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Abstract

NuCLR (Nuclear Co-Learned Representations) is a cutting-edge multi-task deep
learning framework designed to predict essential nuclear observables, including
binding energies, decay energies, and nuclear charge radii. As part of the REYES
Mentorship Program, we investigated the application of dynamic loss weighting
to further refine NuCLR’s predictive performance. Our findings indicate that
while weighting strategies can enhance accuracy in specific tasks, such as binding
energy prediction, they may underperform in others. Equal Weighting (EW),
the original method employed by NuCLR, demonstrated consistent performance
across multiple tasks, affirming its robustness. This report succinctly presents the
developments and results of the mentorship program and outlines our anticipation
for continued collaboration on this and related projects.

Keywords: deep learning, nuclear observables, multi task learning

1 Introduction

Despite extensive study spanning more than a century, nuclear physics still defies
complete quantitative comprehension. Nuclear Co-Learned Representations (NuCLR)
[1], a state-of-the-art deep learning model, aims to address this by predicting nuclear
observables such as binding and decay energies, and nuclear charge radii. The
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model achieves such high performance by leveraging multi-task learning. Remarkably,
NuCLR exhibits the emergence of essential aspects of the nuclear shell model, such as
shell structure, magic numbers, and compliance with the Pauli Exclusion Principle.

To further refine NuCLR’s accuracy, various optimization techniques may be
employed, allowing exploration of different learning behaviours [2]. NuCLR uses equal
weighting for all tasks. Thus, it prompts the question: What alternative combinations
of task losses could enhance network performance? Loss weighting techniques arise
as a promising avenue to explore, as they provide the means to calibrate or empha-
size focus on specific tasks, potentially augmenting the model’s precision in predicting
key nuclear observables. This work conducts an exploratory analysis of dynamic loss
weighting, comparing Equal Weighting (EW), Uncertainty Weights (UW) [3], Dynamic
Weight Average (DWA) [4], Loss Balanced Task Weighting (LBTW) [5], and Random
Loss Weighting [6]. An extensive review of these and other methods is available in
[2, 6, 7].

This report is organized as follows: Section 2 outlines the network architecture used
and elaborates on each of the methods compared; Section 3 assesses and contrasts the
performances achieved with each method; Section 4 summarizes the key findings, their
relevance to NuCLR, and outlines potential future directions. Finally, an appended
reflection on the learning experiences gained through the REYES Mentoring Program
is included.

2 Methods

In this study, we employ a preliminary version of NuCLR, referred to as NuCLR
without task embedding. The architecture takes the number of protons and neutrons
within a nuclear structure as input. These numbers are first passed through distinct
embedding layers, transforming them into dense vectors. The proton and neutron
embeddings are then normalized and concatenated. This concatenated vector is fed
through a sequence of linear layers interlaced with ReLU activation functions, batch
normalization, and dropout for regularization. The output consists of the predicted
observables for the given nuclear structure. The embedding weights are uniformly
initialized and normalized to ensure a consistent scale.

In our analysis, we explore the following five loss weighting strategies:

2.1 Equal Weighting (EW)

Equal Weighting (EW) ensures a balanced approach by allocating equal weights to
each task. When combining the loss functions from different tasks, EW sums them up
without any preference or bias towards a particular task. It is the default or vanilla
method used in the model and in general in NuCLR.

2.2 Uncertainty Weights (UW)

Uncertainty Weights (UW) is a method introduced in [3]. It formulates the multi-task
network as a probabilistic model where the loss function is developed by maximizing
the likelihood of the observed output. Specifically, for N simultaneous regression tasks,
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the distribution of the network’s output for each task i is modeled as a Gaussian distri-
butionN (fi(x), σ

2
i ), where fi(x) is the network’s output, and σ2

i is a learned parameter
representing task-dependent uncertainty. The resultant loss function is given by

N∑
i=1

1

2σ2
i

∥yi − fi(x)∥2 + log σi, (1)

with yi being the ground truth for task i. The log σi serves as a regularization term, so
that σ is not increased without limit. This formulation ensures that each task’s loss is
inversely weighted by its task-dependent uncertainty, meaning that tasks with lower
uncertainty receive more weight.

