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ABSTRACT 

DEVELOPMENT OF AN ATLAS-BASED SEGMENTATION OF CRANIAL NERVES 

USING SHAPE-AWARE DISCRETE DEFORMABLE MODELS FOR NEUROSURGICAL 

PLANNING AND SIMULATION 

 

Sharmin Sultana 

Old Dominion University, 2017 

Director: Dr. Michel A. Audette 

 

Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory 

functions such as vision, hearing, smell and taste as well as several motor functions to the head 

and neck including facial expressions and eye movement. Often, these cranial nerves are difficult 

to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due 

to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. 

As a result, they may be at risk in neurosurgical procedures around the skull base, which might 

have dire consequences such as the loss of eyesight or hearing and facial paralysis. 

Consequently, it is of great importance to clearly delineate cranial nerves in medical images for 

avoidance in the planning of neurosurgical procedures and for targeting in the treatment of 

cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that 

will be used to segment the cranial nerves from patient image data. The atlas will be created from 

high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. 

Each of the cranial nerves will be modeled using its centerline and radius information where the 

centerline is estimated in a semi-automatic approach by finding a shortest path between two user-

defined end points.  The cranial nerve atlas is then made more robust by integrating a Statistical 

Shape Model so that the atlas can identify and segment nerves from images characterized by 

artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology 

exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has 

important benefits to the neurosurgical community.  
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CHAPTER 1 

INTRODUCTION 

Twelve pairs of cranial nerves arise from the brain or brainstem, exit through the cranial 

foramina and innervate various parts of the head and neck, as shown in Fig. 1. These cranial 

nerves control our sensory functions such as vision, hearing, smell and taste as well as several 

motor functions to the head and neck including facial expressions, eye movement, etc. These 

nerves are often at risk in neurosurgical procedures as depicted in Fig. 2. During neurosurgery, a 

single incorrect and injurious maneuver to a cranial nerve can result in a lifelong penalty such as 

the loss of eyesight, hearing or facial paralysis
1
.   

Cancer  is the second leading cause of death in the US, after cardiovascular disease, with 

585,720 deaths in 2014; there were 1,665,540 new cancer diagnoses in the US that year [1]. 

Metastatic brain tumors occur in about 30% of cancer patients [2]. Also, according to the Central 

Brain Tumor Registry of the US (CBTRUS), in 2015 the total number of incidents of all primary 

malignant and non-malignant brain and central nervous system tumors is 356,858, of which 

117,023 were malignant [3]. Many of these cases occur at the base of the brain close to cranial 

nerves, which clearly are at risk of injury.  Skull base surgery is performed to remove malignant 

and cancerous growths, as well as abnormalities on the underside of the brain. Growths and 

conditions those needs a skull base surgery includes pituitary tumors, meningiomas, trigeminal 

neuralgia, cerebral aneurysm etc.   

Surgery around the skull base may lead to considerable risk of nerve injury and even 

mortality due to the close proximity of cranial nerves to complex blood vessel networks [4]. 

Nerve injury mechanisms includes traction, stretching, impingement and transection [5]. 

Therefore, it is of paramount importance to clearly delineate cranial nerves in Magnetic 

                                                 
1
 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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Resonance Imaging (MRI) for planning and patient-specific simulation of neurosurgical 

procedures, where these critical structures are at risk. This identification of cranial nerves in MRI 

data is complicated by their thin anatomical structure, especially those (such as nerve IV and 

XII) that are narrow in relation to imaging resolution. This situation is further exacerbated by 

image artifacts such as partial volume effects.  

In this dissertation, we propose a method for patient-specific cranial nerve segmentation 

using a digital atlas of the cranial nerves. We anticipate that this cranial nerve model would 

benefit the following applications: 

 Model-guided neurosurgical avoidance of cranial nerves. The model would help 

towards the identification and avoidance of cranial nerves in the skull base in pre-

operative planning and intra-operative navigation, respectively. 

 Neurosurgical training simulation to prevent operative injury to cranial nerves. This 

model would help to penalize surgical gestures deleterious to cranial nerves during 

simulation-based training. 

 Model guided neurosurgical targeting of cranial nerves. The proposed cranial nerve 

atlas would help to detect a specific nerve as a surgical target for nerve stimulation in 

epilepsy treatment [6] and the decompression of a cranial nerve for neuralgia treatment 

[7], [8] and with suitable modification, targeting of nerve tumors such as schwannoma.    
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Fig. 1.  Twelve pair cranial nerves and their motor and sensory connectivity with different body 

components. Blue lines transmit motor signals and red lines carry sensory signals [9].  

 

  

(a) (b) 

Fig. 2.  Vulnerability of cranial nerves in neurosurgical procedures. (a) A view of an operating 

microscope showing micro-vascular decompression of  trigeminal nerve (CNV)[10]. (b) A 

spatula exposes a deep-seated tumor near the right optic nerve; image courtesy of C. Trantakis, 

Division of Neurosurgery, University of Leipzig, Germany.  
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1.1 Problem 

The importance of cranial nerve detection in neuro and ENT surgery is justified in two 

broad areas:  

 Avoidance in surgery planning to prevent intra-operative damage to cranial nerves while 

targeting a tumor or arteriovenous malformation.  

 Targeting of cranial nerves in the context of surgical treatment.   

Iatrogenic nerve injury is defined as intra-operative damage to cranial nerves, which 

includes traction, stretching, impingement and transection of the nerve. Several factors contribute 

to a cranial nerve’s susceptibility to trauma, such as the length and the course of the nerve and 

surrounding blood vessels. The course of the nerve, and in particular, its relationship with fixed 

and stiff structures such as the bone and dura, and its proximity to the planned surgical path, 

determine the vulnerability of each cranial nerve to trauma and the most vulnerable sites to 

injury [5].  Recently, Antoniadis et al. [11] performed a review of iatrogenic nerve injury from 

1990 to 2012 involving 345 patients, and found that  25% of nerve lesions that required 

treatment were iatrogenic. They pointed out that cranial nerves are vulnerable because they are 

neither clearly exposed in the operative field nor are they recognized as nerves but mistaken as a 

blood vessel. Adachi et al. [12] reported about the risks and complications of surgery for skull 

base meningioma due to the involvement of cranial nerves and arteries, and proposed a scoring 

system to measure the relative risk involved in the surgery.  Dubey et al. [13] performed a 

retrospective study of all posterior fossa surgeries from 1992 to 2002, involving over 500 

patients, and found that the overall complication rate of the surgery is about 31.8% and the 

mortality rate is 2.6%. To avoid such complications, the authors recommended careful pre-

operative planning and a thorough understanding of the operative cranial anatomy.  
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Cranial nerves also appear as surgical targets for the treatment of neuralgia
2
 and 

epilepsy
3
. The most common treatment for neuralgia is microvascular decompression which is a 

surgical procedure that relieves abnormal compression of a cranial nerve [14]. Leal et al. [15] 

showed that the pre-operative determination of neurovascular features (such as conflicting 

nature, exact localization, direction and degree of compression) from MRI data could be of great 

importance to neurosurgeons performing microvascular decompression. They studied 100 

patients with trigeminal neuralgia in the pre-operative stage by examining high-resolution 3D 

MR images, and concluded that neurovascular feature prediction from imaging increases the 

success rate of the decompression while helping the surgeons to decide the best surgical option. 

Vagus nerve stimulation (VNS) [6] is described as a valuable option in the therapeutic treatment 

for patients with refractory epilepsy. Apart from epilepsy and neuralgia, stimulation therapy for 

neuropathic pain may also require cranial nerve targeting [8] [16] [17] [18].  

The current method for intra-operative cranial nerve monitoring during skull base surgery 

is done using electrophysiologic monitoring [19] [20] [21]. To monitor motor cranial nerves 

(such as trigeminal, facial, glossopharyngeal, spinal accessory, and hypoglossal nerves) during 

the surgical removal of tumors of the skull base, stimulodetection techniques are used as shown 

in Fig. 3.   At the beginning of an operation, electrical stimulation is only used to identify the 

nerve structures. As the removal of the tumor progresses, the goal is to verify that a surgical 

injury to the nerve is avoided by looking for the absence of any changes in amplitude, 

morphology, and latency of motor responses. 

 

                                                 
2
 Neuralgia is a stabbing, burning, and often quite severe pain that occurs along a damaged nerve. 

3
 Epilepsy is a neurological disorder in which the nerve cell activity in the brain is disturbed, causing a seizure 

during which the afflicted experiences abnormal behavior, symptoms and sensations, including loss of 

consciousness. 
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Fig. 3.   Electrophysiological monitoring of CN IX during tumor surgery. (a) Special applicator 

used for placing a pair of needle electrodes. (b) Endoscopic view of the ‘true vocal cord’ with a 

pair of steel needle electrodes being unilaterally inserted. Reproduced from [19].  

 

The necessity for cranial nerve identification has also been observed in neurosurgical 

simulators to accurately model the correct response to therapy. Recently, the neurosurgical 

simulation research center
4
 of Montreal Neurological Institute developed a physically-based 

virtual reality neurosurgical simulator with haptic feedback, called NeuroTouch, for the training 

and assessment of technical skills during craniotomy-based procedures. Although this simulator 

can represent anatomical details of the human body as well as blood vessels in a realistic manner, 

it is does not model the cranial nerves nor does it represent the skull base anatomy.   

From both a surgical and a simulation point of view, our proposed cranial nerve model 

has potential in surgical planning and treatment by accurately and precisely segmenting cranial 

nerves in MR images. 

To the best of our knowledge, there exists no comparable clinically applicable method 

for identifying cranial nerves, particularly the finer ones, in routine T2-weighted MR images. 

                                                 
4
 http://neurosim.mcgill.ca/ 

(a) (b) 
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Existing whole-brain segmentations of [23] and digital brain atlases of [24] have not attempted to 

segment cranial nerves, while the Surgical Planning Laboratory (SPL) atlas [25] only accounts 

for the larger cranial nerves. Nowinski et al. [26] constructed a 3D atlas of the cranial nerves 

with their nuclei correlated with their surface neuroanatomy, vasculature and magnetic resonance 

imaging which is based on their previously developed whole brain atlas of structures, vasculature 

and tracts [27]. This 3D geometric model has potential usefulness such as anatomy browsing, 

automatic student assessment and preparation of materials for education. Although this 3D atlas 

of cranial nerves might serve the purpose of medical research and education, it is a static model 

based on high-field (7T) images, and is not intended for patient-specific segmentation or surgical 

planning; it does not support inter-subject registration.  

 

1.2 Proposed Solution 

To address the absence of cranial nerve models in current brain modeling, we propose to 

develop a shape-based digital deformable atlas of cranial nerves which will be constructed from 

high-resolution T2-weighted MRI data and a registration procedure of the proposed atlas to 

individual patient data (possibly from low-resolution MRI data) to perform patient-specific 

cranial nerve segmentation. The proposed system will model the cranial nerves using a 

centerline-based approach, which will then be made more robust by integrating a Statistical 

Shape Model. Once the atlas of the cranial nerves is constructed, medical image data will be 

segmented using a combined segmentation-registration approach. 

Cranial nerves are tube-like structures, some of which have branchial arches outside the 

cranium forming tree-like structures such as the trigeminal, facial, glossopharyngeal, vagus and 

accessory nerves. However, the intracranial portions of cranial nerves that lie within the cranium 
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are assumed to have comparatively simpler contour shapes. We are interested in the intra-cranial 

(or cisternal) portion of the cranial nerves that are targeted during skull-base neurosurgery. 

The first step of the proposed system is to represent cranial nerves using centerline and 

radius estimation. We will trace the centerlines of the cranial nerves by using a discrete 

deformable model called 1-Simplex mesh. A k-Simplex mesh, introduced by Delingette [29], is a 

k+1- connected mesh used for active surface modeling which has the unique property of having 

a constant connectivity at each vertex. The 2-Simplex is a surface mesh where each vertex has 3 

neighbors linked by edges; the 1-Simplex is a 2D or 3D contour where each vertex except end-

points is connected to 2 neighbors. Our proposed segmentation approach will be a semi-

automatic approach, where the user/expert defines a pair of start and end points for each of the 

cranial nerves; in a future version, these end and start points will be supplied through patient-

fitted digital brainstem and cranial foramina models. Once these end points are defined, the rest 

of the process will be automatic. The  first stage computes the shortest path between each of the 

start and end points using Fast Marching method [30, 31]. These shortest paths will act as the 

initial estimation of the centerlines of the cranial nerves, which are then deformed using internal 

and external forces to move towards the true medial axis of the nerves. The proposed system 

then computes 3D centerline curves, and at the same time, also estimates the radius of the nerve 

at regularly sampled points of the curve.  

The following step is to segment the nerve surface boundary using the centerline and 

radius information. We have employed 2-Simplex mesh refinement to perform the surface 

segmentation. 

An important feature of the proposed system is to endow the cranial nerve atlas with prior 

shape information by integrating Statistical Shape Models with the deformable 1-Simplex model 
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so that the atlas is capable of identifying and segmenting nerves from low-resolution images or 

in the presence of partial volume effects. The proposed system will compute statistical shape 

information from a population of training data set, which will be added in the form of a shape-

enforcing energy functional to the deformable Simplex model’s Newtonian formulation.   

The final refinement of the proposed system will be to segment cranial nerves in the 

subject MRI by using the constructed shape-aware atlas. The proposed system will accomplish 

this by making use of an elastic deformable model registration, which is achieved by aligning the 

atlas with the target image (the image that needs to be segmented) by minimizing a similarity 

criteria (internal and external forces). 

  

1.3 Anticipated Contributions 

Although there is an essential need for a deformable digital cranial nerve atlas in 

neurosurgery and treatment of cranial nerve disorders and tumors, to the best of our knowledge 

no research group has attempted to develop such a digital deformable contour atlas. In this 

research, we have developed a deformable digital cranial nerve atlas which will be able to 

segment the twelve pairs of cranial nerves from patient MRI data, although this work will 

emphasize the ten brainstem pairs. In addition, this research is the first to develop a minimally 

supervised Statistical Shape Model formulation for 3D contours. The following sections describe 

the contributions that are the foundation of this proposed system. 

 

1.3.1 Discrete Deformable Representation of Curvilinear Structures  

We will model each of the cranial nerves using a centerline-based method, which is a 

common approach for the segmentation of tubular shaped structures. But the representation of 
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the centerlines of tubular/curvilinear structures using a 1-Simplex mesh model is a new idea that 

will be implemented in this research. We will formulate new internal and external energy 

functions for the 1-Simplex based curve deformation. 

  

1.3.2 Incorporation of a Statistical Shape Model with the Deformable Contour Atlas 

Cranial nerves are fine critical structures in the human brain. Some of the cranial nerves 

are much finer than others, in particular the trochlear nerve (CN IV) and the lower cranial nerves 

(CN IX to CN CXII). These cranial nerves cannot be seen very clearly even in high-resolution 

(3T) MR image. As a result, they are vulnerable to head injury or surgical injury which might 

result in the loss of motor functions, for example, limiting the ability to look down and outwards 

(CN IV malfunction) and the loss of taste from the back of the tongue (CN IX malfunction). To 

remedy such malfunctions of the cranial nerves, we wish to identify them from regular MRI data 

using our deformable atlas. To fulfil this aim, we will integrate a Statistical Shape Model to our 

deformable atlas so that we know, a priori, the average shape information and shape variation 

when we segment the low resolution image data. Although shape priors have been used in the 

literature for segmentation purposes, this framework has not yet been used with 3D contour 

models. We will formulate the shape prior as an energy functional, which will be described 

mathematically, which in turn leads to a minimization along with other components of the 

internal and external energy functions during the 3D contour deformation. 
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1.4 Deformable Representation of Cranial Nerves Conducive to Subject-Specific 

Registration 

Non-rigid registration is one of the prevalent techniques for aligning source and target 

images. We will be using a model-to-image registration technique to align our deformable nerve 

contour atlas with the target image. We will use an energy-oriented distance field as a similarity 

measure, which is minimized to perform the non-rigid registration during the nerve segmentation 

process. 

 

1.5 Organization  

This manuscript is divided into the following chapters. Chapter 2 describes the anatomy 

of cranial nerves of the human brain as well as imaging techniques used for visualizing cranial 

nerves. Chapter 3 reviews the relevant literature on the following areas: deformable models 

(Section 3.1), curvilinear structure segmentation (Section 3.2), a review on nerve segmentation 

methods (Section 3.3), Statistical Shape Models (Section 3.4 and Section 3.5) and image 

registration methods (Section 3.6). Chapter 4 elaborately discusses our approach to centerline 

extraction and surface segmentation of nerves. Chapter 5 describes the construction of Statistical 

Shape Models of cranial nerves and the application of SSMs to nerve segmentation. Chapter 6 

concludes the dissertation by discussing scopes, limitations and future work of our approach. 
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CHAPTER 2 

ANATOMY AND IMAGING 

In this chapter, we will present an anatomical description of all the twelve pairs of cranial 

nerve (Section 2.1). Then, Section 2.2 will describe some common MRI sequences that can be 

used to identify cranial nerves. 

  

2.1 Anatomy of Cranial Nerves 

There are a total of 12 pairs of cranial nerves: 10 pairs that originate from the brainstem, 

which can be seen having the shape of a twenty-legged spider, and two more pairs that attach to 

the brain anteriorly and superiorly to the brainstem, as shown in Fig. 1. Depending on the 

impulses they carry, cranial nerves in the central nervous system can be classified as sensory (I, 

II, VIII), motor (II, IV, VI, XI, XII) or mixed (V, VII, IX,X) as summarized in Table  1. Each of 

them carries different signals related to the corresponding sensory or motor functions of our 

body. Sensory nerves are responsible for transmitting sensory impulses of vision, hearing, smell, 

taste and touch. Motor and mixed nerves are responsible for carrying signals for facial 

expressions, swallowing, speech, etc. Motor components of the cranial nerves transmit nerve 

impulses from the brain to the target muscles in the head and neck. Sensory components transmit 

nerve impulse from sensory organs to the brain. Except the olfactory (CN I) and the optic (CN II) 

nerves, all the other cranial nerves (III to IX) originate from the brainstem, travel through the 

perimesencephalic and basal cisterns, and then exit the intracranial compartment the 

neurovascular foramina (or cranial openings) of the skull base [5, 32]. 

The olfactory nerve is a collection of sensory nerve rootlets that extend down from the 

olfactory bulb and pass through the many openings of the cribriform plate in the ethmoid bone. 
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Receptor neurons of the olfactory nerves are located in the olfactory mucosa of the upper parts of 

the nasal cavity as shown in Fig. 4.  (a). Each of the optic nerve originates from the bipolar cells 

of the corresponding retina and exits the back of the eye in the orbit through the optic canal. It 

enters the central nervous system at the optic chiasm (or crossing) where the nerve fiber becomes 

the optic tract just prior to entering the brain as shown in Fig. 4.  (b). Most of the axons of the 

optic nerve terminate in the lateral geniculate nucleus (LGN) in the thalamus, from where 

information is relayed to the visual cortex. 

 

 

(a) 

 

(b) 

Fig. 4.  The Olfactory (I) and Optic (II) Nerve. (a) View of the receptor neurons in the nasal 

cavity and olfactory bulb. Reproduced with the permission from studyblue.com. (b) Visual 

pathway from orbit including optic chiasm. Reproduced with the permission from 

rhsmpsychology.com. 
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Table  1.  Cranial nerves, origins, functions and openings 

Nerves Types Origin Functions Cranial Openings 

Olfactory (I) Sensory Olfactory 

Bulb 

Olfactory receptor for sense of smell Foramina in 

cribriform plate 

(ethmoid) 

Optic  (II) Sensory Thalamus Retina for sense of light Optic Foreman 

(sphenoid) 

Oculomotor (III) Motor Midbrain Motor control of some eye muscles and 

eyelid 

Superior orbital 

fissure 

Trochlear (IV) Motor Midbrain Motor control of Superior oblique muscle; 

Eye  movement 

Superior orbital 

fissure 

Trigeminal (V) Mixed Pons Sensory for head/neck, sinuses, meninges and 

external surface of tympanic membrane. 

Motor  control for chewing - Muscles of 

mastication. 

Superior orbital 

fissure 

Abducens(VI) Motor Pons Eye movement Superior orbital 

fissure 

Facial (VII) Mixed Pons Sensory for ear and tympanic membrane. 

Taste anterior two third of tongue. Motor 

control for muscles of facial expression, 

salivation. 

Internal auditory 

meatus 

Acoustic/ 

Vestibulocochlear 

(VIII) 

Sensory Pons Sense of hearing and Equilibrium (balance) Internal auditory 

meatus 

Glossopharyngeal 

(IX) 

Mixed Medulla 

Oblongata 

Salivation, sensation of posterior one-third 

tongue and internal surface of tympanic 

membrane. Motor control for swallowing- 

muscles of Pharynx. 

Jugular Foramen 

Vagus (X) Mixed Medulla 

Oblongata 

Sensation from the thorax, pharynx and 

abdominal. Motor control for pharynx, 

larynx, heart. 

Jugular Foramen 

Spinal Accessory 

(XI) 

Motor Medulla 

Oblongata 

Motor impulses to the pharynx and shoulder. 

