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ABSTRACT

DEVELOPMENT OF A PRACTICAL VISUAL-EVOKED 
POTENTIAL-BASED BRAIN-COMPUTER INTERFACE

Nicholas R. Waytowich 
Old Dominion University, 2015 

Director: Dr. Dean J. Krusienski

There are many different neuromuscular disorders th a t disrupt the normal com­

munication pathways between the brain and the rest of the body. These diseases of­

ten leave patients in a “locked-in” state, rendering them unable to communicate with 

their environment despite having cognitively normal brain function. Brain-computer 

interfaces (BCIs) are augmentative communication devices th a t establish a direct 

link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, 

which are dependent upon the use of salient visual stimuli, are amongst the fastest 

BCIs available and provide the highest communication rates compared to other BCI 

modalities. However, the majority of research focuses solely on improving the raw 

BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues 

th a t make them  impractical for everyday use. The focus of this dissertation is on 

the development of novel advancements and solutions th a t increase the practicality 

of VEP-based BCIs. The presented work shows the results of several studies th a t 

relate to characterizing and optimizing visual stimuli, improving ergonomic design, 

reducing visual irritation, and implementing a practical VEP-based BCI using an 

extensible software framework and mobile devices platforms.
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CHAPTER 1 

INTRODUCTION

There are many different neuromuscular disorders th a t disrupt the normal 

communication pathways between the brain and the rest of the body. Diseases 

such as amyotrophic lateral sclerosis (ALS), spinal cord injury, muscular dys­

trophy, cerebral palsy, etc., are disorders th a t degrade muscles as well as the 

neuropathways th a t control them. Nearly two-million people suffer from these 

neuromuscular disorders in the United States alone, with many more worldwide 

[Ficke and Science Management Corp. Washington, 1992]. The level of degradation 

can sometimes be severe enough th a t the affected patients are left in a “locked-in” 

state, leaving them  completely unable to communicate with their environment de­

spite having cognitively normal brain function. One possible intervention for these 

individuals is to augment or bypass the impaired neuromuscular pathways and com­

municate directly with the brain. Over the past 25 years, research in the fields of 

neural-engineering and rehabilitation have focused on restoring communication to 

these individuals by establishing a direct communication channel between the brain 

and an external device using a Brain-Computer Interface (BCI). However, despite 

being demonstrated in laboratory settings for years, BCIs still suffer from many im- 

practicalities tha t severely limit their widespread adoption by the target population.

1.1 CURRENT CHALLENGES FOR BCIS

BCIs currently face enormous challenges in the ultim ate goal of becoming a prac­

tical form of augmentative communication. These challenges include but are not 

limited to: low information transfer rates compared to other forms of communica­

tion modalities; low reliability due to noisy and non-stationary EEG data; visual 

irritation and fatigue due to obtrusive stimulus flashing; lack of self-paced systems 

due to high synchronous system timing; long calibration times; and general lack of



2

low-cost hardware and software [Johnson et al., 2011]. Because of these and other 

issues, BCIs often perform sub-optimally when moving from laboratory settings to 

real-world applications.

1.2 APPROACH, ORGANIZATION, AND CONTRIBUTIONS

The forefront of BCI research has been to increase performance (i.e. raw accuracy 

or speed) at the expense of usability, comfort and overall ergonomics of the BCI sys­

tem. The work and contributions presented in this dissertation focus on the heavily 

overlooked aspect of BCI practicality. Overall, this work involves optimizing stimulus 

characteristics, improving the paradigmatic design of visual stimulation, and devel­

oping functional software and hardware systems for practical BCI applications. This 

work helps to make considerable strides for research and development of practical 

Visual Evoked Potential (VEP)-based BCI systems.

In the development of a practical VEP-based BCI, characterization and opti­

mization of the visual stimulus is needed to improve the fidelity and robustness of 

the evoked response within the brain. Visual stimuli can have various tem poral fre­

quency and spatial frequency characteristics which can vary the signal intensity and 

fidelity of the evoked response. This first component of this dissertation presents 

the results of several studies th a t have been conducted to characterize and optimize 

both  the temporal and spatial components of visual stimuli th a t are commonly used 

in SSVEP-based BCIs. The second component presents two studies th a t introduce 

a novel paradigmatic concept th a t separates targets from flashing stimuli for VEP- 

BCIs. The final component implements flexible software and hardware for practical 

VEP-BCI deployment.

Chapter 2 outlines all of the background information preluding the work presented 

in this dissertation. Chapters 3 and 4 describe two studies th a t characterize the 

temporal frequency profile of the SSVEP response spectrum using chirp-modulated 

stimulation. The overall contribution is a novel characterization of the SSVEP re­

sponse as a function of frequency. Additionally, Chapter 4 provides a performance 

optimization of stimulus frequency selection for multiclass SSVEP BCIs.
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Chapter 5 details a study th a t evaluates SSVEP BCI performance using stimuli 

with different spatial frequencies. The contribution of this chapter is a novel charac­

terization of SSVEP performance over the functional spatial frequency range and the 

determination of a spatial frequency optimization profile for flashing stimuli in an 

online 4-class SSVEP BCI. Additionally, chapter 5 demonstrates tha t accurate BCI 

performance can be achieved using less fatiguing, high spatial frequency stimuli.

Chapters 6 and 7 detail two studies th a t introduce and investigate the spatial de­

coupling of BCI targets from their respective flashing stimuli. These studies resulted 

in a major contribution th a t breaks the traditional notion of one-to-one stimulus- 

target correspondence by demonstrating comparable classification performances with 

indirect fixation of spatially decoupled stimuli. This results in reduced visual irri­

tation as stimuli are not required to be directly fixated on. Additionally, spatial 

decoupling reduces the number of overall flashing stimuli compared to traditional 

approaches.

Chapter 8 outlines the development and implementation of an extensible software 

platform tha t can be used for a wide variety of VEP BCI applications. The main 

contributions of this chapter are: 1) a fully functional and extensible software plat­

form known as the Visual Evoked Stimulation and SELection Software (VESSELS) 

and 2) a working prototype of a practical BCI-controlled wheelchair application with 

mobile device implementation.

The final chapter concludes this dissertation by summarizing the main findings 

and contributions and proposing future directions of this work.
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CHAPTER 2 

BACKGROUND

2.1 BRAIN-COM PUTER INTERFACES

A brain-computer interface (BCI) is an augmentative communication device tha t 

decodes brain activity to reveal user intent and translates th a t intention into use­

ful device commands [Wolpaw et al., 2002, Wolpaw and Wolpaw, ]. BCIs consist of 

three major components: signal acquisition, signal processing, and application. Fig­

ure 1 shows a block diagram of a typical BCI system. The brain activity of the 

user can be acquired using a number of different methods which can be classified 

as either invasive or non-invasive. Invasive methods, such as electrocorticography 

(ECoG), record electromagnetic potentials generated from brain activity using elec­

trodes placed either on the surface or deep inside the brain. Non-invasive methods, 

such as electroencephalography (EEG), record the electromagnetic potentials from 

the surface of the scalp. ECoG signals have high spatial and temporal resolution; 

however, they require brain surgery for electrode implantation. EEG does not require 

any surgery; however, it suffers from comparatively poor signal quality as the brain 

signals are blurred and attenuated by volume conduction through the skull and scalp 

tissue. There are several other non-invasive recording techniques such as functional 

magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and Positron 

Em ission Tomography (PET); however, due to their expense and size, EEG remains 

the most commonly used signal acquisition method for BCIs.

Once the signals are acquired, they are analyzed and decoded in a signal pro­

cessing module. This typically involves two steps: feature extraction and feature 

classification. Feature extraction is the process of reducing signal dimensionality by 

extracting certain characteristics or features from the brain signal th a t reflect the
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FIG. 1: A block diagram showing a standard BCI system [Zhu et al., 2010]. Brain- 
activity is recorded and digitized (usually in response to exogenous stimuli). The 
digitized signals are then processed using feature extraction and classification algo­
rithms. The output of the signal processing components are translated to device 
commands th a t reflect user intent which are used to control the BCI application.

task being performed. The features are then classified using machine learning tech­

niques to reveal underlying user intent. EEG signals often require a pre-processing 

step in which temporal or spatial filtering techniques are applied to boost the signal 

to noise ratio (SNR) of the EEG. Once the signals are finally classified, they are sent 

to a BCI application for control of the computer via a virtual keyboard or mouse 

or for control of an external peripheral device such as a motorized wheelchair or 

neuro-prosthetic limb [Pfurtscheller et al., 2010, Li et al., 2013].

There are several different types of BCI modalities th a t can be broadly classi­

fied under two distinct classifications: Independent BCIs and dependent BCIs. The 

former type represent BCIs th a t are independent of any external stimuli and do not 

require any exogenously evoked brain-signals. These types of BCIs rely purely on en­

dogenous, or self-generated, brain-signal modulation. Such endogenous BCI control 

signals include slow-cortical potentials (SCPs) and sensory motor rhythm s (SMRs).
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In the SCP BCI, a user can be trained to slowly modulate the resting EEG poten­

tials over the frontal lobe to slightly increase or decrease EEG amplitude for a 2-class 

yes/no communication paradigm [Hinterberger et a l ,  2004, Kubler et al., 2004]. The 

SMR BCI utilizes a sensory-motor cortex phenomenon known as event-related 

synchronization/de-synchronization in which 12-16 Hz oscillating rhythm s over the 

motor-cortex, known as the mu rhythm, de-synchronize and re-synchronize after 

imagined limb movement onset and offset, respectively. This type of modula­

tion is again self-generated and can be trained to control a 2-class yes/no BCI 

[Wolpaw et al., 1991]. Dependent BCIs are BCIs which rely on external stimuli 

to evoke brain-signal modulations. These exogenously generated signals can be 

elicited through different modalities such as visual, auditory, or tactile stimulation, 

with visual stimulation being the most common and widely used. Dependent BCIs 

driven by visual stimuli utilize innately generated visual evoked potentials (VEPs), 

which are robust in nature and have been found to provide a more consistent and 

reliable signal for communication and control compared to other BCI modalities 

[Wolpaw et al., 2002].

2.2 VISUAL EVOKED POTENTIALS

Visual Evoked Potentials (VEPs) are involuntary electro-physiological poten­

tials th a t arise in the visual cortex of the brain in response to a flashing stimulus 

[Galloway, 1990]. Background EEG (naturally occurring EEG activity) can mask 

VEP responses; thus, averaging and spatial filtering techniques are utilized to en­

hance the VEP response. VEPs have been heavily researched by cognitive and clin­

ical neuroscientists to diagnose visual system deficiencies.

There are several different types of VEPs, namely: transient VEPs, steady- 

state VEPs, chirp-VEPs, motion VEPs and code-modulated VEPs [Galloway, 1990, 

Sutter, 1992].
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FIG. 2: Diagram of the five most common types of Visual Evoked Potentials: Tran­
sient, Steady-State, Chirp, Motion and Code-Modulated VEPs

Transient VEPs:

Transient VEPs (TVEPs) are electrical potentials resulting from a transient re­

sponse in the brain due to an interm ittent visual stimulus [Celesia et ah, 1982], 

TVEPs are typically evoked from either low-frequency stimuli (<  2Hz) or single 

flash stimuli. These VEPs are characterized by a transient deflection in the EEG 

th a t returns to  baseline a short period after stimulus onset [Tobimatsu et al., 1993].

Steady-State VEPs:

Steady-state VEPs (SSVEPs) are sustained, oscillatory responses from steady- 

state, repetitively flashing stimuli (>  5Hz). SSVEPs have distinct fundamental and 

harmonic frequency components th a t correspond to the fundamental frequency of 

the attended stimulus [Celesia et al., 1982, Middendorf et al., 2000].

The SSVEP response can be elicited from stimuli with steady-state frequencies 

in the range of 1-100 Hz [Herrmann, 2001]. However, most SSVEP BCI studies 

utilize flashing stimuli from the more functional 5-45 Hz range [Chen et al., 2014, 

Ng et al., 2012, Zhang et al., 2012, Zhu et al., 2010]. Higher frequency stimulation 

produces weaker responses as EEG power is inversely proportional to frequency
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[Vialatte et al., 2010]. W hen the visual stimulus is a combination of two frequencies 

f i  and / 2, the SSVEP will produce responses at the average frequency [./'] +  / 2]/2 in 

addition to responses a t / j  and / 2 [Hwang et al., 2013]. SSVEPs tend to have a high 

inter-subject variability in response strength across frequencies [Vialatte et al., 2010].

Chirp VEPs:

Chirp-VEPs are VEPs elicited from a signal with linearly changing frequency 

(chirp signal) [Tu et al., 2012]. Chirp-VEPs have embedded frequency components 

th a t correspond to the central frequency and chirp rate of the chirp stimulus. Chirp 

VEPs have been elicited using chirp rates of 4-8Hz/s [Tu et al., 2012], Chirp-VEPs 

have similar frequency matching characteristics as SSVEPs, such th a t they can be 

considered a generalization of SSVEPs (i.e. Chirp-VEPs are SSVEPs when the chirp 

rate is zero).

Motion-Onset VEPs:

Motion-onset VEPs (MVEPs) are VEPs th a t respond to the slight onset of mo­

tion of visual stimuli [Guo et ah, 2008]. MVEPs are often coupled with SSVEPs to 

produce responses with spatio-temporal characteristics. Xie et al., used steady state 

oscillations between concentric rings to elicit the SSMVEP (a combination of both 

the SSVEP and MVEP) [Xie et al., 2012],

Code-Modulated VEPs:

Code-modulated VEPs (c-VEPs) are VEPs elicited from a pseudo-random stimu­

lus sequence. The response characteristics of the c-VEP are largely dependent on the 

characteristics of the underlying stimulus code. c-VEPs generated from a maximum- 

length sequence (m-sequence) will have embedded broadband frequency components 

and will have a characteristically sharp autocorrelation [Bin et a l ,  2009a].
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2.3 THE VISUAL SYSTEM AND THE PRIMARY VISUAL 

CORTEX

The human visual system is a very complicated and intricate system consisting 

of components such as the retina, optic nerves, optic chiasm, optic tracts, thalamus, 

lateral geniculate nucleus, and the visual cortex th a t all work together to process and 

make sense of all visual stimuli [Rentschler et al., 1975]. The retina itself contains 

approximately 100 million photoreceptor cells known as rod and cone cells, the latter 

of which are primarily used to distinguish color. These photoreceptor cells contain 

light-sensitive proteins th a t induce thresholded action-potentials. The optic nerve is 

a bundle of approximately 1 million electrically excitable fibers tha t carry informa­

tion from the retinal photoreceptor cells to the visual cortex. The optic nerve passes 

through the lateral geniculate nucleus (LGN) which is a sensory relay station th a t 

resides in the thalamus. The visual cortex is the largest system in the brain th a t 

handles all of the visual sensory information for image processing. The visual cortex 

consists of the primary visual cortex (VI) and secondary visual cortices (V2, V3, V4, 

V5). Information travels from excited retinal cells, through the optic tract via optic 

nerve fibers to the LGN. The LGN relays the visual information to the prim ary visual 

cortex which then gets distributed about the secondary visual cortices. Due to the 

contralateral nature of the optic chiasm, information from the left visual field gets 

processed by the right occipital lobe of the visual cortex while information from the 

right visual field gets processed by the left occipital lobe. Figure 3 shows a general 

diagram of the visual system. Information flow in the visual system is composed 

of two major visual pathways (Parvocellular and Magnocellular pathways shown in 

Figure 4) th a t convey visual aspects of what is seen from the retina to the brain. The 

Parvocellular pathway (PC) is responsible for conveying sustained responses of high 

spatial contrasts and color information to the brain, whereas the Magnocellular path­

way (MC) is responsible for conveying motion and depth information. [Tanaka, 1996]. 

VEP research exploring these two pathways has found that, in response to  a flashing 

stimulus, the PC pathway, made up of slow cells, is responsible for the first harmonic 

response and the MC pathway, made up of fast cells, is responsible for the second
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FIG. 3: Diagram showing the major components of the visual system. Light enters 
through the cornea of the left or right eye to excite the photosensitive rod and cone 
cells in the retina. The corresponding activity travels through the optic tract along 
optic nerve fibers, through the optic chiasm and towards the lateral geniculate nucleus 
in the thalamus. The information then gets relayed to the primary visual cortex for 
hierarchical processing. [Schroeder, 2014].
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harmonic response [McKeefry et al., 1996, Lalor et al., 2007, Lalor and Foxe, 2009].
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FIG. 4: The connections from the retina to the visual cortex in the brain can be 
grouped into two parallel visual pathways. The Magnocellular (MC) pathway pro­
cesses fast moving stimuli with high contrast. The Parvocellular (PC) pathway 
processes fine detailed stimuli with high spatial resolution. The PC pathway also 
processes color information. [Haslwanter, 2011].

2.4 VEP-BASED BCIS

The innate and reliable response characteristics of VEPs have made them  a 

desirable signal for use in BCIs. As such, VEP-based BCIs have become very 

popular in BCI research as they exhibit superior communication speeds and clas­

sification accuracies compared to other BCI modalities [Wang et al., 2008]. In a 

VEP based BCI, one or more visual stimuli are utilized to  elicit characteristic 

VEP responses unique to each stimulus. Decoding techniques can be used to ex­

trac t the VEP and find the corresponding stimulus target which can represent 

any command or action for the user. VEPs of each type have been incorporated 

into a BCI [Hwang et al., 2013, Tu et al., 2012, Guo et al., 2008, Bin et al., 2009a]; 

however, the most popular and widely used VEP based BCI is the SSVEP BCI 

[Diez et al., 2013, Allison et al., 2008, Bakardjian et al., 2010, B urkitt et al., 2000,
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Cheng et al., 2002, Jin et al., 2011]. Recently, an improvement to the SSVEP BCI 

has been the implementation of the c-VEP BCI [Bin et a l ,  2011, Spiiler, 2012]. C- 

VEP BCI research is relatively new, and the dynamics of the c-VEP are not as well 

understood as SSVEP dynamics. Initial studies have shown th a t the c-VEP has 

multiple advantages over the SSVEP as a BCI control signal [Bin et al., 2009a].

2.4.1 SSVEP BCIS

The SSVEP BCI was first implemented by Middendorf et al., in 2000 using a cath­

ode ray tube computer monitor [Middendorf et al., 2000]. This initial a ttem pt using 

SSVEPs for a BCI consisted of two virtual buttons on a monitor for a two-target 

system in which each target flashed at a distinct frequency (23.42Hz and 17.56Hz). 

Their system, which measured frequency response amplitudes from channels O] and 

O2 , achieved an average accuracy of 92% with an average selection time of 2.1s. 

Since then, numerous improvements have been made to SSVEP-BCIs in both perfor­

mance and in usability. These performance and usability enhancements have come 

in the form of novel stimulus design, improved signal processing and classification 

algorithms and novel application paradigms.

The fundamental principle of multiple target selection for SSVEP-BCIs has been 

based on the frequency-division multiple access strategy (FDMA), in which each 

target is alloted a distinct frequency so th a t selections can be made based on detecting 

responses from those frequencies. Figure 5 illustrates the FDMA principle for an 

SSVEP BCI by showing example stimulating sequences (Figure 5a) and the power 

spectrum of the evoked SSVEP response in (Figure 5b) from a 10Hz stimulus. This 

sets a lim itation on the number of targets th a t can be employed in an SSVEP- 

BCI as LCD monitors with a 60Hz refresh rate, which are frequently utilized in 

practice, are limited in the number of distinct frequencies they can produce. This 

lim itation can bottleneck the overall performance an SSVEP-BCI can achieve as the 

information-transfer rate (ITR) is dictated by the accuracy of the system, the time 

required for the system to make a selection and the number of targets employed in 

the system. One solution to this problem is combining both frequency and phase
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FIG. 5: P art (a) shows example SSVEP stimulating waveforms for 6 different targets, 
where each target is encoded with a different frequency. Part (b) shows the power 
spectrum of the evoked SSVEP response from a 10Hz stimulus. [Bin et al., 2009a].

information to increase the number of available targets. Jia  et al. implemented 

a 15 target system with only three distinct frequencies and achieved an average 

ITR  of 60 b its/m in  with 10 subjects [Jia et al., 2011]. Other attem pts at improving 

the stimulation scheme have been the development of dual-frequency coded targets 

[Hwang et al., 2013, Srihari Mukesh et al., 2006] and frequency-space coded targets 

[Yan et al., 2011]. Zhu et al. outlined a review consisting of numerous BCI studies 

which tested the effect of stimuli shape, color, pattern, and intensity on SSVEP-BCI 

performance [Zhu et al., 2010].

Visual irritation and fatigue from prolonged visual stimulation is a signifi­

cant practical issue for SSVEP-BCIs (or any VEP-BCI) as it can hinder perfor­

mance and dramatically reduce practicality in real-world use [Boksem et al., 2005, 

Hong et al., 2009]. To address this, researchers have made several attem pts to re­

duce visual fatigue, increase usability, and improve overall ergonomic design. The 

main attem pt at reducing visual fatigue has been to reduce the saliency or obtru­

siveness of the visual stimuli. This can be done in a number of different ways such as 

utilizing high-frequency stimulation (>  35Hz) [Muller et al., 2011, Diez et al., 2013], 

high duty-cycle stimulation (>  50% duty cycle) [Lee et al., 2011], or low-contrast
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stimulation (0-10% contrast) [Lalor and Foxe, 2009]. Although these attem pts do 

reduce visual fatigue, they come at the expense of reduced performance. For exam­

ple, with high-frequency stimulation, Muller et al. showed accuracies around 69% 

with an average ITR of 46.8 b its/m in  [Muller et al., 2011] with frequencies greater 

than 30Hz.

SSVEP BCIs tha t utilize peripheral stimulation have also been developed. These 

BCIs are termed gaze-independent BCIs because they do not require direct visual 

fixation, as opposed to traditional (gaze-dependent) VEP-BCIs in which overt visual 

fixation is required. Gaze-independent SSVEP BCIs were originally developed for 

individuals suffering from late-stage ALS [Lesenfants et al., 2011]. These individuals 

have lost all muscle control including eye movements and therefore cannot utilize 

traditional SSVEP BCIs. Typically, the user’s eye-gaze is positioned between two 

flashing stimuli th a t are on opposite sides of the user’s peripheral vision. While main­

taining gaze on the fixation cross in the middle, the user focuses attention on either 

the left or the right stimulus to endogenously produce an SSVEP response according 

to the attended stimulus. Since SSVEP BCIs of this type do not require direct visual 

stimulation, visual fatigue is reduced; however, the endogenous attention to periph­

eral stimulation produces much weaker and less discriminable SSVEP responses. As a 

result, these BCIs suffer from a dram atic drop in performance even when only imple­

menting a few targets [Lalor et al., 2007, Lesenfants et al., 2011, Kelly et ah, 2004].