2.3 Dynamic Weight Average (DWA)

Dynamic Weight Average (DWA) , proposed in [4], explicitly calculates a task’s loss
using a ratio of the current loss to the previous loss. Let Li(t) represent the loss for
task i at timestep t, and N be the total number of tasks. DWA sets the task weights as

λi(t) =
N exp(ri(t− 1)/T )∑N
j=1 exp(rj(t− 1)/T )

, (2)

where

ri(t− 1) =
Li(t− 1)

Li(t− 2)
, (3)

ant T is a temperature hyperparameter. Essentially, the loss weight vector is com-
puted as a softmax over the ratios of successive loss values from the last two training
steps for each task, and this result is then multiplied by the number of tasks. More
explicitly

λi(t) = N · softmax(ri/T ). (4)

2.4 Loss Balanced Task Weighting (LBTW)

Loss Balanced Task Weighting (LBTW), introduced by [5], configures the task weight
according to the learning speed, characterized by the ratio of the current loss to the
initial loss. LBTW’s weighting formula is

λi(t) =

(
Li(t)

Li(0)

)α

, (5)

where α is a chosen hyperparameter. LBTW does not apply a normalization process
to the weight values, allowing them to retain their original scale.

2.5 Random Loss Weighting (RLW)

Random Loss Weighting (RLW) [6] considers the loss weights as random variables
and samples them from a random distribution in each iteration. The process begins
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by sampling an unnormalized weight vector from any distribution and then normal-
izing it into the actual loss weights through a mapping function, such as the softmax
function. This ensures the loss weights are non-negative and sum to one. The random
nature of RLW allows for a higher probability of escaping local minima, thus poten-
tially improving generalization ability. Empirical evaluations have shown that RLW
methods can achieve performance comparable to state-of-the-art methods. It serves as
a reasonable baseline for examining the effectiveness of other loss balancing methods.

3 Results

We assess the performance of the various weighting methods discussed earlier, employ-
ing the same network architecture and configuration across all experiments. Models
are trained for 1000 epochs using a learning rate of 0.01, weight decay of 0.00067, and
the entire training data as the batch size. We predict the following nuclear properties:
binding energies; charge radius; neutron and proton separation energies; and β energy
decay. For LBTW and DWA, specific hyperparameters are set to α = 0.1 and T = 2,
respectively, in line with the original papers [4, 5]. The dataset and other experimental
settings remain consistent with the original work, with further details available in [1].

Figure 1 illustrates the validation loss trajectory over the training epochs for each
weighting method. All model variations converge rapidly to values on the order of
10−2. Equal Weighting (EW) emerges as the superior method in terms of overall loss
during the final epochs, closely followed by DWA and LBTW. Random Loss Weighting
(RLW) displays equal or better performance at some epochs but exhibits a more
unstable behaviour.

In Figure 2, we present the task-specific Root Mean Square (RMS) error for each
weighting approach. This allows us to clearly distinguish the prioritization of tasks by
different techniques. Notably, UW and LBTW excel in predicting binding energies,
while marginally lagging behind EW in other tasks. Intriguingly, RLW appears to
perform the worst in predicting binding energies. This suggests specific strengths and
weaknesses associated with each weighting strategy, thus underscoring the importance
of method selection based on the desired task focus.

4 Conclusions and future directions

This report provides an exploratory analysis of various dynamic loss weighting tech-
niques as applied to a preliminary version of NuCLR [1]. We made significant progress
in understanding both the limitations and opportunities of these techniques. Specifi-
cally, Equal Weighting emerges as the most robust strategy, demonstrating balanced
performance across multiple tasks. Conversely, Uncertainty Weights, Loss Balanced
Task Weighting, and Dynamic Weight Average favor predictions related to binding
energies, although they lag behind Equal Weighting in other tasks. These insights
suggest that tailored weighting strategies could be instrumental in optimizing task-
specific performance. The code used in this report is available at https://github.com/
samuelperezdi/nuclr.