Movement of Trapezius and 

sternocleidomastoid muscles. 

Jugular Foramen 

Hypoglossal (XII) Motor Medulla 

Oblongata 

Tongue muscles (swallowing and speech) Hypoglossal 

canal 
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The brainstem is the area of the brain that lies between the deep structures of the cerebral 

hemispheres and the cervical spinal cord. It is divided into three sections: midbrain (or 

mesencephalon), pons (or metencephalon) and medulla oblongata (or myelencephalon) as 

depicted in Fig. 5.  (a). Except the olfactory and optic nerves, all of the cranial nerve nuclei are 

located in the brainstem as shown in Fig. 5.  (b). The midbrain is divided into the anterior and the 

posterior sections by the Aqueduct of Sylvius, which connects the third and fourth ventricles. 

Cranial nerves III and IV are connected to the midbrain. CN III supplies four out of the six extra-

ocular muscles of the eye and the levator palpebrae superioris muscle of the upper eyelid, as well 

as provides the parasympathetic innervation of the constrictor pupillae and ciliary muscles. CN 

IV innervates the superior oblique muscle of the contralateral orbit. 

The pons, coinciding with the middle of the brainstem, lies above the medulla oblongata 

and below the cerebellum and in the cavity of fourth ventricle. It is the point of origin of the four 

cranial nerves V, VI, VII and VIII. The nuclei of these cranial nerves relay information from the 

ear, face and teeth as well as emit signals that move the jaw, adjust facial expressions, and 

produce some eye movements.  

The medulla oblongata, the lowest portion of the brainstem, contains the last four cranial 

nerves, namely the glossopharyngeal (IX), the vagus (X), the accessory (XI) and the 

glossopharyngeal (XII). The glossopharyngeal nerve consists of both efferent and afferent 

components, each of which has distinct functions. The efferent neurons of CN IX are responsible 

for the following activity: i) supplying impulses to the stylopharyngeus muscle involving the 

motion of the pharynx and larynx; ii) providing general sensory information from the skin of the 

external ear and internal surface of the tympanic membrane, upper pharynx; and iii) providing 

taste sensation from the posterior part of the tongue. Next, the vagus nerve (CN X) also have 
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several functions: i) supplying impulses to the voluntary muscles of the pharynx and most of the 

larynx and one extrinsic tongue muscle; ii) providing visceral sensory information from the 

larynx, esophagus, trachea, and abdominal and thoracic viscera; and iii) providing general 

sensory information from the outer and middle ear as well as the pharynx. Next, the accessory 

nerve (XI) has both a cranial and a spinal root, consisting of motor fibers. The cranial root 

innervates the muscles of the pharynx and larynx, while the spinal root innervates the trapezius 

and sternocleidomastoid muscles. Lastly, the hypoglossal nerve (XII) innervates muscles of the 

tongue for providing motor control of the three out of four extrinsic muscles (four pair of 

muscles that originate from bone and extend to the tongue); genioglossus, hyoglossus, 

styloglossus and the intrinsic muscles (four paired muscles that originate and insert within the 

tongue, running along its length). 

 

 

(a) 

 

(b) 

Fig. 5.  Depiction of brainstem, along with nerves II to XII [33]. 
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The cranial openings, also called cranial foramina, are located on the base of the skull to 

allow passage through the cranium for structures like cranial nerves, blood vessels as well as 

other structures of the CNS, as shown in Fig. 6.  and summarized in Table  1. Therefore, in the 

long term, accounting for these openings is the key to determining the exit positions of the 

cranial nerves in a minimally supervised fashion. 

 

 

 

Fig. 6.  Cranial Openings, (a) All the twelve pairs of cranial nerves exit through openings. (b) 

Cranium with labeled foramina [34].   

 

2.2 Image Acquisition of Cranial Nerves 

The ability of modern MRI techniques for visualizing detailed anatomy of the brainstem, 

basal cisterns and skull base has aided the evaluation of skull base neurosurgery. Generally, MRI 

is the method of choice for imaging cranial nerves. Although the larger nerves such as the optic 

and trigeminal nerves can be seen in routine MRI of the brain, smaller nerves and branches 

require high spatial resolution.   

(a) (b

) 
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MRI uses the protons (H
+
) of water molecules which has a special magnetic property 

called nuclear spin. In a strong static magnetic field Bo in the z-direction, these spins align in 

either parallel or anti- parallel orientations with the direction of the magnetic field, creating a net 

magnetization vector. Magnetic resonance corresponds to the energetic interaction between 

spins, which precess at a characteristic Larmor frequency, and an electromagnetic radio 

frequency (RF) signal of the same frequency which can perturb the spinning proton. The RF 

sinusoid signal must be of that same Larmor frequency to induce a torque which causes spins to 

re-align in a direction other than the z-axis: the amount of flip angle with respect to the z-axis is 

determined by the duration of the RF pulse. A flip angle of 90 degrees results in a magnetization 

in the xy-plane, also known as transverse magnetization.  When the RF signal is removed, the 

excited protons tend to return to their lower energy state through a process called relaxation. This 

relaxation process causes the emission of energy which is then received by RF coils and 

processed in a computer to produce MR images [35] [36] [37]. The resolution of MR images is 

dependent on several factors, including the strength of the magnetic field Bo in Teslas (T, the unit 

of magnetic flux density), the time used for scanning and the required Signal-to-Noise Ratio 

(SNR). Most clinical MRI facilities use a 1.5T or 3.0T magnetic field strength but recently 7.0T 

MRI scanners have been developed, which are capable of producing MR images of very high 

resolution; however, they are limited to research purposes only.  

The contrast on the MR image can be manipulated by changing the parameters of spin 

echo sequence (a repetition of 90-degree and 180-degree RF pulses). Spin Echo sequence have 

two parameters: Repetition Time (TR) which is the time between consecutive 90-degree RF 

pulse and Echo Time (TE) which is the time between the initial 90-degree RF pulse and the echo. 

A T1-weighted MRI sequence uses a short TR and short TE whereas a T2-weighted MRI 
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sequence has a long TR and a long TE as shown in Fig. 7.  The T1 relaxation time also known as 

longitudinal relaxation, which occurs in 𝑧 direction, is a time constant for returning to 

longitudinal magnetization to the equilibrium whereas the T2 relaxation time is a measure of the 

decay of transverse magnetization within the 𝑥𝑦-plane. Tissues with high fat contents such as 

white matter appear bright and CSF filled structures appears dark in T1-weighted MRI. On the 

other hand, CSF-filled structures, tumors, edemas are seen as bright and white matters, fibrous 

tissues are seen as dark in T2-weighted MRI.  

 

  

(a) (b) 

Fig. 7.  Spin-echo pulse sequences. (a) T1-weighted (b) T2-weighted.  

 

In the last few years, MRI techniques have been improved greatly and these improved 

MRI sequences at higher field strengths allow for more detailed imaging of cranial nerves and 

their abnormalities. A detailed review on MR imaging of the cranial nerves, with an emphasis on 

advanced extra-axial anatomy and illustrated with high-resolution MRI data, can be found in 

[38]. Imaging techniques in depicting normal anatomy as well as infectious, inflammatory, 

traumatic and congenital pathology affecting the cranial nerves are surveyed in [39] [5] [40].   
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Steady State Free Precession (SSFP) MRI is a type of gradient echo MRI pulse sequence 

that uses a steady transverse magnetization between successive cycles. A Gradient-echo 

sequence generally consists of repeated RF pulses and the imaging gradient [41]. These 

sequences have high contrast, sub-millimetric spatial resolution to highlight the course of each 

cranial nerve. 

The family of SSFP sequence includes: Balanced Fast Field Echo (bFFE), Fast Imaging 

with Steady Precision (FISP), Constructive Interface in Steady State (CISS), and Balanced Turbo 

Field Echo (bTFE). These pulse sequences have the advantage of producing images with 

increased signals from fluids (like T2-weighted sequence) as well as retaining T1-weighted tissue 

contrast. The bFFE sequences, use a balanced gradient waveform, starting with the 90-degree RF 

pulse and then spins in a steady-state. The balanced gradient maintains the transverse and 

longitudinal magnetization so that both the T1 and T2 tissue contrast retain. Both bFFE and CISS 

sequences have high spatial resolution to depict cranial nerves [42] [43] [38] [44]. One of the 

limitations of the CISS sequence is that it has a longer acquisition time. Fast Imaging Employing 

Steady State Acquisition (FIESTA) is another sequence in the SSFP family which overcomes this 

limitation of CISS and provides images of fluid filled structures within a very short acquisition 

time. The FIESTA sequence is the potential imaging sequences in visualizing the lower cranial 

nerves attached with the posterior cranial fossa (part of the intracranial cavity containing 

brainstem and cerebellum) as showed in [45] [46] [47].   

Tractography is a three-dimensional fiber tract reconstruction process based on the 

anisotropic diffusibility of water molecules (H+ protons) in biological tissues containing large 

numbers of fibers. It is performed using Diffusion MRI (d-MRI) data, which makes use of this 

diffusibility property. The tractography of some of the cranial nerves (Cranial nerves II, III, and 
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V) from 3T Diffusion-Weighted Tensor Imaging (DTI) is shown in [49]. They attempted to 

reconstruct the tracts of cranial nerves II to XII but only cranial nerves II, III and V showed an 

acceptable degree of reconstruction. Due to the limited resolution of the DTI, they could not 

visualize the smaller and more diffuse nerve bundles (CN IV, IX, XI and XII). The DTI process 

is unable to distinguish criss-crossing fibers within a single voxel.  

To address this issue, Diffusion Spectrum MRI (DSI) and High-Angular Resolution 

Diffusion Imaging (HARDI) were developed, which could image complex distributions of intra-

voxel fiber orientation [50] [51]. DTI is further discussed elaborately in Section 3.3.3. Kabasawa 

et al. [52] presented a feasibility study for cranial nerve fiber tracking with enhanced 

reconstruction (PROPELLER) based Diffusion Tensor fiber Tractography (DTT) using 3T MRI 

data. They argued that the current state of the art for DTI acquisition is based on Single-Shot 

Echo Planner Imaging (ssEPI) which might suffer from low SNR and high magnetic 

susceptibility.  As a result, it is challenging to visualize small anatomical structures like cranial 

nerves. On the other hand, PROPELLER-based DTT does not suffer from such kinds of artifacts 

and thus is able to visualize small neurofiber tracts such as cranial nerves. The cited research on 

diffusion imaging does not invalidate our contour model framework, although our own work did 

not build on diffusion images because of a paucity of such imaging data for cranial nerves. The 

application of the contour models described in this dissertation is feasible with diffusion images 

and is planned in future work. 

 

2.3 Conclusion 

In this chapter, we have presented anatomical description of all the twelve pairs of cranial 

nerves including their origin, exit point and functions. However, in this dissertation, we have 
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targeted the brainstem cranial nerves III to XII which can be extensible to olfactory and optic 

nerve.  

Depiction of cranial nerves requires special MR imaging sequences such as gradient echo pulse 

sequences which provides higher sub-millimetric spatial contrast w.r.t. background. Potential 

imaging sequences that provide clear visualization of cranial nerves might include SSFP, bFFE, 

CISS and FIESTA.  
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CHAPTER 3 

BACKGROUND 

This chapter will provide a literature survey of medical image analysis with an emphasis 

on deformable model-based segmentation and curvilinear structure segmentation, coinciding 

with Section 3.1 and Section 3.2. Then Section 3.3 reviews existing optic nerve and spinal nerve 

segmentation methods. This section also includes a discussion of nerve fiber tractography.  The 

construction of a Statistical Shape Models is reviewed in Section 3.5 and the registration 

methods of tubular models are reviewed in Section 3.6. 

 

3.1 Deformable Models in Segmentation 

Deformable models were first introduced in the late eighties [53], [54], elicited 

significant research interest and found numerous applications in computer vision and medical 

imaging including pattern recognition, computer animation, tracking, surgery simulation and 

image segmentation. Due to their wide range of applications, several surveys have published in 

this area, namely [55], [56], [57].  

Deformable models have been widely used for 3D surface reconstruction and 

segmentation, whereas for vascular segmentation they have been used as a 2D curve. In vascular 

segmentation, an explicit or implicit model of a 2D curve is deformed to extract the vasculature. 

These deformable models of curves or surfaces are defined within an image domain and can 

change their shape to optimize some energy functional. The energy functional is composed of 

internal forces that are defined within the curve or surface itself, and external forces which are 

computed from image data (Xu, Pham et al. 2000). 
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Montagnat et. al [55] classified deformable models based on the surface geometric 

representation and a simplified version of this classification, relevant to this research, is 

illustrated in Fig. 8. Deformable models can broadly be classified into two groups – continuous 

and discrete models. Continuous models can be defined by implicit or explicit equations; on the 

other hand, discrete models are defined in terms of a finite set of points. Because of their 

relevance in this research, deformable model-based segmentation techniques like Snakes, Level 

Sets and Simplex meshes are discussed in the following sections. 

 

3.1.1 Explicit Active Contours – Snakes 

Explicit or parametric active contours are represented explicitly as parameterized curves in a 

Lagrangian formulation. The classical example of a parametric active contour is the “Snake”. A 

snake is an energy-minimizing spline featuring a set of control points. The deformation of the 

snake is guided by external constraints and influenced by image-based forces that pull it towards 

image features such as contours and lines. Snakes were first introduced by Kass et. al [53]  and 

represent an early influential and useful method for defining 2D contours in numerous image 

analysis tasks. The forces that move a snake are called internal and external forces. Internal 

forces are responsible for maintaining the smoothness and continuity of the contour while 

external forces pull the snake towards the desired image features. Snakes were originally applied 

to 2D images, and represent 2D energy-minimizing deformable parametric contours to detect the 

object boundary, based on the assumption that the boundary is piece-wise continuous. 
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Fig. 8.  Simplified classification of deformable models 

 

Mathematically, a parametric deformable contour represented in the image plane 

(𝑥, 𝑦)𝜖ℝ2 has the following form: 

𝑣(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) , where s 𝜖 [0, 1] and x, y are coordinate functions, and the energy 

functional can be written as follows [53]: 

𝐸𝑆𝑛𝑎𝑘𝑒
∗ = ∫ 𝐸𝑆𝑛𝑎𝑘𝑒(𝑣(𝑠))𝑑𝑠

1

0

 
 

(1) 

 

𝐸𝑆𝑛𝑎𝑘𝑒
∗ = ∫ 𝐸𝑖𝑛𝑡(𝑣(𝑠))𝑑𝑠

1

0
  +  ∫ 𝐸𝑖𝑚𝑎𝑔𝑒(𝑣(𝑠))𝑑𝑠

1

0
 .   

(2) 

Here Eint and Eimage are the internal force and the image-based external force, respectively. 
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Over the years, a few variations of the Snakes model have been developed. Topologically 

adaptive Snakes or T-snakes, introduced in [58], are parametrically deformable models that are 

embedded in an affine cell decomposition based framework, and are able to extract complex 

structures. T-snakes have a topology control property combined with a specific re-

parameterization scheme, enabling contour splitting and merging, and also allowing for the 

segmentation of thin and branching structures. 

Mille et. al [59]  presented a deformable cylinder model that minimizes region-dependent 

energy functional, following a narrow band implementation, and which is capable of extracting 

tubular objects from medical images. 

 

3.1.2 Implicit Active Contours – Level Sets 

Implicit active contours in 2D are represented as curves where the evolution of the curve 

is dependent on Level Set functions. The main idea behind the Level Set method is to provide an 

implicit representation for evolving curves/contours as the zero Level Set of a higher 

dimensional function. Given an interface Γ in 𝑅𝑛 and a speed function F which will propagate Γ 

in its direction, the goal is to analyze and compute the motion of the interface as it evolves. The 

function 𝜙(𝑥, 𝑡) represents the interface where the zero Level Set is defined as 𝜙(𝑥, 𝑡) = 0 [30]. 

The evolution equation for 𝜙 can be given as (3): 

𝜙𝑡 + 𝐹|∇ 𝜙| = 0, (3) 

where 𝛁𝝓 represents the spatial gradient of 𝝓 and 𝝓𝒕 is the partial derivative of 𝝓 with respect 

to t. The speed function F depends on the position and time, the geometry of the interface (its 

normal and its mean curvature), and the external physics [60]. A complete and detailed 

discussion of Level Set techniques and their applications can be found in [30] [61]. To improve 
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the computational efficiency of the Level Set method, Sethian [31] proposed the Fast Marching 

Method (FMM), which provides a fast scheme for the problems where the front advances 

monotonically with a speed function that does not change in sign. 

Consider a monotonically advancing front, moving with speed, F whose Level Set 

equation has the form as shown in (3). Let, T(x, y) is the time at which the propagating curve Γ 

crosses the point (x, y), then according to FMM the following equation should be satisfied: 

|∇𝑇|𝐹 = 1.   (4) 

Here T(x,y) is called the arrival time that determines the evolution of the interface. Equation (4) 

is the Eikonal equation that provides a faster solution for propagating curves, yielding a 

computationally efficient Level Set method. 

In [62], a wave propagation approach is presented to segment vasculature from 2D 

medical image data. This method employs a dual sigmoidal filter to determine the likelihood of 

each pixel being within the vessel. Using this likelihood image, a digital wave is then propagated 

from the base of the vascular tree which washes over the vasculature.    

A Level Set implementation based on FMM to extract tubular shapes, given in [63], is 

based on a freezing technique. This technique involves front propagation only on the actual 

moving front and refraining from updating all other points to make it computationally efficient. 

 

3.1.3 Discrete Deformable Models – Simplex Meshes 

Discrete deformable models are represented as meshes which are defined as a set of 

vertices with a well-defined connectivity relationship. These models have many advantages over 

parametric and implicit models. Implicit models have a limitation due to their implicit nature. 

Particularly, an implicit approach requires a conversion to an explicit representation to apply 
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techniques like shape statistics or collision detection. A discrete representation can remedy this 

problem.  

Some of the discrete representations of deformable models include triangulation, mass-

spring models, particle systems and Simplex meshes. A triangulated surface is the most common 

discrete representation where the surface is decomposed into a set of adjacent triangles. In [64] 

and [65] triangular meshes are used for image segmentation. Vaselescu and Terzopoulos [66] 

created an adaptive mesh model using non-linear springs and masses on a triangulated mesh for 

surface reconstruction. 

The Simplex mesh, introduced by Delingette [29], is a discrete deformable model with 

constant vertex connectivity used for 3D surface segmentation in [67], [68]. A k-Simplex mesh is 

a k-manifold discrete mesh where each vertex has k +1 constant connectivity. Based on the 

values of k, a Simplex mesh can represent various objects such as curves (k = 1), surfaces (k = 2) 

or volumes (k = 3). These k-Simplex meshes have well defined dual counterparts as shown in 

Fig. 9. 

 

 
 

(a) (b) (c) 

Fig. 9.  Simplex Meshes. (a) 1-Simplex, (b) 2-Simplex (c) 3-Simplex. Black points and dotted 

lines belong to the Simplex mesh while blue points and solid lines belong to corresponding 

polygonal mesh.   
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The deformation of the Simplex mesh is based on the relative position of the vertices 

with respect to their neighbors. Like other deformable models, Simplex meshes are also 

deformed using a physical expression based on internal and external forces. Each vertex of the 

Simplex mesh is considered as a mass-spring system that follows the Newtonian law of motion 

for equilibrium as shown in (5) [29].  

𝑚
𝑑2𝑷𝑖

𝑑𝑡2 = −𝛾
𝑑𝑷𝑖

𝑑𝑡
+ 𝑭𝑖𝑛𝑡 + 𝑭𝑒𝑥𝑡 , 

(5) 

 

where Pi indicates relative position of the vertex, m is the mass of the vertex, 𝛾 is the damping 

factor,  𝑭𝑖𝑛𝑡 is the internal force and 𝑭𝑒𝑥𝑡 is the image based external force.  

To compute the evolution of the Simplex mesh, equation (5) is discretized over time as 

follows, while also providing weights 𝛼𝑖  and 𝛽𝑖 to internal and external forces: 

𝑷𝑖
𝑡+1  =  𝑷𝑖

𝑡 + (1 − 𝛾) (𝑷𝑖
𝑡 − 𝑷𝑖

𝑡−1 ) + 𝛼𝑖  𝑭𝑖𝑛𝑡 + 𝛽𝑖 𝑭𝑒𝑥𝑡 . (6) 

One of the advantages of Simplex mesh models is that the adaptation, refinement and 

level of smoothness can be controlled in a computationally efficient manner. Furthermore, the 

constant vertex connectivity of Simplex meshes enables the definition of discrete geometric 

quantities such as the normal vector, Simplex angle and mean curvature at each vertex. 

 Due to their discrete and point-based representation, Simplex meshes can accommodate 

important features such as:  

1) Multi-resolution representation: The Level of Detail (LOD) of a representation 

can be increased by simply increasing number of points in surface (2-Simplex) or curve 

(1-Simplex). This representation is computationally efficient, especially during 

registration because it enables a coarse-to-fine optimization, which alleviates the effect of 

local optima. 
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2) Collision detection: While segmenting multiple structures that are near each other, 

a spatial overlap between these structures must be prevented using a static collision 

detection mechanism. The Simplex model can be easily adapted to support a multi-

surface representation [68], which can enable static collision detection. 