2.4.2 THE C-VEP BCI

The c-VEP BCI utilizes evoked responses generated from stimuli flashing accord­

ing to a pseudorandom binary sequence. The most popular pseudorandom sequence 

is the maximum-length sequence (m-sequence) which is created using maximum lin­

ear feedback shift registers th a t give it unique properties for studying linear and 

non-linear systems. The autocorrelation of the m-sequence nearly approximates an 

impulse function th a t is 1 a t the zero time-lag and l / N  for all other time-lags (where 

N  is the length of the m-sequence which is usually 63 for c-VEP BCIs). As such, the 

c-VEP BCI system can employ multiple time-lagged versions of a single m-sequence
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FIG. 6: LEFT: (a) shows example time-delayed m-sequenee stimulus waveforms for 
six targets, (b) shows an evoked c-VEP response in the time-domain, (c) shows 
the frequency spectrum of the c-VEP response and (d) shows the autocorrelation 
of the c-VEP response. RIGHT: Target selection method for the c-VEP BCI. Un­
known observations are classified by assigning the predicted class label whose tem ­
plate waveforms produce the strongest correlation with the unknown observation.. 
[Bin et al., 2009a].

th a t are shifted by a small delay r .  Since each shifted m-sequence is nearly orthog­

onal with all other shifted versions, the c-VEP response from attending to a given 

m-sequence driven stimulus is nearly uncorrelated with other corresponding c-VEP 

targets. This forms the basis of target selection for the c-VEP BCI as the correla­

tion coefficient can be computed to select the attended target. The left sub-figure in 

Figure 6 shows time-delayed m-sequence stimuli for six targets in (a). The c-VEP 

waveform in the time-domain is shown in (b), the frequency spectrum  of the c-VEP 

is shown in (c) and the autocorrelation of the c-VEP response is shown in (d). The 

right portion of Figure 6 is the target selection method for the c-VEP BCI.

To perform target selection for the c-VEP BCI, c-VEP response tem plates Mk(t) 

from each stimulus are correlated with EEG observations x(t), where k is the number
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of targets (typically 32). This is done by acquiring training da ta  as a subject attends 

to one of the c-VEP stimuli over N  cycles. The tem plate for th a t target is then 

made by averaging over the N  cycles. This initial c-VEP tem plate is referred to as 

the reference template. Training da ta  only needs to be collected from one target 

as the c-VEP templates for all other targets can be made by circularly shifting the 

reference template. For example, given a 32 target c-VEP BCI, each c-VEP tem plate 

can be made as:

M k(t) =  M ref ( t  — (rji- — Tr e f ) ) ,  f o r  k = 1,2, ....32.

Once all c-VEP targets are made, a new c-VEP observation x(t)  can be classified 

by linearly correlating x(t)  with each c-VEP tem plate using Pearson’s correlation 

function:
=  (Mt (t),x (i))

Pt y (M t (f),il4(()) (x(t),x(t))'

The target selection is made by assigning the template with the highest correlation:

C  =  max pk,i  = 1,2,...32.k

The c-VEP BCI has been shown to outperform the SSVEP BCI in accuracy and 

in ITR [Bin et al., 2009a]. Although the exact reasons for this performance increase 

have not been thoroughly investigated, several characteristics of the c-VEP are advan­

tageous compared to the SSVEP. First, the c-VEP utilizes time-shifted m-sequences 

and, as such, it can generally employ more targets than  the SSVEP BCI using an 

LCD monitor. Secondly, c-VEP stimuli can be arranged in a spatial configura­

tion tha t achieves symmetric time-lag relationships between any stimulus and its 

neighbors. This is called the principle of equivalent neighbors, and its implemen­

tation effectively alleviates any inter-stimuli interference issues th a t the traditional 

m ulti-target VEP-BCIs are affected by [Bin et al., 2011]. Finally, the m-sequence, 

which has broad-band frequency components, has the same frequency spectra for 

each m-sequence target. This therefore nullifies any inter-subject frequency response



17

variations as the response to a particular frequency is unim portant in c-VEP target 

selection. On the other hand, SSVEP target selection is extremely vulnerable to 

inter-subject frequency variations.

2.5 VEP SIGNAL PROCESSING TECHNIQUES

The strength, or detectability, of the VEP response is one of the key factors for 

improving VEP-BCI performance. As such, many signal processing techniques have 

been developed to better extract and classify VEP responses from background EEG. 

Common signal processing techniques include common average references (CAR), 

Laplacian filters, principle component analysis (PCA), independent component 

analysis (ICA) and common spatial patterns (CSP) [Garcia-Molina and Zhu, 2011, 

Mackay et ah, 2003]. These are often coupled with machine learning techniques such 

as linear discriminant analysis (LDA), artificial neural networks (ANNs), support vec­

tor machines (SVMs) and Bayesian classifiers [Lotte et a l ,  2007]. Recently, a multi­

variate signal processing technique called Canonical Correlation Analysis (CCA), was 

applied to SSVEP-BCIs in which CCA was used to find optimal time-domain correla­

tions between multichannel EEG and reference sinusoidal signals [Bin et ah, 2009b]. 

The CCA achieves a significant improvement in performance compared to traditional 

frequency domain analysis techniques [Lin et al., 2007], An additional benefit from 

the CCA is tha t it is a calibration-less classifier; thus, it improves practical feasibility 

as lengthy training sessions are not required beforehand for BCI control. The CCA, 

explained further in section 2.5.1, currently stands as the de-facto signal processing 

technique for SSVEP-BCIs.

2.5.1 CANONICAL CORRELATION ANALYSIS

To quantify the level of VEP responses in the EEG signals, a multivariate pro­

cessing technique known as Canonical Correlation Analysis (CCA) can be utilized 

to find linear correlations between EEG data  and a stimulating signal. CCA has 

recently been adopted for multidimensional EEG analysis and has been shown to be
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extremely effective for SSVEP signal processing [Lin et al., 2007, Bin et al., 2009b].

CCA is a multi-dimensional correlation analysis technique th a t finds underlying 

correlations between two sets of data. It finds linear combinations of two multi­

dimensional da ta  sets such th a t the m utual projection between the two data  sets is 

maximized. Given two multi-dimensional data  sets, X  and Y ,  and their respective 

linear combinations, x = X TW x and y = Y r W y, the CCA finds the weight vectors 

W x and W y th a t produce the maximum correlation between x  and y. The projected 

vectors x  and y are known as canonical variants, and their correlation is known as 

the canonical correlation. The weight vectors Wx and Wy th a t produce the highest 

canonical correlation are found by solving the optimization problem:

m «  * * , , )  -  , ^  =  , ............ ................................................ .
W.,wx y /E[xTx]E[yTy] J  E [ W ^ X X TW x) E [ W j Y Y TW y}

(1)

In practice this can be solved using the singular-value decomposition method to di- 

agonalize the covariance matrices as the maximum canonical correlation corresponds 

to the square-root of the largest eigenvalue. For SSVEP signal processing, the mul­

tidimensional EEG data, X ,  can be canonically correlated with a multivariate set 

of reference signals Yj.  The reference signals Yj  are a set of sine and cosine signals 

derived from TV/,, harmonics:

^  s i n ( 2 7 r / t )  ^

Y f = (2 )

COs (27T f t )

sin(2irNhft)

\cos(2irNhf t )

Each set of reference signals corresponds to the fundamental frequency of each of 

the SSVEP targets. The multi-channel EEG and reference signals are used in the 

CCA to produce a canonical correlation for each target frequency. The correlation
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FIG. 7: Diagram illustrating the use of CCA for SSVEP target detection. The CCA 
between a multichannel EEG signal X  and the reference signals Yf  for each SSVEP 
target is performed. The maximum correlation is selected as the classified target. 
For a c-VEP-BCI, the reference signals Yf  are replaced by the c-VEP tem plates for 
each target. [Bin et al., 2009b].

output of the CCA provides a quantitative metric of the strength of the SSVEP re­

sponse from background activity. Additionally, since the canonical correlation values 

are inherently bounded between —1 and 1, they can be directly used for SSVEP 

classification. For an SSVEP BCI, the output class is determined as

C = a r g m a x iPi, * =  1,2, ...K,  (3)

where K is the to tal number of classes or target frequencies in the SSVEP BCI. 

Figure 7 illustrates the use of CCA for SSVEP target detection. The CCA has also 

been adopted for use in a c-VEP-BCI [Bin et al., 2011]. For c-VEP processing, the 

CCA is utilized similarly except th a t the sinusoidal reference signals (Figure 7) are 

replaced with c-VEP tem plate signals.

2.6 PERFORMANCE VS. PRACTICALITY

Given the wide range of challenges th a t VEP-based BCIs face, solutions to  these 

challenges are generally developed with either the goal of increasing performance or
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the goal of increasing practicality, with the former traditionally receiving the most 

attention in the field.

Performance

Enhancing performance is the typical objective of most academic research. In­

cremental improvements th a t attem pt to increase BCI performance have dominated 

and saturated the current research for VEP-based BCIs. These improvements fo­

cus solely on increasing the raw accuracy and/or the raw information transfer rate 

(ITR) of the BCI system. The ITR  for BCI systems is commonly calculated using 

the following equation:

I T R  = log2 M  + P  log2 P  +  (1 -  P)  log2
1 - P
M - I • ? .

In this equation, M  is the number of targets in the BCI system, P  is the probability 

of a correct selection, and T  is the time (amount of data) needed for target selection. 

Thus, there are essentially three factors tha t contribute to improving ITR  for a BCI: 

increase the number of targets, decrease the selection time, or increase the accuracy.

Practicality

There are a several different avenues for advancement th a t focus on increasing the 

practicality of a BCI system. Although not an exhaustive list, the primary areas of 

advancement are in improving the ergonomic design, reducing visual fatigue from 

obtrusive stimulation, reducing system calibration time, improving asynchronous 

control, reducing obtrusiveness of EEG sensors, and utilization of ubiquitous tech­

nologies. All of these areas for increased practicality will help to increase the overall 

pervasiveness of BCI technology.
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CHAPTER 3 

TEMPORAL CHARACTERIZATION OF THE SSVEP 

SPECTRUM USING CHIRP-MODULATED STIMULI

While SSVEPs have proven to  be very consistent signals for rapid EEG-based 

brain-computer interface (BCI) control, due in part to perceptual and neurophys- 

iological aspects, SSVEP signal detection biases exist for different stimulation fre­

quencies. Furthermore, these biases tend to differ across subjects. In this chapter, 

in order to provide a better characterization of the SSVEP spectrum for BCI ap­

plications, 22 subjects were stimulated with an LED array th a t flashed according 

to a chirp signal having a frequency th a t varied over the typical functional range 

of SSVEP from 5.5-34.5 Hz. The resulting EEG was analyzed using CCA to elu­

cidate the stimulus frequencies th a t produce the best discriminability for practical 

use. Subjects achieved an average accuracy of 72.2% using a six-class paradigm with 

a standardized set of stimulus frequencies. However, when using a subject-specific 

frequency set (i.e. frequencies optimized for each subject), the average accuracy sig­

nificantly increased to 83.7% (p = 0.03). The results show th a t inherent SSVEP 

response differences exist between subjects, which can have a significant effect on 

performance. This approach also establishes a framework for a rapid optimization of 

subject-specific frequency profiles.

3.1 INTRODUCTION

Multichannel SSVEPs have been used online with Canonical Correlation Analysis 

(CCA) producing a robust BCI system th a t achieves good performance with little 

to no training data  [Lin et al., 2007, Bin et al., 2009b]. CCA is generally a preferred 

detection method for SSVEP BCIs because of its inherent channel harmonic anal­

ysis capabilities, relative simplicity, and robust performance. However, individuals
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generally have SSVEP responses in the range of 5-45 Hz, and the optimal stimulus 

frequencies within this range can vary greatly across individuals. This study aims to 

establish a novel characterization of the SSVEP using CCA and to quantify the BCI 

performance differences between subject-optimized stimulation frequencies and stan­

dard, pre-selected stimulation frequencies. The results show tha t the brain responses 

over the SSVEP spectrum  can vary drastically across subjects and frequencies and 

th a t subject-specific optimization can greatly improve the performance of SSVEP 

BCIs.

3.2 METHODOLOGY 

3.2.1 DATA COLLECTION

EEG data  were collected from 22 healthy volunteers (5 women, 17 men; age 

range 18-42 years) from a single session. All subjects were free of any neurological 

or psychiatric disorders and had either normal or corrected-to-normal vision. Each 

subject gave written informed consent prior to participation, and all aspects of the 

study were reviewed and approved by Old Dominion University’s Institutional Review 

Board.

EEG data  were recorded using 16 active electrodes and a g.USBAmp biosignal 

amplifier (g.tec Medical Engineering). Electrodes were positioned primarily over the 

occipital and parietal regions a t locations based on the International 10-20 system 

[Sharbrough et al., 1991]: Fz, Pz, POz Oz, 01 , 02 , P 0 3 , P 04 , P 07 , P 08 , P O O l, 

P 0 0 2 , P 0 0 3 , P 0 0 4 , O llh , OI2h, as shown in Figure 8. All EEG da ta  were band­

pass filtered from 0.1 Hz to 100 Hz, notch filtered at 60 Hz, and digitized at 512 

Hz. D ata recording and timing were controlled by BCI2000 general purpose BCI 

software. [Schalk, 2004].

3.2.2 EXPERIMENTAL PARADIGM

Each subject sat in a dark room in front of a custom-built SSVEP stimulator
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FIG. 8: The EEG electrode montage used for da ta  collection for the SSVEP study. 
The positions are based on the International 10-20 system.

composed of an 8 x 8 array of green LEDs. A schematic of the LED stim ulator array 

is shown in Figure 9. Green LEDs were used as they generate among the highest 

SNR responses for SSVEPs compared to other colors [Zhu et al., 2010]. Each LED 

in the array was wired together so th a t all LEDs illuminated simultaneously with 

the preprogrammed stimulus. The LED stimulator has dimensions of 5.84 cm x 5.84 

cm and was placed in the center of the subjects’ visual field approximately 60 cm 

away so th a t the stimulation spanned visual angles of 5.25 degrees vertically and 

horizontally. The stimulator was driven by an Arduino Mega microcontroller board 

with an output stimulation frequency of 500 Hz and a 10-bit intensity resolution. 

LED luminosity was linearized over the operating range to ensure a uniform intensity 

distribution, and the LED array was tested using a photo-diode to verify consistent 

stimulation frequencies. All stimulation signals were generated using M atlab software 

(Mathworks, Nattick, MA) and loaded onto the microcontroller before stimulation. 

A circuit diagram of the visual stim ulator is shown in Figure 10.

During the experiment, the subject’s task was to visually attend and keep focus
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FIG. 9: The LED stimulator consists of an 8 x 8 array of green LEDs driven by a 
microcontroller with a 10-bit DAC. The physical dimensions of the stimulator are 
5.84 cm x 5.84 cm.

on the flashing stimulator. During the course of a single session, subjects performed 

several runs of attending to 30 seconds of continuous stimulation followed by 15 sec­

onds of rest. Runs were repeated five times for each of four different chirp-modulated 

stimulus waveforms. The waveforms th a t were presented were composed as follows: 

1) square waveform with a chirp increase from 5.5-20.5 Hz, 2) square waveforms with 

a chirp increase from 19.5-34.5 Hz, 3) square waveform with a chirp decrease from

20.5-5.5 Hz, and 4) square waveform with a chirp decrease from 34.5-19.5 Hz. Each 

chirp-modulated waveform (increase and decrease) had a chirp rate of A /  =  0.5 Hz 

per second. This provided approximately two seconds centered on each integer fre­

quency and is sufficiently slow enough to emulate a fixed frequency over a short time 

window.

A total of 5 trials per waveform were presented, giving a to tal of 20 trials. The 

waveforms were presented in a counterbalanced order to account for possible fatigue 

issues. Baseline EEG with the stimulator turned off and the subjects’ eyes kept open 

was collected for approximately two minutes before and after the session. Each sub­

ject participated in a single experimental session lasting approximately 30 minutes.
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FIG. 10: A schematic of the driving circuit for the stimulator consisting of micro­
controllers connected to 10-bit DAC with a 500 Hz stimulation rate. A photo-diode 
served as a stimulus trigger which synchronized the stimulus with the EEG signals. 
An 8-segment LED display was used indicate the current trial number to the subject 
which only displayed during the rest periods.

3.2.3 DATA ANALYSIS

Data Preprocessing

All data  were first pre-processed by applying a zero-phase HR bandpass filter 

from 0.5-40Hz. Each channel was then re-referenced to Fz. All da ta  were segmented 

by trial for each chirp stimulus condition. Inter-trial da ta  (i.e. rest periods) were 

discarded.

SSVEP Characterization

The data  elicited from the chirp signals were analyzed using the CCA method. 

SSVEP reference signals, Yf,  were created th a t were centered at 0.5 Hz increments 

across the chirp signal. Reference signals were created for each frequency using 1, 2 

and 3 harmonics of the respective center frequencies. This resulted in three sets of 

reference signals for evaluation of the impact of the harmonics.

The chirp data  from the 5.5-20.5 Hz waveform was concatenated with the chip
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data  from the 19.5-34.5 Hz waveform to produce an SSVEP response signal from

5.5-34.5 Hz. The decreasing chirp signals (20.5-5.5 Hz and 34.5-19.5 Hz) were con­

catenated to produce a 34.5-5.5 Hz response and then time-reversed to match the 

previous 5.5-34.5 Hz.

Fixed frequencies were approximated from the chirp signal by using a sliding 

window with a length of two seconds and a one-second overlap. This corresponds 

to frequencies starting from 6 Hz to 34Hz in increments of 0.5 Hz (55 total distinct 

frequencies), which covers the functional range of the SSVEP spectrum with sufficient 

resolution.

CCA was performed on each window of the EEG response and on each frequency 

from the SSVEP reference signals. Each target frequency (i.e. the current time win­

dow corresponding to the frequency from the chirp stimuli) was canonically correlated ' 

with each reference signal frequency. This results in a quantitative measure of target 

discrimination from background EEG activity for each of the selected frequencies.

SSVEP Classification

For BCI applications, it is common to select a somewhat arbitrary set of stimula­

tion frequencies based on hardware restrictions or EEG spectral characteristics (e.g., 

alpha-band overlap). To assess the discriminative capacity of CCA for the broad 

range of stimulus frequencies provided by the chirp signals, an offline BCI classifi­

cation scheme was set up using 6-classes. As a reference, 13 Hz, 14 Hz, 15 Hz, 16 

Hz, 17 Hz and 18 Hz were evaluated based on Bin et al., 2009 [Bin et al., 2009b], 

which is the landmark SSVEP CCA study. This reference frequency set represents 

typical, generic stimulus frequencies tha t are not optimized for each subject. Using 

the SSVEP response data  due to the chirp stimuli, the time windows centered at 

these six frequencies were extracted to set up a simulated BCI classifier.

To compare with the classification performance of this frequency set, 1600 unique 

frequency sets were extracted and used in the off-line classification. Each subject’s 

SSVEP stimulus frequencies were optimized by finding the combination th a t max­

imized the individual classification performance. The value of 1600 frequency sets
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was selected to provide comprehensive combinations of six stimulus frequencies over 

the range of 6-34 Hz (55 distinct frequency choices). The theoretical number of fre­

quency perm utations for a set of 6 out of 55 is approximately 28 million combinations. 

Since it is impractical and unnecessary to test all of these frequency combinations 

in a exhaustive optimization, selected uniformly-spaced and randomly-determined 

frequency sets were evaluated. The 1600 different sets were generated as follows: 

100 frequency sets of 6 frequencies starting from 6 Hz to 34 Hz with spacings of 0.5 

Hz, 1 Hz, 2 Hz, and 2.5 Hz (i.e., Set 1: 6, 6.5, 7, 7.5, 8, 8.5; Set 2: 6.5, 7 ,7.5, 8, 

8.5, 9, 9.5; etc.). The uniform sets cover the entire range of the SSVEP spectrum of 

frequencies. The next 1500 frequency sets were generated by selecting 500 random 

frequency perm utations each in the low (6-15.5 Hz), medium (16-25 Hz) and high 

(25.5-34.5 Hz) frequency ranges.

To optimize the frequency set for each subject, 70% of the da ta  were used for 

training and the remaining 30% were used for testing. The accuracies for the training 

da ta  were evaluated, and the frequency set th a t performed the best for each subject 

was recorded. In the event of ties (i.e. cases where multiple frequency sets provided 

the equivalent best performance) the frequency set for each tie was recorded. The 

testing data  was then used to evaluate the performance of the frequency set optimiza­

tion. For ties, each set was individually evaluated and the results were averaged. To 

assess the prevalence of optimal frequencies across subjects, a histogram was created 

showing the proportion of times a particular frequency was included in the optimal 

frequency set. The contributions from each subject to the histogram were normalized 

to adjust for subjects with ties.

3.3 RESULTS

3.3.1 SSVEP SPECTRUM CHARACTERIZATION

The SSVEP Spectrum Characterization is shown in Figure 11. This figure shows 

a time-frequency plot of the CCA correlation values of the reference signals and the
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EEG across the 60 s of concatenated chirp signal. The CCA was repeated using three 

different combinations of progressive harmonics: the first (fundamental) harmonic 

only, the first two harmonics, and the first three harmonics. Each time-frequency 

plot represents the average across all subjects. Since the EEG signal is in response to 

a linearly increasing chirp signal, the prominent diagonal lines in Figure 11 represent 

the expected strong correlation of the EEG signal with the target frequency.

The diagonal line representing the fundamental frequency is present in all three 

graphs. Likewise, the second and third harmonics are also pronounced in each plot, 

though not as nearly as prominent as the fundamental. W hat appear to be sub­

harmonics in the lower two plots are actually the result of performing CCA with 

harmonics. For instance, if the EEG is oscillating at 20 Hz due to a 20 Hz stimulus, 

there will be a correlation with a 10 Hz reference signal when the harmonics are 

included in the CCA. This is an im portant consideration when evaluating harmonic 

frequencies.

