit 

of analysis). Lastly, all crash occurrences on each roadway segment in the past year were 

aggregated to obtain the crash frequency that serves as the dependent variable of analysis. 

4.2 Spatial Unit of Analysis  

One of the first steps to crash frequency modeling is selecting the spatial unit of analysis, 

i.e. the geographical extent of region over which the expected crash frequency is modeled. The 

current study focusses on crash frequency along major interstates in the Hampton Roads region. 
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So, the empirical context implies that the interstates must be split into smaller segments that 

constitute the unit of analysis. However, this decision cannot be made arbitrarily because the 

availability of roadway inventory data and the homogeneity of resulting segments are critical to 

developing an accurate crash frequency model. So, several segment definitions were explored 

prior to choosing the spatial unit of analysis. For instance, the easiest and straightforward 

segment definition is uniform one-mile segments starting from the first mile marker of each 

interstate. However, such segmentation can result in non-homogenous segments, i.e. the roadway 

geometric characteristics and traffic conditions can vary considerably within each segment. For 

instance, a portion of the one mile stretch may correspond to the freeway portion and the 

remaining portion corresponds to ramp area. Another alternative was the publicly available 

Census Bureau’s TIGER (Topologically Integrated Geographic Encoding and Referencing) 

database that divides each roadway into a contiguous stretch of several smaller segments. For 

instance, there were 72 unique TIGER Line segments along I-264 East in the study region. It is 

important to note that these segments are homogenous but not uniform. However, one of the 

limitations of using the TIGER segments was unavailability of extensive roadway inventory 

data. Barring a few important variables such as number of lanes and segment length, other key 

attributes such as shoulder and median presence were missing. The third alternative was using 

the segment definition in the VDOT’s roadway inventory database that provided detailed 

information characterizing each segment. However, just as the TIGER segments, the VDOT 

segments were also not uniform. Based on the relative merits of the three segment definitions 

(uniform, TIGER, and VDOT), this study adopted the VDOT segment definition as the spatial 

unit of analysis. Figure 5 highlights the roadway segments used within the Hampton Roads 

Region in this study. 
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Figure 5. Roadway Segments Used in Analysis 

 

4.3 Temporal Unit of Analysis 

Weekend crashes were omitted due to travel patterns being inconsistent with other travel 

days. Also, a histogram of the crash data, seen in Figure 6, indicated that there was considerable 

over-representation of crashes during the peak period between 4:00 pm and 6:00 pm. 

Specifically, nearly 18% of all crashes in the past year occurred during the two hour PM peak 

period. This observation coupled with the constraint that it is not feasible to collect probe vehicle 

data using smartphones along all interstates during all hours of the day, the two hour time period 
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between 4 and 6 pm was chosen as the temporal unit of analysis. So, instead of using crash 

frequency in the past year along each roadway segment in the entire day, crashes that occurred 

during the two hour PM peak period were considered in the analysis. So, the dependent variable 

of analysis is crash frequency between 4 and 6 pm during weekdays in one year. Figure 7 

displays the total number of trips recorded and crashes observed for each segment of roadway 

analyzed by this research. 

 

Figure 6. Total Incidents per Hour of the Day 
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Figure 7. Total Number of Incidents and Trips by Segment Id 

 

4.4 Supplementary Data 

Several additional data sources were used to compile the explanatory variables in the 

crash frequency analysis. These data components can be sorted into three distinct categories: 

roadway inventory data, probe vehicle data, and exposure (i.e., traffic volume).  

 The roadway inventory information was obtained from a VDOT maintained database that 

contains information regarding to the physical characteristics of the roadway. Some of the 

segments contained within the database contained incomplete or missing information. These 

segments were removed and there were a total of 293 unique roadway segments remaining to be 

used in this research. Figure 8 displays the frequency distribution for the number of crashes 

occurring in a single roadway segment during the two hour PM peak window. 
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Figure 8. Frequency of Incidents per Roadway Segment 

 

All of these segments fall on interstates within the Hampton Roads region of Virginia. The 

length of each segment was recorded to account for varying lengths between segments. The first 

piece of information pulled from this database is the number of lanes of the roadway segment. 

The number of lanes varied from one lane to five lanes. This variable was broken down into 

three separate categories: less than or equal to two lanes, three lanes, and greater than or equal to 

4 lanes. The next variable used from this dataset was the surface type. This category was only 

broken down into two types within the roadway segments considered: plant mix and Portland 

cement concrete. The plant mix category is a typical asphalt roadway and the Portland cement 

concrete is a concrete surface. Surface width was taken from the database and broken into three 

categories: less than or equal to 24’, 24’ to 48’, and greater than or equal to 48’. The presence of 

shoulder on both the right and left side of the roadway was also included in this database and 

recorded for analysis. If a shoulder is present, the width of the shoulder was also recorded and 

broken into three categories: Less than or equal to 8’, 8’-12’, and greater than or equal to 12’. 
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The database provided information as to whether or not the roadway segment was a high 

occupancy vehicle (HOV) lane or a regular lane. Along with HOV lanes, the database considered 

whether or not the lane was a reversible lane. These variables were considered in the model. 