3) Shape Statistics: A Statistical Shape Model (SSM) (discussed in Section 3.4) 

requires a finite set of points to represent the shape. The shape training is performed by 

computing the point set within a suite of surfaces or contours. The Simplex representation 

is a point-based representation that simplifies shape training in relation to the implicit 

representations that requires a conversion to an explicit surface or contour.  

Gilles et al. [68] proposed an approach for musculoskeletal segmentation and registration 

using the 2-Simplex mesh. They have extended the 2-Simplex originally described in [29], 

through improved topological operators for local and global mesh adaptation as well as multi-

surface modeling based on static collision handling founded on the medial representation of the 

anatomical surfaces of interest. During multi-region segmentation, the collision handling ensures 

that the object boundaries do not overlap each other or self-penetrate. In multi-surface muscle 

segmentation, the spatial overlap between muscles is handled using this collision detection 

scheme. The source to target image registration was performed through model deformation. An 

initial template is aligned with the target image which is then deformed iteratively until it 

matches the boundary of target image. This registration is guided by equation (7). 

𝑗̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
(−

𝑑

𝑠
<𝑗<

𝑑

𝑠
)
∆(𝑆 (𝜂(𝑷𝟎)) , 𝑇(𝜂(𝑷 + 𝑗𝑠𝒏))) ,   (7) 

where S is the source image, T target image, 𝑷𝟎 is the vertex position of S where the model is 

initially aligned, 𝜂 is the vertex neighborhood around 𝑷𝟎, ∆ is an image distance measure, n is 
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the surface normal direction, d is the search direction and s is the step size. 𝑗̃ is the measure of 

optimal shift between the model and the target image.  

 

3.2 Segmentation of Curvilinear Structures 

The detection and segmentation of tubular structures in 3D images is an important issue 

for the diagnosis and treatment of vascular diseases. Although a tremendous amount of previous 

and on-going research has been dedicated towards algorithms for segmenting curvilinear tissues, 

most of these techniques have been applied to the segmentation of blood vessels, and 

comparatively few have been applied to cranial nerves. This section will focus on discussing the 

main concepts in the segmentation of curvilinear structures.  

 

3.2.1 Hessian-based Segmentation 

Operators that sensitive to local structure and are based on Hessian analysis have been 

successfully used to detect vascular patterns from medical images. The Hessian has an intuitive 

justification in the context of vessel detection, that is, it can encode the local principal directions 

of a curvilinear structure to characterize the image geometry. The Hessian matrix is the most 

popular tool to capture such information.  Sato et al. [69] developed a multiscale 3D line filter, 

based on eigenvalues of the Hessian matrix, with the purpose of enhancing line structures of 

various widths. Following this idea, several publications were dedicated to multiscale Hessian-

based filters for tubular structure enhancement [70] [71] [72] [73] [74]. 

These approaches are based on the eigenvalues of the Hessian matrix. The Hessian matrix 

of a 3D image I(x), where x = (x, y, z), is given by (8): 
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𝐻 = ∇2𝐼(𝒙) =  [

𝐼𝑥𝑥(𝒙) 𝐼𝑥𝑦(𝒙) 𝐼𝑥𝑧(𝒙)

𝐼𝑦𝑥(𝒙) 𝐼𝑦𝑦(𝒙) 𝐼𝑦𝑧(𝒙)

𝐼𝑧𝑥(𝒙) 𝐼𝑧𝑦(𝒙) 𝐼𝑧𝑧(𝒙)

] . (8) 

In the above equation, 𝐼𝛼𝛽(𝒙) represents the partial second order derivative of the image I(x) 

over 𝛼 and 𝛽.  For example, 𝐼𝑥𝑥(𝒙) =  
𝜕2

𝜕𝑥2 𝐼(𝒙) ; 𝐼𝑥𝑦(𝒙) =  
𝜕2

𝜕𝑥𝜕𝑦
𝐼(𝒙), and so on. In order to 

make these derivatives’ computation well posed in the presence of noise and to impose a scale on 

the detection, they are pre-filtered with a Gaussian kernel. This filtering is performed by simply 

convolving the image 𝐼(𝒙) with derivatives of the Gaussian kernel as shown in (9) and (10). In 

practice, the response of the Gaussian kernel is calculated at several scales 𝜎 that fall within a 

range of interest, e.g. the expected radius of a blood vessel.  

𝐼𝛼𝛽(𝒙) =  
𝜕2𝐺(𝒙, 𝜎)

𝜕𝛼𝜕𝛽
∗ 𝐼(𝒙) (9) 

𝐺(𝒙, 𝜎) =  
1

√(2𝜋𝜎2)3
 𝑒

|𝒙|2

2𝜎2⁄

. 

 

(10) 

 

The Hessian Matrix H represents the second order structure of local intensity variation 

around each voxel of a 3D image. Let the eigenvalues of H be 𝜆1, 𝜆2 and 𝜆3 where they are 

ordered as |𝜆1|< |𝜆2|< |𝜆3|, and their corresponding eigenvectors are labeled 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗  and 𝑣3⃗⃗⃗⃗  

respectively.  According to [70], a voxel inside the tubular structure is identified by one 

eigenvalue 𝜆1 near zero and two much larger eigenvalues 𝜆2 and 𝜆3, as shown in Fig. 10  

Table 2 summarizes the relationship among these eigenvalues to detect different patterns. 

Here N, H, L represent noisy, high and low values of 𝜆𝑘, respectively. The +/- sign indicates the 

polarity of 𝜆𝑘 i.e. brightness/darkness. For example, a bright tubular structure in a dark 

background has a near-zero  𝜆1 but significantly larger values of 𝜆2 and 𝜆3 of the same polarity.  
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Fig. 10.  At locations centered within tubular structures the eigenvector (v1) corresponding to the 

smallest eigenvalue (λ1) of the Hessian matrix is along the vessel direction and the other 

eigenvectors v2 and v3 span the cross-sectional plane. Reproduced from [75]. 

 

Table 2.  Different patterns in 3-D image based on eigenvalues of Hessian. Reproduced from 

[70] 

Patterns λ1 λ2 λ3 

No preferred direction N N N 

Bright plate like structures L L H- 

Dark plate like structures L L H+ 

Bright tubular structures L H- H- 

Dark tubular structures L H+ H+ 

Bright blob-like structures H- H H- 

Dark blob-like structures H+ H+ H+ 
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The vesselness measure at a scale σ, which is based on eigenvalue analysis, can be expressed as: 

𝑉(𝒙, 𝜎) = {
0                                         𝑖𝑓 𝜆2 > 0 𝑜𝑟 𝜆3 > 0

[1 − exp (−
𝑅𝐴

2

2𝛼2)]  exp (−
𝑅𝐵

2

2𝛽2) [1 − exp (−
𝑆2

2𝑐2)] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 

 

(11) 

The parameters α, β and c tune the sensitivity of the vesselness filter. 𝑅𝐴, 𝑅𝐵 and 𝑆, 

corresponding to the local measure of asymmetry, blobness and degree of image structure, 

respectively, are defined as: 

𝑅𝐴 = 
|𝜆2|

|𝜆3|
 ; 𝑅𝐵 = 

|𝜆1|

√|𝜆2𝜆3|
 ; 𝑆 =  √∑ 𝜆𝑗

2
𝑗  . 

  (12) 

 

The vesselness filter described in (11) enhances vessel-like structures in the image and reduce 

the effects of other morphologies. To realize the multiscale feature of (11), the response of the 

filter is computed over a range of scales, and then the scale at which the filter’s response is 

maximum is recorded as the size of the vessel to be detected.  

 

3.2.2 Centerline, Medial Axis, and Skeleton-based Segmentation  

The centerline of a tube-like structure can be considered as a 1D representation of 2D or 

3D curvilinear structures. Centerline tracking has been used as an integral method in many vessel 

segmentation techniques. 

Centerline-based algorithms seek to extract the medial line of the vessel and then use 

them to efficiently constrain the segmentation of the vessel’s contours. In [71], [76], [73], 

centerline tracking is performed using eigenanalysis of the Hessian matrix. Frangi et al. [71] 

modeled the central vessel axis using B-splines. The B-spline model is then deformed by 
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minimizing an external energy, where the external energy is the output of the image Hessian-

based vesselness filter (as discussed in Section 3.2.1). Wink et al. combined Frangi’s vesselness 

measure to the Fast Marching shortest path problem to determine the central axis of vessels.  

Aylward et al. developed a centerline extraction algorithm based on an intensity ridge 

traversal [76]. An intensity ridge map is a 3D elevation map in which the grayscale image 

intensity is mapped to height. The ridge points in the intensity map are locally maximal in the 

gradient direction. This approach is semi-automatic, starting from a manually selected seed point 

and a seed scale, where the seed point is on, or near, a vessel. The subsequent centerline 

extraction is automatic. From the initial seed point and seed scale, the full extent of the ridge is 

traversed by a step maximizing procedure based on the maximum eigenvalue’s eigenvector of 

the Hessian. This extracted intensity ridge represents the vessel’s medial axis. Along with the 

medial axis, the radius of the tube at each ridge point is also estimated using a scale based 

approach. In [76], the authors paid particular attention to both the quantitative and qualitative 

validation of their algorithm, demonstrating its robustness under parameter changes and image 

acquisition noise. The main application of this approach is in multimodal registration, which will 

be discussed later in this chapter (Section 3.6.3).  

 

3.2.3 Minimal Path-based Segmentation 

If the start and end points are available for a given vascular segment, the centerline 

extraction problem can be solved by path minimization techniques. By defining a cost function 

inside an image, the Minimal Path becomes the path for which the integral of the cost between 

the two points is minimal. Based on the optimization method involved, minimum path based 

techniques differ notably. One approach, called Dijkstra’s shortest path algorithm [77], solves 
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the Minimal Path problem by using graph theory and dynamic programming. Dijkstra’s shortest 

path algorithm finds the Minimal Path between two end nodes in a discrete manner where a cost 

is associated with transitions from each point to its neighbors. This optimization method has 

been used in [73], [78] and [79]. Although such algorithms show computational efficiency, they 

might introduce metrication errors
5
 due to their discrete nature, as shown in Fig. 11 [80].  

 

 

Fig. 11.  Metrication error. Shortest path measured by Dijkstra’s algorithm (green dashed line) 

do not converge to the true shortest path (red solid line), no matter how much the grid is refined. 

 

To avoid metrication errors, Cohen and Kimmel [81] solved the Minimal Path problem 

with a front propagation equation and a Fast Marching method. An improved version of this 

method was presented in [80] which has much similarities with Dijkstra’s method, but it had the 

advantage of being consistent with continuous formulation of the Minimal Path problem. This 

Fast Marching optimization of the Minimal Path provides a globally optimal curve by 

minimizing the active contour energy. The method of Minimal Path extraction exhibits some 

                                                 
5
 Due to the discrete nature of the graph, the approximated shortest distance measured from Dijkstra’s algorithm 

might become inconsistent with the true graph distance, this phenomenon is called metrication error.   
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limitations: this method in general does not correspond to the true centerline of the vessel, and it 

also does not provide any information about the vessel boundary or local width.  

A Minimal Path between two points, optimal in geodesic distance, globally minimizes an 

energy functional defined as an image-based potential function. Assuming that C is the 

parameterized contour and s is the arc-length parameter such that ||C′(s)||  = 1 [81], the energy 

functional can be represented using following form:    

𝐸(𝐶) =  ∫ 𝑃(𝐶(𝑠)) 𝑑𝑠
Ω

 ,  (13) 

where P is the image potential function and Ω is the image domain. 

The solution of (13) can be obtained by computing the minimal action map 𝑈. The 

minimal action map is the minimal energy integrated along a path between a starting point po and 

any other point x of the image domain Ω: 

∀𝒙 ∈  Ω,            𝑈(𝒙) =  
𝑚𝑖𝑛

𝐶 ∈ 𝒜𝒑𝒐,   𝒙

{∫ 𝑃(𝐶(𝑠))𝑑𝑠
Ω

}. (14) 

In equation (14), 𝓐𝒑𝒐,   𝒙
 is the set of paths linking x to po. The values of U are also called arrival 

times of the front propagating from the source po. Assuming that the potential  P>0, the action 

map has only one local minimum, i.e., the starting point po. Now, according to FMM, U satisfies 

the following Eikonal equation: 

||∇𝑈(𝑥)|| = 𝑃          for 𝒙 ∈ Ω ,         and    𝑈(𝒑𝑜) = 0 ,   (15) 

which can be solved by the Fast Marching approach. Finally, the Minimal Path between po and 

p1 can be established by a simple back propagation on the action map.  

Li and Yezzi [82] extended the Minimal Path technique by incorporating an extra 

dimension into the search space which represents the entire structure as a 4D curve. Using this 

approach the centerline, along with the entire tubular surface will be segmented. The authors 
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represented the tubular structures as an envelope of a family of spheres with continuously 

changing center points and radii. Each 4D coordinate on the curve consists of three spatial 

coordinates and the fourth coordinate represents the vessel thickness at the corresponding 3D 

point. According to authors, this approach combines Minimal Path and active surface techniques, 

which results in a well centered centerline and a direct approximation of the vessel surface. 

Following the seminal idea of Li and Yezzi, Benmansour and Cohen [83] developed a 

vessel segmentation approach involving a Minimal Path extraction which is based on the 

Optimally Oriented Flux (OOF). The OOF is a metric that can extract geometric information 

from 3D images, and this is useful for detecting edges and ridges at any orientation. The authors 

claimed that their introduced anisotropic metric based on OOF allows for faster propagation 

along the vessel’s centerline.  

 

3.3 Nerve Segmentation 

Although vascular segmentation has been an active research area and a tremendous 

amount of past and on-going research has been dedicated to it, very few of these techniques have 

been applied to segmenting cranial nerves. All the vessel segmentation techniques discussed so 

far in this chapter have been applied on blood vessel segmentation, which is a comparatively 

simpler problem than nerve segmentation due to the high contrast available in typical MR 

angiography data, as shown in Fig. 12. Due to their fine structure, cranial nerves require images 

of high resolution and contrast with respect to corticospinal fluid, which entails special MRI 

pulse sequences to be detected from medical images as discussed in Section 2.2. 
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Fig. 12.   MRA of a brain slice showing blood vessels and veins.  

 

3.3.1 Optic Nerve Segmentation  

The localization of the optic nerve in MR or CT images might be difficult due to the 

variability of contrast along the nerve path, although this nerve is less challenging than many of 

the brainstem nerves because of its larger size comparative to other nerves. Several recent 

approaches have been suggested for segmenting the optic nerves and tracts [84],  [79], [85], [86] 

and [87]. 

Noble and Dawant [79] presented an atlas-based segmentation of the optic nerves and 

chiasm from both MR and CT modalities. In this approach, a model-based atlas is created by 

combining an optimal path algorithm (i.e., Dijkstra’s shortest path algorithm) with a model of 

average shape and of typical intensity information. The subsequent segmentation based on this 

model is performed by computing the centerline path and the radius function at regular sample 

points along the path. Although this approach can segment optic nerves, it cannot be applied to 
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the thinner cranial nerves because this method requires a manually pre-segmented structure to 

create the atlas. Another limitation of this approach is that it only includes first-order statistics 

that cannot explicitly account for shape variability. 

In [86] and [85] other atlas-based segmentation of the optic nerve and its surrounding 

structures (such as chiasm, lenses, eyeballs etc.) are presented. To improve the accuracy of their 

segmentation results, Panda and Asman [87] extended the single atlas approach to a multiple 

atlas approach. Their technique proposes a segmentation of the optic nerves, eye globes and 

muscles by employing a pairwise affine and non-rigid registration techniques.  

 

3.3.2 Spinal Nerve Segmentation  

Dalca et al. developed a segmentation method of spinal nerve bundles based on particle 

filtering. Particle filters approximate the posterior density of the state variables given the 

observation variables. Nerve segments were modeled using Bezier splines and the propagation of 

the nerve segments was done by a dynamic model. Specifically, each segment of a nerve bundle 

was represented by an 8-feature vector, termed a particle, h: 

𝒉 = (𝒑0 , 𝒑1, 𝒑2, 𝒑3, 𝑟1, 𝑟2, 𝑟3, 𝜇) , (16) 

where 𝒑0, 𝒑1, 𝒑2 and 𝒑3 are control points which constitute the centerline of the segment using a 

3
rd

 degree Bezier curve; 𝑟1, 𝑟2, 𝑟3 are control points that defines a radius function via a 2
nd

 order 

Bezier curve and 𝜇 is the mean image intensity inside the segment. The dynamic model 

introduced in this method specifies the construction of a state vector at time step t, given the state 

vector at previous time step t-1. The likelihood of a nerve at a specific location in the MR image 

measures how well the particles can describe the corresponding segment of the image. Based on 
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the likelihood measure, the particles are weighted in each iteration. This particle filtering-based 

method is highly sensitive to parameter initialization.  

 

3.3.3 Nerve fiber Tractography 

Tractography is a three-dimensional fiber tract reconstruction process based on the 

anisotropic diffusion of biological tissue containing large number of fibers, like brain white 

matter. It provides the mapping of neural fiber pathways which allows the visualization of the 

fiber tracts. Tractography is constructed from Diffusion MRI (dMRI), which captures the 

average diffusion of water molecules in biological tissues at a scale much smaller than the 

imaging resolution [88]. Water molecules in fibrous structures such as white matter diffuse 

predominantly along the length of nerve fibers and are hindered across nerve fiber membranes, 

which results in anisotropic diffusion. The influential diffusion tensor model was proposed by 

[89]. In this model, diffusion behavior is characterized in a voxel-by-voxel manner where the 

diffusion tensor yields the diffusion coefficient corresponding to any direction in space [75]. The 

diffusion tensor at each voxel is defined as a 3×3 symmetric matrix as shown in (17), which can 

be visualized as a 3D ellipsoid, as shown in Fig. 13. 

𝑫 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] . (17) 

The diffusion Probability Density Function (PDF) can be denoted as the function P(R, t), which 

represents the probability that a water molecule located at an initial position r0 has moved to 

position r in time 𝝉. Given that R = r - r0,  the rate of change of P(R, t) can be defined as in 

equation (18): 



   

 

42 

𝜕𝑃(𝑹,𝑡)

𝜕𝑡
= 𝑫∇2𝑃(𝑹, 𝜏), 

  (18) 

 

where, R is the net displacement vector representing the displacement of water molecules at time 

𝜏. The solution of (18) is P, which describes the probability distribution of how the water 

molecules diffuse over time t.  

The reconstruction method of Diffusion Tensor Imaging (DTI) is based on the 

assumption that the PDF of the diffused water molecules has a 3D Gaussian distribution, and is 

expressed as (19) [89] 

𝑃(𝒓, 𝑡) =  
1

√(4𝜋𝜏)3|𝑫|)
 exp (−

𝒓𝑇𝐷−1𝒓

4𝑡
), (19) 

where, D is the diffusion tensor defined in equation (17) and r is the relative spin displacement. 

|𝑫| is the determinant of D .  

 

 

 

 

(a) (b) (c) 

Fig. 13.  Diffusion Tensor representation, reproduced from [75]. (a) Brownian motion of water 

along the fibers. (b) Eigen-decomposition of DT. (c) Ellipsoid representation of DT. 

 

𝜆1 

𝜆2 

𝜆3 
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The Diffusion Tensor matrix D can be decomposed into three eigenvalues (λ1, λ2, λ3) and 

the corresponding eigenvectors (e1, e2, e3), where λ1 ≥ λ2 ≥ λ3. The largest eigenvalue λ1 and its 

corresponding eigenvector e1 give the first principal direction of the diffusion tensor, while the 

other two eigenvectors span the plane orthogonal to it. The eigenvalue decomposition of D is 

also used to extract important orientation information of the tissue structures and some useful 

measures, such as mean diffusivity (MD) and fractional anisotropy (FA). The FA measure is 

used to show the region of anisotropy and is defined as (20) [90]: 

𝐹𝐴 =  √
3

2
√

(𝜆1−�̅�)2+ (𝜆2−�̅�)2+(𝜆3−�̅�)2

𝜆1
2+𝜆2

2+𝜆3
2  . (20) 

Here, �̅� is the mean diffusivity. For an isotropic medium FA is 0, and 1 for a strongly anisotropic 

medium.  

White matter tractography is the computational process through which the fibers are 

detected and delineated. It is also called streamline fiber tracking. The streamline tracking 

algorithm, proposed in [89], starts from a seed voxel and traces down the trajectory in a voxel-

by-voxel manner by estimating the direction of the eigenvector e1 as the direction of the local 

fiber orientation.  

Even though DTI is a powerful tool for white matter tractography in many clinical 

applications, it has some limitations due of the Gaussian PDF assumption. Due to this 

assumption, DTI cannot directly image multiple fibers crossing within the same voxel.  