Figure 12 shows the CCA correlation values of the SSVEP response as a function 

of stimulation frequency averaged across all subjects. A second-order polynomial is 

fit to the correlation data. It is observed th a t the correlation values generally increase 

as more harmonics are added.

3.3.2 SSVEP CLASSIFICATION

The SSVEP classification results are shown in Table 1. The first column shows 

the performance using the reference frequency set from [Bin et al., 2009b]. This 

frequency set resulted in an average classification accuracy of 72.2% ±  20.7% across 

subjects.

For the 1600 uniform /random  frequency sets, the frequency set th a t maximized 

the average performance across all subjects was determined to be: 6, 7, 7.5, 8.5, 9.5, 

and 11 Hz. The performance of this group-wise set is given in the second column. 

This set produced an average classification accuracy of 77.2%±17.6% across subjects. 

Although the average accuracy of the group-wise set is greater than  the reference set, 

a two-tailed t-test indicates th a t the increase is not statistically significant (p — 0.38).
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Lastly, individually optimized frequency sets were determined by selecting the 

set with the highest classification accuracy for each individual subject. These 

individually-optimized frequencies represent the best classification performance th a t 

a subject can obtain given the range of available frequency values. The individually- 

optimized frequency sets produced an average classification accuracy of 83.7%±15.0% 

across subjects. The accuracies produced using individually optimized frequencies 

resulted in significantly higher accuracies compared to the reference set (p = 0.03). 

Compared to the group-wise set, the individual accuracies were better on average, 

although the increase was not statistically significant (p =  0.19).

The individual frequency sets varied greatly across each of the 22 subjects, indi­

cating th a t each subject has a rather unique frequency response profile th a t should 

be individually optimized. To illustrate the commonly selected frequencies, Fig­

ure 13 shows a histogram of the relative occurrence of frequencies in the optimized 

frequency sets. This figure shows two distinct frequency ranges th a t were most com­

monly selected as frequencies for the optimized sets. The majority of the optimized 

frequencies tend to be in the lower frequency range from 6 to 15 Hz, with a smaller 

grouping in the higher frequency range from 22 to 34 Hz and very few frequencies 

selected from the mid range (16-21 Hz).

3.4 DISCUSSION

While it is generally known th a t subject-specific stimulation frequencies should 

produce superior performance, there has been little work to quantify and evaluate 

optimal frequencies. This study represents a fairly comprehensive analysis and char­

acterization of the full SSVEP spectrum  and its effect on SSVEP BCI performance.

The results shown in Figures 11 and 13 indicate th a t lower stimulus frequencies 

(i.e., 6-15 Hz) generally produce the best SSVEP discrimination. This is likely the 

result of the higher signal-to-noise ratio (SNR) of the lower frequencies due to the 

1/frequency power characteristic of the EEG, which impacts the correlations as shown 

in Figure 12. Additionally, the histogram plot in Figure 13 shows th a t frequencies 

in the high range (22-34 Hz) more often contributed to optimal BCI performance
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TABLE 1: Classification results for different frequency sets 
Subject Reference Group-wise Individual

1 95.8 100 98.3
2 83.3 95.8 95.8
3 54.2 66.7 64.6
4 70.8 95.8 94.4
5 66.6 83.3 80.8
6 45.8 75 78.12
7 37.5 87.5 87.5
8 91.6 54.2 94.4
9 70.8 87.5 83.3
10 37.5 45.8 61.1
11 100 87.5 95.8
12 87.5 70.8 75
13 75.0 87.5 95.8
14 73.5 37.5 41.6
15 41.7 45.8 58.3
16 87.5 83.3 87.5
17 83.3 91.7 88.6
18 91.7 75.0 95.8
19 83.3 91.7 88.4
20 75.0 70.8 87.5
21 79.2 83.3 94.4
22 91.7 83.3 95.0

Avg 72.2 77.3 83.7
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FIG. 13: Histogram plot showing the relative occurrence of each frequency in the 
optimal frequency sets for all subjects.

compared to the mid-range (16-21 Hz). Since this higher range has a lower SNR 

compared to the key lower-range frequencies, the higher frequencies may serve as 

an “outlier condition” th a t serves to boost discrimination; although this must be 

validated through further analysis.

The classification results indicate th a t frequency selection can have substantial 

impact on overall BCI performance, increasing from 72.2% to 83.7%(p — 0.03). To 

date, there is no widely accepted stimulus frequency set or standardized methodology 

for obtaining subject-specific stimulus frequencies. As a result, most studies use 

sub-optimal frequencies, although this can still lead to acceptable performance - 

particularly in individuals with strong SSVEP responses.

If a subject-specific frequency optimization is not feasible for a particular sce­

nario, the results show th a t frequencies in the lower frequency range (particularly 

from 6-11 Hz) provide the best performance. These findings are consistent with the 

results from [Allison et al., 2010], indicating th a t the majority of subjects have an
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SSVEP response innately present in the EEG, while a small percentage of subjects 

will naturally have a weaker or even no detectable SSVEP response.

The method utilized in the study can be used as an efficient way to characterize 

the response of the SSVEP spectrum for an individual. The chirp stimulus displayed 

a t a rate of 0.5 H z/s can be achieved much more rapidly than evaluating individual 

frequencies independently. Additionally, only several passes of the chirp signal would 

be required, leading to calibration times on the order of minutes.

Because of the continuous nature of the chirp signals and the lim itation of monitor 

refresh rates, this study was done using LED stimulation and not the more convenient 

LCD stimulation. An identical follow-up study using an LCD monitor is planned, 

although it is not expected th a t the results will significantly differ from the present 

study. Additionally, the long-term stability of the SSVEP spectrum  has yet to be 

assessed and longitudinal online experiments need to  be conducted. Nevertheless, the 

present offline results serve as a strong indicator of the potential impact of optimized 

SSVEP frequencies and efficient characterization of the SSVEP spectrum.
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MULTICLASS SSVEP FREQUENCY EVALUATION 

USING CHIRP-MODULATED STIMULI

While a subject-specific SSVEP stimulus frequency optimization is ideal, this 

can be a tedious and time-consuming process. Thus, many studies select SSVEP 

stimulation frequencies somewhat arbitrarily. Not only is there no standardized set of 

SSVEP stimulus frequencies or frequency selection method, some studies even claim 

conflicting frequency ranges for optimal performance. In this work, 17 subjects were 

stimulated with an LED array th a t flashed according to a chirp-modulated signal 

having a frequency th a t varied linearly over the typical functional range of SSVEP. 

The resulting EEG was analyzed using canonical correlation analysis (CCA) and 

a genetic algorithm (GA) was implemented to determine generalized stimulation 

frequency sets over a continuum of simulated multiclass BCI classification scenarios. 

The results show th a t distinct frequency feature groupings exist over the different 

multiclass scenarios, and th a t these groupings result in different information transfer 

rates. These offline results can provide a guide for generalized stimulus frequency 

selection for SSVEP-based BCIs with an arbitrary number of targets.

4.1 INTRODUCTION

Due to physiological differences between subjects, there tends to be high in­

tersubject variability in terms of SSVEP response power a t different stimulation 

frequencies. While a subject-specific SSVEP stimulus frequency optimization is 

ideal, this can be a tedious and time-consuming process. Thus, many studies se­

lect SSVEP stimulation frequencies somewhat arbitrarily. Not only is there no 

standardized set of SSVEP stimulus frequencies or a standardized frequency se­

lection method, some studies even claim conflicting frequency ranges for optimal
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performance. A detailed review of SSVEP stimulation techniques by Zhu et al. 

[Zhu et al., 2010] showed th a t most studies not only varied greatly in the stim­

ulus frequencies used but also varied the number of classes used. The m ajor­

ity of studies did not perform stimulus frequency optimization prior to the study, 

nor provided a justification for the selected frequencies. This generally arbi­

trary  selection of stimulus frequencies leads to suboptimal fixed-frequency results 

(i.e., not subject-specific) and makes performance comparisons across SSVEP stud­

ies difficult. Several recent studies have performed fairly comprehensive evalua­

tions of various SSVEP stimulus parameters, including stimulus size, shape, color, 

and pairwise comparisons of stimulus frequencies based on signal-to-noise ratio 

[Kus et al., 2013, Duszyk et al., 2014, Waytowich and Krusienski, 2014]. However, 

these studies did not examine optimal sets of frequencies for multiclass SSVEP ap­

plications.

Whereas the previous chapter explored individualized optimization of SSVEP 

stimulus frequencies using CCA, this chapter uses the same da ta  set to investigate 

generalized stimulation frequency sets over a continuum of simulated multiclass BCI 

classification scenarios. Subjects were visually stimulated with an LED array th a t 

flashed according to a chirp-modulated signal [Tu et al., 2012] having a frequency 

tha t varied linearly over the typical functional range of SSVEP from 5.5-34.5 Hz. 

The resulting EEG was analyzed using canonical correlation analysis (CCA), and a 

genetic algorithm (GA) was implemented to determine the generalized stimulation 

frequency set th a t maximizes classification performance for numbers of classes (i.e., 

simulated flashing target groupings) ranging from 2 to 36.

4.2 METHODOLOGY

4.2.1 DATA COLLECTION AND EXPERIMENTAL PARADIGM

The da ta  collection and experimental paradigm are described in the previous 

chapter. After a screening of the EEG data  for discriminable SSVEP responses using
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a visual evaluation of the subject-specific CCA characterization similar to Figure 14, 

five subjects were excluded because they produced little or no detectable SSVEP 

response. Thus, 17 (3 women, 14 men; age range 18-36 years) of the 22 subjects were 

included in the subsequent analysis.

4.2.2 DATA PREPROCESSING

All SSVEP da ta  was first bandpass filtered using a zero-phase, HR filter from 

0.5-40 Hz. All da ta  were segmented by trial for each chirp stimulus condition and 

inter-trial data  (i.e. rest periods) were discarded. The da ta  elicited from the chirp 

signals were then analyzed using the CCA method. Reference signals Yf  were created 

and centered around each frequency from 6 to 33.5 Hz, spaced every 0.5 Hz for a 

total of 56 reference signal sets th a t spanned the chirp signal. All reference signals 

were created using only the fundamental frequency (AT =  1) for this study.

The chirp data  from the 5.5-20.5 Hz waveform was concatenated with the chirp 

da ta  from the 19.5-34.5 Hz waveform to produce an SSVEP response signal from

5.5-34.5 Hz. The decreasing chirp signals (20.5-5.5 Hz and 34.5-19.5 Hz) were con­

catenated to produce a 34.5-5.5 Hz response and then time-reversed to match the 

previous 5.5-34.5 Hz. Fixed frequencies were approximated from the chirp signal by 

using a sliding window with a length of two seconds and a one-second overlap. The 

da ta  representing the 34-34.5 Hz was discarded due to a recording inconsistency at 

the beginning or end of the decreasing or increasing chirp trials, respectively. Thus, 

the frequency features used in this study range from center frequencies of 6 Hz to 33.5 

Hz in increments of 0.5 Hz (56 to tal distinct frequencies). This covers the functional 

range of the SSVEP spectrum with sufficient resolution.

For all 17 subjects, the CCA was performed on each window of the EEG response 

and on each frequency from the SSVEP reference signals. Each target frequency (i.e. 

the current time window corresponding to the frequency from the chirp stimuli) 

was canonically correlated with each reference signal frequency. This results in a 

quantitative measure of target discrimination from background EEG activity for 

each of the selected frequencies (shown in Figure 14).
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FIG. 14: Canonical Correlation Analysis (CCA) squared correlation values averaged 
across the 17 subjects. The x-axis shows the timescale based on the chirp stimulus. 
Each column represents a 2-second segment of the chirp signal th a t is approximated 
as a fixed frequency. The strong diagonal correlations represent a correspondence of 
the EEG and the stimulation frequency and its harmonics across the windowed time 
segments.

The data  from the 17 subjects were combined into a single set consisting of 170 

observations per frequency. The combined subject set is used to build an average 

SSVEP classifier for the optimization to produce a generalized solution for each NT- 

class condition.

4.2.3 FEATURE SELECTION USING A GENETIC ALGORITHM

Genetic algorithms (GAs) are powerful search algorithms th a t simulate natural 

evolution for optimization problems [Goldberg and Others, 1989]. GAs have been 

used for wrapper-based feature selection problems and have been utilized to  optimize 

feature selection in BCIs [Peterson et ah, 2005]. In this study, the GA is used to find
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optimal sets of SSVEP frequency features using CCA for a range of simulated N- 

class classification problems. The N-class conditions simulated in this study range 

from 2 to 36 classes in order to compare the performance between practical class 

sizes and determine generalized feature sets th a t optimize performance for each N- 

class condition. Each 0.5 Hz increment of the chirp stimulus ranging from 6 Hz 

to 33.5 Hz was used to generate a simulated frequency feature. This resulted in 

56 total frequency features, which constitutes an extremely vast search space for 

feature selection th a t is not practical for exhaustive evaluation for most of the N- 

class conditions.

Initial Population

An independent GA optimization was performed for each of the 35 N-class BCI 

conditions (i.e., 2-36 classes). For each condition, an initial population of 1000 indi­

viduals (candidate solutions) is created. Each individual is a binary string of length 

56, where the ones represent the features th a t are to be included in the model and 

zeros represent the features to disregard. For each N-class condition, the number of 

selected features is constrained to match N, as each feature represents a frequency 

target.

For the initial population, the majority of individuals are randomized with N 

ones and (56-N) zeros using a uniform random distribution. After 50 generations, 

the population was reinitialized with uniform random distribution and 5-10% of the 

population was seeded with a combination of the 10 best solutions from the previous 

GA optimization and random 1-bit perm utations of these solutions. These perm uta­

tions were selected to minimize the Hamming distance from the best solutions since 

the best solutions were generally found to be completely or partly contiguous over 

frequency spans. This was done in order to fine tune the search near the best solution 

while still maintaining diversity of the search.
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Fitness Evaluation

The fitness of each individual is evaluated by classifying the EEG using the CCA 

algorithm. Each individual is assigned a fitness value based on its respective classifi­

cation performance. In this study, two fitness evaluation schemes are compared: the

overall classification error and empirical confusion m atrix norm (ECMN).

Classification Error Optimization: The GA was tuned to select and repro­

duce individuals with features th a t minimize the classification error from the CCA 

classifier. The overall classification error metric is calculated from the confusion 

m atrix as:

classification error =  1 — (4)

where Hu is the number of correctly classified observations for class % and N q is the 

to tal number of observations in the confusion matrix.

Empirical Confusion Matrix Norm Optimization: This approach min­

imizes the norm of the empirical confusion m atrix (ECM) ||C S|| [Ko, 2013, 

Ralaivola, 2012]. For this scheme, the diagonals (correct classifications) of the stan­

dard confusion m atrix are zeroed out to create the empirical confusion m atrix C's- 

The ECMN is calculated as:

IICsll =  / w ( C S C s ) < y /Tr(C's Cs ), (5)

where C*s denotes the conjugate transpose of Cs, Amax is the maximum eigenvalue and 

T r () is the sum of the diagonal elements. The latter equation constitutes the upper 

bound of the confusion m atrix norm. The value of [|C'sj| will be higher for confusion 

matrices with miss-classifications th a t bias towards a certain set of classifier outputs. 

Unlike classification error optimization, which seeks to find the set of SSVEP features 

th a t provide the overall best classifier performance, the confusion norm optimization 

seeks features tha t provide the best classifier balance. This is particularly im portant 

for practical BCI implementations since lower frequencies tend to produce responses
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with higher signal-to-noise ratios (SNRs) tha t can dominate the classifier output, 

which may be masked for higher class conditions if only the overall accuracy is 

evaluated.

Selection and Reproduction

For the GA selection procedure, the population is ranked and sorted according 

to the individuals’ fitness, and the top 150 individuals are labeled the elite group. 

Individuals from the elite group are randomly selected for m ating with a randomly 

selected member of the entire population (i.e., at least one parent is always from 

the elite group). This elitist procedure is done to speed convergence of the GA 

[Baluja and Caruana, 1995]. Thus, 850 children are generated in each generation of 

the GA.

Crossover and Mutation

The crossover of two parent genes (i.e., binary strings) to form a child gene is 

performed using bitwise logical AND and bitwise logical OR. Given the binary strings 

from two parents, the bitwise OR operation is used to select the feature from each 

parent providing a total of R  features th a t will be transferred to the child gene. 

This results in R  > N; thus, an n  subset of R  must be selected. The bitwise AND 

is then used to select the S  features th a t are common to both parents. If S  < N  

then the remaining N  — S  features are randomly selected from the original set of R  

features. The final child has N  features derived from the parent features. A m utation 

rate of 5% was applied to the children genes after reproduction and crossover. For 

each generation, 5% of the children’s genes were randomly selected for m utation 

where one random bit was flipped from 1 to 0 and another random bit was flipped 

from 0 to 1 to maintain the desired number of features. Figure 15(b) shows a visual 

representation of the modified crossover method implemented in this study compared 

to the traditional crossover method shown in Figure 15(a).
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FIG. 15: P art (a) shows the traditional crossover technique which may result in 
varying number of features th a t will survive to the next generation. Part (b) shows 
the modified crossover technique used in this study tha t guarantees a fixed number 
of features will survive based on a desired class size. The child gene is composed of 
the S  features from the AND operation and N  — S  features randomly chosen from R 
features resulting from the OR operation. The child gene results in N  to tal selected 
features.
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Batch Processing and Evaluation

The combined EEG data  set from the 17 subjects was used for the GA optimiza­

tions. A separate GA optimization was performed for each of the 35 different N-class 

conditions (2 through 36-class) for both the classification error and ECMN optimiza­

tion, resulting in a grand total of 70 distinct GA optimizations. The runtime of each 

GA was fixed to 100 generations (i.e., 50 generations for determining the best seeds 

and 50 generations for fine tuning the solution) to provide a sufficient search. For 

each GA evaluation, the features and fitness values were stored for each individual 

and generation to evaluate the convergence and sensitivity of the solutions.

The resulting performances are quantified using the overall classification accu­

racy and the corresponding information transfer rate (ITR). The ITR, or bitrate, 

is a common metric for evaluating performance of a BCI th a t accounts for speed, 

accuracy, and class-size. The ITR in b its/m in  is computed as:

I T R  =  f lo g a JV + P lo g 2 P  + (1 -  P )  log, ( ^ F t ) )  * “  (6)

where N  is the number of possible classes, P  is the classification accuracy and T  

is the selection time used to obtain the classification. The nominal selection time 

is 2 seconds based on the length of each SSVEP observation used in this study. In 

order to simulate a practical ITR, an inter-epoch duration of 0.3 seconds was utilized 

based on the recent SSVEP study from [Chen et al., 2014] which estimates the time 

required to shift eye-gaze from one target to the next. These simulated ITRs are 

intended to provide a relative performance comparison between the optimization 

methods rather than  a completely realistic estimate of ITR.

4.3 RESULTS

To compare the GA solutions for each of the N-class conditions, the performance 

results are plotted as line plots for each N-class condition. The GA solutions (best 

feature set) for both the classification error and the ECMN optimization approaches
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FIG. 16: Accuracy and Information Transfer Rate (ITR) of the best solution from 
the classification error and ECMN optimizations for each N-class condition. The red 
and blue accuracy line plots correspond to the left y-axis scale and the green and 
purple ITR  line plots correspond to  the right y-axis scale. Chance accuracy for each 
N-class condition is plotted as the solid gray line.

are compared in Figure 16. The resulting overall accuracy and ITR  of the best in­

dividual from both approaches are plotted against each of the N-class conditions. 

The results in Figure 16 show the expected decrease in accuracy of the optimization 

solutions for increased number of classes. All accuracies produced are significantly 

higher than  chance. The accuracy of the best solution from the ECMN optimization 

shows a slight decrease in accuracy compared to the best solution from the classifi­

cation error optimization. The drop in accuracy only becomes apparent after a class 

size of 9 and exists until an class size of 35. The ITR plots in Figure 16 show an even 

more pronounced degradation in performance of the ECMN optimization compared 

to the classification error optimization for class sizes 9-34. For both  optimization 

conditions, an inflection point in accuracy and ITR is observed around 9-10 classes, 

indicating suboptimal performance for these conditions. In order to quantify and
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FIG. 17: A comparison of the ECM Norm for the best solutions selected by the 
Classification Error and ECM Norm optimizations, respectively. The ECM Norm 
provides a measure of classification accuracy imbalance across target frequencies, 
where a lower ECM Norm indicates more balanced accuracies across target frequen­
cies.

compare the accuracy imbalance across target frequencies, the ECMN for both ap­

proaches is shown in Figure 17, where a lower ECM Norm indicates more balanced 

accuracies across target frequencies. Similar to accuracy and ITR  in Figure 16, it is 

observed tha t the differences in approaches occur for class sizes 9-34.

To illustrate the level of solution uniqueness and sensitivity from each GA evalu­

ation, the ITR of the solution is plotted with the ITRs of the 10 next-best solutions 

in the population history as shown in Figure 18. Figure 18(a) shows the top 10 

solutions for each N-class condition from the classification error optimization and 

Figure 18(b) shows the top 10 solutions for each N-class condition from the ECMN 

optimization. The performance difference between the best solution and the 9 next- 

best solutions is most apparent for the lower N-class conditions between 2 and 10. 

The higher N-class conditions show very similar IT R  performances between the best
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FIG. 18: Information Transfer Rate (ITR) performance for the top 10 best opti­
mization solutions for each N-class condition, (a) shows the top 10 results from 
classification error optimization and (b) shows the top 10 results from the ECMN 
optimization. For each plot, the dotted line indicates the best solution and the solid 
lines bound the 2nd-10th best solutions. The + /-s td  indicates the standard deviation 
of accuracy across subjects converted to ITR.
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and 9 next-best solutions. For the ECMN optimization in Figure 18(b), the next- 

best solutions sometime show a slight increase in ITR  for a few of the higher N-class 

conditions. This is due to the fact th a t the ECMN is optimizing the norm of the 

empirical confusion m atrix and not overall accuracy.