Median presence was also considered and if there was a median, its type and size was 

considered. Types of median were split between grass median and a combination of positive 

barrier and curbed median for the analysis. The width of these medians was also considered. This 

category was broken into median widths which are less than 20’, widths that are greater than or 

equal to 20’ and less than or equal to 40’, and widths that are greater than 40’. The final variable 

considered from the roadway inventory was the type of system the segment was contained in. 

This variable was broken into two categories: divided, full control of access, and a combination 

of roadways which were one-way, part of a one-way system, and two-way, non-divided 

roadways. Table 1 and Table 2 provide an overview of all of the previously mentioned roadway 

inventory explanatory variables, along with their frequency and percentage distributions used in 

the final dataset. Information regarding how these variables fit into the model can be found in the 

‘Results’ section. 
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Table 1. Categorical Roadway Inventory Data 

Number of Lanes Frequency Percentage 

Less Than or Equal To 2 114 38.9% 

3 92 31.4% 

Greater Than or Equal to 4 87 29.7% 

Total 293 100.0% 

Surface Width 
  Less Than or Equal To 24' 110 37.5% 

24'-48' 96 32.8% 

Greater Than or Equal to 48' 87 29.7% 

Total 293 100.0% 

Surface Type 
  Plant Mix 140 47.8% 

Portland Cement Concrete 153 52.2% 

Total 293 100.0% 

Presence of Right Shoulder 
  Shoulder Present 144 49.1% 

No Shoulder 149 50.9% 

Total 293 100.0% 

Right Shoulder Width 
  Less Than or Equal To 8' 155 52.9% 

8'-12' 137 46.8% 

Greater Than or Equal to 12' 1 0.3% 

Total 293 100.0% 

Presence of Left Shoulder 
  Shoulder Present 188 64.2% 

No Shoulder 105 35.8% 

Total 293 100.0% 

Left Shoulder Width 
  Less Than or Equal To 8' 143 48.8% 

8'-12' 145 49.5% 

Greater Than or Equal to 12' 5 1.7% 

Total 293 100.0% 

HOV Lane 
  Lane is an HOV Lane 25 8.5% 

Lane is not an HOV Lane 268 91.5% 

Total 293 100.0% 

Table Continued on Next Page   
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Table 1. Continued 

Reversible Lane Frequency Percentage 

Lane is Reversible 2 0.7% 

Lane is Non-Reversible 291 99.3% 

Total 293 100.0% 

Median Type 
  Grass/Unprotected 87 29.7% 

Positive Barrier or Curbed 94 32.1% 

No Median 112 38.2% 

Total 293 100.0% 

Median Width Minimum 
  Less than 20' 243 82.9% 

Greater Than or Equal to 20' and Less Than or Equal to 40' 7 2.4% 

Greater than 40' 43 14.7% 

Total 293 100.0% 

Facility Type 
  One Way, Part of a One-Way System or Two-Way, Non-Divided 37 12.6% 

Divided, Full Control of Access 256 87.4% 

Total 293 100.0% 

 

Table 2. Continuous Roadway Inventory Data 

Continuous Variable Units Mean 
5th 

Percentile 
95th 

Percentile 
Standard 
Deviation 

Segment Length Miles 0.44 0.09 1.20 0.44 

 

The second major source of data was obtained through probe vehicles. Vehicles were 

equipped with cellular devices which were linked to on board diagnostic (OBD) devices through 

Bluetooth technology. The OBD device interfaces with the computer system within the vehicle 

itself. This device records information such as the velocity of the vehicle and the rotations per 

minute of the engine.  The cellular device runs an Android application named GoGreen which 

has the capability of interfacing with the OBD device to record even more information through 

sensors located within the phone. The GoGreen application records the forces exerted on the cell 

phone by the moving vehicle by accessing the gyroscope inside of the phone. These vehicles 
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equipped with the data collection technology were driven on interstate roadways within Hampton 

Roads during the 4:00 p.m. to 6:00 p.m. time period. The probe vehicle data was collected by 

using the car following technique in which the probe vehicle drove at a speed very close the 

surrounding traffic in the right hand lane and passing slower traffic when feasible to mimic the 

“average” commuter. The 4 to 6 pm time period was previously selected based on the peak 

number of crashes occurring in this region during those hours. The GPS feature in the 

smartphone was also enabled to track vehicles as they drive along the interstates. The GPS 

coordinates were also used to map the probe vehicle onto the roadway segments that constitute 

the spatial unit of analysis. Several metrics were then calculated for each segment using the 

probe vehicle data to capture driving behavior. 