To capture multiple fiber directions within the same imaging voxel, Diffusion Spectrum 

Imaging (DSI), was introduced by [91]. DSI extracts the diffusion PDF in multiple gradient 

orientations that span a Cartesian grid of points [92],[50]. Since visualization of the 3D diffusion 

PDF at every voxel is expensive, the diffusion Oriented Distribution Function (ODF) is 

calculated from the PDF which contains the full angular information of the diffusion PDF. The 
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DSI technique requires a very strong gradient strength (b-value) and a long acquisition time. To 

reduce the acquisition time, a single shell High Angular Resolution Diffusion Imaging (HARDI) 

was introduced in [75, 92] and [93], which can extract the desired diffusion ODF in a single b-

value [75].  

 

3.4 Survey of Statistical Shape Models 

Statistical Shape Models (SSMs) have been an established segmentation tool for medical 

images, especially in those cases where the traditional image segmentation methods fail due to 

insufficient resolution or contrast. The goal of SSMs is to capture the shape as well as shape 

variations of the features to be segmented. This shape information is integrated with the model as 

a priori knowledge which makes the approach more stable against local image artifacts and 

perturbations while segmenting sructures from medical images.  

The shape of an object is invariant to Euclidian transformations, i.e., the shape remains 

the same after removing translation, rotation and scaling effects from the object [94]. This 

information is utilized using statistical analysis in model-based segmentation which provides 

more optimized results. Cootes et al. introduced SSMs, also known as Active Shape Models 

(ASMs) [95], along with Active Appearance Models (AAMs) [96]. ASMs and AAMs construct 

models by learning the variability patterns of shape and intensity appearance respectively from a 

training set of images and then deforming the model within the target image to be segmented in a 

manner consistent with these statistics. In other words, the deformation process proceeds in a 

manner consistent with the shape or appearance present in the training set. In the ASM approach, 

shape variation is modeled using Principal Components, whose directions coincide with the 

eigenvectors of the landmarks’ covariance matrix. Cootes et al. [95] constructed the ASM using 
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expert provided, manually identified landmarks  in 2D, which made its 3D extension difficult 

due to the user supervision and complexity of landmark localization in areas of low contrast.   

Cremers et al. [97] integrated a diffusion Snake-based segmentation process with 

nonlinear shape statistics. The authors claimed that the integration of nonlinear statistics as a 

shape prior enables this approach to capture the fine details of shape variation. An extensive 

review of Statistical Shape Models can be found in [98].  

Nain et al. [99] proposed a blood vessel segmentation technique that incorporates image 

statistics and shape information to a region-based active contour model. Besides segmenting the 

vasculature, this method also penalizes any deviation from a tubular structure. A weak shape 

prior based on a local neighborhood, called a Ball measure, is computed and added with the 

image force to deform the active contour. 

Tejos and Irarrazaval [100] presented a Simplex Mesh Diffusion Snakes (SDMS) method 

that combines Simplex meshes and statistical shape knowledge through diffusion snakes.  They 

have extended the 2D Deformable Snakes (DS) proposed in [97] in 3D and then integrated 

Simplex mesh to represent the boundaries of the object of interest. They proposed an iterative 

Statistical Shape Model where the shape training was performed using General Procrustes 

Analysis. This shape training did not require any pre-segmented shape and the training shapes 

were created using their own SDMS method. The shape energy term has the form given in (21). 

𝐸𝑆ℎ𝑎𝑝𝑒(�̌�) =
1

2
 (�̌� − �̅�)𝑇𝚺⊥

 −1(�̌� − �̅�). (21) 

Here X is N × d vector of Simplex nodes, �̌� are the aligned nodes with respect to the mean shape 

�̅� and 𝚺 is covariance matrix. This shape energy functional was integrated with the energy 

functional derived from the input image. The evolution of the Simplex was guided by the 

differential equation shown in (22). 
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𝑑𝑿

𝑑𝑡
= − 

𝜕(𝐸𝑆ℎ𝑎𝑝𝑒(�̌�))

𝜕�̅�𝑻  . 
  (22) 

A prior knowledge-based discrete deformable model for subject-specific musculoskeletal 

modeling was proposed in [101]. They constructed a Statistical Shape Model, as well as an 

Active Appearance Model (based on consistent medical image modalities) for the structures of 

interest, which were then integrated into Gilles’ multi-resolution Simplex-based deformable 

model to produce an atlas of bone structures of the leg. The initialization of the atlas in the 

images was performed in an adaptive manner, which could overcome variations in image 

resolution and field of view.  

 

3.5 Shape Representation and Model Construction 

The first fundamental decision that needs to be made when constructing Statistical Shape 

Models is the choice of shape representation. Based on the segmentation method used, these 

representations may vary. Shapes have been represented using points, curves, medial models or 

surface meshes in the literature. Among them, the most common and generic method for shape 

representation is by using points. A subset of these point sets are often referred to as landmarks. 

The most widely used landmark-based SSM was proposed by Cootes et al. [102], called the 

Point Distribution Model (PDM). A PDM computes a geometric mean and some statistical 

modes of geometric variation derived from a set of training dataset. In mesh representations, 

additional connectivity information between points is stored. In medial-based representations, a 

medial model generally consists of a set of points on the centerline of the object and the 

corresponding radii. Pizer et al. [103] represented the medial model shape representation and 

termed it as m-reps. A continuous version of m-reps was used to build SSMs in [104].  
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Basically, an SSM computes the mean shape and the most important modes of variation 

from a collection of training data sets. The basic two steps for constructing a shape model are: 

(1) shape alignment and (2) modeling shape variations. 

 

3.5.1 Ordinary Procrustes Analysis  

Since shapes are invariant under a similarity transform, training shapes need to be aligned 

by filtering all the global transformations comprised of translation, rotation and scaling. This can 

be done by establishing a common coordinate reference frame with respect to the position, 

rotation and scale, commonly referred to as a pose. The most popular data alignment method is 

the Procrustes analysis, which minimizes the Euclidean mean-squared distance between shapes, 

known as the Procrustes distance. The ordinary Procrustes Analysis (OPA) works by aligning 

two shapes through one-to-one correspondences. 

Consider two shape X1 and X2, each having a finite number of k points in n dimensions. 

Each Xi is represented in a vector format: 

𝑿𝑖 = (𝑥𝑖1𝑦𝑖1𝑧𝑖1, ……………𝑥𝑖𝑘𝑦𝑖𝑘𝑧𝑖𝑘 ).   (23) 

First, the centroid of each shape Xi must be calculated as: 

(𝑋�̅�, �̅�𝑖, 𝑍�̅�, ) = (
1

𝑘
∑ 𝑥𝑖𝑗

𝑘
𝑗=1 ,

1

𝑘
∑ 𝑦𝑖𝑗

𝑘
𝑗=1 ,

1

𝑘
∑ 𝑧𝑖𝑗

𝑘
𝑗=1 ). (24) 

Now, the translation component between the two shapes is removed by either translating 

the centroid of one shape to another or by translating each of the centroids to the origin. The 

scaling component is removed by scaling the object in a way so that the root-mean-squared 

distance from the points to the translated origin is 1. The rotational component is finally removed 

using Singular Value Decomposition (SVD) [94]. Finally, the distance between the two shapes is 

minimized by minimizing the following Procrustes distance: 
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𝑃𝑑
2 = ∑  [(𝑥1𝑗 − 𝑥2𝑗)

2 + (𝑦1𝑗 − 𝑦2𝑗)
2 + (𝑧1𝑗 − 𝑧2𝑗)

2]𝑘
𝑗=1 . (25) 

 

3.5.2 General Procrustes Analysis  

 Unlike the OPA method, the General Procrustes Analysis (GPA) [105] method optimally 

superimposes a set of shapes in a group-wise manner instead of superimposing them on an 

arbitrary selected shape. The GPA technique is similar to OPA when the number of shapes is 

two. The GPA approach iteratively aligns shapes by registering their corresponding point sets. 

The algorithm is outlined as follows: 

1. Choose a reference shape as an estimate of mean shape. 

2. Align all the remaining shapes to the mean shape. 

3. Re-compute the mean shape from the aligned shapes. 

4. If the Procrustes distance of the two estimated means are above a threshold then 

continue to step 2. 

The estimate of the mean in the GPA method is computed by simply averaging over all 

the samples, as shown below: 

�̅� =
1

𝑁
 ∑ 𝑿𝑖

𝑁
𝑖=1 , (26) 

where, N is the number of shapes. This mean is also called the Procrustes mean. 

 

3.5.3  Modeling Shape Variations using Principal Component Analysis 

After shape alignment, when all the shapes are brought into a common frame of 

reference, the next step in SSM construction is to find the set of modes that best describe the 

shape variations within the frame. This is also known as shape decomposition and is usually 
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performed using Principal Component Analysis (PCA) [94].  The PCA method extracts principal 

modes which represent data correlation along principal directions within the training data set, 

eventually reduces problem dimensionality. 

Let us consider that there are N training shapes where each of the shape has a vector of 

the form 𝑿𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑘  ) which is composed of k points of dimension d. The mean of the 

training data set is computed using equation (26). The corresponding dk x dk covariance matrix 

𝚺𝑿 can be written as in (27). 

𝚺𝑋 =
1

𝑁−1
 ∑ (𝑿𝑖 − �̅�)𝑁

𝑖=1  (𝑿𝑖 − �̅�)𝑇. 

  (27) 

 

The PCA method aims to find an orthogonal matrix M such that the following linear 

transformation holds (28), 

𝒀 =  𝑴𝑿, (28) 

where, M is an orthonormal matrix. The mean of 𝑌 can be expressed as �̅�   =  𝑴�̅�  and the 

covariance of 𝒀 is given by (29):  

𝚺𝑌 =
1

𝑁−1
 ∑ (𝒀𝑖 − �̅�)𝑁

𝑖=1  (𝒀𝑖 − �̅�)𝑇 = 𝑴 𝚺𝑋 𝑴𝑇 .   (29) 

The detailed derivation of (29) can be found in [94]. Further manipulation of (29) yields:  

𝑴𝑇𝚺𝑌  =  𝚺𝑋 𝑴𝑇. (30) 

By substituting 𝑴𝑻= 𝝓 we get the following linear relation:  

𝚺𝑋 𝝓 =  𝝓 𝚺𝑌, (31) 

where 𝝓 = {𝝓𝟏, 𝝓𝟐, … ,𝝓𝒎} is the eigenvector of 𝚺𝑿.  

Using the transformation of (31), any observation 𝑿𝑖 𝜖 ℝ
𝑚 can be defined in a new basis 

{𝜙𝑖} as a new vector 𝒀𝑖  𝜖 ℝ
𝑚 and vice versa. Each 𝝓𝑖 represents a principal mode or principal 

axis of variation within the training data set. 
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The rows of M are the eigenvectors of 𝚺𝑋 and the diagonal matrix of the covariance of 

transformed shapes represents the eigenvalues [94]. In the case of correlated points where the 

smallest eigenvalues are very close to zero, the corresponding eigenvectors are omitted. As a 

result, the dimensionality of M will be reduced. There are several benefits of this dimensionality 

reduction: (1) the complexity of the SSM model is reduced; (2) this reduction helps to filter out 

possible noise present in the data, (3) while also improving efficiency of the algorithm in terms 

of speed and memory.  

The computation of PCA is done by an eigenvalue decomposition (EVD) of 𝚺𝑥. Eigen-

vectors are sorted according to the magnitude of eigenvalues in the decreasing order so that |𝜆𝑖| 

> |𝜆𝑖+1|, where 𝜆𝑖s’ represent eigenvalues. Any sample shape can be approximated by the linear 

combination of first c modes using equation (32). 

𝑿 = �̅� + ∑ 𝑏𝑡𝝓𝑡
𝑐
𝑡=1 , (32) 

where 𝒃𝒕 are the PCA model parameters that control the scaling of each eigenvectors and c is 

chosen so that the accumulated variance reaches a certain ratio of total variance. An infinite 

number of shapes can be defined by modifying the scalar weights 𝒃𝒕. However, to ensure the 

variations of the new shapes are within the training data set, each 𝒃𝒕 is constrained to lie within [-

3𝝀𝒕, 3𝝀𝒕]. 

 

3.6 Registration in Medical Imaging 

Image registration is the process of determining the spatial transformation or mapping 

that relates the positions in one image to corresponding positions in other image(s). Basically, the 

registration process geometrically aligns different images for the purpose of integrating useful 

information obtained from those images. In many cases, registration needs to be done for images 
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taken at different times, using multiple imaging modalities such as MR, CT, PET, and SPECT, 

possibly in conjunction with longitudinal imaging studies of a subject carried out at many points 

in time.  

There are three categories of registration based on agreement between images: (1) image-

to-image, (2) model-to-model and (3) model-to-image. Image-to-image registration methods 

directly compare voxel intensities rather than derivative features. Model-to-model registration 

methods align images by matching features and then minimize the distance between those 

features. Model-to-image registration methods register a model which is extracted from one 

image and then registers it with another image.  

In general, the registration between two images, say A and B, can be represented by the 

following equation [106]: 

𝒑𝐴 = 𝑇(𝒑𝐵), (33) 

where 𝒑𝑨  = (𝒙𝑨, 𝒚𝑨, 𝒛𝑨) and 𝒑𝑩 = (𝒙𝑩, 𝒚𝑩, 𝒛𝑩) are the points of the coordinate systems of A 

and B. Image registration aims to find the transformation T that maximizes the similarities 

between images A and B. The basic stages involved in image registration are: (1) The choice of 

the transformation model which specifies how the source image needs to be transformed to 

match the target image, (2) a similarity measure of how well the two images match, and (3) the 

optimization process that maximizes the measure of similarity.  

The transformation model, denoted by T in (33), defines how image features can be 

moved relative to one another to get the optimal mapping between the images. This 

transformation is performed between images of the same anatomy acquired from either different 

modalities or from same modalities at different times. Based on the transformation model, image 

registration can be classified as rigid-body and non-rigid-body transformations. In rigid-body 
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transformation, the images are rotated and translated with respect to one another to achieve 

correspondence. This transformation is described by 6 (3 translation and 3 rotation) parameters 

and can be expressed as: 

𝐵 =  𝑹𝐴𝐵𝐴 + 𝒕𝐴𝐵, (34) 

where 𝑹𝑨𝑩 and 𝒕𝑨𝑩 are the rotation and translation parameters, respectively, both of which need 

to be minimized to get the correspondence between images A and B.   An affine transformation is 

a generalization of a rigid transformation based on 12 parameters: 3 scaling and 3 shearing 

parameters in addition to the previous 6.  

Non-rigid transformations are adopted where target needs to be deformed to perform the 

mapping. Piecewise polynomial functions such as thin-plate splines [107] and B-Splines [108] 

are commonly used to perform non-rigid transformation. In such cases minimization of 

interpolation functions are used to model the transformation. Deformable model-based 

registration also performs non-rigid transformation which is discussed in Section 3.6.2. 

 

3.6.1 Similarity Measures in Registration 

Efficient registration between images depends largely on choosing the appropriate 

similarity measure. First category of similarity measures are based on the image features where 

the goal of the registration is to maximize the similarity between these features. An image is 

represented using identifiable elements called features or landmarks. Commonly used features in 

image registrations are points, curves, and regions. Point landmarks are either chosen based on 

anatomical or geometrical significance such as extrema of curvature [109].  

Curves have also been used as geometric features for medical image registration in [111] 

and [112]. Specifically, ridges or crest lines of the brain (like gyri and sulci) which are 
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meaningful anatomical features, are extracted from different brain images and then registered to 

each other [113, 114]. Region features refer to areas with homogeneous characteristics. 

The second broad category of similarity measure is based on voxel intensity. Intensity 

based approaches work by matching mathematically or statistically defined image patterns over 

local neighborhoods, in a manner that is repeated over the whole image. In these cases, similarity 

measures are computed over local neighborhoods and aggregated over the source or target 

image, which leads to a putative transformation that is adjusted until the similarity is maximal.  

Some of the commonly used similarity measures are Sum of Squared Differences (SSD), 

Correlation Coefficient (CC), Correlation Ratio (CR), Mutual Information (MI) and Normalized 

Mutual Information (NMI). SSD and CC are suitable for mono-modal registration (images from 

same modality having similar intensity patterns). On the other hand, CR, MI and NMI are 

appropriate measures for multimodal registration where the source and target images arise from 

different modalities. MI-based registration measures the joint probability of the corresponding 

voxel intensity of the two images and then maximizes this measure in a manner such that the 

amount of information they contain about each other is maximal. A thorough review of MI-based 

registration techniques is given in [115]. 

The third step of the registration process is to select the optimizer, which will maximize 

or minimize the transformation model to improve image similarity. The choice of the 

optimization method depends on: a cost function, the transformation model, the required 

registration accuracy and a time constraint. Optimization of the registration process has been 

solved using standard algorithms such as the Simplex method, the Powells method, and the 

Steepest Gradient Descent method. These algorithms are described in details in [116].  
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3.6.2 Deformable model based registration 

Image registration based on deformable models, which is categorized as a model-to-

image registration, is a well-researched field in medical image analysis. In this approach, a 

model is used as a set of geometric features that is deformed iteratively using external and 

internal forces. In deformable models, segmentation and registration processes are typically 

combined. The choice of the deformable model plays a governing role in this type of registration. 

Different deformable models are discussed in Section CHAPTER 3. In this section, we will 

emphasize on how the registration process works for deformable models. Sotiras et al. presented 

a recent detailed survey on deformable model registrations in medical imaging [117].  

Rueckert et al. [118] presented a popular B-Spline based a non-rigid registration 

technique for 3D contrast-enhanced breast MRI. The transformation model consisted of global 

and local motions where the global motion was modeled using an affine transformation and a 

local motion is modeled by Free Form Deformation (FFD). The basic idea behind spline-based 

FFD is to deform an object based on a local deformation polynomial that is anchored by the 

motion of its underlying mesh control points, which eventually results in a C
2
-continuous 

transformation (a transformation whose first and second derivatives are continuous). In 

Rueckert’s work, the image-to-image registration is performed by maximizing the normalized 

mutual information between two images. Wang et al. [119] published a non-rigid registration of 

the brain which was modeled by a FFD-based Non-Uniform Rational B-Spline (NRRBS) and 

demonstrated better flexibility and performance.  

Balci et al. [120] incorporated an FFD-based B-Spline in a groupwise registration 

technique. Groupwise registration techniques are advantageous for characterizing anatomical 

shape differences among the subjects of a population. Miller et al. developed a groupwise 
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registration method where the joint correspondence of the population images is computed by 

minimizing the summed voxel-wise entropies. Groupwise registration have been used recently in 

[121] to construct a longitudinal atlas of the human brain, and in [122] which combines structural 

information from the segmentation method into the registration.   

 

3.6.3 Tubular Model Registration 

This section covers the state of the art for tubular or vascular model registration. Aylward 

et al. [123] presented a model-to-image registration technique for the purpose of rigidly aligning 

images of tubes. The models of the tubes were produced from a dynamic-scale, ridge-based 

segmentation approach [76]. This segmentation results in the estimation of centerlines and radii 

of the blood vessels, which is discussed in Section 3.2.2. The rigid transformation from source to 

target coordinate system was achieved using (35):  

𝒚 = 𝒙𝑹 + 𝒕 . (35) 

Here x is a point in the source image, y is a point in the target image, R is the rotation matrix and 

t is the three-dimensional translation vector. The registration process optimizes R and t 

simultaneously by maximizing the metric function given in (36):  

𝐹(𝑹, 𝒕) =
1

∑ 𝑤𝑖
𝑛
𝑖=1

∑ 𝑤𝑖𝐼𝜅𝜎𝑖
(𝑥𝑖𝑹 + 𝒕)𝑛

𝑖=1 ,   (36) 

 

where the subscript 𝜅𝜎𝑖 is the scaling of the image I, 𝑤𝑖 is the weight factor of the centerline 

point 𝑥𝑖. Essentially, maximizing (36) resulted in a mapping of bright image points with the 

model centerline points. The authors used a two-phase coarse-to-fine optimization method 

involving the gradient descent direction line search algorithm. 

Jomier and Aylward [124] further extended the rigid model-to-image registration by 

computing an elastic transformation in a hierarchical manner. After performing a global and 
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piecewise registration to align the vascular model with the target image, a non-rigid registration 

was performed to constrain the elasticity and rigidity of the tube.  

Noble and Dawant [79] developed an elastic atlas-based segmentation method where they 

used both rigid and elastic transformations for inter-modal MR and CT image registration. To 

create the atlas for the optic nerve and chiasm, a pair of MR and CT images is registered using a 

rigid transformation. Then the atlas and training population are registered using a non-rigid 

intensity-based adaptive algorithm by maximizing Normalized Mutual Information. 

 

3.7 Conclusion  

3D tubular structure segmentation is one of well-researched area in medical image 

analysis. However, there is a scarcity of segmentation algorithm applied to cranial nerves. This 

chapter presents current state-of the-art algorithms for vessel segmentation. We have emphasized 

on deformable model-based segmentations, Hessian-based segmentations and Minimal Path-

based segmentations as our proposed segmentation algorithm is built exploiting these concepts.  

This chapter also provides a brief literature review on the published nerve segmentation 

algorithms which includes optic nerve and spinal nerve. 