Figure 19 shows the selected features from GA optimization for each N-class con­

dition as 2-dimensional histograms. Figure 19(a) shows the selected feature distribu­

tion from the classification error optimization, and Figure 19(b) shows the selected 

feature distribution from the ECMN optimization. Each column represents an N- 

class condition (i.e., number of simulated SSVEP targets) and each row represents a 

possible frequency feature. For each GA evaluation, the best set of features is plotted 

using white dots where the number of dots corresponds to the N-class condition and 

the location of each dot corresponds to the selected frequency feature. A histogram 

distribution of the selected features from the 9 next-best solutions for each N-class 

condition is plotted with a color scale corresponding to the number of times each fre­

quency feature was selected for the next-best solutions. This gives a rough indication 

of the usefulness of a given feature with respect to the N-class condition.

4.4 DISCUSSION

The feature selection histograms for both optimization methods in Figures 19(a) 

and 19(b), respectively, indicate the optimal features for lower N-class conditions 

come from lower frequencies. In both figures, there is a distinct change in selected 

features from the 6-9 Hz range to the 15-20 Hz range as the N-class condition increases 

from 8 to 9, which is also near the performance inflection point. This can be explained 

by examining the CCA plot in Figure 14. This plot shows th a t the frequencies from 6- 

10 Hz have a higher CCA coefficient across this entire band compared to the diagonals 

a t higher frequencies. This is partly due to the higher power and SNR in this low 

frequency range, particularly in the alpha band. It should be noted th a t the alpha 

band and its second harmonic are generally avoided in the frequency selection due 

to the innate nature of this rhythm, independent of stimulation in this range.

Of further interest, no N-class conditions th a t are greater than  N =9 contain
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FIG. 19: 2-D histograms of optimized feature sets for each N-class condition. Each 
column is a different N-class condition th a t spans the possible feature range (6-33.5 
Hz). For a given N-class condition, the features from the best optimized solution are 
superimposed as white circles indicating the selected feature. Each column has N 
dots corresponding to each N-class condition. The 9 next-best solutions are plotted 
as histograms where the color corresponds to the occurrence rate of the selected 
feature, (a) shows the feature distributions for the classification error optimization 
and (b) shows the feature distributions for the ECMN optimization.
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any low frequency features in the final optimized set. For the classification error 

optimization, Figure 19(a) shows a bias towards the middle frequency range (15-19.5 

Hz) which gradually includes higher frequencies as the N-class condition increases. 

However, for the ECMN optimization, Figure 19(b) shows another sharp change in 

selected features from the mid range (15-19.5 Hz) to the higher range (22-32 Hz) at 

the 10-class condition. This is likely due to the fact th a t these ranges of frequencies 

have more similar SNRs. This would result in a more balanced classification (i.e., 

minimizing the ECM norm), which is desirable for practical BCIs.

The contiguous nature of the majority of the selected feature sets can also be, 

in part, explained by the relative SNR across particular frequency bands. For the 

classification error, it is observed th a t the features are generally contiguous and after 

the inflection point, the added features come from the next highest frequency (i.e., 

next highest SNR). The ECMN optimization follows a similar contiguous pattern, 

except the initial range after the inflection point is (22-28 Hz) and roughly alternating 

lower and higher frequency contiguous features are included to maintain the class 

balance. Another contributing factor to the observed contiguous ranges is th a t the 

harmonic frequencies play a role in the CCA as depicted in Figure 14. Particular 

frequency features, especially in the lower frequencies, will tend to dominate the 

CCA at the respective harmonic frequencies. Thus, it is unlikely for frequencies to 

be selected th a t have competing harmonics. Future work will examine the inclusion 

of harmonic frequencies in the CCA and its impact of on the selected feature sets.

In terms of maximizing the ITR  across the population, the results indicate th a t 

a peak ITR  near 40 bits/m inute is achieved for the seven-class condition for both 

optimization schemes. Additionally, both optimization schemes selected contiguous 

frequency features from 6-9 Hz (0.5 Hz increment) for this condition. Aside from 

the inflection point, the ITR is generally fiat above the 10-class condition due to 

the steady decrease in accuracy for higher classes. It should be noted th a t a fixed 

inter-stimulus interval was used across N-class conditions to compute the simulated 

ITRs. It is likely th a t longer inter-stimulus intervals would be needed for adequate 

scanning time in the higher-class conditions, which would further degrade the ITR
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as the number of classes increases. Figure 17 shows the expected improvement in 

balanced classification across target frequencies for the ECMN optimization for class 

sizes 9-34. Ultimately, if all target frequencies should be equi-probable for a given 

interface design, the ECMN optimization will provide a more balanced scheme for 

more than  8 classes with marginal decreases in overall classification performance.

The proposed approach has some limitations in terms of generalizing to an online 

BCI. The SSVEP responses were collected serially using a fairly large single-stimulus 

LED array. For an actual multi-class online implementation, simultaneous stimuli at 

different frequencies would be presented, generally with smaller physical dimensions. 

The present analysis does not account for the potential simultaneous interference or 

attentional issues present in a practical online scenario. Another lim itation is th a t 

the chirp signal, while slowly varying over the selected time windows, is not of a fixed 

frequency and had a limited duration. Thus, there may not have been adequate time 

to fully entrain certain frequencies, and the CCA may have a slight bias due to the 

variation in frequency over the time windows. Another consideration is th a t the 

selected features may be specific to the CCA approach and may be suboptimal if 

other SSVEP feature extraction and classification schemes are employed. Through 

examination of the sensitivity of the ITR  and selected features to the near-optimal 

solutions shown in Figure 18, the selected next-best feature histograms generally 

have overlapping densities with the best solutions, and slight changes in the selected 

features lead to comparable ITR  performances. Nevertheless, it is believed th a t 

the present analysis provides a comprehensive evaluation of the most discriminable 

frequency feature sets for a given number of classes, which should serve as a reference 

and a guide for standardization of generalized SSVEP stimulus frequencies.
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CHAPTER 5

SPATIAL FREQUENCY CHARACTERIZATION AND 

OPTIMIZATION OF SSVEP STIMULI

Most traditional SSVEPs implement solid rectangular stimuli, flashing at different 

frequencies, to elicit the SSVEP response. This is a binary flashing technique in which 

the stimulus alternates between one solid color and another solid color (usually white 

and black). However, it is also common to use spatial checkerboard patterns as visual 

stimuli. The checkerboard stimuli are pattern  reversed at a constant frequency using 

alternating checker colors to elicit the SSVEP response. The pattern  reversal from 

a checkerboard stimulus creates a similar SSVEP response to the solid rectangular 

stimulus, although there is debate over which stimulation type is superior.

5.1 INTRODUCTION

The effect of spatial frequency has been tested thoroughly in the clinical fields with 

the elicitation of pattern  electroretinalgrams (PERGs) and pattern  VEPs (PVEPs) 

[Armington, 1977]. These pattern  responses are usually elicited using a single p a t­

tern reversal checkerboard stimulus or a vertical square wave grating stimulus. In 

1985, Leguire and Rogers recorded ERGs as a function of spatial frequency and con­

trast and showed that an increase in either spatial frequency or contrast resulted in 

an increase in the amplitude of the pattern  ERG [Leguire and Rogers, 1985]. These 

results, however, are not in concurrence with results from previous investigators tha t 

have found an increase in spatial frequency produces a decrease in amplitude re­

sponse [Armington et al., 1971]. Likewise, other investigators have shown th a t an 

increase followed by a decrease in pattern  ERG amplitude results from increased 

spatial frequencies from 0.5 arc-min/cycle to 1.5 arc-min/cycle EEG and ERG am­

plitude peaking at 1 arc-min/cycle [Armington et al., 1967]. In 1991, Tomoda et al.
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recorded simultaneous ERGs and VEPs and showed th a t ERGs exhibited a bandpass 

tuning with a peak amplitude at 1.5 cycles/degree while VEPs had a bimodal spatial 

frequency function with peaks at 3 c/deg and 1 c/deg [Tomoda et al.. 1991]. Overall, 

these conflicting results confirm th a t the true nature of the visual system response 

elicited from pattern  stimuli from various spatial frequencies is not conclusive and 

may depend on the individual subject [Sokol and Bloom, 1977].

Similar to these contradictory results found in the clinical and neuroscience fields, 

recent BCI studies have also found conflicting results on the effect th a t checker­

board stimuli have on the performance of SSVEP BCIs. Some studies have found 

th a t the checkerboard stimuli produce stronger SSVEP responses than  solid stimuli 

[Lalor et al., 2005], while others have found conflicting results which conclude tha t 

solid flashing stimuli perform better than checkerboard pattern  reversal stimuli for 

SSVEP BCIs [Allison and Sugiarto, 2008, Saetang et al., 2013, Zerafa et al., 2013]. 

Not only is it unclear whether or not checkerboard pattern  reversal is superior to 

solid flashing stimuli, the effect of checkerboard’s spatial frequency (i.e. size of the 

individual checks) on SSVEP performance has also never been studied in the context 

of BCIs where multiple stimuli are presented simultaneously.

A study characterizing and optimizing the spatial frequency of visual stimuli was 

conducted using checkerboard stimuli in a BCI paradigm. In this study, stimuli of 

four different temporal frequencies were tested with varying spatial frequencies. This 

study tests the entire spatial frequency range from a lx l  (0 c/deg) checkerboard (solid 

stimuli) and doubling in spatial frequency (i.e. 2x2 (0.15 c/deg), 4x4 (0.3 c/deg), 

8x8 0.6 c/deg, etc) up to a 256 x 256 checkerboard (single pixel check sizes with a 

spatial frequency of 19.2 c/deg) providing 9 to tal spatial frequency conditions. A 

four-class SSVEP BCI paradigm was used online to test the 9 to tal spatial frequency 

conditions where each condition was tested as a separate BCI to evaluate the effect 

of spatial frequency on SSVEP performance. Additionally, an online path-navigation 

task was performed with each of the 9 total spatial frequency conditions.

It is hypothesized th a t subjects have various degrees of detectable response to 

each of the different spatial conditions and thus will obtain varying levels of BCI
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performance for each condition. Similar to how stimuli flashing a t high tempo­

ral frequencies (30-50Hz) appear less obtrusive and visually fatiguing to the user 

[Muller et a l ,  2011]. stimuli with high spatial frequency also have the efFect of re­

duced perceptibility, which may also lead to reduced visual fatigue. High spatial 

frequency stimuli may provide a novel way to reduce stimulus saliency with limited 

degradation on VEP-BCI performance. The aim of this study is to characterize these 

differences amongst the spectrum of spatial frequencies and determine which spatial 

frequency provides superior performance in the context of SSVEP-BCIs. The out­

comes of this study can potentially provide a method for presenting less irritating or 

fatiguing stimuli.

5.2 METHODOLOGY

5.2.1 DATA COLLECTION

A total of 11 subjects (7 male, 4 female, ages 24-32) participated in the experi­

ment. Each subject gave informed consent prior to the study and were free of any 

known neurological conditions. All subjects had nromal or corrected-to-normal vi­

sion and had varying levels of previous BCI experience, with 6 subjects having no 

previous BCI experience. The study was approved by the Old Dominion University 

Institutional Review Board.

D ata were collected from a 16-channel g.USBAmp amplifier with active electrodes 

(Guger Technologies, Austria). Electrodes were placed primarily over the occipital, 

parietal-occipital and parietal regions of the brain (Figure 20) according to the inter­

national 10-20 system [Sharbrough et al., 1991]. Electrodes were referenced to the 

right earlobe and grounded to the right mastoid. All da ta  were collected using a 

sampling rate of 256 Hz, bandpass filtered from 2-30 Hz and stored on a hard disk. 

All aspects of the da ta  collection were controlled using BCI2000 general-purpose BCI 

recording software [Schalk, 2004].
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FIG. 20: Electrode montage used for this study. D ata were recorded from all 16 
electrodes shown, however, da ta  from only 8 channels (Oz, 01 , 02 , POz, P 0 3 , P 0 4 , 
P 0 7 , P 08 ) were utilized in the online and offline analysis.

An Arduino Uno microcontroller board with an ATMEL ATMEGA328P micro­

controller chip was used to synchronize the stimulus onsets with the EEG signals. A 

custom M atlab script was w ritten to apply canonical correlation analysis (CCA) in 

real-time to classify the attended target and present feedback to the subject.

All subjects participated in a single session consisting of two experiments lasting 

30 minutes each for a to tal session length of 1 hour. All subjects completed the 

experiments in the same order.

5.2.2 EXPERIMENTAL PARADIGM

Stimulus Parameters

All stimuli were rendered using DirectX (Microsoft Inc.) and displayed on a 24” 

LCD monitor with a 60Hz refresh rate and a 1920 x 1080 resolution. Subjects sat 

comfortably in dark room and were centrally seated in front of the monitor a t a 

distance of 55 cm. Nine different spatial frequency stimulus conditions were tested: 

0 cycles/degree ( lx l  checkerboard), 0.15 c/deg (2x2)), 0.3 c/deg (4x4), 0.6 c/deg
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(8x8), 1.2 c/deg (16x16), 2.4 c/deg (32x32), 4.8 c/deg (64x64), 9.6 c/deg (128x128), 

and 19.2 c/deg (256x256). Figure 21 shows the 9 checkerboard conditions with their 

respective pattern  reversed forms. The lx l  represents a checkerboard th a t has 1 row 

and 1 column (i.e. a solid square), and the 256x256 is a checkerboard with 256 rows 

and 256 columns. Each checkerboard condition is an image with the size of 256x256 

pixels. Therefore, the 256x256 checkerboard condition has checker sizes th a t are 

composed of single pixels.

Subjective Evaluation

Before the start of the experimentation session, subjects participated in an evalu­

ation of the visual stimuli. Subjects were placed 55 cm away from a 24” LCD monitor 

where all 9 spatial frequency conditions were displayed simultaneously on the screen. 

Each of the spatial frequency conditions were flashing with the same tem poral fre­

quency of 6 Hz During this time, subjects were asked to subjectively evaluate the 

different conditions in terms of visual irritation, by ordering each spatial frequency 

from 1 to 9 where 1 indicated the least visually irritating spatial frequency and 9 

indicated the most visually irritating spatial frequency. Subjects provided a writ­

ten response to the statement: “Please order each condition from 1-9 indicating 

how visually irritating it is to continuously start at the stimulus where 1 represents 

the least irritating and 9 represents the most irritating” . The subjective evaluation 

was performed prior to the experiment to avoid potential biases in preferences after 

performance feedback during the experimental sessions.

Experiment 1: Discrete Classification

The first experiment consisted of a standard 4-class BCI paradigm in which four 

stimuli were presented simultaneously in the top, bottom, left and right portions of 

the screen and were flashed at four temporal frequencies of 6, 6.66, 7.5 and 8.571 

Hz (shown in Figure 22). The experiment consisted of 18 runs each with 8 trials. 

W ithin each run, one of the 9 spatial frequency conditions were tested in which
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0 c/deg 0.15 c/deg 0.3 c/deg 0.6 c/deg 1.2 c/deg

■ ■ ■ ■ ■ ■ ■ ■

2.4 c/de 4.8 c/deg 9.6 c/deg 19.2 c/deg

FIG. 21: Checkerboard stimuli used in the study. Each of the 9 checkerboard spatial 
frequency conditions is displayed with its respective pattern  reversal shown beneath. 
The corresponding spatial frequencies in cyles per degree ( #  of rows and cols) going 
from top left to bottom  right are: 0 c/deg ( lx l) , 0.15 c/deg (2x2), 0.3 c/deg (4x4), 
0.6 c/deg (8x8), 1.2 c/deg (16x16), 2.4 c/deg (32x32), 4.8 c/deg (64x64), 9.6 c/deg 
(128x128) and 19.2 c/deg (256x256).
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the 4 stimuli were populated with the checkerboard pattern  from th a t condition. 

Each trial began with a 2-second cue period where an arrow indicated the current 

target stimulus from a random sequence as shown in Figure 22(a). The task for 

each subject was to centrally fixate gaze and attend the target stimulus for 6 seconds 

during the stimulation portion of the trial. The trial concluded with a 2-second 

feedback period where the predicted target was encompassed by either a green or red 

square corresponding to a correct or incorrect classification (Figure 22(b)) During 

the feedback period, text was also displayed to the subject indicating the current 

condition and trial as well as the running classification accuracy.

A single trial lasted 10 seconds and all trials were presented in immediate suc­

cession of one another making the duration of a single run equal to 80 seconds (10 

seconds x 8 trials). After each spatial frequency condition a short rest period was 

given to the subjects lasting approximately 30-60 seconds. Each of the 9 spatial fre­

quency conditions was tested twice during the 18 runs and was presented in random 

order to avoid any fatiguing or order-on-performance biases. The total length of 

Experiment 1 was approximately 30 minutes. After completion, subjects were given 

a small break before proceeding to experiment 2.

Experiment 2: Continuous Path-Navigation

In experiment 2, subjects used the 4-target configuration from experiment 1 to 

complete a path-navigation task using a familiar PacMan avatar (shown in Fig­

ure 23). The four stimulus targets controlled the four directions the avatar could 

move (up, down, left and right). Two different paths were utilized which contained 

no bifurcations to provided a unique path  from the starting point to the ending point.

Each path took exactly 48 total moves to complete, where each movement direc­

tion was equally represented with 12 moves each. The goal of the navigation task was 

to move the PacMan avatar from the starting point to the coinciding ending point 

of the path  which was represented by a blue square (Figure 23). The avatar could 

not cross the path walls and the movement was unconstrained so the avatar could 

move in the correct or opposing directions depending on the predicted classification.
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FIG. 22: Stimulation paradigm used for experiment 1 with currently the 0.6 c/deg 
(8x8) spatial frequency condition shown. Each trial starts with a 2-s cue period to 
indicate the current fixation target, shown in part 22(a). After a 6-s stimulation pe­
riod, feedback is given as box surrounding the predicted target (part 22(b)). Correct 
predictions were shown with a green box while incorrect predictions were shown with 
a red box. The left stimulus flashed at 6 Hz, the right flashed at 7.5 Hz, the top at 
8.57 Hz and the bottom  at 6.66 Hz.
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FIG. 23: Stimulation paradigm used for experiment 2. The four stimuli match the 
same shape and position as experiment 1. The path  used in PacMan path navigation 
task was placed in the center of the four stimuli, contained no bifurcations and took 48 
moves to complete where each direction had 12 moves. The blue square indicates the 
s tart/end  position which was randomized for each run. Parts 23(a) and 23(b) show 
the two path  path  variants tha t were randomly presented. The top panel currently 
shows the 0.3 c/deg (4x4) spatial frequency condition and the bottom  panel shows 
the 2.4 c/deg (32x32) spatial frequency condition. The run time was shown at the 
top left which counted upwards starting from 0. If the path  was not completed after 
3 minutes, the run was terminated.
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This represents a practical use-case for an online BCI as incorrect classifications must 

subsequently be corrected in-order to complete the path.

Subjects performed the path-navigation task for each of the 9 spatial frequency 

conditions for a total of 9 runs of the path navigation task. The conditions were 

presented randomly to the subjects. The minimum time to complete the path  was 

approximately 48 seconds. The maximum time alloted for path completion was 180 

seconds. If the subject was unable to complete the path in the allotted time, the run 

ended, and the next run was presented.

To better keep the subject engaged throughout the session, two different paths 

were used. Each path  had a different starting and ending location, as well as different 

starting and ending directions. This also served to mitigate any spatial biases or 

learning effects as the presentation order of each path  and each starting position 

was randomized for each of the 9 spatial frequency conditions. The overall direction 

of path  navigation (clockwise or counterclockwise) was indicated by the starting 

direction of the PacMan avatar. Figure 23(a) shows an example of path  1 with a 

starting location th a t indicates clockwise navigation, and Figure 23(b) shows path 2 

with a starting location indicating counter-clockwise navigation.

For the path-navigation task, EEG signals were classified using a continuously 

updating signal buffer with a fixed buffer length of 2 seconds of EEG da ta  th a t was 

classified using a committee of CCA classifiers. The 2-second buffer was split into 

three 1-second sub-windows which overlapped every 0.5 seconds (i.e. sub-windows 

were from 0-1 s, 0.5-1.5 s and 1-2 s). A separate CCA classification was performed 

on each of the 1 s sub-windows resulting in three predictions of the target direction. 

A committee scheme was utilized for final prediction by way of m ajority voting in 

which the target direction was chosen when at least two of the three CCA classifiers 

agreed on the same target. If no mutual agreement was reached between the three 

classifiers then no selection was made representing a null state in which the avatar did 

not move. This classification scheme continuously analyzed the 2-second long data  

buffer which updated every second with a new second of data. Therefore, movement 

decisions and actions were made every second using the previous 2-seconds of data.
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For each subject, each movement decision and the total path  completion time was 

recorded for each of the 9 spatial frequency conditions.

5.2.3 DATA ANALYSIS

Experiment 1: Discrete Classification

For the online classification, data  from the 6-second stimulation period were clas­

sified in real-time using CCA. A target template was created for each of the four 

temporal frequencies using two harmonics (Nh = 2) each.

Additional offline analysis was performed to compare the different spatial fre­

quency conditions. D ata were already filtered at the time of recording with a 2-30 

Hz hardware bandpass filter; thus, no additional filtering was performed. D ata from 

each of the spatial frequency conditions were extracted providing a to tal of 96 sec­

onds of SSVEP da ta  for each spatial frequency condition corresponding to 24 seconds 

of da ta  for each of the four target stimuli. To test for any spatial adaptation th a t 

the visual system may be experiencing, CCA classification analysis was performed 

for different observation lengths varying from six seconds to single trial observation 

lengths of one second. To simulate the smaller observation lengths, da ta  from the 

original 6-second runs were from 1 to 6 second in 0.5-second increments, starting 

from the stimulus onset to better represent actual online performance using shorter 

window lengths.

The Information-Transfer Rate (ITR) was calculated for each spatial frequency 

and observation length using Equation 7.

The classification accuracy and ITR as a function of overall spatial frequency 

were calculated by averaging over all observation lengths tested. In the case of ITR, 

only the lengths from 1-3 seconds were used in the averaging as ITR places emphasis 

on smaller time-windows.

I T R (lo g , N  + P  log, P  +  (1 -  P) log2 ( )  .
60
~T (7)
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The visual irritation index from each subject during the subjective evaluation 

survey was aggregated and averaged for each spatial frequency condition.

Experiment 2: Continuous Maze-Navigation

Analysis for the online experiment was handled in real time with the major­

ity vote classification of a 2-second da ta  buffer th a t was sub-divided into three 1-s 

sub-windows with an overlap of 0.5 s. CCA was performed on each window; a clas­

sification was made only when two of the 3 sub-windows agreed.