First, the mean traffic speed for each segment was obtained by averaging the speed 

recordings for all trips contained within that single segment. This mean traffic speed was broken 

down into three distinct categories: less than 45 mph, greater than 45 mph and less than 60 mph, 

and greater than or equal to 60 mph. Next, speed data taken from the OBD device was used in 

order to calculate acceleration values for the model. The OBD device recorded speed values at a 

one second frequency. The difference between two consecutive velocity readings over a one 

second time period was considered the acceleration for that data point. This acceleration value 

was then converted to feet per second
2
 for analysis. The acceleration data was also divided into 

two separate categories: accelerations and decelerations. Accelerations were taken as all positive 

acceleration recordings and decelerations were taken as all negative acceleration recordings. All 

positive acceleration values will be referred to as “Accelerations” and all negative accelerations 

will be referred to as “Decelerations” in the rest of the thesis. The minimum and maximum 

values of acceleration recorded were calculated in order to obtain information regarding the 
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extreme values observed within each roadway segment. Standard deviation was calculated across 

all accelerations and decelerations. Average acceleration values for were calculated among 

accelerations and decelerations separately as well as accelerations and decelerations combined 

and recorded into the dataset. To capture unique driving patterns, two additional metrics were 

calculated - the number of accelerations within a segment that were above median acceleration 

(NACC50) and the number of decelerations within a segment that were below median 

deceleration (NDEC50). These calculated values were also used to categorize segments based on 

their pattern of accelerations. If NACC50>0 and NDEC50=0, the segment is to be considered 

‘primarily accelerating’. Similarly, if NACC50=0 and NDEC50>0, the segment was considered 

‘primarily decelerating’. If NACC50>0 and NDEC50>0, then the segment was considered both 

accelerating and decelerating. Lastly, if NACC50=0 and NDEC50=0, the segment was 

considered steady flow due to the lack of higher end acceleration values. A similar method was 

taken to capture extreme driving patterns. The 5
th

 and 95
th

 percentile accelerations were 

calculated and if a segment had a deceleration recording below the 5
th

 percentile it was 

considered to have an extreme deceleration. If a segment had an acceleration recording above the 

95
th

 percentile it was considered to have an extreme acceleration. If a segment had an 

acceleration above the 95
th

 percentile and a deceleration below the 5
th

 percentile then it was 

considered to have both extreme acceleration and deceleration present. The average speed was 

also calculated from probe vehicle recordings and included in this database. Table 3 displays the 

mean, 5
th

 percentile, 95
th

 percentile, and standard deviation for the continuous variables used in 

the final dataset.  
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Table 3. Continuous Metrics computed using Probe Vehicle Data 

Continuous Variable Units Mean 
5th  

Percentile 
95th 

Percentile 
Standard 
Deviation 

Maximum Deceleration ft/sec2 -3.89 -9.25 -0.37 2.97 

Maximum Acceleration ft/sec2 3.21 0.39 8.38 2.44 

Ave. Accel. Across All Accel. And Decel. ft/sec2 0.01 -0.73 0.70 0.59 

Average Deceleration ft/sec2 -0.01 -0.03 0.00 0.02 

Average Acceleration ft/sec2 0.01 0.00 0.03 0.02 

Standard Dev. Across Accel. And Decel. ft/sec2 1.15 0.32 2.13 0.60 

Average Speed mph 49.94 19.27 65.87 14.06 

 

While estimating the count models, care was taken so that highly correlated continuous metrics 

(see Table 4) from the probe vehicle data are not simultaneously used in the model. As an 

example maximum deceleration was highly correlated with the standard deviation across 

accelerations and decelerations. This is expected because when there are higher maximum values 

then the standard deviation of a similar dataset is expected to be greater as well. Care was taken 

in model development to avoid including highly correlated metrics into the model. 
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Table 4. Correlation Matrix 

  
Max. 

Decel. 
Max. 
Accel. 

Average 
across all 

Accel. And 
Decel. 

Average 
Decel. 

Average 
Acel. 

Standard Dev. 
Across Accel. 

And Decel. 

Maximum 
Deceleration 

1.000 -0.655 0.307 0.514 -0.458 -0.750 

Maximum 
Acceleration 

-0.655 1.000 0.154 -0.506 0.474 0.679 

Average across 
all Accel. And 

Decel. 
0.307 0.154 1.000 0.059 0.022 -0.152 

Average 
Deceleration 

0.514 -0.506 0.059 1.000 -0.960 -0.295 

Average 
Acceleration 

-0.458 0.474 0.022 -0.960 1.000 0.251 

Standard Dev. 
Across Accel. 

And Decel. 
-0.750 0.679 -0.152 -0.295 0.251 1.000 

 

 

Table 5 displays the frequency and percentage distributions of the categorical variables 

used in the final dataset. 