The use of a priori knowledge in vessel segmentation is often crucial in terms of 

robustness and accuracy. Basic concepts of constructing a SSM are detailed including OPA, 

GPA and PCA methods. Deformable models perform a coupled segmentation-registration 

process. Brief discussions on the state-of-the art deformable model-based registration algorithms 

as well as other existing vascular registration techniques are presented. 
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CHAPTER 4 

CENTERLINE EXTRACTION AND SURFACE MODELING 

In this chapter, we present a segmentation technique to identify the medial axis and the 

surface boundary of cranial nerves. We utilize a 3D deformable 1-Simplex discrete contour 

model to extract the medial axis of each cranial nerve. This contour model represents a collection 

of 2-connected vertices linked by edges, where vertex position is determined by a Newtonian 

expression for vertex kinematics featuring external and internal forces, the latter of which 

include attractive forces towards the nerve medial axis.  We also exploit multiscale vesselness 

filtering and Minimal Path techniques in the medial axis extraction method, which computes a 

radius estimate along the path. Once we have the medial axis and the radius function of a nerve, 

we identify the nerve surface using a 2-Simplex deformable model, which expands radially and 

can accommodate any nerve shape. As a result, the method proposed here combines the benefits 

of explicit contour and surface models, while also achieving a cornerstone for future work that 

will emphasize shape statistics, static collision with other critical structures and tree-shape 

analysis. 

Although the 2-Simplex mesh has been used for surface representation and segmentation 

in the literature, the 1-Simplex mesh has not been implemented for the segmentation of 

curvilinear structures. Delingette [29] alluded to 1-Simplex geometry in his publications, but 

never implemented it with a Newtonian, image-based model. In this chapter, we present a cranial 

nerve segmentation technique that utilizes 1-Simplex-based discrete active contour model of the 

intracranial nerve centerlines, which exploits vesselness-based image forces, as well as 2-

Simplex-based nerve surface segmentation that identifies the nerve boundary using gradient-

based image forces. 
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The rest of the chapter is organized as follows: Section 4.1 illustrates different steps of 

the centerline extraction pipeline. Section 4.2 describes the nerve surface segmentation process. 

Results and validation of both centerline identification and surface segmentation are presented in 

Section 4.3 and Section 4.4, respectively.  

 

4.1 Centerline Identification  

We designed an image analysis pipeline that ends up with the extraction of the nerve 

centerlines from patient-specific T2-weighted MRI data. This centerline extraction pipeline, as 

shown in Fig. 14, can be sub-divided into four main steps: image preprocessing, computation of 

the geodesic path between two user-provided end points, construction of a 1-Simplex 3D 

contour, and 3D contour deformation. 

 

 

 

Fig. 14 .  Centerline Extraction Pipeline. 
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4.1.1 Preprocessing 

The raw MR image undergoes the following preprocessing techniques: Gaussian 

smoothing, vesselness computation and binary thresholding. Image smoothing is performed by 

convolving the image with a Gaussian kernel, as shown in (37). 

𝐺(𝑥, 𝑦, 𝑧) =
1

𝜎√2𝜋
exp (−

(𝑥2+𝑦2+𝑧2)

2𝜎2 ), (37) 

where  𝜎 is the std. deviation of the Gaussian distribution. 

Subsequently, a vesselness operator, as shown in (11) and (12), identifies locally tubular 

portions of the image coinciding with voxels characterized by the local Hessian matrix having 

one near-zero eigenvalue [70]. The Hessian encodes the local principal directions of the intensity 

ridges, which enables detection of blood vessels from angiographic images. A permissive 

vesselness threshold and the morphological dilation of the binarized image enable us to restrict 

the subsequent medial axis computation to a sub-volume of interest while still making 

allowances for partial volume effects. 

 

4.1.2 Computation of the Minimal Path 

The centerline, aka medial axis, extraction technique is a semi-automatic process that 

requires the user to input two terminating points coinciding with the start and the end of each 

nerve. We compute a Minimal Path that links these points, which serves as a putative estimate of 

the medial axis of the nerve. This computation determines a path between two points similarly to 

Deschamps’ Fast Marching technique [63]. This geodesic path between two points can be found 

by globally minimizing a cost functional that is defined in terms of the image-derived “speed 

function”. This is a real-valued function on the image domain characterized by a high-valued 

vesselness measure on nerve voxels. A moving front evolves from the beginning seed point and 
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ultimately concludes when the front arrives at the ending seed point. The Minimal Path is 

determined by back-propagating from the ending position to the starting position. 

 

4.1.3 Geometry and Construction of 1-Simplex Contour  

The medial axis of each nerve will be identified and discretized using a 1-Simplex model. 

The continuous path is discretized as a curvilinear aggregate of vertices linked by edges, and this 

piecewise-linear curve is endowed with the ability to deform according to the equation (5). The 

curve model presented below exploits the same geometric definitions as elaborated by Delingette 

[29].  

A 1-Simplex is a piecewise-linear curve where each non-terminating vertex has two vertex-

neighbors as depicted in Fig. 15(a). The geometrical measurements defined at a 1-Simplex vertex 

are defined in terms of the Frenet frame, which features tangent 𝒕𝑖, normal 𝒏𝑖 and bi-normal 𝒃𝑖 

vectors at that vertex, as also shown in Fig. 15(a). The relation between the unit tangent and the 

unit normal around a vertex Pi is established using the unit bi-normal vector, expressed in 

equations (38), (39) and (40). 

𝒕𝑖 = 
𝑷𝑖+1 − 𝑷𝑖−1

||𝑷𝑖+1 − 𝑷𝑖+1||
 (38) 

𝒃𝑖 = 
(𝑷𝑖 − 𝑷𝑖−1) ∧ (𝑷𝑖+1 − 𝑷𝑖)

||(𝑷𝑖 − 𝑷𝑖−1) ∧ (𝑷𝑖+1 − 𝑷𝑖)||
 (39) 

𝒏𝑖 = 𝒃𝑖 ∧ 𝒕𝑖 . (40) 

We can uniquely define each vertex of a 1-Simplex mesh as a linear combination of its 

two direct neighbors using two metric parameters (𝜀1𝑖 and 𝜀2𝑖) and two angular parameters (𝜙𝑖 

and 𝜓𝑖) as depicted in Fig. 15 (a). In particular, a vertex Pi can be expressed as the vector sum 

[125] represented as in (41): 
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(a) 

(b) 

Fig. 15.  1-Simplex geometry. (a) A 1-Simplex curve overlaid with the Frenet frame defined at 

vertex 𝑷𝒊, depicted with its discretized geometry at  𝑷𝒊. (b) Search strategy at the 1-Simplex 

vertex 𝑷𝒊 in the normal-binormal plane with all the eight search directions. 
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𝑷𝑖(𝜖1𝑖, 𝜀2𝑖 , 𝜓𝑖 , 𝜙𝑖) =  𝜀1𝑖𝑷i−1 + 𝜀2𝑖𝑷i+1 + ℎ(𝜙𝑖)𝒏(𝜓𝑖). (41) 

The vertices 𝑷i−1 and 𝑷i+1 are the two vertex-neighbors of 𝑷𝑖, while 𝜖1𝑖 and 𝜀2𝑖 are the 

metric parameters, 𝒏(𝜓𝑖) is the local normal within the curve’s normal plane, and ℎ(𝜙𝑖) is the 

height function. The latter two depend on the two angular parameters 𝜓𝑖 and 𝜙𝑖 respectively. 

The two metric parameters 𝜖1𝑖 and 𝜀2𝑖 must sum to 1. The Simplex angle 𝜙𝑖 is the angle between 

two consecutive segments [𝑷i−1 𝑷𝑖,] and [𝑷𝑖 𝑷i+1]. The other angular parameter 𝜓𝑖 is defined 

on the basis of second-order tangency, which is characterized by the osculating plane, formed by 

the curve tangent and the acceleration vector defined at a point (vertex) [126], and by the normal 

plane spanned by the binormal and the acceleration vectors. A curve has an infinite number of 

normal vectors defined at a given point; however there is only one normal vector contained in 

this normal plane, which is defined by the vector 𝒖𝑖, as shown in Fig. 15(a) and described in 

(42):  

𝒖𝑖 =
𝒕𝑖∧((𝑷𝑖−1−𝑷𝑖−2)∧(𝑷𝑖+2−𝑷𝑖−1))

||𝒕𝑖∧((𝑷𝑖−1−𝑷𝑖−2)∧(𝑷𝑖+2−𝑷𝑖−1))||
 .  (42) 

The parameter 𝜓𝑖 represents curve differential geometry based on second-order tangency and 

equates with the angle between 𝒖𝑖 and the normal 𝒏𝑖. The normal 𝒏(𝜓𝑖) is estimated through 𝜓𝑖 

as expressed as (43) [125]: 

𝒏(𝜓𝑖) = 𝑐𝑜𝑠(𝜓𝑖)𝒖𝑖 + 𝑠𝑖𝑛(𝜓𝑖) 𝒕𝑖  ∧ 𝒖𝑖. (43) 

Finally, the height function, defined from the projection (or foot) 𝑭𝑖 of 𝑷𝑖 on the segment [𝑷𝑖−1, 

𝑷𝑖+1] is given by the expression as (44) : 

ℎ(𝜑𝑖) =  
𝑟𝑖(−1+𝜖√1+4 𝜀1𝑖 𝜀2𝑖𝑡𝑎𝑛𝜑𝑖

2)

2𝑡𝑎𝑛𝜑𝑖
, 

(44) 

 where 𝒓𝒊 is half the distance from 𝑷𝒊−𝟏 to 𝑷𝒊+𝟏. 
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4.1.4 Deformation of the 1-Simplex Contour 

After the discretization of the minimal continuous path between two terminal points coinciding 

with the 1-Simplex initialization, what comes next is the Newtonian deformation of the 1-

Simplex model to have it conform to the medial axis of the nerve. We define external and 

internal forces to constrain the contour deformation towards the actual medial axis while 

preserving internal properties such as continuity. The kinematics of each vertex is controlled 

through the Newtonian model described in (5). We implement two internal forces, both 

described by Delingette but not implemented in the 1-Simplex model [29]: a tangential force that 

concentrates vertices in portions of high curvature and a Laplacian force that ensures curve 

smoothing by enforcing C
1
 continuity. These are defined in expressions (45) and (46), 

respectively: 

𝑭𝑇𝑎𝑛𝑔𝑒𝑛𝑡 = (𝜖1̃𝑖 − 𝜖1𝑖)𝑷i−1 + (𝜖2̃𝑖 − 𝜖2𝑖)𝑷i+1 (45) 

𝑭𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 =
1

2
(𝑷i−1 + 𝑷i+1) − 𝑷𝑖 . (46) 

The external Newtonian force of the model is employed to nudge the curve towards the points 

that have a high likelihood of lying along the medial axis of the tube. We exploit the vesselness 

function, described in Section 3.2.1 to extract this high-centeredness information. The vesselness 

filter gives the maximum intensity value at the center of a vessel [70]. 

For the sake of computing the external force 𝐹𝑒𝑥𝑡 at a vertex, we perform a search for the 

voxel possessing the greatest vesselness value in the plane spanned by the normal and binormal 

vectors as depicted in Fig. 15 (b). This search is performed along four directions in this plane, 

which we can label North-N, South-S, East-E, West-W, and the four directions midway between 

those: NE, SE, NW, and SW. We sample with a specified step size in each direction to find the 
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smallest offset. This small offset is eventually used to minimize the distance between the 1-

Simplex curve’s vertex and the voxel having the highest vesselness value in the image. 

 

4.2 Nerve Surface Generation 

In this section, we have elaborated the process of cranial nerves’ boundary surfaces 

generation. In the first step, we have estimated nerves’ radius at each discrete vertices of the 1-

Simplex centerline which is detailed in Section 4.2.1. In the following step, the 2-Simplex based 

deformable surface boundary is constructed (Section 4.2).  

 

4.2.1 Radius Estimation 

In general, tubular surfaces can be segmented using tube medial axes in addition to tube 

semi-axis or radius information. We employ Frangi’s multiscale vesselness filtering to estimate 

the radius at each vertex of the contour [127]. The vesselness filter of equation (11) is measured 

using a range of radius or scale as expressed in (47). The filter’s response is maximal at a scale 

that matches the vessel size. This scale is recorded as the vessel width of the medial axis vertex.   

𝑉(𝒙) =  max𝜎𝑚𝑖𝑛≤𝜎≤𝜎𝑚𝑎𝑥
𝑉(𝒙, 𝜎), (47) 

where 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 are minimum and maximum vessel width, respectively.  

The process of 3D surface generation is depicted in Fig.  16 using a 3D synthetic tube 

image. User-specified seed points are shown in green dots in Fig.  16(a) through which the MP is 

computed in Fig.  16 (b) as shown in red contour. The MP is then deformed using 1-Simplex to 

get the actual medial axis of the tube as shown Fig.  16 (c) with the green contour. We estimate 

the radius of a nerve at each point of the 1-Simplex medial axis model using Frangi’s multiscale 
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approach. A triangulated 3D surface model is then generated using the medial axis and radius 

information depicted in Fig.  16 (d). 

 

4.2.2 2-Simplex-based Nerve Boundary Surface Generation 

2-Simplex deformable models can be used to segment 3D surfaces from medical images. 

Each vertex of a 2-Simplex mesh has a constant 3-connectivity and can be represented as the 

linear combination of neighbors like the 1-Simplex mesh.  

 

 
(a) 

 
(b) 

 
(c) 

( 

 

 

 

 

 

 

(d) 

Fig.  16.  A step by step segmentation process of synthetic nerve surface; (a) user-initialized start 

and end points on a axial slice of the synthetic image volume; (b) geodesic path (the red curve) 

between start and end point using front propagation (c) medial axis computation (green curve) by 

deforming the 1-Simplex discretization of the geodesic path; (d) triangular nerve surface; the 

inset picture shows the under-segmentation result.   
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The 2-Simplex mesh has the property of topological duality to the triangular mesh. We 

convert the initial triangular surface constructed from the medial axis and the radius into a 2-

Simplex mesh. The conversion process works by computing the centroids of each triangle of the 

triangular mesh, coinciding with the vertices of the 2-Simplex mesh, and then linking these 

centroids to produce edges of the 2-Simplex mesh as shown in Fig.  17 (a). To perform this 

conversion the triangle mesh should be watertight and 2-manifold.  

The problem associated with this approach is that the computed surface model might be 

underestimated depending on the initialization of maximum and minimum scale (𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥) 

of the multiscale filter as depicted in Fig.  17 (b). To improve the accuracy of nerve boundary 

segmentation, the converted 2-Simplex mesh is used to initialize the 2-Simplex deformation 

process. The result after the deformation is shown in Fig.  17 (c). Similar to the 1-Simplex mesh, 

the 2-Simplex mesh follows the same Newtonian model shown in (5). 
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Fig.  17.  2-Simplex mesh surface segmentation; (a) Conversion between the triangle and 2-

Simplex mesh using topological duality; (b) Converted 2-Simplex mesh from the triangular mesh 

of Fig.  16 (d); (c) 2-Simplex mesh after deformation shown as wireframe nerve model. 

 

The 2-Simplex deformation is also based on equilibrium between Newtonian forces, 

where the image gradient along the surface normal is used to compute the external force. Internal 

forces are used to ensure smoothness and continuity as suggested by Delingette [29].   

 

4.3 Results 

In this section, we have illustrated results of centerline extraction and surface extraction 

methods. We have applied these algorithms both to synthesized and healthy patient MRI data. 

 

(a) 

(b) 

(c) 
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4.3.1 Centerline Extraction – Synthetic Data 

This section describes the results of centerline extraction algorithm applied to both 

synthetic and patient MRI data sets. The first validation exercise involves several synthetic 

images imbedded with tubes of various shapes specified analytically, where we compare the 

detected medial axes of these tubular digital phantoms against the corresponding analytical 

expressions for the medial axis considered as the ground truth. 

Image intensities of these analytical images range between 0 to 255. We added Gaussian 

noise, the noise was zero-mean and had a standard deviation of 60. We synthesized isotropic 

datasets featuring simple arc-shape, sinusoid and helix-shaped tubes. These tubular datasets were 

sampled at three different voxel spacings: 0.1 mm, 0.5 mm and 1 mm. The radius of each of 

these tubes was set to 1mm. The arc-shaped and sinusoidal phantom images are shown in Fig. 18  

and  Fig. 19, respectively.  In Fig. 18, the left column images are 3D rendering of the images, the 

middle column shows the medial axis (green) and ground-truth (red) paths along axial slices. The 

rightmost column features sagittal curve renderings that illustrate the agreement between the 

identified medial axis and the ground truth. Fig. 19 illustrates results comparable to Fig. 18 (a)-

(c) for the sinusoid digital phantom.   

Helix-shaped tube volumes are shown in Fig. 20.  For this shape, we created two volumes 

having isotropic voxel sizes of 0.5mm and 1.0mm each with added noise. The resulting 1-

Simplex medial axis curves of the helix-shaped tubes prove that the method can handle high 

torsion and curvature of 3D tubular objects and can produce C
1
-continuous space curves. 
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Fig. 18.  Results of arc-shaped tubular digital phantom. Image slices of spacing 0.1 mm (Panel 

a), 0.5mm (Panel b) and 1.0 mm (Panel c) with their corresponding computed (green) and 

ground-truth medial axes (red).  Gaussian noise is added to images of Panel (b) and (c). Images 

shown at the middle are the sagittal slices of the corresponding image. 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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(a) (b) (c) 

Fig. 19.  Results of sinusoidal digital phantom. Image slices of spacing 0.1 mm (Panel a), 0.5mm 

(Panel b) and 1mm (Panel c) and their corresponding computed (green) and ground-truth medial 

axes (red). 

 

4.3.2 Centerline Extraction – MRI data 

We now apply this medial axis identification to a skull-base MRI data set provided by 

neuroradiologist Dr. J. Butman of NIH. The main image modality of interest is a Balanced Fast 

Field Echo (BFFE) sequence of anisotropic slice spacing 0.3 x 0.3 x 0.4 mm
3
, dimension of 256 

x 256 x 220 voxels, TR = 5.45 ms and TE = 2.175 ms. 

The end points of the nerves are identified by a neurosurgeon from the Department of 

Neurosurgery at Children's Hospital of Pittsburgh, which are used as the seed points of the 

medial axis extraction method.  All ten pairs of cranial nerves that are attached to brainstem are 

identified by our medial axis extraction algorithm as shown in Fig. 21 and Fig.  22, where 
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column A represents the nerves superimposed on MRI slices and column B illustrates surface 

renderings of 3D nerve medial axes.  

 

                

(a) (b)                     (c) 

Fig. 20.  3D helix-shaped digital tubular phantom results. Phantom images with Gaussian noise 

and voxel size of 0.5mm (top row) and 1mm (bottom row). Panel (a) 3D rendering of the 

volumes, Panel (b) Sagittal image slices, Panel (c) Computed (green) and ground-truth (red) 

medial axes. 
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Nerves Column A Column B 

CNIII 

 

 

CNIV 

 

 

CNV 

 

 

CNVI 

 
 

 

Fig. 21.  Centerlines of  cranial nerves (CNIII to CNVI) from MR patient data. Column A: nerve 

medial axes superimposed on tri-planar image, emphasizing the axial plane. 3DSlicer has been 

used to visualize MR slices; Column B: Extracted 1-simplex medial axis curves of the cranial 

nerves. 
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Nerves Column A Column A 

CNVII 

 

 

CNVIII 

 
 

CNIX 

 

 

CNX 

 

 

CNXI 

  
CNXII 

  
 

Fig.  22.  Centerlines of  cranial nerves (CNVII to CNXII) from MR patient data. Column A: 

nerve medial axes superimposed on triplanar image, emphasizing the axial plane. 3DSlicer has 

been used to visualize MR slices ;Column B: Extracted 1-simplex medial axis curves of the 

cranial nerves. 
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4.3.3 3D Boundary Segmentation 

The results of the nerves’ boundary segmentation are depicted in Fig. 23 and Fig. 24.  

Fig. 23 illustrates the evolution of the segmentation process, where the red structures are the 

initial triangulated surfaces generated from the 1-Simplex medial axes and radii which are 

superimposed on the corresponding axial MRI slices (Column A); the green surfaces represent 

the deformed 2-Simplex nerve surfaces (Column B) superimposed on the same MRI slices. 

Column C shows an overlaid view of the triangulated meshes (red surface) of Column A and 2-

Simplex meshes (green wireframe) of Column B. For illustration purposes, we show the initial 

segmentation models for first three brainstem nerves (CNIII, CNIV and CNV) in Fig. 23, 

whereas Fig. 24 and  Fig.  25 depict the segmented surface models for the ten pairs of brainstem 

nerves (CNIII to CNXII) where Column A illustrates nerve contours shown in axial planes and 

Column B shows the 3D rendering of nerves. In each of the slices blue and red color map refer to 

the highest and lowest intensities, respectively.  
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Nerves Column A Column B Column C 

CNIII 

   

CNIV 

  
 

CNV 

   

 

Fig. 23.  3D segmentation of cranial nerves III to V; Column A shows the initial nerve models 

(red structures); Column B shows the 2-Simplex nerve model after deformation (green 

structures);  Column C shows overlaid model of initial (red surface) and final (green wireframe) 

segmentation. 
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Nerves Column A Column B 

CNIII 

 
 

CNIV 

 
 

CNV 

 
 

CNVI 

 
 

 

Fig. 24.  3D segmentation of cranial nerves III to VI; Column A: segmentation result is shown in 

a nerve corresponding axial plane; Column B: rendering of 3D nerve models. 
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Nerves Column A Column B 

CNVII 

  
CNVIII 

 
 

CNIX 

  
CNX 

  
CNXI 

 
 

CNXII 

  
 

Fig.  25.  3D segmentation of cranial nerves VII to XII; Column A: segmentation result is shown 

in a nerve corresponding axial plane; Column B: rendering of 3D nerve models. 
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4.4 Validation 

This section illustrates the validation of centerline and surface extraction methods. 