Using the online results, the average path completion time for each spatial fre­

quency condition was computed across all subjects to give an indication of task 

performance as a function of the spatial frequency. Subjects th a t were not able to 

complete a path in the allotted 180-s limit were recorded with path completion time 

of 180 s. To further differentiate the task performance for each condition, the per­

centage of path tha t was traversed before time expired was calculated as a ratio of 

the farthest traversed point divided by the to tal number of moves. For example, a 

completion percentage of 50% (24/48) represents a condition where the subject only 

made it to the halfway point around the path before completion. The average path 

completion percentage across all subjects was computed for each spatial frequency 

condition.

5.3 RESULTS

5.3.1 EXPERIMENT 1: DISCRETE CLASSIFICATION

Figures 24 and 25 show the average classification accuracies and ITRs for each 

spatial frequency condition and observation length. These results are shown as 2- 

dimensional heat-plots where the color is mapped to either accuracy or ITR. Each 

column represents a different observation length and each row represents a spatial fre­

quency condition. The accuracies in Figure 24 show that, overall, the 0 c/deg spatial
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frequency condition (solid stimulus) achieves the highest average classification accu­

racy of 97.7% amongst all conditions for observation lengths >  3.5 s. Additionally, 

the accuracy plot in Figure 24 shows two other distinct patterns. First, a bimodal 

distribution can be seen column-wise where a decrease in accuracy is exhibited for 

spatial frequency conditions between 0.15-0.6 c/deg as well as for conditions greater 

than  9.6 c/deg. Accuracies are greater for the conditions between 1.2 and 4.8 c/deg 

with a secondary peak forming at the 2.4 c/deg condition. Second, the observation 

length shows a considerable effect on the accuracy, especially for the conditions from 

0.3 c/deg to 9.6 c/deg. Normally, an increased observation length ensures an in­

crease in accuracy performance; however, the rows in Figure 24 show an interesting 

decrease in performance given observation lengths longer than  4.5 seconds with peak 

accuracies ranging from 2.5-3.5 seconds.

The average ITR  results in Figure 25 show a similar column-wise bimodal distri­

bution across the spatial frequency conditions with a peak in the 0 c/deg condition 

and a peak over the 2.4 - 4.5 c/deg conditions. Additionally, the 2.4 c/deg spatial 

frequency condition achieves the highest average performance among all conditions 

with an average ITR of 45.3 b its/m in  which exceeds the 35.7 b its/m in ITR  achieved 

by the solid stimulus condition (0 c/deg).

Figures 26(a) and 26(b) show 1-dimensional line plots of accuracy vs. spatial 

frequency and ITR vs. spatial frequency, respectively. In each figure, the accuracies 

and ITRs were averaged across multiple observations lengths. Both figures show 

a bimodal spatial tuning pattern  where the performance peaks can be seen at the 

Oc/deg and 2.4c/deg spatial frequency conditions.

The level of spatial frequency adaptation over time is shown in the accuracy 

vs time plots in Figure 27. The 0 c/deg condition (solid stimulus) in blue, shows 

the typical accuracy vs. time profile where accuracy monotonically increases as the 

observation length increases until a ceiling is reached. The 2.4 c/deg (the best per­

forming checkerboard stimulus) shows a similar proportional relationship between 

accuracy and observation length up to 2.5 s, after which, the relationship becomes
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FIG. 24: Average Classification accuracy for experiment 1 for each spatial fre­
quency condition vs observation length, where columns show the different obser­
vation lengths and rows show the different spatial frequencies.

inversely proportional and accuracy starts to decrease as the observation length con­

tinues to increase. The dashed black line in Figure 27 shows accuracy versus time 

averaged over all spatial frequency conditions. W ith the exception of the 0 c/deg 

solid stimulus condition, the remaining spatial frequency (checkerboard) conditions 

all follow a similar unimodal pattern  where the accuracy peaks between observation 

lengths between 2 and 4 seconds, and longer observation lengths result in significant 

decreases in accuracy.

Figure 28 shows average rated irritation index for each spatial frequency from the 

subject evaluation questionnaires. The subjective irritation index generally follows 

the expected trend where level of visual irritation decreases as the spatial frequency 

increases, with the exception of a slight increase in the 1.2 c/deg increase.

5.3.2 E X P E R IM E N T  2: C O N T IN U O U S  P A T H -N A V IG A T IO N

Figure 29 shows the performance results from the continuous path-navigation
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FIG. 25: Average ITR  (bits/m in) for experiment 1 for each spatial frequency con­
dition vs observation length. Each column shows represents a different observation 
length and each row represents a different spatial frequency condition.

task. The average run duration is shown in Figure 29(a) where a shorter duration 

corresponds to better BCI performance as less time was required to fully navigate 

the path. Note tha t run duration time does not always imply completion of the as 

run duration lengths were capped to a maximum of 180 seconds and therefore some 

subjects were unable to complete the for some of the spatial frequency conditions. 

Figure 29(b) shows the amount of completion for each spatial frequency condition 

averaged over all subjects. The 0 c/deg and 2.4 c/deg spatial frequency conditions 

were the only conditions where all subjects were able to fully complete the in the 

alloted time. These results agree with those obtained from experiment 1 which 

showed performance peaks at the 0 c/deg and 2.4 c/deg conditions. Additionally, 

both  the run-duration and the path-completion performance curves show bimodal 

distributions with the emergence of two distinct peaks; one at 0 c/deg and one at

2.4 c/deg.
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Accuracy Vs. Spatial Frequency
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FIG. 26: Spatial Frequency tuning curves from experiment 1. (a) shows classification 
accuracy as a function of spatial frequency averaged across all subjects, (b) shows the 
ITR  as a function of spatial frequency averaged across all subjects. For both  26(a) 
and 26(b) the averages were computed using the maximum value over the range of 
observation lengths.
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FIG. 27: Classification accuracy vs time window length averaged across all subjects 
from experiment 1. The solid blue line shows the accuracy vs time for the 0 c/deg 
(solid) spatial frequency condition and the solid red line shows the accuracy for the 
2.4 c/deg condition. The dotted black line is the accuracy vs time averaged over all 
9 spatial frequency conditions.
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FIG. 28: Average subjective evaluation of visual irritation for each spatial frequency 
condition.
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Run Duration for Path Navigation Task
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FIG. 29: Part (a) shows the average run-duration from experiment 2 across all sub­
jects for each of the spatial frequency conditions. P art (b) shows the average path- 
completion percentage for each of the conditions. On average, the subjects were able 
to complete the path  the fastest with the 0 c/deg and 2.4 c/deg conditions which is 
reflected in (b) as those were the only two conditions were all subjects were able to 
completely finish the path.
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5.4 DISCUSSION

As the effect of spatial frequency on BCI performance has not been explored, 

most studies arbitrarily select stimuli using either a solid image or a generic checker­

board pattern  in the range of 0.15-0.3 c/deg. This study demonstrates tha t spatial 

frequency can have a dram atic effect on SSVEP performance th a t is consistent across 

subjects. The results in Figure 24 show th a t the solid 0 c/deg condition is able to 

achieve an average accuracy of 97.7% given observation lengths greater than  3.5 s. 

The 2.4 c/deg spatial condition is also able to achieve a reasonable accuracy of 85.1% 

using a shorter observation length of 2.5 s. Even though the 2.4 c/deg accuracy is not 

a high as th a t obtained from the solid condition, the responses generated from the

2.4 c/deg spatial frequency condition require a shorter time window for excitation. 

This is reflected in Figure 25 where the 2.4 c/deg condition obtains an averaged ITR 

of 45.3 b its/m in which is significantly higher compared to 35.7 b its/m in  with the 

solid stimulus condition (p=0.02).

The results from both the discrete classification and the continuous navigation 

experiments show a clear bimodal distribution of SSVEP performance across the 

spatial frequency conditions. Figures 24, 25, and 26 from the discrete classification 

experiment all reflect a similar bimodal spatial tuning where performance peaks are 

exhibited around the 0 c/deg and 2.4 c/deg conditions. For the accuracy plots, the 

peaks at the 0 c/deg condition are higher than the peaks at the 2.4 c/deg, whereas 

the opposite is seen from the ITR plots where the 2.4 c/deg peaks exceed the 0 c/deg 

peaks. The continuous navigation experiment confirms the results from experiment 

1 as Figure 29 shows th a t the performance of the navigation task averaged across 

all subjects exhibits a similar bimodal distribution across spatial frequency condi­

tions. The 0 c/deg and 2.4 c/deg peaks were the only conditions where all subjects 

were able to fully complete the path, thus giving a strong indication th a t these two 

spatial frequency conditions provide superior response characteristics and can result 

in optimal SSVEP performance compared to other spatial frequencies. These re­

sults concur with the findings in [Tobimatsu et ah, 1993, Tornoda et ah, 1991] where
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similar bimodal spatial tuning curves were found when measuring VEP amplitude 

during stimulation from a single stimulus. This study shows for the first time th a t 

a similar bimodal relationship occurs between SSVEP BCI performance and spatial 

frequency even when multiple stimuli are flashed simultaneously a t different temporal 

frequencies.

Interestingly, the 0 c/deg condition resulted in a faster completion time on aver­

age, compared to the 2.4 c/deg condition despite the fact th a t the 2.4 c/deg achieves 

an overall higher ITR than 0 c/deg condition. This may be due to the decrease 

in accuracy exhibited by the 2.4 c/deg condition for longer observation lengths, as 

seen in Figure 27. Additionally, all of the spatial frequency conditions, except for 

the solid condition, show a substantial decrease in accuracy for observation lengths 

longer than  3 seconds th a t continues to decrease as the observation length increases. 

This suggests th a t a mechanism of spatial adaptation might be occurring in the vi­

sual system from the stimulation of these spatial frequency conditions during the 

SSVEP BCI tasks. It is a known phenomenon tha t there exists a reduction of neural 

activity when stimuli are continuously repeated [Grill-Spector et al., 2006]; however, 

the underlying neural mechanisms of this phenomenon are still unknown. In the 

case of spatial frequency adaptation, there exists spatially tuned neuronal popula­

tions (or spatial channels) th a t can adapt during stimulation of spatial stimuli in 

which the strength of the spatial channel response declines throughout adaptation 

[Blakemore and Sutton, 1969, Klein et ah, 1974, Movshon and Lennie, 1979]. The 

results from this current study show a similar pattern  of spatial frequency adapta­

tion over the time-course of stimulation th a t agrees with previous EEG studies th a t 

use a single stimulus [Heinrich and Bach, 2001, Baas et al., 2002], The results from 

this current study show th a t the mechanisms of spatial adaptation similarly occur 

in the context of SSVEP BCIs where multiple simultaneously flashing stimuli are 

presented to the visual system. These have im portant implications for VEP-based 

BCIs where simultaneously flashing stimuli are common. Thus, when using spatial 

frequency stimuli, the target detection accuracy over prolonged durations of stimu­

lation can decrease due to spatial adaptation -  a fact th a t is generally overlooked in
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VEP-BCI studies.

The results in Figure 28 of the subjective evaluation of visual irritation for each 

spatial frequency condition show th a t subjects, on average, perceive less overall ir­

ritation for higher spatial frequencies compared to lower spatial frequencies. Specif­

ically, for the two top performing conditions, the average irritation index was 8.1 

for the 0 c/deg condition, whereas the irritation index was roughly half th a t at 4.5 

for the 2.4 c/deg condition. This has favorable implications which show th a t practi­

cal VEP-based BCIs can be employed with less visually irritating stimuli to achieve 

comparable performance with the traditional, more obtrusive solid stimuli.

Although these results demonstrate th a t spatial frequency exhibits a distinct pa t­

tern on the accuracy and performance of SSVEP BCI target detection, additional 

analysis is still needed to further characterize these effects. A longitudinal study 

is needed to determine the stability of subject-specific spatial frequency tuning and 

adaptation. Further, the relationship between spatial frequency and the temporal 

flashing (or pattern  reversal) frequency needs to be studied as the effect of tem ­

poral frequency on spatial frequency tuning and adaptation is not well-understood. 

Overall, these results demonstrate th a t the clinically studied mechanisms of spatial 

frequency tuning and adaptation are present in the context of m ulti-target stimula­

tion, showing tha t spatial frequency plays a significant role in SSVEP performance. 

This characterization can potentially be utilized for the development of more practi­

cal and robust BCIs.
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CHAPTER 6

SPATIAL DECOUPLING OF TARGETS AND FLASHING 

STIMULI FOR VISUAL BRAIN-COMPUTER

INTERFACES

Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) 

have proven to achieve among the highest information transfer rates for noninva- 

sive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, 

and visual-evoked paradigms in general, is th a t they require direct foveal fixation 

of the flashing stimuli. These interfaces are often visually unpleasant and can be 

irritating and fatiguing to the user, thus adversely impacting practical performance. 

In this study, a novel c-VEP BCI paradigm is presented th a t attem pts to perform 

spatial decoupling of the targets and flashing stimuli using two distinct concepts: 

spatial separation and boundary positioning. For the paradigm, the flashing stimuli 

form a ring th a t encompasses the intended non-flashing targets, which are spatially 

separated from the stimuli. The user fixates on the desired target, which is classified 

using the changes to the EEG induced by the flashing stimuli located in the non- 

foveal visual field. Additionally, a subset of targets is also positioned at or near the 

stimulus boundaries, which decouples targets from direct association with a single 

stimulus. This allows a greater number of target locations for a fixed number of flash­

ing stimuli. Results from 11 subjects showed practical classification accuracies for 

the non-foveal condition, with comparable performance to  the direct-foveal condition 

for longer observation lengths. Online results from 5 subjects confirmed the offline 

results with an average accuracy across subjects of 95.6% for a 4-target condition.

The work from this chapter is published in the Journal of Neural Engineering 
[Waytowich and Krusienski, 2015]
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The offline analysis also indicated th a t targets positioned at or near the boundaries 

of two stimuli could be classified with the same accuracy as traditional superimposed 

(non-boundary) targets. The implications of this research are th a t c-VEPs can be 

detected and accurately classified to achieve comparable BCI performance without 

requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this 

study shows th a t it is possible to increase the number of targets beyond the number 

of stimuli without degrading performance. Given the superior information transfer 

rate of c-VEP paradigms, these results can lead to the development of more practical 

and ergonomic BCIs

6.1 INTRODUCTION

Brain-Computer Interfaces (BCIs) are systems th a t directly decode brain ac­

tivity to communicate user intent [Wolpaw et al., 2002]. One of the most promis­

ing approaches for scalp electroencephalogram (EEG)-based BCIs utilizes flashing 

stimuli to elicit visual-evoked potentials (VEPs) over the occipital cortex. BCIs 

based on steady-state visual evoked potentials (SSVEPs) have been extensively 

studied and have proven to be among the most flexible and robust approaches 

[Middendorf et al., 2000]. The performance and reliability of SSVEP detection have 

been improved with advanced multichannel analysis techniques such as canonical 

correlation analysis (CCA) [Bin et al., 2009b]. A variation known as the code­

modulated VEP (c-VEP) [Bin et al., 2011] employs stimuli th a t flash according to 

binary, pseudo-random sequences known as m-sequences. Because m-sequences have 

an autocorrelation of nearly zero for non-zero shifts of the sequence, each target can 

be flashed using distinct time-shifted versions of a single reference m-sequence. This 

eliminates potential steady-state stimulus frequency biases and allows for straight­

forward extension to larger numbers of targets compared to standard SSVEP. Thus, 

c-VEP paradigms have provided among the highest information transfer rates (ITRs) 

for noninvasive BCIs [Spiiler et al., 2012].
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Visual irritation and fatigue from prolonged visual stimulation is an often over­

looked issue th a t can significantly affect usability of VEP-BCIs in real-world sce­

narios [Boksem et al., 2005, Hong et al., 2009]. In the seminal study tha t yielded 

impressively high noninvasive BCI information transfer rates (ITRs), Bin et al. used 

a m atrix of 32 targets th a t simultaneously flashed according to a time-shifted m- 

sequence [Bin et al., 2011]. The m atrix was additionally encompassed by 28 comple­

mentary flashing non-target stimuli for a total of 60 simultaneously flashing stim­

uli. Although this paradigm produced a comparatively high ITR  for a noninva­

sive BCI, it generates a visual cacophony th a t is not visually pleasing or desirable 

for long-term use. Traditional solutions to this problem have been to reduce the 

saliency or obtrusiveness of the visual stimuli such as utilizing high-frequency stim­

ulation (> 35Hz) [Muller et al., 2011, Diez et al., 2013], high duty-cycle stimulation 

(<50% duty cycle) [Lee et al., 2011], or low-contrast stimulation (0-10% contrast) 

[Lalor and Foxe, 2009]. Although these approaches can reduce the reported visual fa­

tigue, they generally compromise performance. For example, with the high-frequency 

stimulation, Muller et al. [Muller et al., 2011] reported average accuracies near 69% 

with an average ITR of 46.8 b its/m in with frequencies greater than 30 Hz, compared 

to average accuracies of 91% and an average ITR  of 92.8 b its/m in  using c-VEP 

[Bin et al., 2009a].

SSVEP BCIs th a t do not require direct foveation of the flashing stimuli have also 

been developed. These paradigms are ultimately designed for individuals who are un­

able to control their gaze, such as with locked-in syndrome [Lesenfants et al., 2014], 

Typically, these paradigms require the user to fixate their eye-gaze on a cen­

tral, inactive position while focusing covert attention on a flashing target located 

in their parafoveal vision (i.e., 2 ~  5 degrees of visual angle from foveal cen­

ter [Westheimer, 1982]). While these paradigms achieve some degree of effec­

tiveness, they generally suffer from a dram atic drop in performance compared 

to direct-gaze approaches, even when implementing a small number of targets 

[Lesenfants et al., 2014, Allison et al., 2008, Lalor et al., 2007, Kelly et al., 2004].
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The present study proposes a novel c-VEP paradigm th a t incorporates two dis­

tinct concepts th a t spatially decouple the targets from the flashing stimuli. The first 

concept spatially separates the targets from the stimulus such th a t fixation of the ta r­

get does not require direct foveation of the flashing stimuli, nor does it require covert 

attention. For the second concept, while traditional SSVEP and c-VEP paradigms 

generally require a unique stimulus per target location, the proposed paradigm allows 

for target locations associated with the boundaries of the stimuli. This effectively 

decouples the targets from association to a single stimulus and increases the number 

of possible targets for a fixed number of distinct stimuli.

To evaluate both of these concepts, the flashing stimuli form a ring th a t en­

compasses the spatially-separated non-flashing targets, i.e., the user’s “workspace” . 

Targets are also uniquely positioned at or near the boundaries of adjacent stim­

uli. The user attends to a non-flashing target, and the non-foveal flashing stimuli 

modulate the EEG. Several target configurations are evaluated and compared to the 

traditional direct-foveal (i.e., superimposed) target approach using the same inter­

face. The results indicate th a t comparable performance can be attained using the 

traditional direct-foveal and the proposed non-foveal approaches and th a t bound­

ary targets can be as effectively discriminated as traditional non-boundary targets. 

These findings provide im portant insights for the development of more ergonomic 

and practical visual flashing paradigms for BCIs.

6.2 METHODOLOGY

6.2.1 EXPERIMENTAL PARADIGM

The proposed paradigm utilizes c-VEP stimuli th a t form a circular ring encom­

passing the non-flashing targets as shown in Figure 30. The ring is segmented into 

four distinct arcs th a t are each flashed according to time-shifted versions of a single 

m-sequence. An m-sequence length of 63 was selected for purposes of comparison to 

the results from Bin et al. [Bin et al., 2011]. While a shorter m-sequence can be used
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for this four- stimulus configuration, the length 63 m-sequence was implemented to 

maintain the same stimulus interval and temporal dynamics as Bin’s landmark study. 

Because there are only four stimuli in the present paradigm, the m-sequence was cir­

cularly shifted by 15 bits (0.25 s) for each adjacent stimulus to minimize undesirable 

EEG correlations due to smaller temporal shifts. During flashing, the segments of 

the ring alternate between pure black and white according to the shifted m-sequence. 

The background is 50% gray tone.

Both offline and online experiments were conducted to evaluate the new paradigm. 

In the offline experiment, EEG da ta  were collected during foveal fixation on 25 differ­

ent target locations (see Figure 30a) to test the effects of target position and distance 

from the stimuli on performance. Fixation crosses were placed in three concentric 

rings (eight crosses per ring) at varying radii from the center of the ring. Eight of 

the 25 targets were superimposed directly on the stimuli for direct comparison of 

traditional direct-foveal stimulation and parafoveal stimulation. Targets were also 

placed at or near the boundaries of adjacent stimuli to determine if the combination 

of these stimuli could create discriminable EEG patterns and effectively double the 

number of possible targets for a given number of stimuli.

Target Location Grouping

The stimulus-ring design allows for unique characterization of c-VEP stimulation 

by exploiting spatial asymmetries produced by the surrounding ring stimuli and the 

encompassed target locations. The targets shown in Figure 30a can be grouped by 

location such th a t attending to a particular location will elicit either direct-foveal 

(<1 degree of visual angle from foveal center), near-foveal (1 ~  2 degrees of visual 

angle from foveal center), or parafoveal (2 ~  5 degrees of visual angle from foveal 

center) visual stimulation. While there is no precise delineation of these foveal cate­

gorizations, the prescribed visual angles fall within the generally accepted ranges for 

foveal vision [Westheimer, 1982],

Additionally, targets can also be grouped as boundary, being on or adjacent to the 

boundary of two c-VEP stimuli; or non-boundary, on or adjacent to a single stimulus.
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(a)

o m m

(C)

(b)

Distance from Ring Group #
Direct-Foveal 1) 8-Class (all)

(locations 1-8) 2) 4-Class (even)
Near-Foveal 3) 8-Class (all)

(locations 9-16) 4) 4-Class (even)
Parafoveal 5) 8-Class (all)

(locations 17-24) 6) 4-Class (even)

FIG. 30: Workspace and target locations/groupings, (a) Four flashing c-VEP stimuli 
form a ring tha t encompass non-flashing targets indicated by the fixation crosses 
(+). During flashing, the segments of the ring alternate between pure black and 
white according to the shifted m-sequence. All 25 target locations used for offline 
evaluation are shown. Target locations are also placed directly over the stimuli to 
represent traditional direct-gaze stimulation. Only a single target is visible at any 
time for the offline experiments, (b) Target numbering for groupings. The odd 
numbers in blue represent the boundary targets and the even numbers in green 
represent the non-boundary targets. This numbering scheme is used to designate 
the concentric rings and the various 4- and 8-class classification configurations, (c) 
Target groupings for classification according to (b).
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As can be seen in Figure 30a, the targets th a t are in the boundary group lie on 

the diagonals of the ring, and the non-boundary targets are on the horizontals and 

verticals of the ring. These boundary conditions were included to explore the effects 

of having two distinct, equally prominent stimuli representing the target, which has 

implications for increasing the number of possible target locations for a fixed number 

of flashing stimuli. The center target is equidistant from all ring stimuli and was 

included for comparison purposes but was not included in the present analysis.