 

Table 5. Categorical Metrics computed using Probe Vehicle Data 

Pattern of Accelerations Frequency Percentage 

Primarily Accelerating 21 7.2% 

Primarily Decelerating 29 9.9% 

Both Accelerating and Decelerating 223 76.1% 

Steady Flow 20 6.8% 

Total 293 100.0% 

Extreme Accelerations Present     

Yes 159 54.3% 

No 134 45.7% 

Total 293 100.0% 

Table Continued on Next Page   
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Table 5. Continued 

Extreme Decelerations Present  Frequency Percentage  

Yes 166 56.7% 

No 127 43.3% 

Total 293 100.0% 

Both Extreme Accel. And Decel. Present   

Yes 127 43.3% 

No 166 56.7% 

Total 293 100.0% 

Average Speed   

Less Than 45 mph 57 19.5% 

Greater Than 45 mph and Less Than 60 mph 117 39.9% 

Greater Than or Equal to 60 mph 119 40.6% 

Total 293 100.0% 

 

The final source of data used in the study was exposure, i.e. the average traffic volume 

during the two hour peak period during weekdays in the past one year. This traffic volume was 

obtained by roadway sensors that are maintained by VDOT. These continuous count stations 

provide a means to control for traffic exposure levels along different roadway segments in the 

estimation dataset. Table 6 displays the mean, 5
th

 percentile, 95
th

 percentile, and standard 

deviation for the traffic exposure variable used in the final dataset. 

 

Table 6. Traffic Volume 

Continuous Variable Units Mean 
5th 

Percentile 
95th 

Percentile 
Standard 
Deviation 

Average Annual Weekday 
Peak Period Traffic 

Vehicles 7862.22 2416.20 12576.00 8140.86 
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CHAPTER 5 

RESULTS 

All the models were estimated bottom-up by adding variables one at a time and checking 

statistical significance and intuitiveness at each step. As a general rule, 95% confidence rule was 

used for retaining parameters in the model. However, in some cases, parameter estimates with 

lower confidence level were also retained either if the corresponding result was intuitive or was 

deemed interesting to support future research. First, the Poisson model that is the most 

commonly used count model in the literature was estimated. Next, the Negative Binomial model 

that relaxes the equi-dispersion assumption of the Poisson model was estimated. Also, within 

each model, two versions were estimated. The first version corresponded to a model with only 

roadway inventory, speed, and volume variables that corresponds to typical crash frequency 

models in the literature. The second version corresponds to a model that also includes variables 

calculated using probe vehicles. This was done to demonstrate the improvement in the data fit 

provided by the probe-vehicle data unique to this study. 

5.1 Poisson Regression Model 

The first model created in an attempt to predict vehicle incidents followed a Poisson 

regression. Variables from the roadway inventory, traffic exposure, and probe vehicle data were 

all included in the model. Out of the initial roadway inventory variables tested, only 5 were 

deemed significant enough to remain within the model. Number of lanes was deemed 

insignificant for all categories. This most likely occurs because it has a strong correlation with 

the exposure variable which remained in the model. Surface width was also insignificant due to 

the same correlation with the exposure variable. The surface type of the roadway was also 

deemed insignificant and was removed. The presence of right shoulder was deemed significant 



32 
 

but, the width of the shoulder did not have a significant impact on the model. If a right shoulder 

is present within a roadway segment, the number of expected crashes is reduced. Similar to the 

right shoulder, the left shoulder also had an effect on predicting accident frequency. If a left 

shoulder is present then the expected number of crashes is reduced. The width of the shoulder 

did not have a significant impact on the model. The presence of an HOV lane was found to be 

insignificant and removed from the model. Reversible lane status was not significant in crash 

frequency predictions. The type of median had no significant impact on the model, but the 

median width did. It was found that there was not a significant difference between a median 

width less than 20’ and a median width greater than or equal to 20’ and less than or equal to 40’ 

therefore, these two categories became a base case and the remaining category, greater than 40’, 

remained in the model. If the segment had a median width minimum greater than 40’ then it was 

deemed more accident prone than a roadway segment with a median width minimum less than or 

equal to 40’. The type of facility and the length of the segment were both deemed significant. If 

the facility type was considered ‘One Way, Part of a One-Way System or Two-Way, Non-

Divided’ then there are more expected crashes than if the segment is on a facility considered 

‘Divided, Full Control of Access”. This makes sense considering access control typically leads to 

less conflict points due to a decrease in access to the mainline. Lastly, as the length of the 

segment increases so does the expected number of crashes. This is intuitive due to there being 

more exposure to potential crashes in a longer roadway segment. 

The next input to the Poisson model was the traffic exposure variable. Average annual 

weekday peak period traffic was deemed significant to the model and included. As the amount of 

traffic increases so do the expected number of crashes. This is to be expected considering that if 

there is more traffic on the roadway then the segment is exposed to more potential crashes. 
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Model results seen in Table 7 display parameter estimates if we were to consider only roadway 

inventory and exposure data, which most previous research has focused on. 

 

Table 7. Initial Poisson Model Parameter Estimates 

Parameter Estimate Z-Score 

(Intercept) 1.530 2.401 

Roadway Inventory Parameters 

ln(Segment Length) 0.666 14.440 

Presence of Left Shoulder 
  (Base: No Shoulder Present) 
  Left Shoulder is Present -1.170 -5.079 

Presence of Right Shoulder 
  (Base: No Shoulder Present) 
  Right Shoulder is Present -1.307 -5.518 

Median Width Minimum 
  (Base: Less Than or Equal To 40') 
  Greater Than 40' 0.440 3.866 

Facility Type 
  (Base: Divided, Full Control of Access) 
  One Way, Part of a One-Way System or Two-Way, Non-Divided 1.541 5.720 

Exposure Parameter 

ln(Average Annual Weekday Peak Traffic) 0.122 1.938 

Number of Cases 293.000 
 Log Likelihood -773.325 
  

 

Lastly, probe vehicle information was added to the model. Only four out of the initial 

probe vehicle variables calculated remained in the final Poisson model. Maximum acceleration 

and maximum declaration remained in the model. Both higher maximum accelerations and 

higher maximum decelerations lead to an increase in the predicted number of crashes. Although 

the parameter estimate on maximum decelerations is negative, it still leads to more predicted 
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crashes because the value for the variable ‘Max Deceleration’ will also always be negative. 