 

4.4.1 Centerline Validation 

For both synthetic and patient datasets, a quantitative medial axis validation is performed. 

For the synthetic dataset, this validation images feature additive Gaussian noise while also 

replicating partial volume effects. Our quantitative analysis centers on the computation of the 

average Euclidian distance and maximum distance between each point on the computed 1-

Simplex medial axis and the nearest point of the ground truth medial axis curve. The ground 

truth was generated as described in Section 4.3.1. Table 3 shows the results. In each case, the 

average and maximum distances of the computed 1-Simplex curve from the ground truth is less 

than the voxel size which implies sub-voxel accurate medial axis computation. 

 

Table 3. Quantitative validation of the medial axis extraction method for synthetic datasets 

Synthetic 

Volume 

Voxel Size 

(mm) 

Presence of 

Noise 

Average   

Distance (mm) 

Maximum  

Distance  (mm) 

 

Arc 

0.10 No 0.0958 0.1591 

0.50 Yes 0.3169 0.4760 

1.00 Yes 0.2126 0.4308 

Sine tube 

0.10 No 0.1156 0.3774 

0.50 Yes 0.3258 0.3912 

1.00 Yes 0.4417 0.8870 

Helical Tube 
0.50 Yes 0.1358 0.4528 

1.00 Yes 0.4877 0.8615 
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We also carried out the same quantitative validation on the MRI patient dataset by 

calculating the average distance and the maximum distance between the computed medial axis 

and the ground-truth medial axis. The ground truth for each nerve is a piecewise-linear path 

through a set of landmarks provided by a neurosurgeon at UNC School of medicine, Chapel Hill 

NC. To visualize this validation concept, distances between the extracted nerve medial axis and 

the ground truth medial axis are shown in Fig. 26 for the oculomotor nerve (CNIII). 

 

 

Fig. 26.  Visualization of  CNIII w.r.t. the ground truth; (a) left side of the nerve, extracted 

centerline curve and ground truth centerline are shown in green and red respectively, ground 

truth landmarks are shown in blue asterisk; (b) right side of the nerve; (c) Both nerve centerline 

models (green curves) where the ground truth centerline are shown as red curves. 

 

The validation results of the MRI dataset are shown in Table 4. In each case, the average 

and maximum distances are also less than or equal to the voxel size, implying persistent sub-

voxel accuracy both for synthetic and patient data. 

 

(a) (b) (c) 
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Table 4. Quantitative validation of the medial axis extraction method for the brainstem MRI 

dataset 

Cranial Nerve Average distance (mm) Max distance (mm) 

CNIII-left 0.1967 0.3040 

CNIII-right 0.2177 0.2500 

CNIV-left 0.3017 0.1542 

CNIV-right 0.3074 0.2837 

CNV-left 0.2150 0.2550 

CNV-right 0.2068 0.2600 

CNVI-left 0.1805 0.2003 

CNVI-right 0.1913 0.2103 

CNVII-left 0.1725 0.2215 

CNVII-right 0.1924 0.3004 

CNVIII-left 0.2000 0.2698 

CNVIII-right 0.2198 0. 2711 

CNIX-left 0.1624 0.2632 

CNIX-right 0.1791 0.2913 

CNX-left 0.2025 0.2765 

CNX-right 0.1584 0.2997 

CNXI-left 0.1225 0.2693 

CNXI-right 0.1584 0.2409 

CNXII-left 0.1618 0.2937 

CNXII-right 0.1529 0.2313 

Average 0.195 0.256 

 

 

4.4.2 Validation of Boundary Segmentation  

For validating boundary segmentations, we use manual segmentation, performed by an 

expert, as the ground truth. The manual segmentations are performed by labeling every 2D slice 
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using 3D Slicer [110], which is a very time-consuming process. Also, manually segmented 

results are not smooth as the labeling is based on manual contouring. For the thinner nerve, such 

as CNXI, it was very challenging to produce a manually segmented contiguous nerve surface. 

We present the quantitative validation for six pairs of nerve – CNIII, CNV, CNVI, CNVIII, CNX 

and CNXI. CNIII and CNV are comparatively bigger one, therefore is a good candidate for 

manual segmentation. Even though it was a cumbersome process to manually segment the other 

four pairs of nerve (CNVI, CNVIII, CNX and CNXI), it was possible because of their anatomical 

course as well as high image contrast resolution in this specific dataset. Visual comparisons 

between the segmentation results from our algorithm and ground truths are shown in Fig.  27, 

Fig. 28, Fig. 29, Fig. 30, Fig. 31 and Fig. 32 for nerves CNIII, CNV, CNVI, CNVIII, CNX and 

CNXI, respectively. 

We compute four performance measures to compare the quality of the segmentation 

results with respect to the ground truths. The performance metrics are:  average distance, Mean 

Square Distance (MSD), Hausdorff Distance and Dice’s coefficient. All the performance metrics 

are computed in millimeter units. Statistical comparisons are reported in Table 5. 

The Dice similarity coefficient compares the similarity between the resulting 

segmentation and ground truth, thus measures the amount of spatial overlap, which can be 

defined using (48).  

𝐷𝑆𝐶 (𝐴, 𝐵) =
2 × |𝐴⋂𝐵|

|𝐴|+|𝐵|
, 

(48) 

 where A and B are the two surfaces being compared.  
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Fig.  27.  Validation of oculomotor nerves (CNIII).  (a) and (b) show manual segmentation 

results. (c) and (d) show comparison of the manual and our 2-Simplex segmentation results 

where the blue region shows over-segmentation error, red region shows under-segmentation 

error and green region shows zero error. Top color-code: In-Max = -0.6mm, Out-Max = 0.7mm; 

Bottom color-code: In-Max = -0.6mm, Out-Max = 0.7mm. (e) and (f) depict the distribution of 

the error compiled over all vertices. 

 

The Hausdorff  Distance measures how far the two segmentations are from each other 

and therefore quantitatively represents a measure of the worst segmentation error, defined as 

(49). 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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𝐻𝐷(𝐴, 𝐵) = max (ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)) 

ℎ(𝐴, 𝐵) = 𝑚𝑎𝑥
𝑎∈𝐴

𝑚𝑖𝑛
𝑏∈𝐵

𝑑𝑖𝑠𝑡(𝑎,  𝑏), 

  (49) 

 

 where A and B are the two surfaces being compared. 

 

 

Fig. 28.  Validation of abducens nerves (CNV).  Panel (a) shows manual segmentation results. 

Panel (b) shows comparison of the manual and our 2-Simplex segmentation results where the 

blue region shows over-segmentation error, red region shows under-segmentation error and 

green region shows zero error. Top color-code: In-Max = -0.3mm, Out-Max = 0.5mm; Bottom 

color-code: In-Max = -0.3mm, Out-Max = 0.5mm. Panel c) depicts the distribution of the error 

compiled over all vertices. 

(a) (b) 

(c) (d) 
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(a) (b) (c) 

Fig. 29.  Validation of trigeminal nerves (CN VI).  (a) shows manual segmentation results. (b) 

shows comparison of the manual and our 2-Simplex surface segmentation results where the blue 

region shows over-segmentation error, red region shows under-segmentation error and green 

region shows zero error. Color-code: In-Max = -0.6mm, Out-Max = 0.8mm. (c) depicts the 

distribution of the error compiled over all vertices for left (top-rightmost graph) and 

right(bottom-rightmost graph) nerve, respectively. 
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Fig. 30.  Validation of vestibulocochlear nerves (CN VIII). (a) shows manual segmentation 

results. (b) shows comparison of the manual and our 2-Simplex segmentation results where the 

blue region shows over-segmentation error, red region shows under-segmentation error and 

green region shows zero error. Color-code: In-Max = -0.6mm, Out-Max = 0.8mm. (c) – (d) 

depict the distribution of the error compiled over all vertices for left and right nerve, 

respectively. 

(a) (b) 

(c) (d) 
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Fig. 31.  Validation of vagus nerves (CN X). (a) shows manual segmentation results. (b) shows 

comparison of the manual and our 2-Simplex segmentation results where the blue region shows 

over-segmentation error, red region shows under-segmentation error and green region shows 

zero error. Color-code: In-Max = -0.6mm, Out-Max = 0.8mm; (c) – (d) depict the distribution of 

the error compiled over all vertices for left and right nerve, respectively. 

(a) 
(b) 

(c) (d) 
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Fig. 32.  Validation of accessory nerves (CNXI).  (a) shows manual segmentation results. (b) 

shows comparison of the manual and our 2-Simplex segmentation results where the blue region 

shows over-segmentation error, red region shows under-segmentation error and green region 

shows zero error. Color-code: In-Max = -0.6mm, Out-Max = 0.6mm (c) and (d) depict the 

distribution of the error compiled over all vertices for left and right nerve, respectively. 

 

From Table 5, the worst surface segmentation error in terms of Hausdorff Distance is 

76.6% which was seen in right CNX on the other hand the minimum similarity in terms of Dice 

coefficient is 72.5% for left CNXI. The average of the sample mean error distance over all the 

nerves is 0.03 mm and the average of mean squared distance is 0.04 mm. The average HD is 0.62 

mm and dice similarity coefficient is 82%.  

(a) 
(b) 

(c) (d) 
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Table 5. Quantitative validation of boundary surfaces of cranial nerves 

 

Nerves 

Validation Matric 

Sample Mean 

Error (mm) 

Mean Square 

Distance (MSD) 

(mm) 

Hausdorff   

Distance 

(mm) 

Dice’s 

coefficient 

CNIII-left 0.002 0.027 0.700 0.858 

CNIII-Right 0.019 0.021 0.600 0.803 

CNV-left 0.190 0.070 0.757 0.816 

CNV-right 0.013 0.054 0.759 0.895 

CNVI-left 0.002 0.027 0.350 0.854 

CNVI-right 0.018 0.021 0.400 0.803 

CNVIII-left 0.016 0.094 0.683 0.846 

CNVIII-right 0.002 0.082 0.632 0.946 

CNX-left 0.054 0.035 0.686 0.727 

CNX-right 0.005 0.039 0.766 0.832 

CNXI-left 0.061 0.035 0.686 0.725 

CNXI-right 0.019 0.066 0.538 0.746 

Average 0.033 0.047 0.629 0.820 

 

4.5 Conclusion 

In this chapter, we present a discrete deformable model-based approach to segmenting 

the ten pairs of brainstem cranial nerves from CNIII (the oculomotor nerve) to CNXII (the 

Hypoglossal nerve) using MRI data. Here our first contribution is a nerve medial axis extraction 

technique using a novel 1-simplex based discrete deformable model from MR data where the 

initial nerve is generated between a pair of user-supplied end points by minimal path technique 
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and vesselness information is encoded as external forces. Our second contribution is to employ 

the 2-simplex deformable surface model to identify the nerve boundary from an initialization 

comprised of the centerline and radius function of the first stage. Quantitative validation for 

medial axis extraction technique shows sub-voxel accuracy both for synthetic and patient MR 

data. The surface segmentation technique shows encouraging result of 82% Dice Coefficient 

between manual and semi-automatic results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

90 

CHAPTER 5 

SHAPE-AWARE DEFORMABLE CONTOUR ATLAS 

In this chapter, we will discuss the construction of a Statistical Shape Model-based atlas 

of cranial nerve centerlines. A set of training data for the construction of the 3D contour shape 

model is produced using a 1-Simplex-based discrete deformable 3D contour model. Point 

correspondence for the training dataset is performed using an entropy-based energy minimization 

framework applied to particles located on the centerline curve. The constructed average shape 

and Principal Component Analysis (PCA) model computed from the training dataset are 

incorporated into the 1-Simplex mesh as a priori knowledge, making the deformation stable 

against low resolution and image artifacts during segmentation using MRI data. 

The chapter is organized as follows: Section 5.1 describes different steps of the Statistical 

Shape Model including methods of constructing training shapes, point distribution model and 

establishing shape correspondence. Computation of the shape prior is described in Section 5.2. 

The segmentation process of cranial nerves using shape-based deformable model is detailed in 

Section 5.4. Section 5.5 illustrates the benchmark of evaluating an SSM. Section 5.6 and 5.7 

provide detailed experimental results and validation of the proposed method using synthetic and 

patient MRI data. Section 5.8 concludes the chapter.  

 

5.1 Statistical Shape Models 

The steps of constructing an SSM are described in this section. 

 

5.1.1 Construction of Training Shapes 

The goal of Statistical Shape Models (SSMs) is to construct, from a set of training 

shapes, a model that represents the patterns of expected shape and shape variability, and then 
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using the SSM to segment the anatomy of interest within the target image in a manner consistent 

with its underlying statistics. An SSM computes the mean shape and the modes of variation from 

a pool of training data, the latter of which characterize second-order shape statistics. Therefore, 

the first step towards the SSM is to construct a training dataset of M shapes from which shape 

statistics are inferred. 

In this research, we have created SSMs for the ten pairs of cranial nerves with 

attachments to the brainstem (CNIII to CNXII), to exploit statistical shape priors to stabilize our 

3D deformable contour approach to cranial nerve segmentation. To generate training shapes for 

each of the nerves, we have segmented the T2-weighted MRI datasets of 10 different patients. 

Each of the shapes in a training dataset is a nerve centerline, segmented using the 1-Simplex 

method discussed in 0 and manually corrected where necessary. While the semi-automatic 1-

Simplex deformable model approach is used for segmenting nerve centerlines, it is feasible to 

manually correct these segmented results so that no segmentation error can propagate from the 

training dataset to the shape-based nerve atlas. As a result, this SSM-aware deformable 3D 

contour model preserves the accuracy of the segmentation while eliminating the need for 

cumbersome manual identification of nerve centerline points. 

 

5.1.2 Shape-based Features 

When designing an SSM, one of the fundamental decisions is to choose an appropriate 

shape representation. A brief discussion on shape representation is given in Section 3.5.  

The discrete nature of the 1-Simplex deformable model that we have used to achieve the 

segmentation provides a generic way to represent a shape: using a set of points distributed over 

the contour shape. These point features are also known as landmarks in the SSM literature. We 
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have chosen the widely used Point Distribution Model (PDM) introduced by Cootes et al.[102] 

for the construction of the SSM. In general, a PDM is a statistical model that represents the mean 

shape and modes of variation calculated from training set of contours or surfaces where each 

component of the set is represented as a discrete number of points or landmarks. All the points of 

a contour or surface are concatenated into one vector.  The construction of a PDM proceeds in 

three steps:  i) shape correspondence, ii) shape alignment and iii) computation of the principal 

modes of variation. 

In the following section, the method of shape correspondence that we have used for the 

PDM construction is discussed. The shape alignment is performed using GPA as discussed in 

Section 0. The shape variation is modeled as a multivariate Gaussian distribution where the 

principal modes of variation are computed using PCA as detailed in Section 3.5.3. 

 

5.2 Shape Correspondence and Model Construction 

Shape correspondence is established by finding a set of points from one shape that can be 

mapped to the same set of points found on another shape. Correct and anatomically meaningful 

shape correspondence is important to ensure precise shape parametrization and representation; 

otherwise the error introduced by the correspondence technique might be propagated to the 

resulting SSM. There are several point correspondence methods to be found in the literature, as 

reported in this survey paper [128], and the choice for the best approach depends on the 

application context and user preference. Point correspondence is classified into two groups based 

on the density of the correspondence: dense correspondence, which is achieved for all the 

landmark points or a subset of the available pointset, and sparse correspondence, which is done 

for a small set of anatomically significant feature points that are pre-selected. Although sparse 
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correspondence can be established by manual localization in 2D datasets, this overhead is much 

more prohibitive for 3D data. Establishing a meaningful dense point correspondence between all 

of the shapes of the training dataset is almost impossible by manual approach because of the 

following reasons: 

1. Manual landmarking does not scale easily to the large number of landmarks 

needed for 3D structures. 

2. Manual landmarking suffers from poor repeatability, particularly in situations 

where definitive tissue boundaries are more difficult to locate. 

3. Manual landmarking is a tedious, time-consuming approach, which requires 

expert knowledge.  

4. In case of cranial nerves, the difficulties of manual landmarking arise because of 

the presence of partial volume effects and unclear image gradient in MRI data as well as 

ambiguities due to the proximity of multiple nerves to each other. 

One approach of achieving dense point correspondence in SSM is reported in [129], 

which used an implicit spherical surface parameterization. The surface parameterization was 

achieved by mapping the surface of the original object to the surface of a unit sphere where the 

parameterization is formulated as an optimization problem. Based  on this technique a surface 

modeling method using Spherical Harmonics (SPHARM) was introduced in [130], which 

implicitly defined dense surface correspondences. Davies et al. [131] proposed an automatic 

point correspondence method involving the Minimum Description Length (MDL) of information 

theory, which sought a set of shape parameterizations to describe the training dataset. The main 

limitation of such a parametric approach for shape analysis in medical imaging is that the 

segmented volumes are difficult to generate parametrically.  
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In this research, we have chosen a non-parametric approach to establish point-based 

dense correspondence which has the advantage of performing homologous point distribution 

automatically over the contour shapes. The method is comprised of two main steps:  

1. Sampling points over Simplex curves.  

2. Establishing correspondence by optimizing entropy of the training dataset. 

 

5.2.1 Point Sampling  

We have employed a particle system-based method for controlled point sampling using 

cotangent theory [132] which was first applied to surfaces and subsequently extended to 

contours.  

A training surface or contour can be represented implicitly using n repulsive particles 

𝑝(𝑡), which is constrained by equation (50) [133]. An implicit surface can be represented using 

equation (50):  

𝐹(𝒑(𝑡), 𝒒(𝑡))  =  0, (50) 

where 𝒒(𝒕) is the set of parameters that can handle surface deformations. Particles are distributed 

homogeneously over the surface using a repulsion force whereby each particle achieves a 

repulsion velocity. This method is known as the Witkin-Heckbert (W-H) method. Each particle 

has a repulsion radius that grows and shrinks based on the particle’s local energy. However, this 

method cannot accommodate complex shapes with large variations in shape curvature. This 

problem is addressed in [132], where the particle placement is dependent on an optimization of 

the potential energy, as described in equation (51): 

𝐸𝑖 =
1

2
∑ 𝐸𝑖𝑗(|𝒓𝑖𝑗|)

𝑚,𝑗≠𝑖
𝑗=1 , (51) 
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where 𝒓𝑖𝑗 = 𝒑𝑖 − 𝒑𝑗, which is the distance between interacting particles 𝒑𝑖 and all  𝒑𝑗 that lie 

within the neighborhood of the potential field of 𝒑𝑖.  

An even and homogeneous point sampling depends on the pair-wise energy functional 𝐸𝑖𝑗 which 

is defined in equation (52). 

𝐸𝑖𝑗 = {
cot (

|𝒓𝑖𝑗|

𝜎

𝜋

2
 ) + 

|𝒓𝑖𝑗|

𝜎

𝜋

2
 − 

𝜋

2
                  |𝒓𝑖𝑗| ≤  𝜎

0                                                                  |𝒓𝑖𝑗| > 𝜎
. (52) 

The cotangent-based energy function 𝐸𝑖𝑗 is dependent on only one parameter 𝜎, where 𝜎 is the 

radius of potential field of particles. The optimization of this pairwise potential energy function 

ensures that homologous point pairs arise from the similar points on the contours, i.e. that the 

sampling of the two surfaces or contours be done as consistently as possible, so that the pairwise 

correspondences themselves are automatic.  

The optimal distribution of particles on a sphere using repulsive forces is shown in Fig. 

33, where the system is initialized using a single particle and then produces new, nearby particles 

iteratively, until a specific number of particles are produced to reach the steady state. 

 

Fig. 33.  Point Distribution on a sphere using particle positing. Reproduced from [134].  

 

5.2.2 Covariance-based Correspondence Entropy   

We establish the shape-to-shape correspondence using the entropy-based method 

described in [134] based on dynamic particles. This method proves its superiority by establishing 

correspondence through automatic consistent landmark positioning.  
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The ensemble 𝜀 is composed of M 1-Simplex curves where each of the curves have an 

equal number of points after point sampling using the method described in Section 5.2.1. Each of 

the points in the Simplex curves is considered as an individual particle. The ensemble 𝜀 can be 

written as 𝜺 = 𝑧1, 𝑧2, …… , 𝑧𝑀, where each 𝑧𝑘 is modeled as an instance of a random variate Z. 

Then the cost function 𝑄 can be formulated as in equation (53). 