Based on this categorization scheme, several 8-target and 4-target classification 

groupings were considered; they are listed in Figure 30c. These 8- and 4-class con­

figurations were used in the offline analysis to assess the quality of non-foveal c-VEP 

stimulation as a control signal for a BCI, as well as to explore the utility of the 

boundary targets in the 8-class configuration. While a wide variety of other group­

ings can be considered, particularly for offline analysis, the focus of the present study 

is to examine the effects of target distance from the stimuli and the impact of targets 

at or near the stimulus boundaries.

6.2.2 DATA COLLECTION

A single experimental session was collected from twelve able-bodied subjects 

(five females and seven males, ages 21 to 28) for offline evaluation of the proposed 

paradigm. The subjects varied in previous BCI experience with seven subjects hav­

ing no prior experience. This study was approved by Old Dominion University’s 

Institutional Review Board and each subject gave informed consent before partici­

pating. Subjects reported no history of epilepsy or seizures, which can be induced 

in susceptible individuals by flashing stimuli. D ata for one subject was excluded 

because the subject failed to comply with the task; thus, da ta  from eleven subjects 

were analyzed. Five subjects (three females, two males) participated in a second 

session for an online evaluation of the proposed c-VEP paradigm in which real-time 

target selection feedback was provided.

For both the online and offline sessions, EEG was recorded using a 16-channel 

g.USBAmp amplifier and active electrodes (Guger Technologies, Austria) primarily
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placed over the occipital and parietal-occipital regions of the brain as shown in Fig­

ure 31. Signals were digitized at 600 Hz and stored on a hard disk. All EEG channels 

were referenced to the left ear-lobe, and FPz was used as the ground. The EEG data  

recording was synchronized with the c-VEP task using UDP communication protocol 

with BCI2000 general-purpose BCI software [Schalk, 2004].

Stimulus onsets for each m-sequence were synchronized using a digital trigger 

signal generated from an Arduino Mega microcontroller board with an Atmel AT- 

megal280 microcontroller th a t was connected to the recording computer. All m- 

sequence stimuli were displayed using DirectX (Microsoft Inc.). In both sessions, the 

c-VEP ring paradigm was displayed on a 40-inch LCD monitor with a refresh rate of 

60 Hz.

Subjects sat in a darkened room in a comfortable chair, approximately 60 cm 

from the monitor. The stimulus ring subtended 45.2H X 45.2W (radius =  50 cm) 

from the center. The parafoveal targets (locations 17-24) were centered 4.2 cm (4.0 

degrees of visual angle) from the inner edge of the stimulus ring. The near-foveal 

targets (locations 9-16) were centered 1 cm (1.0 degree of visual angle) from the inner 

edge of the stimulus. The location of each subject’s gaze was recorded and verified 

using a TOBII X60 eye tracker, which was positioned directly below the monitor. 

The average radial standard deviation of the eye gaze for each target location and 

subject was computed to be 0.54 cm, which confirms th a t the subjects’ gaze remained 

consistently fixated on the prescribed target locations.

Offline Experiment

For the offline experiment, EEG data  were collected for all 25 target locations. 

During the experiment, a single white fixation cross (i.e., target) was displayed a t a 

time. Subjects were instructed to maintain visual fixation and attention on the cross 

during the stimulation period while refraining from unnecessary movements and fre­

quent eye-blinks. Subjects attended to the target for 30 complete m-sequence cycles 

(31.5 s) while the segments of the ring simultaneously flashed with the respective 

lagged version of the m-sequence. After the 30-cycle stimulation interval, there was
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FIG. 31: The EEG electrode montage used for the study. The locations are based 
on the International 10-20 system.

a 4-second pause while the target appeared in a new location and the process was 

repeated. Each of the 25 target locations were presented in random order to mitigate 

any anticipation and order biases. After 8 consecutive 30-cycle stimulation periods, 

a 1-2 minute rest period was given. All 25 target locations were presented 4 times 

each totaling 126 seconds of da ta  for each target location. The to tal session length 

for the offline experiment was approximately 1 hour.

Online Experiment

For the online experiment, two of the 4-class groups were used to evaluate the 

performance of the foveal and parafoveal target locations (groups 2 and 6, respec­

tively, from the table in Figure 30c). A training and testing session were conducted 

during a single larger session for 5 subjects th a t previously participated in the offline 

experiment. Only two 4-class conditions were evaluated online to keep the overall 

session length (training and testing) manageable in comparison to the prior offline
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session.

The training session was used to generate the c-VEP tem plate waveforms for 

target identification. The training session was similar to the offline experiment except 

th a t only 8 total target locations were trained (the union of groups 2 and 6 as shown in 

the table in Figure 30c). During training, only one target at a time was shown for 30 

seconds with a 4-second blank interval. Presentation of each target position was again 

randomized. After completion of four repetitions of each of the 8 target locations, 

a custom M atlab script was used to generate the c-VEP tem plates as described in 

Section 6.2.3. These templates were then utilized for classification during the online 

testing session. The online training session lasted approximately 25 rnin including 

rest periods.

Each of the 4-class conditions (i.e., foveal and parafoveal) was tested separately. 

During a trial, all four target locations from the particular condition were simul­

taneously displayed to the subject. A trial commenced with a 2 s cue period th a t 

indicated the intended target by highlighting it in blue as shown in Figure 32b. Next, 

EEG da ta  were collected during a 6-second stimulation period. This was followed 

by a 2-second feedback period where target classification was performed and the 

predicted target was presented to the subject by highlighting the target in green as 

shown in Figure 32c. The ring stimuli started flashing 1 second into the cue pe­

riod and remained flashing throughout the stimulation period. This was done to 

mitigate any transient ERP responses from the stimulus onset. The total trial (Cue- 

Stimulation-Feedback) lasted 10 seconds. Figure 32a shows the timing protocol of a 

single online trial. After the feedback period, another trial commenced with a new 

target location. Sixteen trials constituted one run and two runs were performed for 

each 4-class condition. The online testing session lasted approximately 10 minutes, 

resulting in an overall online session length of approximately 45 minutes including a 

10-minute interval for classifier calibration between the training and testing session.
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T  F eed b ack  (2 s )^

No Flashing Flashing

(a) Timing Protocol

(b) Cue (c) Feedback

FIG. 32: (a) Timing protocol for an online trial. A two second cue segment highlights 
the target to attend to in blue (b). One second into the cue period, the ring stimuli 
started to flash. D ata is collected for 6 seconds during the stimulation followed by a 
two second feedback period where the selected target is highlighted in green (c).

Subjective Evaluation

Following the online study, each subject was asked to subjectively evaluate the 

direct-foveal and the parafoveal conditions in terms of degree of visual irritation. For 

each condition, the subjects provided a numeric response to the following statem ent: 

“On a scale from 1 to 10, please rate how visually irritating it is to continuously stare 

at the target, with 1 representing not at all irritating and 10 representing extremely 

irritating.”

6.2.3 DATA ANALYSIS

The analysis for this paradigm was based on Bin et al., [Bin et al., 2011], in 

which CCA was adopted for multichannel c-VEP classification. Modifications to the 

m ethod described in [Bin et al., 2011] were made such th a t the asymmetries of the
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ring paradigm could be exploited. Note th a t for the standard c-VEP BCI paradigm, 

which requires direct foveal fixation of the targets, the principle of equivalent neigh­

bors [Bin et al., 2011] is employed; therefore, only one target tem plate needs to be 

constructed. In contrast, the various target locations in the present paradigm do 

not have equivalently positioned neighboring stimuli, so optimal spatial weights were 

computed using CCA for each target location.

Canonical Correlation Analysis

To reliably detect EEG responses to the flashing stimuli, a multivariate processing 

technique known as Canonical Correlation Analysis (CCA) can be utilized to find 

linear correlations between EEG data  and a stimulating signal. CCA has recently 

been adopted for multidimensional EEG analysis and has been shown to be extremely 

effective for SSVEP signal processing [Bin et al., 2009b, Lin et al., 2007] and has also 

been extended for c-VEP classification [Bin et al., 2011].

CCA is a multi-dimensional correlation analysis technique th a t finds underlying 

correlations between two sets of data. It creates linear combinations of two multi­

dimensional data  sets such th a t the mutual projection between the two da ta  sets is 

maximized. Given two multi-dimensional da ta  sets X , and Y . and their respective 

linear combinations x  =  X TW x and y = Y TWy. CCA determines the weight vectors 

W x and W y th a t produce the maximum correlation between x  and y. The projected 

vectors x  and y  are known as canonical variants and their correlation is known as 

the canonical correlation. The weight vectors W x and W y th a t produce the highest 

canonical correlation are found by solving the optimization problem:

/ X E[xTy] E [ W j X Y TWy]max p(x, y) = -........  - ..=  = ... ..;...............  -.............. n ................  (8)
w.,wx y /E[xTx]E[yTy} J  E [W J  X  X TW x] E [ W ^ Y Y TW y]

In practice this can be solved using the singular-value decomposition method to di- 

agonalize the covariance matrices as the maximum canonical correlation corresponds 

to the square-root of the largest eigenvalue.
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Offline Experiment

D ata from the offline experiment were zero-phase band-passed filtered from 0.5 — 

30 Hz using a Chebychev type II HR filter, as 30 Hz is the largest frequency produced 

by' a monitor with a 60Hz refresh rate. All EEG channels were then re-referenced 

to channel Fz to eliminate potential hemispherical biases. Each 30-cycle stimulation 

trial for each target location was extracted and concatenated to create 126 s (4 trials 

x 31.5 s) EEG segments for each target.

D ata from each of the target groups listed in Table from Figure 30c were aggre­

gated, and target classification was performed to test the offline performance for each 

condition. For each condition, the 126 s data  segments were separated into training 

and testing groups where 80% (96 cycles) was used for training and 20% (24 cycles) 

was used for testing. This ratio was selected because it gave sufficient training data  

to build the c-VEP templates for each target position. The c-VEP target templates, 

M k(i). were constructed using the training da ta  by first averaging the multichannel 

EEG data, X k(t). across each m-sequence cycle to produce an averaged multichan­

nel response, R k, for each of the k target locations [Bin et al., 2011]. The resulting 

1-second averaged responses were concatenated 100 times to produce a multichannel 

set S k w ith the same dimensions as X k(t): S k =  [.RkRkRk---Rk\■

CCA was then applied to find the best linear transformations of Sk and X k{t) 

th a t maximize the m utual projection, i.e., W$k and WXk such th a t p (W ^ kX ,  W j kS) 

is maximized. The resulting W x k are spatial weights th a t are used to combine the 

multichannel templates to form the final tem plate response for each target position. 

The testing data  were then utilized to evaluate the target predictions for different 

observation lengths.

The test da ta  for each target location were separated into trials (simulated ob­

servations) with integer cycle lengths from 1 cycle (1.05 s) to 6 cycles (6.3 s). The 

EEG for each trial was processed using the spatial weights W Xk and classified for 

target prediction [Bin et al., 2011]. For a given observation of test data, the spatially 

filtered EEG was linearly correlated with each of the target tem plates from a given
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condition, and the tem plate with the maximum correlation was classified as the pre­

dicted target. The average of a 6-fold cross-validation scheme was used to determine 

the unbiased classification accuracy.

In order to assess the relative contribution of each channel to classification perfor­

mance, a leave-one-out scheme was employed in which 14 of the 15 occipital channels 

were used in the classification [Spiiler et al., 2012], The left-out channel was iterated 

through all channels. Left-out channels th a t resulted in a major drop in classifica­

tion accuracy contributed more to the c-VEP response than left-out channels th a t 

resulted in little to no drop in accuracy. Because it was observed th a t excluding 

the worst performing channel generally boosted classification performance, the best 

14 channels were selected for analysis. While CCA should theoretically assign an 

irrelevant channel a weight near zero, it is generally not identically zero, resulting in 

a noise component being added to the output of the spatial filter. Thus, an addi­

tional channel selection procedure may further boost CCA performance, particularly 

for larger channel sets. This simple channel exclusion procedure can be further op­

timized but is not expected to significantly affect the overall results of the present 

analysis.

Online Experiment

The online experiment consisted of a training and testing session as part of a 

larger session. After the training data  were collected, the c-VEP target tem plates 

for the target locations were constructed using the same procedure described in the 

offline experiment shown in Section 6.2.3. The CCA spatial weights for each tem plate 

were also constructed. During the online test, a 2-second cue instructed the subject 

to  attend to a particular target location, after which 6 seconds of da ta  were collected 

during the stimulation period. The 6-second observations were classified as described 

in Section 6.2.3 by filtering with W x k, correlating with each target tem plate and 

selecting the target with maximum correlation. As with the offline analysis, the 

simulated performance was evaluated for cycle lengths 1-5, where a cycle length of 6 

represents the actual online performance. However, unlike the 4-class offline analysis,
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TABLE 2: Offline Accuracies

Distance from Ring Group #  Avg. Accuracy

Direct-Foveal (locations 1-8)
1) 8-Class (all) 99.2%(±1.4)
2) 4-Class (even) 100%(±0.0)

Near-Foveal (locations 9-16) 3) 8-Class (all) 96.6%(±6.0)
4) 4-Class (even) 99.4%(±1.9)

Parafoveal (locations 17-24) 5) 8-Class (all) 89.7%(±10.1)
6) 4-Class (even) 95.5%(±8.3)

no cross-validation was performed to provide a more realistic estimate of actual online 

performance.

6.3 RESULTS

6.3.1 OFFLINE EXPERIMENT

The average accuracies for the offline experiment for each condition are shown in 

Table 2. The accuracies are based on a 6-cycle observation length (6.3 s). The 8- 

class accuracies ranged from 89.7-99.2% and all of the 4-class conditions ranged from 

95.5-100%. The average accuracies decreased with the distance from the target for all 

conditions. The 8-class parafoveal condition provided an average accuracy of 89.7% 

compared to 99.2% for the direct-foveal condition, which was statistically significant 

using a paired t-test (p <0.05). The 4-class parafoveal condition provided an average 

accuracy of 95.5% compared to 100% for the direct-foveal condition, which was not 

statistically significant.

The two leftmost panels of Figure 33 show the average offline performance as a 

function of the number of stimulus cycles used for classification for the 8- and 4-class 

conditions, respectively. In general, the performance monotonically increases with 

the number of stimulus cycles, but this creates a trade-off in terms of information 

transfer rate. For the 8-class condition, there was a statistically significant difference 

in accuracies between the foveal and parafoveal targets across all observation lengths
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(p <0.05 using a paired t-test). There was also a statistically significant difference 

between the near-foveal and parafoveal targets across all but the largest observa­

tion length. For the 4-class condition, there was a statistically significant difference 

in accuracy between the foveal and parafoveal targets only for the three shortest 

observation lengths.

In order to compare the relative classification performance of the targets at or 

near the boundaries of the stimuli, Figure 34 shows confusion matrices for each of 

the 8-class conditions at the 6.3 s observation length. It is observed tha t there is 

no apparent bias in performance for the boundary target locations (odd numbers). 

Figure 35 shows the CCA spatial weight topographies and tem plate waveforms for 

the foveal and parafoveal conditions, respectively, from a representative subject (Si).

6.3.2 ONLINE EXPERIMENT

The accuracies of the online experiment for the direct-foveal and parafoveal con­

ditions are shown in Table 3 for each subject. Both conditions provided average 

online accuracies of above 95%. The rightmost panel of Figure 33 shows the simu­

lated average performance as a function of the number of stimulus cycles used for the 

online data. Using a paired t-test, there was a statistically significant difference in 

accuracies between the conditions for the two shortest observation lengths (p <0.05). 

Table 3 also includes the responses to the subjective evaluation of the perceived visual 

irritation on a scale from 1 (least)-10(most), termed the irritation index.
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FIG. 33: Simulated average classification accuracies for the offline and online exper­
iments as a function of observation length in #  of complete m-sequence cycles. The 
limits of the error bars indicate the minimum and maximum subject performance. 
A single m-sequence cycle length is 1.05 s, thus the observation lengths range from
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topographies for the foveal and parafoveal targets, respectively. The righmost column 
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TABLE 3: Online Accuracies (t =  6.3 seconds) and Visual Irritation Index

Foveal 4-Class Irritation Index Parafoveal 4-Class Irritation Index
SI 100% 7 100% 5
S2 100% 8 100% 6
S9 96.9% 7 81.2% 3

S10 100% 8 96.9% 3
S ll 100% 8 100% 5
Avg 99.4% 7.6 95.6% 4.4

6.4 DISCUSSION

While existing VEP BCI paradigms almost exclusively prescribe visual targets 

th a t overlay or embody a single flashing visual stimulus, this study demonstrates 

the potential for spatially decoupling targets from individual flashing stimuli. The 

offline results for the 4-class condition in Figure 33 indicate th a t there is no signif­

icant change in performance as the targets are positioned outside of direct foveal 

vision when an observation length greater than  4.2 seconds is used. The average 

performance across all conditions is above 80% after 3 (3.15 s) and 1 (1.05 s) stimu­

lus cycles for the 8-class and 4-class scenarios, respectively. This indicates th a t the 

ring paradigm has the potential to achieve practical and competitive performance 

without requiring direct foveation of the targets.

Traditional VEP-BCIs generally associate a single target with a single, unique 

stimulus, which tends to create more visual discord for increasing numbers of targets. 

The proposed 8-class paradigm also introduces the novel concept of placing targets 

at or near the boundary of two adjacent stimuli. Figure 34 shows tha t there are no 

significant biases between the boundary and non-boundary classifications for a given 

condition. It can also be observed th a t misclassifications generally occur at adjacent 

targets along the diagonal, which is expected based on the design of the workspace.

The overall 8-class offline results dem onstrate th a t it is possible to accurately de­

tect and decode changes in the EEG due to  multiple stimuli associated with a single 

target, although these results need to be verified using online experiments. While
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EEG changes due to multiple non-foveal stimuli have been utilized in the past, par­

ticularly with the principle of equivalent neighbors from the c-VEP speller introduced 

by Bin et al. [Bin et ah, 2011], the present study utilizes stimuli in a unique'way such 

th a t there are more available targets than stimuli. This may help to mitigate the 

limits on the number of available traditional stim uli/targets imposed by the length 

of the m-sequence, monitor refresh rate, etc. Additionally, minimizing the number 

of required flashing stimuli may also have implications in terms of visual irritation 

and fatigue, although visual fatigue was not directly assessed in this study. Further 

investigations can be conducted to explore the effects of stimulus size, proximity, 

orientation, multiple boundaries, etc. on performance.

The CCA tem plate waveforms presented in Figure 35 indicate th a t there is not a 

clear visual relationship between the foveal and parafoveal response templates. While 

the foveal and parafoveal templates for some corresponding target locations appear 

highly correlated (e.g., the bottom  targets), others do not appear to have a distinct 

temporal relationship (e.g., the top targets). This is in contrast to Bin et al. (2011), 

where the responses for each target were consistent due to the principle of equiva­

lent neighbors (i.e., each target had identical boundary stimulus configurations and 

timing) [Bin et al., 2011]. Related to this point, it is not obvious how the adjacent 

stimuli contribute to the boundary target responses. Again, each boundary stimulus 

has a different spatial orientation and further analysis is needed to quantify the rel­

ative contributions. Consistent with the differences in the CCA response templates, 

the CCA spatial weight topographies are similar between the foveal and parafoveal 

conditions for certain target locations (e.g., bottom ) and dissimilar for other locations 

(e.g., top). The spatial weights with the largest magnitudes are generally focused 

over the central-occipital area for the foveal condition and more diffuse around the 

central-occipital area for the parafoveal condition, which is indicative of the contri­

bution of peripheral vision. Similarities between adjacent patterns may provide some 

indication of the relative contributions of the adjacent stimuli to the boundary ta r­

gets. These patterns were generally similar for the other subjects, but due to subtle 

differences between subjects, the patterns are most distinct when visualizing a single
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subject’s da ta  compared to a grand average across subjects.

The 4-class online results show more of a deviation in performance between the 

conditions for shorter observation lengths compared to the equivalent offline condi­

tion. This can be partially a ttributed  to the comparatively lower performance of 

Subject 9 for the parafoveal condition and tha t fewer subjects are represented in the 

average compared to the offline results. However, there is also a discrepancy in the 

relative performance ranges between the online and offline results, particularly for 

the parafoveal condition. One likely explanation is th a t the stimulus duration for 

the offline data  was longer and the cross-validation procedure included segments of 

training data th a t did not begin from the stimulus onset and were from the middle 

of the trials. Therefore, it is likely th a t the simulated observations from the middle 

of the offline trials are fully entrained to the stimuli and do not include any transient 

effects of the stimulus onset. Thus, this offline training da ta  is more representative of 

the entrained EEG of the later cycles and misleadingly indicates better performance 

compared to the online condition where the EEG of the early cycles may not be fully 

entrained. Nevertheless, the online parafoveal condition still a ttains an average accu­

racy above 80% after 2 (2.1 s) stimulus cycles. This may provide a favorable trade-off 

between performance and visual irritation since the online subjects universally rated 

the parafoveal condition as less irritating as indicated in Table 3.