Average decelerations and average accelerations were both insignificant. Likewise, the average 

acceleration across decelerations and accelerations was also insignificant. These variables did not 

have much variation across roadway segments and were therefore not indicative of incidents. 

Standard deviation across decelerations and accelerations was also deemed insignificant and 

removed from the model. The number of decelerations above and below the overall median was 

not significant in this model. As a result, the categorical variables corresponding to the pattern of 

accelerations were also not significant. Extreme accelerations and extreme decelerations were 

both considered insignificant and removed from the model. An indicator for a segment having 

both extreme accelerations and extreme decelerations was also insignificant. Lastly, average 

traffic speeds were considered significant in the model. Segments which had average speeds less 

than 45 mph and segments which had an average speeds greater than or equal to 45 mph and less 

than 60 mph both lead to more expected crashes than segments which had average speed values 

which were greater than 60 mph. 

The final parameter estimates, z-scores, number of cases, and log likelihood values can 

all be found in Table 8. In a later portion in this chapter we will discuss the impact that adding 

probe vehicle information had to the model instead of solely relying on roadway inventory data. 

There will also be a discussion as to how these results compare to the results of the negative 

binomial model. 
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Table 8. Final Poisson Model Parameter Estimates 

Parameter Estimate Z-Score 

(Intercept) -0.387 -0.540 

Roadway Inventory Parameters 

ln(Segment Length) 0.563 11.903 

Presence of Left Shoulder 
  (Base: No Shoulder Present) 
  Left Shoulder is Present -0.336 -1.752 

Presence of Right Shoulder 
  (Base: No Shoulder Present) 
  Right Shoulder is Present -0.600 -3.076 

Median Width Minimum 
  (Base: Less Than or Equal To 40') 
  Greater Than 40' 0.301 2.579 

Facility Type 
  (Base: Divided, Full Control of Access) 
  One Way, Part of a One-Way System or Two-Way, Non-Divided 0.502 2.134 

Probe Vehicle Data Parameters 

Max Deceleration -0.043 -2.338 

Max Acceleration 0.131 6.129 

Average Traffic Speed 
  (Base: Greater Than or Equal to 60 mph) 
  Less Than 45 mph 0.519 3.438 

Greater Than or Equal to 45 mph and Less Than 60 mph 0.205 1.587 

Exposure Parameter 

ln(Average Annual Weekday Peak Period Traffic) 0.133 1.816 

Number of Cases 293.000 
 Log Likelihood -655.611 
  

 

5.2 Negative Binomial Regression Model 

Once the Poisson model was completed, a negative binomial model was estimated in an 

effort to obtain a better fit given that preliminary descriptive analysis showed over-dispersion in 

the crash data. This model was able to reduce the number of roadway inventory variables from 

five to one. The only remaining roadway inventory parameter that was deemed significant in this 



36 
 

model was the length of the segment. As expected, a greater segment length leads to more 

predicted crashes in this initial model. This makes sense considering there is more lane miles for 

a crash to occur over. This model also included the exposure parameter of average annual 

weekday peak traffic. As the traffic volumes increase so do the expected number of crashes. This 

intuitive behavior can be observed across all models. Table 9 displays the model estimated with 

only roadway inventory and exposure variables. 

 

Table 9. Initial Negative Binomial Model Parameter Estimates 

Parameter Estimate Z-Score 

(Intercept) 0.727 0.626 

Roadway Inventory Parameters 

ln(Segment Length) 0.687 6.823 

Exposure Parameter 

ln(Average Annual Weekday Peak Traffic) 0.089 0.678 

Dispersion Parameter 0.711 7.705 

Number of Cases 293.000 
 Log Likelihood -564.957 
  

 

After the initial model was estimated, probe vehicle data was added to the model. This 

model reduced the number of probe vehicle variables from four to three when compared to the 

Poisson model. Maximum acceleration was included in the model and a higher maximum 

acceleration leads to a higher predicted crash frequency. An indicator variable for segments 

which have both extreme accelerations and extreme decelerations present was also found to be 

significant to this model. If a segment has these types of accelerations present then it is expected 

to have more crashes occurring. Lastly, average traffic speed was included in the model. If the 
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average traffic speed is less than 45 mph then the segment is expected to have a higher number 

of crashes than if the segment has an average speed which is greater than or equal to 45 mph. 

Table 10 displays the final parameter estimates, z-scores, log likelihood and number of cases for 

the final negative binomial model.  