𝑄 = 𝐻(𝒁) − ∑ 𝐻(𝑷𝑘)𝑘 , (53) 

where P is the matrix that holds particle positions. The first term of equation  (53) is the entropy 

of the entire ensemble, and the second term is the combined shape-wise entropy. The entropy is 

defined by modeling the probability p(Z) parametrically using a Gaussian distribution, as in (54). 

𝐻(𝒁) =
1

2
log|𝜮| =

1

2
 ∑ 𝑙𝑜𝑔𝜆𝑗

𝑁𝑑
𝑗=1 , (54) 

where 𝜮 represents the covariance of the ensemble and 𝜆𝑗 are the eigenvalues of the 𝜮.  

The point correspondence method described in this dissertation was first developed for 

surfaces by the scientific computing group of university of  Utah, through a open-source 

software toolkit, ShapeWorks. The method has been recently extended to 3D contours through a 

second software tool called ContourWorks, which has been used to perform point 

correspondence for the proposed method in this dissertation. Our work is the first application of 

ContourWorks, and the Utah group appears as co-authors of our recent conference paper [135].  

 

5.3 Computation of Strong Shape Priors  

Segmentation using prior knowledge can be broadly categorized into two classes based 

on the level of information involved in the segmentation process: weak priors and strong priors. 

Weak priors build on scant knowledge of the segmentation domain, which is inferred from the 

image to be segmented or from very general assumptions about anatomy, such as the contiguity 
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of tissues. On the other hand, strong priors involve knowledge extracted from the PDM of the 

shape that needs to be segmented. The approach for computing strong shape priors for 

deformable models of the nerve is described in this section.  

Consider M segmented nerve centerlines which are in correspondence. Each centerline 

model consists of N points. An approach incorporating only first-order statistics such as the mean 

of the segmented shapes does not consider variations among shapes. Thus, such an approach 

might produce poor segmentation results when segmenting test data having large variations. For 

better segmentation results, second-order statistics can be incorporated simply by finding a 

goodness of fit of the feature 𝒙 to the PCA model. This can be achieved by calculating 

Mahalanobis Distance as described below: 

Given the mean 𝜇 and covariance matrix Σ estimated from the training dataset M, the 

Mahalanobis Distance 𝐷𝑀 of an observation 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑁) measures how many standard 

deviations x is away from the mean 𝜇 along each principle component axis of Σ. The 

Mahalanobis Distance 𝐷𝑀 is defined using equation (55). 

𝐷𝑀(𝒙) = (𝒙 −  𝝁)𝑇 𝚺𝑋
−1(𝒙 − 𝝁). (55) 

The Mahalanobis distance has been exploited for building Active Appearance Models 

(AAM) in [32, 96, 102, 136], where image intensity and gradient boundary profiles are used as 

local appearance features. Inspired by Cootes et al. [137], we computed the Mahalanobis 

Distance to integrate second-order statistics with the shape model. The problem in computing 𝐷𝑀  

using equation (55) is that it requires the inversion of the covariance matrix, which might cause 

the singular matrix problem in a situation when the covariance matrix is not symmetric positive- 

definitive. To rectify this issue we choose to use the alternative approach suggested in [137] to 

compute 𝐷𝑀   as a function of eigenvalues and eigenvectors.  
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Let the PCA model be computed from 𝚺 of aligned training shapes M where 𝜙𝑖 are the 

eigenvectors of 𝚺 and their corresponding eigenvalues 𝜆𝑖 are sorted in an order such that 𝜆𝑖 

> 𝜆𝑖+1. Any test shape x can be approximated using expression of   (56): 

�̃� =  𝝁 + 𝑏𝑖𝝓𝑖 ,   (56) 

where 𝒃 = (𝒃𝟏, 𝒃𝟐, … , 𝒃𝒎) is the model parameter vector, each factor 𝒃𝒊 corresponding to each 

eigenvector 𝝓𝒊. The Mahalanobis distance can then be formulated as: 

𝐷𝑀  =  ∑ (
𝑏𝑖

2

𝜆𝑖
)𝑚

𝑖=1 .     (57) 

The k most significant modes of variation are described by the first k eigenvalues, thus reducing 

the dimensionality of the problem. In such a case, 𝑫𝑴  can be computed using equations (58) and 

(59): 

𝐷𝑀  =  ∑(
𝑏𝑖

2

𝜆𝑖
)

𝑘

𝑖=1

 +
2𝑅2

𝜆𝑘
 (58) 

𝑅2 = (𝒙 − �̃�) (𝒙 − �̃�)𝑇 , (59) 

where R
2
 is the squared residual error between the shape  x and its approximation �̃�. 

𝑫𝑴  can be described as a quantitative value of how well the PDM fits the test shape, and it 

approaches zero as the fitting of the PCA to the test data improves.  

 

5.4 Segmentation using SSM 

The flow chart of the segmentation process using SSM-based deformable model is shown 

in Fig. 34, where the first part shows the steps for building the SSM and the second part 

describes the segmentation process using the SSM.  

The segmentation of a test image using the SSM-based nerve centerline atlas proceeds in 

two steps: 
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1. Average shape registration and best-fitted model computation, and  

2. Computation of SSM-based force. 

 

5.4.1 Average Shape Registration and Best-Fitted Model Computation 

The reference model needs to be initialized within the image to be segmented in order to 

start the evolution process of the 1-Simplex mesh. The simplest way to register a model to an 

image is to i) locate a set of source landmarks on the model and a set of target landmarks on the 

image, and ii) perform the landmark-based transformation.  

The landmarks should be chosen so that they appear as anatomically meaningful features. 

For each cranial nerve, we can pinpoint only two landmarks: the source point of the nerve where 

it originates from brainstem (Fig. 5) and the end point at the cranial foramen where the nerve 

exits (Fig. 6). As a result, a purely landmark-based registration is not applicable in this case to 

achieve model to image registration due to an insufficient number of identifiable landmarks. We 

provide the two end points manually in the current approach, one each for the brainstem 

attachments and foramina. Instead of directly registering the reference model to the image, we 

compute the transformation using the Minimal Path, as described below.  

A point-set to point-set registration technique is implemented between the reference 

average shape 𝝁 and the Minimal Path (MP) computed from user-identified start and end points 

in test MRI data. The MP computation method is the same as described in Section 4.1.2. There 

are two assumptions considered for this registration technique:  

(1) the point correspondences are already established between the sets of points and 

(2) the two sets of points are relatively close to each other, based on an approximate 

putative transformation. 
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Fig. 34.  Flow chart of SSM construction and SSM-based Segmentation. 
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The computed MP is then converted into a discrete 1-Simplex model. The mapping 

between the MP and the reference shape is performed using 3D similarity transform by applying 

a rotation, translation and isotropic scaling. The registration is achieved by iteratively 

minimizing Euclidian distances between mutually closest points using a Levenberg-Marquardt 

(LM) based optimizer. LM is a nonlinear least squares minimizer used for fitting a set of 

observation with a model by combining the advantages of gradient descent and Gauss-Newton 

methods [138]. 

 

5.4.2 Computation of SSM-based Force 

In this work, any Simplex-based force has the form of a spring force as expressed in (60):  

𝒇𝑖 = 𝛼(𝑷𝑖 − 𝑷�̃�), (60) 

where  𝜶 is the stiffness parameter that controls the force weight. In order to approximate the 

solution of the system equation of (5) using implicit Euler method, these forces need to be 

defined with respect to the position of the points of a Simplex mesh. 

The integration of the SSM into the 1-Simplex model is performed by introducing a 

SSM-based internal force FSSM which is integrated into the equilibrium expression of (5). The 

idea of computing FSSM  is inspired by the ‘shape memory force’ used in [68, 139]. The purpose 

of this force is to move the point toward a predefined reference shape using the 1-Simplex 

parameters (𝜀, 𝜑 𝑎𝑛𝑑 𝜙). The reference Simplex mesh is computed using the mean shape of the 

SSM. The force is defined as: 

𝑭𝑆𝑆𝑀 = 𝜀1̃𝑖𝑷𝑁1(𝑖) + 𝜀2̃𝑖𝑷𝑁2(𝑖) + ℎ(�̃�𝑖)𝑛(�̃�𝑖) − 𝑷𝑖.   (61) 

Here 𝑷𝑖 is the i
th

 point of the 1-Simplex model that is being deformed; 𝑷𝑁1(𝑖) and 𝑷𝑁2(𝑖) are the 

two neighbors of 𝑷𝑖. The shape parameters (𝜀�̃�𝑖 , �̃�𝑖 and �̃�𝑖) are computed from the reference 
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shape �̃�. Essentially, the SSM-based force deforms the current shape 𝒙 towards its closest match 

�̃� which is determined from the Point Distribution Model (PDM).  

 

5.5 Evaluation of SSM 

There is no general agreement for choosing an appropriate correspondence method for 

shapes, specifically for biological shapes. Even though there are several measures to assess the 

quality of correspondence such as in [140], [141]  and [142], we have chosen three evaluation 

criteria, compactness, generality and specificity, which are considered as benchmarks for 

comparing correspondence quality, as described in [143]. These three measures are defined in 

terms of the number of principal modes m of the PDM constructed from the training dataset. 

Compactness is the ability to capture the amount of shape variance within the training 

dataset using as few parameters as possible. It is calculated using equation (62): 

𝐶(𝑚) = ∑ 𝜆𝑖
𝑚
𝑖=1 , (62) 

where 𝜆𝑖 is the i
th

 eigenvalue representing the shape variance using mode i and  𝐶(𝑚) is the 

cumulative variance of m
th

 mode.   

Generality is the capability of the SSM to represent an unseen new shape outside the 

training dataset. It can be quantified using the “leave-one-out” cross-validation method. The 

method builds the statistical model using all the shapes in the training dataset excluding one 

shape, which is then approximated using the model parameters. The approximation error is 

calculated using a squared Euclidian distance, which is averaged over all the shapes of the 

training dataset. Generality is computed as follows: 

𝐺(𝑚) =
1

𝑁
∑ 𝜖𝑖

2(𝑚)𝑁
𝑖=1 ,   (63) 
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where 𝜖𝑖
2(𝑚) is the sum of squared approximation error defined as: 

𝜖𝑖
2(𝑚) = | 𝑥𝑖 − 𝑥𝑖

′(𝑚)|2 . (64) 

In (64), 𝒙𝒊 is the left-out shape and 𝒙𝒊
′(𝒎) is the approximation of 𝒙𝒊 computed from the PDM 

using m modes. 

Specificity is the ability of generating valid shapes that are similar to the shapes of 

training dataset. This measure is accessed by generating a population of shapes using the PCA 

and comparing them with the shapes of the training dataset. It is computed quantitatively using 

the expression of (65). This measure is computed using m modes: 

𝑆(𝑚) =
1

𝑁
 ∑ |𝒙𝑖(𝑚) − 𝒙𝑖

′(𝑚)|2 𝑁
𝑖=1 , (65) 

where 𝒙𝒊(𝒎) is a randomly generated shape using the PDM which has the form of  (66) and 

𝒙𝒊′(𝒎) are the nearest member of the training set to 𝒙𝒊(𝒎) which is computed as (66): 

𝒙𝑖′(𝑚) =  �̅� + ∑ 𝑏𝑖𝚽𝑖
𝑁
𝑖=1  , (66) 

 where 𝒃𝒊 are independently sampled parameter from a 1D Gaussian distribution 𝓝(𝟎, 𝝀𝒊) of 

the PDM and 𝚽𝒊 are the eigenvectors. 

 

5.6 Validation using Synthetic Data 

To verify the efficiency and robustness of the SSM-based segmentation algorithm, we 

conducted an experiment using a family of 52 synthetic parametric curves having a helical shape. 

The family of shapes constitutes the synthetic training dataset where the shapes vary primarily in 

height, in the number of spirals in the helix and in the radius of the spiral. Shape heights range 

from 20 mm to 50 mm, the radii of cycles range from 5 mm to 20 mm and the number of helix 

cycles for each of the shape is kept to either 2 or 3.  
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5.6.1 SSM Construction 

Shape alignment of the helical SSM is performed using the GPA method as described in 

Section 0. The resulting aligned shapes are shown in Fig. 35(a). The point sampling and 

correspondence method described in Sections 5.2.1and 5.2.2 is applied to the synthetic training 

dataset. For each shape, 50 points are sampled as control points. The point correspondence is 

depicted in Fig. 35(b) where each of the control point of a shape is shown with a specific color 

ball.  

 

 

Fig. 35. (a) Shape Alignment and (b) Shape Correspondence of the Helix model. 

 

Thus, all the points of a specific color are in correspondence. The SSM is built by 

retaining 99% of the total variance where only four modes of variation are used to capture the 

(a) 
(b) 
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variance. The first four principal modes of variation within ±3 standard deviation are shown in 

Fig. 36 where each row corresponds to a mode of variation. The first mode mainly captures the 

effect of the number of cycles and the scaling of radius in the training dataset. The second mode 

illustrates the variability in shape length. The third and fourth modes compensate minor 

differences in the curvature of spiral radii. The constructed SSM can capture 69.14% of 

variations within the first mode, 96.08% within the second mode, 98.18% within the third mode 

and 99% within fourth mode.  

The correspondence quality is assessed in terms of compactness, specificity and 

generality as reported in Fig. 37. The specificity curve is generated involving one hundred 

samples which are created by varying the value of b parameters using first 25 modes; however, it 

stables only after first 4 modes. The generality curve is produced using the first 30 modes. 

However, the curve converges after first few modes. The distance error in the vertical axis of 

specificity and generality is computed as the Root Mean Squared (RMS) error with the unit in 

millimeters 

 

 

 
 

 

 

 

 

−3.0√𝜆0 −1.5√𝜆0 Mean shape 1.5√𝜆0 3√𝜆0 
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−3.0√𝜆1 −1.5√𝜆1 Mean shape 1.5√𝜆1 3√𝜆1 

 

 

 

  

−3.0√𝜆2 −1.5√𝜆2 Mean shape 1.5√𝜆2 3√𝜆2 

  

 

 

 

−3.0√𝜆3 −1.5√𝜆3 Mean shape 1.5√𝜆3 3√𝜆3 

Fig. 36. First four modes of variation of the helix SSM.  
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Fig. 37.  (a) Compactness (b) Specificity and (c) Generality of the helix SSM. 

 

(a) 

(b) 

(c) 
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5.6.2 Segmentation using the Helix SSM  

The performance of image segmentation using the constructed helix SSM is evaluated 

using a couple of` synthetic test volumes: 1) an artificially corrupted volume and 2) a volume 

with additive Gaussian noise. Both volumes have a spacing of 0.3 x 0.3 x 0.3 mm
3
 and 

dimension of 115 x 113 x 113 mm
3
,
 
containing a helix image whose length is 20 mm, tube radius 

is 0.5 mm, cycle radius of 10 mm and number of cycles being 2. The intensities of the helix 

image range between [0, 255]. The corrupted volume is created by eroding the helix image 

intensities in some of the slices while keeping the rest of the slices unchanged, as shown in Fig. 

38(a). The noisy volume is generated using additive Gaussian white noise with the mean µ = 0 

and the standard deviation σ = 30 as shown in Fig. 38 (b). The segmentation results of the noisy 

image with and without SSM are shown Fig. 39 (a). The centerline extraction of the corrupted 

volume is depicted in Fig. 39 (b) and (c). 

The quantitative validation of these volumes is reported in Table  6. In the case of the 

volume with noise, the incorporation of SSM into the deformable segmentation shows a slight 

improvement in terms of MASD: 0.192 ± 0.131 mm without SSM vs. 0.177 ± 0.091 mm with 

SSM, as well as the HD error decreasing by 6%. For the corrupted volume, the segmentation 

using SSM outperforms the segmentation without SSM by decreasing the MASD error by 60% 

and the HD error dropping from 0.506 mm to 0.251 mm. The improvement of SSM-based 

identification in terms of HD is shown graphically in . 40. 
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Fig. 38.  Volume rendering of the Synthetic images. (a) corrupted volume where some of the 

slices’ information is eroded (b) noisy volume.  

 

Table  6.  Quantitative validation of Segmentation using helix SSM 

Volume 
Shape 

Prior 

Housdorff 

Distance Error 

Mean Absolute 

Distance Error 

(MASD) 

Std. Deviation 

Noisy Volume 

No 0.283 0.192 0.131 

Yes 0.265 0.177 0.091 

Corrupted 

Volume 

No 0.506 0.467 0.292 

Yes 0.251 0.1636 0.112 

 

 

(a) 
(b) 
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Fig. 39.  Centerline Segmentation with and without shape priors of (a) noisy volume  (b) and (c) 

corrupted volume.  

 

 

 

(a) (b) 

(c) 
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Fig. 40.  Depiction of the Housdorff Distance (HD) for the corrupted volume, P is the segmented 

contour and Q is the ground truth (a) Segmentation without shape prior, HD is 0.506 mm. (b) 

Segmentation with shape prior, HD is 0.251mm. 

 

5.7 Validation Using Patient Data 

In this section, a validation of the proposed SSM-based segmentation is performed using 

patient T2-weighted MRI data.  

 

5.7.1 SSM Construction of Cranial Nerves 

SSMs are constructed for the ten pairs (CNIII to CNXII) of brainstem cranial nerves. The 

training dataset for each of the nerves consists of 10 non-pathological samples, each of which is 

comprised of left and right centerline shapes of the nerve. Each training shape is extracted using 

the centerline tracking algorithm which is then manually corrected under the expert’s 

supervision. SSMs are built by retaining 99% of total variance. In the ideal situation, the left and 

(a) (b) 
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right paths of a nerve centerline should be mirror images of each other, however in almost all 

cases they vary due to the presence of surrounding anatomical structures. The left centerline of a 

nerve extracted from a healthy patient can be considered as a variation of the right centerline, 

thus for each nerve, the left and right pools of training datasets are combined to construct a single 

SSM per nerve, offering two advantages: (1) the combination increases the training size from 10 

to 20, and (2) the combined SSMs are unbiased regardless of left or right side of a nerve. In 

following sections, for each of the nerve SSMs, we show the point correspondence after GPA 

transform where each of the corresponding pointset are shown using different color balls. In 

addition to that, the modes of variation of the generated SSMs are shown. 

The qualities of the constructed 10 SSMs are measured in terms of compactness, 

specificity and generality as described in Section 5.5.  Specificity and generality are measures of 

error distances which are assessed in millimeters using Root Mean Square (RMS) method.  

 

5.7.1.1 CNIII 

For CNIII, separate SSMs are created for both left and right centerlines of the nerve to 

observe how much the two SSMs might vary from each other. The results are reported in Fig. 41. 

Both of the SSMs can capture 99% of shape variations using only 4 principal modes. Forty 

random shapes were used to compute the specificity measure. Both the compactness and 

specificity curves show similar characteristics while the generality of left CNIII SSM 

outperforms the SSM for the right CNIII by 0.02 mm.   

The results of the combined left and right CNIII SSM is shown in Fig. 42. We have 20 

segmented training shapes where 18 control points are used for each shape to establish the 

correspondence. For the combined training shapes, the first 5 modes were able to capture 99% of 
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the variations. The average specificity error is 0.28 mm with ±0.02 mm standard deviation. We 

sampled 80 random shapes for the specificity measure. The generalization error converges to 

0.18 mm with the worst mean error of 0.216 mm where the standard deviation is found 

negligible (± 0.009 mm). 

Shape variations for the combined CNIII along with the first three principal modes by ± 

3σ are shown in Fig. 43.  Even though there are shape changes with respect to the mean shape in 

each of the mode, it is difficult to find meaningful differences because the centerline paths are 

open ended curves.  
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Fig. 41.  SSM of left and right CNIII; (a) Shape correspondence of left CNIII; (b) Shape 

correspondence of right CNIII; (c) Compactness ; (d) Specificity ; (e) Generalization. 

(a) (b) 

(c) (d) 

(e) 
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Fig. 42.  SSM of the combined CNIII; SSM of the combined CNIII; (a) Shape correspondence; 

(b) Compactness; (d) Specificity; (d) Generalization. 

 

 

5.7.1.2 CNIV 

The trochlear nerve (CNIV) is the smallest nerve, which in turn contains the smallest 

number of axons [144]. Because of its size, a segmentation of this nerve can be quite 

challenging, even for neuroradiologists. Out of the ten patient datasets, CNIV was clearly visible 

in only seven datasets. Therefore, we had only seven pairs of segmented training shapes for this 

nerve. The point correspondence and measures of the SSM quality are shown in Fig. 44. The 

SSM for CNIV required six modes to capture 99% of variations of the training dataset. The 

(a) (b) 

(c) (d) 
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average generalization error is 0.18 mm with a standard deviation of 0.02, and the average 

specificity error is 0.28 mm with a standard deviation of 0.035. 

Modes of variation for CNIV are depicted in Fig. 45.  A variety in shapes has been 

observed for CNIV due to the close proximity of the vertebral artery. The tortuosity of the nerve 

might change when it is veered around the vertebral artery. The first mode captures the change of 

tortuosity of the nerve. 

 

 

 

Fig. 43.  Modes of Variation of Combined CNIII. Color code: Blue: mean shape; green: (mean + 

3σ); red : (mean - 3σ). 