In order to fully validate the paradigm, undirected free-choice online experiments 

should be conducted to account for practical use issues such as target scanning and 

reaction to task-related feedback. Future work will more thoroughly explore the 

effects of distance between the targets and stimuli, increasing the number of stim­

uli/boundaries along the ring, the use of shorter m-sequences, and larger N-class 

target configurations th a t further exploit the combined concepts of stimulus-target 

distance and boundaries. It is envisioned th a t these stimulus-target decoupling con­

cepts introduced in the proposed paradigm will lead to the development of more 

practical and ergonomic BCIs by reducing visual irritation and potentially fatigue, 

as well as by increasing the number of available targets for a fixed number of stimuli.
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CHAPTER 7 

LARGE-SCALE TARGET DISCRIMINATION USING 

SPATIALLY DECOUPLED STIMULI

7.1 INTRODUCTION

The previous chapter introduced the concept of spatial decoupling for separat­

ing targets from flashing stimuli in a c-VEP BCI utilizing a novel ring paradigm: a 

segmented ring consisting of four time-delayed flashing m-sequence stimuli encom­

passing 25 non-flashing targets. The 25 non-flashing targets were grouped into several 

8-class and 4-class conditions to test the spatial separation and boundary positioning 

decoupling techniques. The results show th a t targets could be discriminated when 

they were spatially separated from their flashing stimuli using parafoveal stimulation 

and th a t targets could also be discriminated when placed at or near the boundary of 

two adjacent stimuli.

These results demonstrate the concept of spatial decoupling in the context of 4- 

class and 8-class BCIs; however, the upper limit of spatial decoupling was not tested. 

This chapter extends upon the results of the previous chapter by performing a large- 

scale 25-class BCI in which all targets from the ring paradigm are discriminated 

simultaneously using only four flashing stimuli. Additionally, this chapter extends 

the c-VEP characterization from the previous chapter by analyzing the activations 

from all 25-target positions. The results show th a t it is feasible to  obtain 25-class 

target discrimination from the ring paradigm with average accuracies above 80% 

from a 3.15 s observation window and accuracies above 90% from a 5.25 s observation 

window. Additionally, characterization analysis shows spatial c-VEP activations th a t 

are elicited contralaterally over the occipital regions from asymmetrical target/stim uli 

relationships from the ring stimulus.
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7.2 METHODOLOGY 

7.2.1 DATA COLLECTION AND EXPERIMENTAL PARADIGM

The da ta  collection and experimental paradigm are described in the previous 

chapter. After a screening of the EEG data  for discriminable c-VEP responses us­

ing the individual classification performance results from the previous chapter, one 

subject was excluded due to production of near-chance level classification accuracies 

for most of the 4-class and 8-class conditions. Thus, 10 (four females and six males, 

ages 21 to 28) of the original 11 subjects were included in the subsequent analysis.

7.2.2 PRE-PROCESSING

All da ta  were band-passed filtered from 0.1-30 Hz using a zero-phase equiripple 

FIR  filter. D ata from each trial were extracted from all 25 target positions for 

analysis. All inter-trial da ta  were discarded resulting in 126 s of d a ta  for each target.

7.2.3 25-TARGET CLASSIFICATION

Classification was performed with canonical correlation analysis using a similar 

method as described in section 6.2.3. The CCA algorithm was adapted for 25-target 

classification. Similarly to section 6.2.3, 25 cVEP templates M k(t) were constructed 

using training data  by performing CCA between the two multichannel variables X k(t) 

and Sk where X k(t) is the raw multichannel EEG data  and S k is the concatenated 

average of X k(t) such th a t the Sk and X k(t) have the same dimensions. CCA is 

applied to find the best linear transformations of Sk and X k(t) such th a t the m utual 

projection, p(Wx X ,  WgkS)  is maximized. The weight vector tha t produces this 

maximization is used to filter the average template to produce a canonical tem plate 

waveform for each of 25-targets. Testing data  are then split into observations of 

length t  and used for offline classification by linearly correlating the observations 

with each of the cVEP tem plate waveforms and assigning the target class label C  to
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the tem plate tha t produced the maximum p-value:

C = argmaXiPi,  z =  1,2, . . .K

D ata were split into training and testing according to a leave-one-out cross-validation 

scheme to give a thorough estimate of testing accuracy. The training da ta  were 

utilized to construct the CCA spatial weights and the corresponding cVEP templates, 

and the testing data  were used for classification.

The 25-Class ITR  for all subjects vs. the observation length, shown in Fig­

ure 36(b), was computed using equation 9.

I T R  = ( lo g , N  + P  log2 P  +  (1 -  P)  log2 )  * f  (9)

In order to simulate a practical ITR, an inter-epoch duration of 0.3 seconds was 

utilized based on the recent SSVEP BCI study from [Chen et al., 2014] which con­

stitutes the time required to shift eye-gaze from one target to the next.

The confusion matrices were computed and averaged across all folds of the cross- 

validation. The results were plotted in the 25-target ring paradigm configuration 

where each target position contains a subplot showing the classifier predictions for 

the respective target.

7.2.4 C-VEP CHARACTERIZATION

A characterization of the c-VEP responses was performed by quantifying the 

contributing sources of the c-VEP responses from the four eliciting stimuli and also 

by extracting topographical head-plot activations. Since the m ajority of targets in 

the ring paradigm are spatially decoupled from the flashing stimuli, it is not fully 

known how each stimulus contributes to the c-VEP response for a given target. To 

quantify these relative source contributions, the c-VEP responses for each of the 

25-targets were canonically correlated with the four tem plate responses from the 

target positions th a t directly overlay each of the four flashing stimuli (i.e. the four



97

responses th a t came from the target positions 2, 4, 6 and 8 as shown in Figure 30(b)) 

These responses were from direct visual fixation of the flashing stimuli and thus 

are strongly representative of activity generated by those stimuli. The remaining 

targets are then canonically correlated with each these four targets responses, which 

constitutes the relative source contribution for each target. Targets th a t have high 

canonical correlation with a particular source stimulus are representative as having a 

large source contribution from th a t stimulus. The source contributions are computed 

from all target positions for each of the four sources and are plotted as mini-rings 

positioned at each of the 25 target locations (Figure 38). Each mini-ring is composed 

of four segments (representing the four flashing stimuli) whose shaded color represents 

the strength of the canonical correlation from th a t target response to the particular 

stimulus. This gives a visual representation relative source contributions for each of 

the target positions.

To characterize the topographical activations over the occipital and parietal re­

gions of the scalp, the raw c-VEP responses X k(t) from each channel were correlated 

with the averaged evoked responses Sk from the corresponding channel. This gives 

a representation of the strength of the c-VEP responses contained within each chan­

nel. The single-channel correlations for each of the target responses are shown in 

Figure 39, where each topographic head-model corresponds to a target location and 

the head-models are plotted in the same 25-target configuration as the ring paradigm 

for intuitive visualization.

7.3 RESULTS

The average classification accuracies across all subjects are shown in Figure 36(a). 

The accuracies are plotted as a function of the observation length (i.e. number of 

m-sequence cycles), ranging from 1-6 cycles which corresponds to a time-window 

length ranging from 1.05 s to 6.3 s. The average accuracy is shown as the solid black 

line, and the minimum and maximum subject accuracies are shown with the solid 

blue lines. An average classification accuracy of over 90% is achieved with obser­

vation lengths >  5 cycles. The accuracy monotonically decreases with decreasing
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observation lengths as expected. Single trial target detection accuracies of 62% were 

achieved on average with the best subject reaching a 77% single trial accuracy which 

corresponds to a 1.05 s da ta  window. The confusion plot in Figure 37 does not show 

any apparent classification biases in the 25-target detection. Figure 36(b) shows the 

average ITR  across all subjects as a function of the stimulus cycle. As expected, the 

ITR  for all subjects monotonically decreases as the observation length increases as 

the information rate is inversely proportional to the observation length. The aver­

age ITR  obtained for a single cycle observation length is 88 bits/m in, with the best 

performing subject achieving an ITR of 120 bits/m in.

The c-VEP source correlation plot in Figure 38 shows a distinct pattern  in the 

relative contribution of each source for the 25 targets. The pattern  corresponds 

with the intuitive notion th a t targets have higher source contributions with adjacent 

stimuli than non-adjacent stimuli. The targets th a t lie on the vertical and horizontal 

axes of the ring, which have only one adjacent stimuli, show strong correlations with 

th a t stimuli. The targets th a t are at or near the boundary of stimuli (i.e. targets 

th a t are on the diagonals of the ring paradigm) show strong source correlations with 

the two adjacent stimuli tha t form the respective boundary. Additionally, there is a 

monotonic reduction in correlation strength as the target-stimulus distance increases.

The c-VEP activations plotted in Figure 39 show th a t the responses from direct 

foveal stimulation (outer ring) exhibit a focused activation over the primary visual 

cortex, while parafoveal responses are exhibited from the parietal-occipital regions of 

the visual cortex. Additionally, the activations from targets 24 (left-parafoveal) and 

20 (right-parafoveal), according to Figure 30(b), show contralateral activations over 

the occipital regions from the left and right segments of the ring stimulus, respec­

tively. The left visual field stimulation from target 24 produces activations in the 

right hemisphere of the occipital lobe, while right visual field stimulation from target 

20 produces activations in the left hemisphere of the occipital lobe. This is consistent 

with the nature of information flow in the visual system pathway in which the optic 

chasm contralaterally maps input from the right visual field to the left hemisphere 

and input from the left visual field to the right hemisphere [Rentschler et al., 1975],
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FIG. 36: (a) shows the average 25-class classification accuracies plotted as a function 
of observation length expressed in number of m-sequence stimulus cycles, (b) shows 
the 25-class information transfer rates also as a function of observation length. For 
both panels, the solid black lines show the average across all subjects while the blue 
lines show the minimum and maximum performing subjects. The shaded blue region 
therefore contains the distribution of the remaining subjects. In (a), the chance 
accuracy (4%) is shown as the gray dashed line.
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Confusion Plot

FIG. 37: Confusion m atrix averaged across all subjects. The confusion m atrix is 
plotted to match the same spatial configuration as the ring paradigm. Ea.ch of 
the mini-plots are positioned at each of the 25 target positions and represent the 
classification predictions for each target. The areas of bright yellow represent the 
correct classifications as the majority of predicted classes were the true target class. 
It can be seen th a t there is no apparent bias in the target classification.
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c-VEP Canonical Correlations

FIG. 38: 25-target source characterization plot averaged across all subjects. The 
c-VEP tem plate response for each target was canonically correlated with the outer 
four target templates (targets: 2, 4, 6 and 8 as shown in Figure 30(b)). The relative 
contributions from the four stimuli for each target position can be seen as a function 
of the target location. For most boundary target positions (i.e. targets th a t lie at or 
near the boundary of two stimuli), the c-VEP response contributions are shown to 
be comprised of roughly equal parts of the two adjacent stimuli.
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cVEP Activations

FIG. 39: Single channel correlation activations for each of the 25-target positions 
averaged across all subjects. The correlations are plotted topographically on head- 
models tha t are positioned at each of the 25-target positions. Each head-model 
is scaled to the minimum and maximum correlation value of the respective target 
position. The dark-red color indicates areas of high contributing activity for the c- 
VEP responses. It can be seen th a t the responses from direct foveal stimulation (outer 
ring) exhibit centrally over the primary visual cortex while parafoveal responses are 
exhibited from the parietal-occipital regions of the visual cortex.



103

7.4 DISCUSSION

The main objective of this offline analysis was to test the feasibility of 25-target 

detection using only 4 m-sequence stimuli. Currently, almost all VEP-based BCIs 

utilize a separate stimulus for each target or class. This work has the potential for 

not only leading to more practical VEP-BCIs from the reduction visual fatigue and 

irritation by reducing the number of flashing stimuli, but it can also potentially lead 

to the development of BCIs with higher ITRs. The average ITR of 88 b its/m  for a 

single cycle observation length is comparable to the ITR  results obtained in Gao’s 

cornerstone c-VEP paradigm [Bin et al., 2011) but with only a  fraction of the number 

of flashing stimuli used. The best subject was able to achieve an ITR  of over 120 

bits/m in, which outperforms Gao’s results. However, the present results need to be 

confirmed with an online implementation.

Nevertheless, these results represent an improvement in practicality as the a sig­

nificant reduction of flashing stimuli is achieved. The target-to-stim ulus ratio for the 

current ring paradigm is 6.25 targets per stimulus (25 targets /  4 stimuli) whereas 

the Gao’s paradigm has a ratio of 0.53 targets per stimuli (32 targets /  60 stimuli). 

To the author’s best knowledge, no study to date has attem pted to increase the num­

ber of available targets to be larger than the number of flashing stimuli. Therefore, 

although the current results are from offline analysis and need to be repeated online, 

the obtained classification performance shows promise th a t VEP BCIs can utilize 

spatial decoupling of the targets and flashing stimuli to gain 3-fold increase in the 

number of target classes without increasing the number of flashing stimuli.

The concept of spatial decoupling can potentially increase the number of targets 

past a given physical limit on the bottlenecks the number of flashing stimuli for 

other existing paradigms. For example, Gao’s paradigm owes its high information 

transfer rate to the 32 targets (and 32 +  28 corresponding flashing stimuli) it employs. 

However, th a t paradigm is unable to increase the number of targets further as the 

length of the m-sequence is unable to employ more than  32 distinct simultaneous 

flashing stimuli. Using this spatial decoupling technique, it is conceivable th a t Gao’s



104

paradigm could be extended to employ more than  32 targets w ithout increasing the 

number of flashing stimuli which would potentially lead to  higher information transfer 

rates.

In addition to the 25-target detection, the present characterization analysis of 

the c-VEP responses elicited from the ring paradigm helps gain further insight on 

the nature of spatial decoupling. For instance, Figure 38 shows th a t when visually 

attending to (or near) the boundary of two adjacent m-sequence stimuli, the result­

ing c-VEP response is a combination of roughly equal proportions of the individual 

responses elicited innately by those two stimuli. Further, a predictable decrease in 

the response strength is shown as the distance between the target and stimulus is 

increased. A mathem atical model representing VEP spatial decoupling can be made 

by modeling the correlation strength as a function of target-stimulus distance and as 

a function target adjacency relationships. This model could potentially be used as 

method to reduce the amount of training time needed for the BCI system. Currently, 

training data  is needed from each target position in the BCI for construction of the 

tem plate responses. A model describing the stimulus-target spatial decoupling could 

allow for a single master template to be made, requiring training da ta  from only 

one target, and then constructing the remaining targets from the master template. 

Future analysis will test the efficacy of such model construction for BCI purposes.

Similar to the source correlations, the head-model topographies of the c-VEP 

responses shown in Figure 39 demonstrate the spatial activations th a t are elicited 

from the asymmetrical stimulation of the ring stimulus paradigm. The topographies 

show a noticeable pattern  where targets th a t are positioned directly over the ring 

stimulus result in strong medial activations of the occipital lobe and targets tha t 

are positioned further away in the parafoveal stimulation region show more lateral 

activations. On the horizontal plane, the left and right parafoveal targets show strong 

right and left lateralizations, respectively. In future analysis, the knowledge channel- 

specific activations due to target-stimulus positional relationships can be used as a 

priori information for multi-class target detection.
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CHAPTER 8 

PRACTICAL IMPLEMENTATION AND 

DEVELOPMENT

The final chapter of this dissertation applies the results and insights gained from 

the previous chapters for development and implementation of practical VEP-based 

BCI software and applications. Many BCI paradigms work in the laboratory but 

fail to translate practically when used in real-world applications. VEP-based BCIs 

are particularly vulnerable to this issue as they require constant external stimulation 

th a t generally: 1) is not portable, 2) is visually fatiguing and irritating, 3) requires 

the user to  focus gaze on the stimuli, not the task, and 4) has predefined parameters 

and configurations th a t are often suboptimal for individual users.

These issues are especially problematic for the target population of individuals 

with severe movement disorders or locked-in syndrome. For example, a paralyzed 

individual who wants to use a VEP-based BCI to control a motorized wheelchair 

currently has limited options of available systems th a t would be feasible. Most VEP- 

BCIs require computer monitors or LCD screens to display the stimuli th a t are not 

practical for wheelchair use. Additionally, the stimuli th a t are commonly utilized in 

the BCI may be visually irritating and may not give optimal response characteristics, 

which would not be conducive for practical long-term use. Furthermore, the ability 

to safely control a wheelchair and navigate is highly dependent upon the user’s ability 

to see and react to the environment. Users currently need to directly visually attend 

to flashing stimuli to achieve VEP control, which consequently diverts eye-gaze away 

from the immediate surroundings when navigating the wheelchair. Additionally, for 

most VEP-BCI research, there is a lack of standardized software options th a t allow 

for flexible configurations for stimulus specificity as well as a lack of controllable BCI 

applications.
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A practical implementation of a VEP-based BCI software system is needed to ad­

dress these issues. This chapter describes the development of a practical VEP-BCI 

system consisting of an extensible VEP-BCI software platform called VESSELS, and 

the implementation and validation of tha t system with hardware and software inter­

facing for various BCI-control mechanisms of both computer-based and peripheral 

device control applications.

8.1 DEVELOPMENT OF FLEXIBLE SOFTWARE

Flexible and user-friendly software is rarely found in the context of BCI systems, 

particularly outside of laboratory settings. As such, the underlying software tha t 

controls the visual stimulation and control is usually predefined and fixed to the 

parameters of the associated study. This rigid system model is not optimal for 

VEP BCIs as seen in the results in Table 3.3.2 from Chapter 2, where subjects 

preformed sub-optimally with arbitrarily defined stimulus characteristics. Stimuli 

th a t are individually tailored to each user can greatly increase the detection accuracy 

and robustness of the VEP-BCI. Additionally, flexible software allows the user to 

preferentially favor either BCI usability by adjusting stimulus param eters th a t they 

find visually appealing (such as stimulus frequency, color, size and position), or 

they can favor BCI performance by adjusting stimulus parameters th a t maximize 

detectability. W ith this capability, BCI users can find an optimal configuration th a t 

balances BCI comfort and performance and ultim ately increases the overall usability 

of the system. Thus, this last chapter focuses on the design and development of a 

sophisticated software platform with configurable parameters to allow for real-time 

tailoring of VEP stimuli as well as allowing for easily implementable control of various 

BCI applications.
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8.1.1 VESSELS: VISUAL EVOKED STIMULATION AND SELECTION 

SOFTWARE

The Visual Evoked Stimulation and SELection Software (VESSELS) is an ex­

tensible software platform for VEP-BCI applications th a t allows for configuration 

of VEP stimuli and provides control of various software and hardware applications. 

VESSELS is a cross platform system designed around a single codebase software 

model th a t can be run natively on Windows, Mac, Android, and iOS operating sys­

tems. VESSELS is written in C #  and uses the Mono runtime framework allowing it 

to run Microsoft .NET code using the Common Language Runtime (CLR) to compile 

natively on various operating systems and architectures.

VESSELS is designed around the integration of four major components: the stim­

ulation interface (SI), the BCI2000 Interface (BI), the application interface (Al), and 

the control architecture (CA). Each component is an individual module th a t handles 

various duties relating to either system timing, application control, communication 

or visual stimulation. A diagram of the VESSELS software architecture is shown in 

Figure 40. The CA component is the main hierarchical GUI system tha t manages 

a menu-driven interface and facilitates the communication between all component 

interfaces. The SI manages and renders all flashing stimuli according to  their con­

figured shape, size, frequency, color, etc. The BI handles full-duplex communication 

between VESSELS and the BCI2000 General Purpose BCI software. The BI sends 

and receives state information to and from BCI2000. The primary state is the clas­

sification output from the BCI2000 signal processing filter. The selected classifier 

output is sent to the Al for device command translation according to the specific 

application task. The Al component handles all aspects of the BCI application. If 

the application is a self-contained software application, such as BCI Pacman, Google 

Maps, or 3-d virtual navigation (see Figure 42), then all aspects of the applica­

tion logic and rendering are managed internally by the AI. If the application involves 

control of an external device, then the AI manages the communication between VES­

SELS and the device, such as sending device commands over Bluetooth or W i-Fi to
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FIG. 40: Diagram of the software architecture for the VESSELS platform which 
consists of four major components: the control architecture (CA), the application 
interface (AI), the BCI2000 interface (BI) and the stim ulator interface (SI). The 
CA component contains the main GUI system and handles communication between 
the three sub-components. The AI controls the BCI application and performs BCI 
command device translation. The BI handles communication between VESSELS 
and the BCI2000 software. The SI manages the timing and rendering of the flashing 
stimuli.

a microcontroller or a smartphone.

Figure 41 shows VESSELS’s main graphical user interface system exemplifying 

the various menu and options screens. The stimulus characteristics as well as ap­

plication param eters can be configured using VESSELS GUI system. Figure 41(a) 

shows the potential flexibility of VESSELS as the user can select between any of 

the current list applications and settings. Additionally, new application modules can 

easily be added to VESSELS’s extensible framework.

A few examples of the applications employed by VESSELS’s AI component are
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Stim ulus Color: W hite 
Stimulus Shape: Rectangle 
Stimulus Pattern: Solid 
Stimulus Size: Medium 
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Back

Are you sure you want to  ex it th is Application? 
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FIG. 41: Main GUI system for the VESSELS framework, (a) a screenshot of the 
main menu screen for BCI application selection, (b) the SI configuration screen for 
setting visual stimulus parameters, (c) an example configuration screen for one of the 
built-in AI applications (PacMan). (d) demonstrates a message box pop-up window 
for obtaining user confirmation.
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shown in Figure 42. For each application shown, the SI component is currently 

configured with white rectangular stimuli which are rendered in the same window as 

the AI application. Figure 42(a) shows a map navigation task in which VESSELS 

renders and scrolls through Google Maps. Figure 42(b) shows a BCI game application 

using a simplified version of PacMan. A 3-d spatial navigation application with a 

virtual avatar is shown in Figure 42(c). Figure 42(d) shows the 4-target ring paradigm 

described in chapter 5 which is used to control a small web-cam robot over a Wi-Fi 

connection for a telepresence application. This particular application illustrates the 

potential ubiquitousness of the ring paradigm as the task space and the control space 

are merged together, encompassed by the ring stimuli.

SOCS: Screen Overlay Control System

The Screen Overlay Control System (SOCS) is a rendering system embedded 

within VESSELS th a t allows for a screen overlay of the stimuli onto any application 

window. The standard VESSELS configuration involves the rendering of the stimuli 

and the application graphics in the same window. This requires VESSELS!s AI 

component to completely manage and render any embedded application. Overall, 

this presents a limiting factor on the amount of applications th a t can be controlled by 

VESSELS as each new application has to be created as a separate AI module. SOCS 

allows the SI component of VESSELS to render stimuli as window-less, free-floating 

objects th a t are overlayed onto whatever application is running on the host computer. 