 

Table 10. Final Negative Binomial Model Parameter Estimates 

Parameter Estimate Z-Score 

(Intercept) 0.093 0.085 

Roadway Inventory Parameters 

ln(Segment Length) 0.582 6.403 

Probe Vehicle Data Parameters 

Max Acceleration 0.100 2.232 

Extreme Accelerations and Decelerations Present 
  (Base: No) 
  Yes 0.401 1.907 

Average Traffic Speed 
  (Base: Greater Than or Equal to 45 mph) 
  Less Than 45 mph 0.329 1.707 

Exposure Parameter 

ln(Average Annual Weekday Peak Period Traffic) 0.063 0.515 

Dispersion Parameter 1.021 6.630 

Number of Cases 293.000 
 Log Likelihood -540.266 
  

 

5.3 Statistical Fit Comparisons 

 Statistical fit comparisons were conducted in order to compare the effectiveness of the 

different models which were created. The first goal was to ensure that adding probe vehicle data 

to the analysis actually improved the overall fit of the data. A log likelihood ratio test was 

implemented for this purpose given that the models with and without probe vehicle variables are 

nested versions of each other. Two times the difference between the Log Likelihood of the 
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Poisson model with only roadway geometry variables to the Log Likelihood of the full Poisson 

model, including probe vehicle data, was computed to be 235. This value was then compared 

with the critical chi-squared value corresponding to the additional degrees of freedom in the un-

restricted model. There were four degrees of freedom between the two models and the 

corresponding critical chi squared value is 9.488. Considering 235 is greater than 9.488, adding 

the probe vehicle data improved the model significantly. Likewise, when comparing the two 

versions of the negative binomial model, the Log Likelihood ratio was calculated to be 49 and 

the critical chi squared value corresponding to two degrees of freedom is 5.991. Adding probe 

vehicle data to the negative binomial model also improved the model significantly considering 

49 is greater than 5.991. 

 The next goal was to determine whether or not switching from a Poisson model to a 

negative binomial model improved the results. Considering that the negative binomial model and 

the Poisson model are not nested versions of each other, using the standard log likelihood ratio 

test is not acceptable. A Bayesian Information Criterion (BIC) test is typically used when two 

models are non-nested versions of each other. A model with lower BIC value is preferred over 

the other model. The BIC values were computed for the final Poisson and negative binomial 

models as −2 × 𝐿𝑜𝑔 − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘 × 𝐿𝑁(𝑁), where k is the number of model parameters 

and N is the size of the dataset. The BIC value for the Poisson model was calculated to be 1368 

while the BIC value for the negative binomial model was calculated to be 1109. Considering the 

BIC value for the negative binomial model is less than the BIC value for the Poisson model, it is 

to be considered the more appropriate model for analysis. 
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5.4 Elasticity Effects 

 While the parameter estimates discussed in the earlier section indicate the directionality 

of different factors, it is difficult to understand the magnitude of the effect by just looking at the 

parameters. So, elasticity effects of each variable were calculated in an effort to determine the 

effect each variable has on the final dataset. This will allow for the interpretation of how a 

percent increase in the parameter estimate will impact the expected number of crashes. 

Considering the model has both continuous and categorical variables, a slightly different 

approach had to be taken with both. For continuous variables, we first calculated the expected 

number of crashes for each roadway segment in the dataset. Then, we calculated expected crash 

frequency for each roadway segment after increasing the variable for which the elasticity was 

being computed by 100%. Next, percentage change between final and initial crash frequency was 

computed for each roadway segment. Lastly, this percentage change was averaged across all 

roadway segments to obtain the average elasticity effect of the corresponding variable. The 

resulting percentage value represents how a 100% increase in the corresponding variable will 

impact the expected number of crashes (everything else being the same). For example, if the 

maximum deceleration variable has an elasticity of 19%, a 100% increase in the maximum 

deceleration variable will result in a 19% increase in the expected number of crashes. 

Elasticity effects for categorical variables (in which dummy variables were used) were 

computed using a slightly different approach. First, expected crash frequency was calculated 

assuming that all the indicator variables corresponding to the categorical variable assume a value 

of 0. Next, expected crash frequency was recomputed after changing the indicator variable 

corresponding to the category being considered to 1. The percentage difference between the two 

expected crash frequencies was reported as the elasticity effect of the corresponding category. 
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For instance, when considering the ‘Presence of Left Shoulder’ categorical variable, the base 

case is ‘No Shoulder Present’ and there is a dummy variable- ‘Left Shoulder is Present’. In order 

to calculate the elasticity for the ‘Left Shoulder is Present’ category, we first assume that this 

indicator variable takes a value of zero and calculate the expected number of crashes. We then do 

the calculation again but this time after changing the indicator variable for ‘Left Shoulder is 

Present’ to 1. We then calculate the percentage difference between the two expected crash 

frequency values for each roadway segment and average the percentage change across all 

segments to obtain an elasticity value. The elasticity effect of ‘Left Shoulder is Present’ is -29% 

in the Poisson model. The interpretation of this value is that, on average, roadway segments 

which have a left shoulder present have 29% fewer crashes than roadway segments which do not 

have a left shoulder, everything else being same.  This same logic can be applied to all other 

categorical variables and can be interpreted similarly.  