While our experiments did not reveal any task weighting method outperforming
EW, it is imperative to recognize the limitations inherent in the conducted study. Our
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Fig. 1 Validation Loss vs Epoch for each weighting method. We can see that convergence is robust
between all techniques. EW stands out with the best overall loss. It is followed closely by RLW and
LBTW.
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conclusions stem from a restricted set of runs within a specific network architecture,
forming an initial exploration into potential enhancements or refinements for NuCLR.
To further unravel the intricacies of how weighting influences learning, future research
directions could include:

• Incorporating residuals relative to the semi-empirical Bethe-Weizsäcker mass for-
mula [8, 9] as prediction targets.

• Conducting a hyperparameter sensitivity analysis concerning both network and
method parameters (e.g., LBTW: α, DWA: T ).

• Exploring alternative weighting strategies, such as IMTL-L [10], GradNorm [11], or
GradDrop [12]. Comprehensive reviews of these and related techniques are detailed
in [2, 13]. Additionally, LibMTL [14], a Python library for deep multi-task learning,
offers an extensive collection of implemented state-of-the-art techniques.

• Experiment with additional or different tasks.
• Undertaking a case study using the toy model presented in [1], where the impact of
different weighting strategies on learning functions can be directly compared.

The exploration and extension of these paths could lead to a more complete
understanding of the interplay between weighting techniques and model performance,
fostering the development of more targeted and effective prediction models for nuclear
physics.

Learning experience. Participation in the REYES Mentoring Program has
afforded the author, Samuel Pérez-Dı́az, a profound enrichment of expertise, notably in
the realms of nuclear physics and multi-task learning. This new understanding aligns
with his goal of using artificial intelligence for scientific discovery and contributes pos-
itively to his professional growth. Special thanks are extended to the REYES Team
for their work on making this opportunity possible. Special recognition is extended to
Sokratis Trifinopoulos, who has provided consistent guidance and camaraderie, which
greatly facilitated the author’s learning. This experience has fostered excitement for
ongoing collaboration with the existing project team and potential future partnerships,
all aimed at pushing forward the boundaries of research and exploration.
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[8] C.v. Weizsäcker, Zur theorie der kernmassen. Zeitschrift für Physik 96(7-8),
431–458 (1935)

[9] H.A. Bethe, R.F. Bacher, Nuclear physics a. stationary states of nuclei. Reviews
of Modern Physics 8(2), 82 (1936)

[10] L. Liu, Y. Li, Z. Kuang, J. Xue, Y. Chen, W. Yang, Q. Liao, W. Zhang, (iclr,
2021)

[11] Z. Chen, V. Badrinarayanan, C.Y. Lee, A. Rabinovich, in International conference
on machine learning (PMLR, 2018), pp. 794–803

[12] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai, D. Anguelov,
Just pick a sign: Optimizing deep multitask models with gradient sign dropout.
Advances in Neural Information Processing Systems 33, 2039–2050 (2020)

[13] B. Lin, F. Ye, Y. Zhang, I.W. Tsang, Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603
(2021)

[14] B. Lin, Y. Zhang, Libmtl: A python library for deep multi-task learning. Journal
of Machine Learning Research 24, 1–7 (2023)

7


	NuDyCLR: Nuclear Dynamic Co-Learned Representations
	Repository Citation

	Introduction
	Methods
	Equal Weighting (EW)
	Uncertainty Weights (UW)
	Dynamic Weight Average (DWA)
	Loss Balanced Task Weighting (LBTW)
	Random Loss Weighting (RLW)

	Results
	Conclusions and future directions
	Learning experience