(a) Mode 

1 

(b) Mode 2 (c) Mode 

3 
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Fig. 44.  SSM of CNIV. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

 

 

Fig. 45.  Modes of Variation of CNIV. Blue: mean shape; green: (mean +3σ);   red: (mean - 3σ). 

(c) (d) 

(a) 
(b) 

(a) Mode 1 

(b) Mode 2 

(c) Mode 3 
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Fig. 46.  SSM of CNV. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

 

(a) 

(b) 

(c) (d) 
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Fig. 47.  SSM of CNVI. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

 

5.7.1.3 CNV, CNVI, CNVII and CNVIII 

SSMs for CNV, CNVI, CNVII and CNVIII are shown in Fig. 46, Fig. 47, Fig. 49 and 

Fig. 50 respectively. In these cases, five modes of variation are used to retain 99% variance of 

the training dataset, except for CNVIII which required four modes to sufficiently capture the 

same amount of variance. For this group of SSMs, the specificity measures were performed 

using 80 samples. Table  7 reports the specificity and generalization error for this group of 

nerves.  

(a) (b) 

(c) (d) 
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Fig. 48.  Modes of Variation of (a) CNV and (b) CNVI. 

 

Table  7.  Generality and Specificity error for CNV to CNVIII 

Nerves S(M) G(M) 

CNV 0.374±0.04 0.294±0.009 

CNVI 0.287±0.03 0.176 ± 0.02 

CNVII 0.293±0.024 0.139±0.02 

CNVIII 0.315±0.05 0.210±0.02 

Average 0.32 ± 0.04 0.247 ± 0.02 

 

 

Mode 1 

Mode 3 

Mode 2 

(a) 

Mode 3 Mode 2 Mode 1 

(b) 
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Fig. 49.  SSM of CNVII. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

 

The mean specificity error of this group is 0.32 mm with a confidence interval of 0.04 

mm, the mean generalization error is 0.24 mm ± 0.001, and the worst error of 0.34 mm in case of 

nerve CNVI. Shape variations along the first three modes within ±3σ of this group are shown 

Fig. 48, Fig. 51 and Fig. 52. 

 

(a) (b) 

(c) 
(d) 
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Fig. 50.  SSM of CNVIII. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

(a) (b) 

(c) (d) 
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Fig. 51.  Modes of Variation of CNVII. 

 

Fig. 52.  Modes of Variation of CNVIII. 

 

5.7.1.4 CNIX, CNX, CNXI and CNXII 

The lower cranial nerves include CNIX, CNX, CNXI and CNXII. This group has much 

smaller nerve radii which make it more challenging to segment from MRI data. For CNIX and 

CNX we were able to segment seven datasets, for a total of 14 shapes in the training dataset. 

Mode 1 Mode 2 Mode 3 

Mode 1 

Mode 2 

Mode 3 
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Similarly, we were not able to segment all the ten patient datasets for CNXI and CNXII. The 

training dataset of CNXI contains 16 shapes and CNXII contains 12 shapes. The measures of the 

SSMs are shown in Fig. 53, Fig. 55, Fig. 57, and Fig. 60 , with their shape variations Fig. 54, 

Fig. 56, and Fig. 58 and Fig. 61. The specificity and generality errors are summarized in Table  

8. The specificity error is 0.356 mm with standard deviation 0.03, and the generalization error is 

0.277 mm with standard deviation of 0.015 mm.  

 

 

Fig. 53.  SSM of CNIX. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

(a) 
(b) 

(c) (d) 
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Fig. 54.  Modes of Variation of CNIX. 

 

 

Fig. 55.  SSM of CNX. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

Mode 3 Mode 2 Mode 1 

(a) 
(b) 

(c) (d) 
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Fig. 56.  Modes of Variation of CNX. 

 

 

Fig. 57.  SSM of CNXI. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM 

Mode 1 Mode 2 
Mode 3 

(a) (b) 

(c) (d) 
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Fig. 58.  Modes of Variation CNXI.    Fig. 59.  Modes of Variation of CNX. 

  

 

Fig. 60.  SSM of CNXII. (a) Point correspondence (b) Compactness (c) Specificity and (d) 

Generality of the SSM. 

Mode 3 

Mode 2 

Mode 1 

(b) 

(c) (d) 

(a) 

Mode 1 Mode 2 Mode 3 
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Fig. 61.  Modes of Variation of CNXII. 

 

Table  8.  Specificity and Generality errors of lower cranial nerves. 

Nerve Specificity Generality 

CNIX 0.263 ± 0.04 0.264 ± 0.007 

CNX 0.331  ± 0.02 0.240  ± 0.04 

CNXI 0.390  ± 0.04 0.356  ± 0.005 

CNXII 0.439  ±  0.03 0.249  ±  0.009 

Average 0.356   ±  0.03 0.277  ±  0.015 

 

 

5.7.2 Segmentation Using SSM Atlas 

We assessed the performance of the SSM-based nerve segmentation algorithm using the 

collection of ten datasets. Segmentation was performed using the shape-based nerve atlas as well 

as without using the shape-based atlas to observe the differences. The segmentation of datasets is 

performed using leave-one-out procedure: first, a test image is selected from the pool and the 

Mode 1 Mode 2 Mode 3 
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remaining images are used to build the SSM. Then the test image is segmented using the SSM to 

evaluate its performance. The process is iterated over all the 10 datasets. 

We wish to observe the performance of the shape-based segmentation with respect to the 

ground-truth as well as with respect to the segmentation without shape information. To serve this 

purpose, we have performed the deformable model segmentation of all the ten datasets for the 

ten pairs of nerves without shape information. A non-normalized vesselness force is used as the 

external image force whereas the tangential and Laplacian forces are used as internal forces. 

Table  9 presents the results of the segmentation without shape-based force with respect to the 

ground-truth. The ground truth for each nerve is a piecewise-linear path computed by linear 

interpolation through a set of landmarks provided by an expert. From Table  9, it can be inferred 

that the average nerve segmentation error is 0.28 ± 0.16 mm, which is less than the image voxel 

size. However, the deformable algorithm fails to ensure sub-voxel accurate centerline path for 

CNIV and CNXII, which are two of the smallest nerves and the two most difficult to segment. 

The mean distance of CNIV is 0.582 ± 0.34 mm with the average HD of 0.601 mm and for 

CNXII the mean distance is 0.805 ±0.405 mm with an average HD of 0.752 mm. The main 

reason behind these poor results is that the vesselness image is unable to produce consistent 

external forces for all the voxels, especially in low resolution. One such situation is illustrated in 

Fig. 62. In this case, the vesselness filtering fails to capture the information of the very faint 

nerve line of the left CNXII. Thus, the segmentation produces an erroneous centerline as shown 

in Fig. 62(d): the black curve is the ground truth whereas the green curve is the 1-Simplex nerve 

centerline. 
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Table  9.  Segmentation Results without shape information of fully visible dataset with respect to 

ground truth 

Nerves 

Mean Absolute Shape 

Distance 

(MASD) 

Std. Deviation 

(SD) 

Average Housdorff 

Distance 

(HD) 

CNIII 0.198 0.10 0.3101 

CNIV 0.582 0.340 0.601 

CNV 0.186 0.129 0.293 

CNVI 0.191 0.100 0.160 

CNVII 0.225 0.110 0.190 

CNVIII 0.130 0.095 0.243 

CNIX 0.221 0.118 0.183 

CNX 0.288 0.15 0.220 

CNXI 0.141 0.118 0.183 

CNXII 0.605 0.405 0.752 

Average 0.276 0.1665 0.313 

Average excluding CNIV 

and CNXII 
0.197 0.115 0.222 
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Fig. 62.   Centerline computation of CNXII where vesselness filtering fails to capture tubularity 

information properly. 

 

Table  10 summarizes the segmentation results using the shape-based atlas. The average 

MASD error for CNIV is decreased from 0.582 ± 0.340 to 0.212 ± 0.112. The incorporation of 

SSMs also improved the segmentation of CNXII by decreasing the MASD error from 0.605 ± 

0.405 to 0.223 ± 0.115. The MASD error without SSM over all the nerves is 0.197 ± 0.11 

excluding the two nerves difficult to segment (CNIV and CNXII) as shown in Table  9, whereas 

the average MASD error with SSM is 0.196 ± 0.12. Therefore, no significant difference could be 

established between the two approaches in the case of all nerves excluding CNIV and CNXII. 

However, from an overall performance point of view (0.27 ± 0.16 vs. 0.19 ± 0.12), we can infer 

that the segmentation error (the average MASD) decreased by 29% while using SSM. In terms of 

average HD, the SSM-based segmentation outperforms the segmentation without using SSM by 

improving HD by 32% (0.31 mm vs. 0.21 mm).  
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Table  10. Segmentation Results using shape-based atlas of fully visible dataset 

Nerves Mean Absolute Shape Distance 

(MASD) 

Std. Deviation 

(SD) 

Average Housdorff Distance 

(HD) 

CNIII 0.202 0.121 0.176 

CNIV 0.212 0.112 0.195 

CNV 0.145 0.166 0.19 

CNVI 0.186 0.148 0.281 

CNVII 0.22 0.13 0.206 

CNVIII 0.197 0.12 0.223 

CNIX 0.171 0.131 0.233 

CNX 0.223 0.07 0.125 

CNXI 0.185 0.132 0.271 

CNXII 0.223 0.115 0.27 

Average 0.196 0.124 0.211 

 

5.7.3 Segmentation of Corrupted/Noisy/Partially Visible Dataset 

To assess the robustness of the SSM-based segmentation, we applied the method in a 

dataset where nerves are not fully visible due to image noise and partial volume effects. Table  

11 shows the quantitative segmentation results of the dataset w.r.t. the ground-truth. We compute 

The MASD error in millimeter unit. In most of the cases, the generated ground-truth centerlines 

are not smooth because only a few points could be manually selected from the slices that show 

the nerve. The average segmentation error without SSM is 0.32 mm, which decreased to 0.28 

mm with SSM. Therefore, we can conclude that the overall segmentation error is improved by 

13% for this specific dataset. The improvement in segmentation is observed for all the cranial 

nerves (CNIII to CNXII), as shown in Fig.  63. For instance, the SSM-based segmentation of 
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CNIV has a huge improvement from 0.45 mm to 0.31 mm as shown in Fig. 64. The cropped 

volume containing CNIV is shown in Fig. 64 (a), the nerve area is magnified in Fig. 64 (b) and 

the segmented nerves are shown in Fig. 64 (c). The segmentation error is improved by 30% when 

using shape-based forces.  

 

Table  11. Segmentation Results of the partially visible dataset 

Nerves Segmentation error without SSM Segmentation error using SSM 

CNIII 0.31 0.28 

CNIV 0.45 0.31 

CNV 0.27 0.25 

CNVI 0.30 0.27 

CNVII 0.23 0.20 

CNVIII 0.28 0.26 

CNIX 0.38 0.32 

CNX 0.35 0.31 

CNXI 0.31 0.29 

CNXII 0.33 0.31 

Average 0.32 0.28 

 



   

 

134 

 

Fig.  63.   Graphical comparison of segmentation algorithms with and without SSM using 

partially visible dataset. 

 

In the case of CNX, for this specific dataset, the slices containing the right side of the 

nerve have partial volume effects that mix nerves with cerebellar peduncles as shown in Fig. 65. 

As a result, the right CNX cannot be clearly detected in the dataset. The segmentation error 

decreases by 8% after incorporating shape-based forces. For the left CNX, segmentations with 

and without an SSM force performs almost similarly because of the clear gradient around the 

nerve even though the image is noisy.   

The most challenging nerve to segment is CNXII which can barely be seen in this 

specific dataset as depicted in Fig. 66. In addition, a deformity on the left CNXII has been 

observed due to the difference in the size of the vertebral artery. The left vertebral artery is much 

bigger than the right one which pushes the nerve in the downward direction as shown in  Fig. 66 

(a).  
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Fig. 64.  Centerline segmentation of CNIV from the corrupted dataset. (a) Axial slice containing 

CNIV; (b) Extracted centerlines superimposed on the slice of (a); (c) extracted centerline path – 

red is the ground-truth, blue is SSM-based segmentation, green is without SSM segmentation, 

purple is the average shape. 

 

(a) (b) 

(c) 

Ground-truth 

Without  SSM 

Using SSM 
Average Shape 
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Fig. 65.  Centerline segmentation of CNX from the noisy dataset. (a) Axial slice containing right 

CNX; (b) Extracted centerlines superimposed on the magnified slice of (a); (c) Axial slice 

containing left CNX; (d) Extracted centerlines superimposed on the magnified slice of (c); red is 

the ground-truth, blue is SSM-based segmentation, green is without SSM segmentation. 

 

An exception is observed in the left-side of CNXII. The computed average shape model 

for left CNXII is offset from the ground-truth nerve resulting in an incorrect nerve centerline as 

shown in  Fig. 66 (b) and  Fig. 66 (d). In this case, the average shape which we use for initial 

model registration is closer to the vertebral artery (which is also a tubular structure) than the 

nerve. As a result, the strong gradient of the artery pulls the initial average model towards the 

(a) (b) 

(c) (d) 

(e) 

Ground-truth 

without  SSM 

using SSM 
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artery during the model deformation. The reason behind this situation is that our SSM is built 

using a very limited number of training shapes while not considering this large variation. In this 

scenario, we decided to turn off the SSM-based forces and then allow the model to deform 

without shape priors.  

 

 
 

Fig. 66.  Segmentation of CNXII from noisy data. (a) Axial slice containing CNXII; (b) 

Extracted left centerlines superimposed on the magnified slice of (a); (c) extracted right 

centerline paths superimposed on the magnified slice of (a); (d) left and (e) right centerline 

models. Color code:  red - ground-truth, blue - SSM-based segmentation, green: without SSM 

segmentation and purple: average shape. 

(a) 

(b) 

(c) 

(d) 

(e) 
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The deformation results of the left CNXII shows an average error of 0.35 mm with 

respect to the ground-truth centerline as shown in Fig. 66 (b) and  Fig. 66 (d). On the other hand, 

the right CNXII has the usual shape that falls within our training shapes. Therefore, the SSM-

based segmentation generated the centerline with 75% accuracy (average error is 0.25 mm) with 

respect to the ground-truth centerline. 

 

5.8 Conclusion  

To improve the accuracy and robustness of segmentation results, shape information is 

incorporated as a prior knowledge into the discrete deformable 1-Simplex model. Shape 

information is encoded within a Statistical Shape Model. Correct and meaningful shape 

correspondence is vital for the construction of any shape model.  Dense point correspondence is 

feasible for sparse 2D shapes. However, it is almost impossible for 3D structures because of high 

overhead, poor repeatability and image artefacts of MRI data. A non-parametric particle-based 

dense point correspondence method is chosen which has the advantage of performing 

homologous point distribution automatically over the contour shapes. An average shape as a first 

order statistics and covariance matrix of the training dataset as a second order statistics are 

computed and integrated with the 1-Simplex deformable model to derive an internal shape-based 

force. This shape-based force along with other internal and external force is used for final 

centerline deformation.   

A through validation is performed using both synthetic and patient MRI data. SSM 

models constructed for all the 10 cranial nerves by combining their corresponding left and right 

side models. SSM of each nerve is shown using three benchmark evaluation criteria: 

compactness, generalization and specificity. Cranial nerves can be divided into two groups based 
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on their attachment to the brainstem: upper cranial nerves (CNIII to CNVIII) and lower cranial 

nerves (CNIX to CNXII). Upper cranial nerves are comparatively bigger and easy to trace than 

lower cranial nerves, only exceptional is CNIV. The average Generalization error for upper 

cranial nerves’ SSM is slightly better than the lower cranial nerves (0.247 ± 0.02 mm compared 

to 0.277 ± 0.015mm). Similarly, the specificity error is slightly increased in lower cranial nerves 

(0.32 ± 0.04 mm vs. 0.356 ± 0.03mm).  

The performance of the SSM-based deformable atlas is assessed using fully visible and 

partially visible datasets. In case of fully visible datasets, both the average MASD and Housdorff 

distance decreased by 8% and 10% respectively, over the segmentation without SSM atlas. 

However, a noticeable improvement was found in case of critical nerves such as CNIV and 

CNXII. On the other hand, in case of partially visible datasets, an improvement is observed for 

the 10 pairs of nerves. The segmentation error i.e. average MASD improved by 12% when the 

SSM-based atlas is incorporated. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

There is a critical need in neurosurgical planning and simulations for accurate and robust 

3D patient-specific models of critical tissues including cranial nerves. In this work, we have 

developed a segmentation method for the ten pairs of brainstem cranial nerves from CNIII (the 

oculomotor nerve) to CNXII (the Hypoglossal nerve) in MRI data using a deformable digital 

atlas of cranial nerves.  

 

6.1 Discussion 

The first contribution of this research is a novel nerve medial axis extraction technique 

using a 1-Simplex based discrete deformable model where we combine the 3D contour model to 

achieve a robust medial axis identification, starting from an initialization based on tubularity 

detection featuring multiscale Hessian-based vesselness and Minimal Path computation. Because 

of its discrete nature, it is easier for a 1-Simplex curve to adapt locally and to find an accurate fit 

to a particular shape in comparison with a parametric representation that is implicitly regularized. 

Therefore, a discrete representation of a nerve ensures subvoxel-accurate results even at the 

thinnest nerve, which has a diameter of less than two voxels in the MR image.  

Our second contribution is to employ the 2-Simplex deformable surface model, using the 

centerline as initialization, into a highly accurate nerve boundary segmentation technique.  

The Third contribution is to develop a probabilistic digital atlas of the ten cranial nerve 

pairs by incorporating a Statistical Shape Model with the 1-Simplex deformable contour model 

by introducing a SSM-based force. The integration of shape information as a priori knowledge 

results in robust and accurate centerline segmentations from even low-resolution MRI data.  
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A thorough quantitative validation was performed for the medial axis extraction 

technique using synthetic and patient MRI data. Also, the surface segmentation method was 

validated using MRI data against expert ground-truth segmentation. The following conclusions 

can be inferred from the validation point of view: 

 The 1-Simplex deformable model-based segmentation technique can identify nerve 

centerlines in high-resolution MRI data with an average error of 0.19 mm, thereby 

ensuring sub-voxel accuracy. 

 The surface segmentation approach using 2-Simplex-based refinement shows significant 

improvement with average 82% spatial overlapping over all the nerves between manual 

and automatic segmentation.  

 The SSM-aware contour model-based segmentation i.e. segmentation using shape priors, 

improves segmentation accuracy over the segmentation without shape priors, while 

segmenting even corrupted or low-resolution MRI data. 

This proposed method has been applied to identify cranial nerves; however, it can readily 

be applied to other tubular structures such as blood vessels in MRI data.   

 

6.2 Limitations and Future Works 

We make two simplifying assumptions in this work, both of which support the notion of a 

simple curve to represent the intracranial portion of the central axis of each cranial nerve, which 

is in part justified by the intracranial focus of this model.  

The first simplifying assumption is that each nerve can be idealized as a single curve 

within the cranium; obviously, this assumption becomes invalid outside the cranium, such as is 

the case with the trigeminal nerve, and it is apparent that our contour model will need to be 
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supplemented with a second framework that can describe tree-like anatomical structures, such as 

tree space models [145].  

Second, we make an abstraction for now of the rootlets that terminate some of the nerves. 

Particularly, nerves XI and XII do not arise from the brainstem as a single nerve fiber, but rather 

as a collection of several tiny rootlets that gradually coalesce to form the nerve. In the future, this 

structure can be modeled as a triangle whose base coincides with the length along the brainstem 

that spans the rootlet terminations of a given nerve and whose height models their point of 

convergence.  

Moreover, we plan to develop and integrate digital atlases of the cranium and foramina as 

well as brainstem [146], to automate the estimation of attachment and exit points. The 

development of these digital atlases is underway. The basic idea is encapsulated in the 

clothesline metaphor: if one knows the position of the two poles of the clothesline, and its typical 

tortuosity, one can estimate its path. 

The work closest to ours is the Diffusion Tensor MRI (DT-MRI) tractography applied to 

cranial nerves [147]; however, there is a far larger preponderance of T2-weighted imaging in the 

clinical imaging community than diffusion imaging, particularly at the base of the brain. 

Moreover, the proposed algorithm can and will be extended to DT-MRI. We will integrate a 

blood vessel model while ensuring that combined nerve and blood vessel models do not overlap 

spatially, which motivated our choice of an explicit contour model.  

The accuracy of an SSM is dependent on the size of the training dataset utilized to 

construct the SSM. In this work, we had a limited number of dataset for training and testing 

shape models. The performance of the SSMs can be further improved by increasing the size of 

training datasets which allow the SSMs to capture a wide range of variations within the training 
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population. Along with the SSM-based centerline models, SSM-based radius incorporation might 

further improve the results of 3D nerve surface segmentation.  

Finally, this research will also be extended to identifying and modeling the nerves of the 

spine, of the peripheral nervous system, and of the enteric nervous system, once the fusion with 

tree shape analysis is achieved. The combination of 3D contour model and SSM is broadly 

usable, which will lead to a variety of neurological applications of this digital atlas methodology, 

particularly given the interest in therapeutic nerve stimulation.  
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