Elasticity effects for the final Poisson model were calculated first. All interpretations 

assume that all other variables remain the same and only the targeted variable is changing. It was 

determined that a 100% increase in the segment length would cause a 48% increase in the 

expected number of crashes. When considering the presence of a left shoulder, a segment with a 

left shoulder present has a 29% decrease in expected crash frequency compared to a segment 

without a left shoulder. Next, the presence of a right shoulder was interpreted. A segment which 

has a right shoulder should expect a decrease in crash frequency of 45% when compared to a 

segment which does not have a right shoulder. If the minimum median width is greater than 40’ 

then there is a 35% increase in expected crashes than when the median width minimum is less 

than or equal to 40’. If the segment is on a facility which is considered a ‘One Way, Part of a 

One-Way System or Two-Way, Non-Divided’ then there is an expected 65% increase in crashes 
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than if the segment is on a facility considered ‘Divided, Full Control of Access”. A 100% 

increase in maximum deceleration results in 19% increase in expected crash frequency while a 

100% increase in maximum acceleration results in a 61% increase in expected crash frequency. 

If the average traffic speed for a segment is less than 45 mph then there is an expected increase 

in crash frequency of 68% when compared to traffic which has an average speed of greater than 

or equal to 60 mph. Likewise, if the average traffic speed for a segment is greater than or equal 

to 45 mph and less than 60 mph, there is an expected increase in crash frequency of 23% when 

compared to average speeds which are greater than or equal to 60 mph. This is intuitive 

considering slower traffic speeds typically suggest less congestion. As congestion increases so 

does the likelihood of a crash occurring. Lastly, if the average annual weekday peak period 

traffic increases by 100% then there is an expected increase in crash frequency of 10%. These 

elasticity values can be observed in Table 11 for the Poisson model.   
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Table 11. Final Poisson Model Elasticity Effects 

Parameter Elasticity 

Roadway Inventory Parameters 

ln(Segment Length) 48% 

Presence of Left Shoulder 
 (Base: No Shoulder Present) 
 Left Shoulder is Present -29% 

Presence of Right Shoulder 
 (Base: No Shoulder Present) 
 Right Shoulder is Present -45% 

Median Width Minimum 
 (Base: Less Than or Equal To 40') 
 Greater Than 40' 35% 

Facility Type 
 (Base: Divided, Full Control of Access) 
 One Way, Part of a One-Way System or Two-Way, Non-Divided 65% 

Probe Vehicle Data Parameters 

Max Deceleration 19% 

Max Acceleration 61% 

Average Traffic Speed 
 (Base: Greater Than or Equal to 60 mph) 
 Less Than 45 mph 68% 

Greater Than or Equal to 45 mph and Less Than 60 mph 23% 

Exposure Parameter   

ln(Average Annual Weekday Peak Period Traffic) 10% 

 

 

 

Elasticity effects for the negative binomial model were calculated in the same manner as 

the Poisson model. A 100% increase in segment length results in a 50% expected increase in 

crash. A 100% increase in maximum acceleration results in a 42% increase in expected crash 

frequency. If extreme accelerations and extreme decelerations are observed within a segment 

then there is an expected crash frequency increase of 49% when compared to segments which do 

not have these extreme behaviors present. If the average traffic speed for a segment is less than 

45 mph then there is an expected increase in crash frequency of 38% when compared to traffic 
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which has an average speed of greater than or equal to 45 mph. Again this is intuitive 

considering lower speeds typically relates to more congestion which causes a higher crash 

frequency. Lastly, if the average annual weekday peak period traffic increases by 100% then 

there is an expected increase in crash frequency of 4%. These elasticity values can be observed 

in Table 12 for the negative binomial model. 

 

Table 12. Final Negative Binomial Model Elasticity Effects 

Parameter Elasticity 

Roadway Inventory Parameters 

ln(Segment Length) 50% 

Probe Vehicle Data Parameters 

Max Acceleration 42% 

Extreme Accelerations and Decelerations Present 
 (Base: No) 
 Yes 49% 

Average Traffic Speed 
 (Base: Greater Than or Equal to 45 mph) 
 Less Than 45 mph 39% 

Exposure Parameter 

ln(Average Annual Weekday Peak Period Traffic) 4% 
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CHAPTER 6 

CONCLUSIONS 

Crash frequency modelling is a complex task with intricacies lying within the specific 

variables used and the type of model implemented. The majority of previous research focused 

primarily on roadway inventory data as the primary source of explanatory variables along with 

limited exposure variables such as traffic volumes. This research sought to expand on these 

previous models by using probe vehicle data in conjunction with roadway inventory and 

exposure data. This research took advantage of newer technologies to capture probe vehicle data 

and provide a more robust input into the crash frequency model. The results of this study 

included the following key findings: 

1. Adding probe vehicle data to the model improved model results significantly. This 

improvement was observed when implementing both a Poisson model and a negative 

binomial model. Probe vehicle information provided data from vehicles which were 

actually travelling down the roadway. Microscopic traffic measures that characterize 

driving patterns based on acceleration and deceleration profiles were calculated using the 

accelerometer sensors in smartphones. Combining this information with existing roadway 

inventory data provided the model with a new category of information that improved the 

statistical data fit considerably. 

2. Crash frequency modelling typically involves data which is over-dispersed in nature. This 

research implemented a negative binomial model in order to properly assess over-

dispersion. The negative binomial model was considered a significant improvement to the 

initial Poisson model. The results also indicate considerable differences in the parameter 

estimates of the Poisson and negative binomial models. To be specific, the results 
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indicate that in the absence of the additional degree of freedom provided by the 

dispersion parameter in the negative binomial model, the Poisson model seems to 

compensate by over-estimating the significance of several explanatory variables. In 

comparison, the final model specification of the NB model was much more parsimonious 

(i.e., fewer parameters) with considerably better log-likelihood. 

Using probe vehicle data in conjunction with implementing a negative binomial model 

improved upon previous research which relied on roadway inventory and exposure data. While 

this study was successful in estimating an effective crash frequency model, there were some 

opportunities missed for potential research extension due to time constraints. The following are 

major potential improvements to this research: 

1. This study calculated and considered over 50 potential explanatory variables for 

predicting incidents. However, there were still a few more critical variables which should 

be calculated to provide an even more complete model. Future model extension should 

consider the following variables in addition to those already tested: 

a. The distance to and from the nearest on and off ramp – Many incidents occur due 

to merging traffic at on and off ramps. These calculated variables will help 

spatially connect the expected influx of incidents at these locations. 

b. The driving patterns along a road are related to the driving patterns along the 

upstream and downstream segments. This spatial dependency in driving patterns 

(and thus crash frequencies) can be captured using spatial proximity weight 

matrix. This weight matrix is a square matrix of dimension equal to the number of 

roadway segments in the dataset. Each cell element is inversely related to the 

distance between the two segments with the underlying idea being that farther the 
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segment lower would be the influence. This weight matrix would then be 

multiplied with the vector of metrics calculated using probe vehicles. The 

resulting new vector of spatially weighed variables will serve as additional 

explanatory variables. The parameter estimates on these spatially weighted or 

lagged explanatory variables capture the spatial dependency among roadway 

segments in the region. 

c.  One of the interesting results in this study was that traffic exposure had a positive 

effect on crash frequency but was not significant in the negative binomial model. 

It was, however, significant in the Poisson model. Currently, the traffic volume 

data was obtained using VDOT sensors that were distributed all over the 

interstates in the Hampton Roads region. However, these sensors are dense 

enough to cover all the roadway segments in our study. Specifically, there were 

fewer sensors than segments and we had to use some weighing techniques to 

estimate the traffic volumes for some of the roadway segments. It is possible that 

this approximation has biased the effect of traffic exposure in the model. Future 

studies may uncover significant traffic exposure effect by using better data 

sources. 

2. The negative binomial model was an improvement on the Poisson model but, there is 

room for even further improvement. Considering how rare incidents are, there are many 

segments which had a total of zero incidents over the entire yearlong study period. In 

fact, 39.2 % of the roadway segments had zero crashes. So, there is considerable over-

representation of zeroes in the crash dataset. Unfortunately, negative binomial models 

may not always capture this excess zeroes problem (Chin and Quddus, 2003 and Lord et 
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al., 2005). In many cases, zero inflation is the reason for over-dispersion in the dataset. In 

such cases, the negative binomial model is adequate for modeling crash frequency. In 

other cases, a zero inflated negative binomial model is needed to account for both over-

dispersion and extra zeros in the dataset. There are also some recent methodological 

advancements such as the Generalized Ordered Response Probit (GORP) and the GEV 

count models that were provide better flexibility than zero-inflated and hurdle models 

(Castro et al., 2012 and Paleti, 2016). Future extensions of this study may compare the 

performance of standard count models against these more advanced models. 

3. All the models developed in this study are fixed-parameter models. So, they do not 

capture unobserved heterogeneity in the parameter estimates. However, in reality, there 

can be several unobserved factors that can moderate the effect of all factors that influence 

crash occurrences. For instance, the effect of speed on one roadway segment can be very 

different from the effect of speed on another roadway segment. This unobserved 

heterogeneity in parameter effects can be captured using random effects or mixing 

models that assume a distribution (ex: normal distribution) and estimate both the mean 

and the standard deviation of the parameter estimate (Lord and Mannering, 2010 and 

Anastasopoulos and Mannering, 2009). Future extensions must evaluate these mixing 

models. 

4. Probe vehicle data collection is currently underway for additional segments that were not 

included in this study. It would useful to undertake a validation exercise on a separate 

dataset (not used for model estimation) by predicting the crash frequency along these 

segments and comparing with the observed crash frequency distribution. Such a 
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validation exercise will serve as an additional validation of the result that probe vehicle 

data improves the model accuracy. 
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