W ith SOCS, the AI component does not have to render its own application; instead, 

it controls whatever current application is running on the host machine by translating 

the BCI output to emulated keyboard commands. This allows VESSELS to control 

virtually any application on the host computer ranging from web browsers, explorers, 

video games, typing programs, and any other third-party software.

The VESSELS platform ’s effectiveness for VEP-BCI control has been tested to 

some degree as it has been utilized numerous times to give BCI demonstrations a t Old 

Dominion University. It has been tested primarily on Windows and Android systems, 

and is capable of fully running on an Android smart-phone. The software has been
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FIG. 42: Screenshots of several native applications built into VESSELS, (a) shows 
the map navigation application using Google maps, (b) shows the PacMan maze 
navigation Game, (c) shows a virtual navigation task through a 3-d environment, 
(d) shows the ring paradigm implemented to control a mobile web-cam robot in a 
telepresence application.
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(C) ( d )

FIG. 43: (a) a screen-shot of four free-floating stimuli rendered with VESSELS using 
the SOCS interface. The stimuli from SOCS can be manually positioned anyware on 
the desktop or on top of any application window, (b) the SOCS interface controlling 
a popular application known as Google Earth, (c) a PD F scrolling application, (d) 
a web-brower based racing game with the SOCS stimuli overlayed.
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tested with many volunteers, most of which were new to BCI control. VESSELS has 

also been presented in front of Google’s rapid evaluation team at their headquarters 

in M ountain View, CA where a successful demonstration of an SSVEP-BCI with 

real-time control of Google Earth was given using SOCS (Figure 43(b)).

8.2 IMPLEMENTATION AND VALIDATION

The VESSELS system described in the previous section is a fully-fledged BCI 

stimulation and control program capable of controlling virtually any software ap­

plication on the computer. However, it is also common to control external hard­

ware and peripheral devices with the BCI system. Applications th a t extend beyond 

the computer are potentially beneficial to the target population, such as motorized 

wheelchair navigation, robotic telepresence control, and neuroprosthetics. Each of 

these requires a layer of hardware interfacing and communication for incorporation 

into a BCI system. The next few sections in this chapter describe several BCI hard­

ware and communications interfacing applications in which VESSELS was extended 

to control peripheral devices such as motorized wheelchairs, telepresence robots, and 

anthropomorphic robotic manipulator arms.

8.2.1 HARDWARE INTERFACING

Hardware interfacing is an im portant application domain for BCI control systems 

and has been performed extensively in the field of brain-computer interfaces ranging 

from environmental control of therm ostats, TV ’s, smartphones, wheelchairs, and 

robotic or prosthetic arms [Diez et al., 2013, Gao et al., 2003, Valbuena et al., 2007, 

Muller-Putz and Pfurtscheller, 2008, Al-maqtari et al., 2009, Kapeller et al., 2013].

Microcontrollers are small programmable computers embedded on a single inte­

grated circuit containing a processing core, memory and programmable inpu t/ou tpu t 

peripherals. The general purpose inpu t/ou tpu t pins (GPIOs) on a microcontroller 

allow for low-level hardware interfacing through digital logic circuits or binary serial 

communication. The Arduino microcontroller board is an open-source electronics
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FIG. 44: Standard configuration of the Arduino UNO development board with AT- 
mega328 chip with on-board voltage regulation, 14 digital inpu t/ou tpu t pins, 6 pulse- 
width modulation (PWM) pins, 6 analog input pins and Serial communication pins.

platform with extensible hardware and software. The Arduino microcontrollers have 

several advantages for use in hardware interfacing. The Arduino board is a self- 

contained module th a t facilitates rapid prototyping and hardware development with 

the integration of standard connection pins th a t allow for digital inpu t/ou tpu t in­

terfacing. Additionally, the Arduino boards contain pre-programmed boot loaders 

with flash memory, interchangeable add-on modules known as shields and several 

packaging layouts with various form factors to handle a wide range of electronic ap­

plications. A diagram of the standard Arduino UNO board is shown in Figure 44. 

The Arduino microcontroller is used for all of the hardware interfacing applications 

described in the following sections. The digital I/O  pins on the Arduino board are 

wired to the peripheral device to be controlled, such as the controller unit of a mo­

torized wheelchair or a motor-driver circuit for controlling servos and actuators.
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8.2.2 COMMUNICATIONS

When interfacing a BCI system with peripheral devices, the da ta  containing the 

device commands need to be transm itted from the BCI computer to the external 

hardware. Depending on the nature of the application, this is usually done over 

a wired E thernet connection, or a wireless connection using either Bluetooth com­

munication protocols or local area networking over Wi-Fi. RFCOMM is a bluetooth 

communication protocol in which a direct connection is established between the serial 

ports of two devices which are first ’paired’ together. Network based communication 

via E thernet or Wi-Fi channels utilize either a connection-oriented protocol, such 

as TC P (Transmission Control Protocol) or a connectionless protocol such as UDP 

(Universal Datagram  Protocol). TC P is a high reliability communication protocol 

where data  loss is critically avoided at the expense of potentially increased data- 

transmission time. UDP, on the other hand, is a stateless connection where data  

transmission is always real-time with the possibility of potential loss of packets. The 

UDP protocol, shown in Figure 45, requires no connection between the server and 

client. The server handles each UDP packet independently of other packets and per­

forms no error-checking on packets. UDP communication is primarily used in the 

applications presented in this chapter and is the protocol of choice for BCI control 

as command buffering from TC P communication can potentially lead to severely 

time-delayed interactions which negatively interfere with the ‘closed-loop’ nature of 

the BCI system.

8.2.3 WHEELCHAIR BCI SYSTEM

BCI control of a motorized wheelchair is an im portant device application for pa­

tients with locked in syndrome and ALS as it has the potential to restore a significant 

level of independence and quality of life for the patient. Previous work involving BCI 

wheelchair control with VEP based BCI systems require the use of an LCD monitor 

for stimulus rendering. In this work, a 4-class SSVEP BCI system was interfaced with
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FIG. 45: Universal Datagram  Protocol (UDP) communication architecture. UDP 
is a connectionless interface in which da ta  packets are sent and received in a state­
less fashion. UDP is useful for BCI applications as no buffering of potential device 
commands is performed.

an android smartphone using VESSELS for control of a motorized wheelchair. A eal- 

ibrationless classifier was implemented with BCI2000’s M atlab filter using the CCA 

classification method described in Section 2.5.1. Additionally, a low-profile headband 

with 5 dry electrodes was used for signal acquisition for a practical implementation 

of a BCI controlled Wheelchair.

System Overview

A diagram of the implemented BCI wheelchair system is shown in Figure 46. 

The system uses five g.Sahara active dry electrodes (Guger Technologies, Austria) 

placed at Po7, 01 , Oz, 0 2  and Po8 using a custom made headband. The electrode 

signals are amplified using a g.M OBIlab+ wireless amplifier which sends digitized 

EEG signals over Bluetooth to a laptop computer placed in a sleeve behind the 

wheelchair. BCI2000 was used to process and classify the buffered EEG signals using 

CCA. O utput selections are made and sent over UDP to the VESSELS platform also 

running on the laptop. The Al component within VESSELS translates the BCI
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FIG. 46: SSVEP BCI Diagram for Motorized Wheelchair Control. Signals are col­
lected from five active dry electrodes and sent wirelessly to a laptop computer. The 
BCI classification module classifies the signals using CCA and sends the output to 
VESSELS over UDP. The VESSELS application interface translates the output to 
device commands which are sent via bluetooth to an Arudino Microcontroller whose 
PWM ports are used to control the wheelchair’s directional movements. The VES- 
SELS’s SI component runs on an android smartphone for SSVEP stimulation while 
overlayed on video feed from the back-facing camera.

output into one of four wheelchair commands: move forward, ro tate left, rotate 

right and stop movement. The output commands are sent through Bluetooth to an 

Arduino microcontroller wired to the wheelchair input control system. The Arduinio 

was fitted with an HC06 BT transceiver to receive bluetooth commands. Based on 

the command received from VESSELS, the corresponding PWM signals are sent to 

the wheelchair controller indicating the direction of movement. The Metro Power 

3 wheelchair employs a zero-turn drive system which allows the wheelchair to 180 

degree turns and thus eliminating the need for a backward movement command. 

The speed of wheelchair movement and turning are controlled with a master speed 

switch on the wheelchair controller. As a safety precaution, a joystick override and
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kill switch were placed on the wheelchair controller allowing the user to override 

BCI control and/or turn  off power to the wheelchair. The VESSELS stimulator 

interface was run separately on an android smart-phone (Samsung Galaxy S4) to 

render the stimuli using a 60Hz refresh rate. Four SSVEP stimuli, representing the 

four wheelchair commands, were flashed at 6 Hz, 6.66 Hz, 7.5 Hz and 8.57 Hz. The 

Android phone was mounted on the wheelchair and positioned 12 inches in front of 

the user’s head. Using VESSELS, the stimuli were placed on the peripheral edges of 

the phone’s 5 inch LCD screen and were overlayed on top of the video feed from the 

phone’s back-facing camera. This allows the user to visually attend  to the control 

stimuli while also viewing the space in front of the wheelchair. Figure 47(a) shows a 

picture of the developed wheelchair BCI system in use.

8.2.4 TELEPRESENCE BCI SYSTEM

Telepresence applications allow for the remote control of devices using virtual re­

ality technology for participation in distant events. These applications are especially 

useful for individuals th a t are confined to their home or to a bed. A telepresence BCI 

system was developed by modifying the Wheelchair BCI system already in place. A 

diagram of the Telepresence control scheme is shown in Figure 48. For the telepres­

ence BCI system, the user is fixed to a stationary location, and thus a wired amplifier 

is used with the dry electrode band. The EEG signals are transferred through USB 

to a desktop PC running BCI2000 and VESSELS. Communication from VESSELS 

to the wheelchair device is handled using bluetooth communication in the same way 

as described in section 8.2.3. The Android phone camera mounted on the wheelchair 

wirelessly transm its a video stream  over Wi-Fi to the VESSELS application inter­

face. The video feed and VEP stimuli are overlayed and rendered on a standard 

computer monitor attached to the desktop PC. The wireless camera feed provides 

feedback to the user about the device state of the wheelchair from a distance. This 

allows the user to remotely control and navigate the wheelchair from a fixed location. 

Figure 47(b) shows a picture of the Telepresence BCI system in use.
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(b)

FIG. 47: Part (a) shows the developed wheelchair BCI system in use. Part (b) 
shows the motorized wheelchair being navigated remotely using the telepresence BCI 
system.
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D e sk to p  PC

W ire d  A m p lifie r
BCI 2 0 0 0

A p p lica tio n

In te rfa c e
BC I2000

I n te r fa c eB u ffe rin g C lassifier

W ire le ss  C a m e ra
LCD M o n ito rDry E le c tro d e s

SSVEP

Camera Feed 
Overlay

M ic ro c o n tro lle r

PW M

VESSELS BT R e ce iv erD evice S ta te  F e e d b a c k

W h e e lc h a ir

FIG. 48: SSVEP BCI Diagram for Telepresence BCI Control. Signals are collected 
from five active dry electrodes and sent through USB to a Desktop computer. The 
BCI classification module classifies the signals using CCA and sends the output to 
VESSELS over UDP. The VESSELS application interface translates the output to 
device commands which are sent via bluetooth to an Arudino Microcontroller whose 
PWM ports are used to control the wheelchair directional movements. The VES­
SELS ’s SI component renders the stimuli on a computer monitor and are overlayed 
on a wirelessly transm itted video feed from a phone-camera mounted on the remotely 
operated wheelchair.
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FIG. 49: Developed BCI systems from left to right: BCI Wheelchair system us­
ing VESSELS, P300 pick-and-place BCI using a Staubli robotic m anipulator arm 
[Waytowich et a l ,  2010], custom made Wi-fi robot using the Arduino Micro paired 
with an Android phone for remote sensing, EMG controlled music player on an An­
droid phone, and a 10-class SSVEP BCI drawing application using a Denso arm and 
prosthetic hand.

8.2.5 OTHER PROJECTS

Figure 49 shows a compilation of other BCI related projects th a t were devel­

oped. A 10-class SSVEP BCI was implemented for controlling of a 6-DOF robotic 

m anipulator arm with an attached prosthetic hand th a t holds a marker for drawing 

applications (shown in the bottom  right of Figure 49). A P300 BCI system con­

trolling a Staubli robotic arm during an object pick-and-place task is shown in the 

upper right of Figure 49 [Waytowich et al., 2010, Johnson et al., 2010]. The bottom  

left shows a custom made Wi-fi robot using the Arduino Micro paired with an android 

phone for remote sensing applications.
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8.3 FUTURE DIRECTIONS WITH MODERN VISUAL OVERLAY 

DEVICES

The true mark of practicality of a BCI system is to make it as transparent as 

possible to the user. For VEP-based BCIs, this is hardly attainable as external visual 

stimulation is required which generally requires the use of LCD computer monitors 

th a t are not portable and not a transparent mode of stimulation. Recent advances 

in mobile technology have made modern visual overlay devices portable, lightweight, 

unobtrusive, and more accessible than ever. Such devices present a novel avenue 

for implementing practical VEP-BCIs. Visual overlay devices have the potential to 

dramatically improve the overall mobility of the VEP-BCI system as the overlay 

devices are typically small enough to be worn on the user. The main advantage of 

utilizing a visual overlay device is th a t the stimuli can be directly overlayed in the 

user’s visual field in an augmented reality sense. A BCI system of this type would 

allow the user to seamlessly view his or her environment while also having access to 

the control stimuli of the VEP-BCI in a intuitive manner.

8.3.1 GOOGLE GLASS

Although any modern overlay device can be utilized, Google Glass (Google Inc.) 

has many attractive properties th a t make it a suitable choice for VEP-BCI imple­

mentation. Google Glass represents a leap forward in the field of wearable comput­

ing because of its ergonomic and ubiquitous design. It provides users with instant 

access to a mobile device capable of virtually any application ranging from send­

ing/receiving emails, taking pictures/videos, web surfing, etc. As such, Google Glass 

has the hardware and software requirements to meet the technical specifications for 

implementing a VEP stimulation paradigm with a 1 Ghz processor and 30 Hz screen 

refresh rate. An image of the Google Glass components and its visual overlay is 

shown in Figure 50. The overlay mechanism in Google Glass works by projecting 

an image directly onto the fovea part of the retina through a prism. This creates a 

sharp image th a t is visible to the user. The display can be adjusted to cover different 

parts of the user’s vision. This is im portant for VEP-BCI implementation because
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FIG. 50: Google Glass visual overlay device. The top image shows the Google Glass 
with labeled components. The bottom  left demonstrates how the overlay system 
works. An image from a projector is presented directly on the retina from a prism. 
The bottom  right image shows how the Google Glass looks from a user’s perspective.

it allows for the user to adjust the position of the visual stimuli, thus controlling its 

prominence. The bottom -right of Figure 50 shows an example view of the overlay 

itself. The overlay layer has a translucent background with opaque images. This 

characteristic is especially beneficial as this system would allow for the user to view 

both the VEP stimuli and the environment simultaneously; a characteristic tha,t has 

never been fully realized for a VEP-BCI.

8.3.2 GOOGLE GLASS EVALUATION STUDY

Two studies are planned utilizing the visual overlay device. The first study will 

test the feasibility of the visual overlay device itself by implementing a 2-class BCI 

using SSVEP stimuli. The results from Chapters 3 and 4 will be used to select optimal 

stimuli characteristics. Figure 51 shows a diagram of the SSVEP system for the first
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FIG. 51: Diagram of the proposed system setup using a VEP based BCI with a 
visual overlay device. The overlay device depicted is the Google Glass although, in 
practice, any overlay device can be used. The VEP stimuli can be modulated by 
either c-VEP or SSVEP stimuli.
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CHAPTER 9 

CONTRIBUTIONS AND FUTURE DIRECTIONS

The presented work shows the initial steps towards developing a practical VEP 

BCI by characterizing and optimizing visual stimuli, improving ergonomic design, 

reducing visual fatigue, and implementing a practical VEP based BCI using flexible 

software and modern mobile device platforms. Considerable work remains to be 

done in aggregating and extending the results from this work to further increase the 

practicality of brain-computer interfaces. The major contributions from the work 

presented in this dissertation as well as the future directions are summarized below.

STIMULUS CHARACTERIZATION AND OPTIMIZATION 

Contributions

1. Inherent SSVEP response differences th a t exist between subjects were shown 

to have a significant effect on performance. This demonstrates the degree of 

importance of subject-specific frequency optimization as BCI classification can 

be significantly increased.

2. A framework for a rapid optimization of subject-specific frequency profiles was 

established using chirp-modulated stimuli. This method can be used as an effi­

cient way to characterize the response of the SSVEP spectrum for an individual, 

which can now be achieved much more rapidly than evaluating individual fre­

quencies independently.

3. Distinct frequency feature groupings for optimal performance exist for differ­

ent multiclass scenarios. This information can provide a guide for generalized 

stimulus frequency selection for SSVEP-based BCIs with an arbitrary num­

ber of targets. This is particularly useful for scenarios where subject-specific 

optimization is not feasible.
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4. The spatial frequency of checkerboard stimuli was shown to have a major effect 

on performance for SSVEP BCIs with two distinct spatial frequency conditions 

showing optimal results. This optimization of the spatial frequency can lead to 

increased SSVEP performance over current studies which arbitrarily predefine 

the spatial frequency.

5. The use of high spatial frequency stimuli, which are perceptually less irritating 

to subjects, can achieve comparable classification performance as the trad i­

tional low spatial frequency stimuli. This has significant implications for the 

designing of more practical VEP BCIs as less obtrusive and more visually ap­

pealing stimuli can be used for BCI stimulation and control.

6. Neural mechanisms of spatial frequency tuning and spatial frequency adapta­

tion, which were originally shown in the context of clinical studies using a single 

stimulus, have been shown to be present in the context of SSVEP BCIs. These 

mechanisms, which are generally unknown in the BCI field, should be con­

sidered when designing SSVEP BCIs as further understanding can potentially 

lead to improved VEP BCI performance.

Future Directions

Because of the lim itation of monitor refresh rates, LEDs were used for chirp-signal 

stimulation. However, it is desirable to implement stimuli using more practical and 

ubiquitous LCD screens. An identical follow-up study using an LCD monitor will be 

conducted in the future, although it is not expected th a t the results will significantly 

differ from the results in this dissertation. Additionally, the long-term stability of the 

stimulus characterization and optimization results from this dissertation have yet to 

be assessed and longitudinal experiments should be conducted.

The results from chapters 3 and 4 have some limitations in terms of generalizing 

to an online BCI. Additionally, the analysis from those chapters do not account for 

the potential simultaneous interference or attentional issues present in a practical 

online scenario. Thus, an additional online study should be performed with data
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collected from a multi-class BCI. Another future stimulus characterization study is 

planned to evaluate other classification schemes as the current optimization results 

may be specific to the CCA approach.

Finally, the relationship between spatial frequency and temporal frequency is not 

well understood, and additional work should investigate a joint-optimization between 

these two variables.

SPATIAL DECOUPLING OF VEP STIMULI 

Contributions

1. A novel c-VEP stimulation paradigm was developed th a t showed practical clas­

sification accuracies for non-foveal VEP stimulation th a t are comparable to the 

traditional direct-foveal stimulation. This significant finding demonstrates tha t 

adequate classification performance can be obtained without requiring direct 

visual fixation of flashing stimuli. This provides an avenue for the development 

of more practical BCIs th a t are less visually irritating to operate.

2. BCI targets th a t are positioned at or near the boundaries of two stimuli can be 

classified with the same accuracy as traditional targets th a t are superimposed 

over a single stimulus. This shows th a t it is possible to increase the number 

of targets beyond the number of stimuli without degrading performance. This 

can lead to increased information transfer rates for BCI communication as well 

lead to the development of more practical and ergonomic BCIs.

3. A 25-class c-VEP BCI using the ring-stimulator achieved favorable classification 

performance. These results are the first to demonstrate th a t large-scale target 

discrimination can be obtained using spatial decoupling in which there are 6- 

fold more targets than flashing stimuli. This provides a significant and novel 

avenue for the development of more practical BCIs th a t utilize minimal visual 

stimulation.

4. The c-VEP characterization analysis shows spatial activations th a t are elicited
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contralaterally over the occipital regions from asymmetrical target/stim uli re­

lationships from the ring stimulus. This provides insights into the information 

flow of the visual system th a t can potentially be used for developing more accu­

rate classifiers, as well as for developing new ways to measure inter-hemispheric 

transfer time.

Future Directions

In order to fully validate the spatial decoupling ring paradigm, undirected free- 

choice online experiments need to be conducted to account for practical use issues 

such as target scanning and reaction to task-related feedback. Future work will more 

thoroughly explore the effects of distance between the targets and stimuli, increasing 

the number of stimuli/boundaries along the ring, the use of shorter m-sequences, 

and larger N-class target configurations th a t further exploit the combined concepts 

of stimulus-target distance and boundaries. It is envisioned th a t these stimulus- 

target decoupling concepts introduced in the proposed paradigm will lead to the 

development of more practical and ergonomic BCIs by reducing visual irritation and 

potentially fatigue, as well as by increasing the number of available targets for a fixed 

number of stimuli.

Future analysis will further investigate the topographical activations of c-VEP 

responses due to the asymmetrical stimulation of the ring stimulus pattern. Addi­

tional characterization is planned to model the channel specific activations due to 

target-stimulus positional relationships for the potential use as a priori information 

in multi-class target detection.

PRACTICAL IMPLEMENTATION AND DEVELOPMENT  

Contributions

1. A flexible and extensible software platform for the stimulation of flashing stim­

uli and versatile control of various VEP BCI applications called VESSELS was
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developed and tested. This is a cross-platform software designed for the imple­

mentation and control of SSVEP and c-VEP BCI applications th a t is currently 

not available in the standard BCI2000 software package.

2. A pratical implementation of a BCI controlled motorized wheelchair was devel­

oped th a t uses a calibrationless classifier, a minimal form-factor dry electrode 

band, a wireless amplifier, and a mobile smart-phone running the VESSELS 

software overlayed on a camera video feed for SSVEP stimulation and control. 

The combination of the signal acquisition, decoding algorithm, and augmented 

reality-style mobile stimulation makes this a novel implementation of a BCI 

wheelchair th a t is both ergonomic and practical.

3. Finally, a practical implementation of a telepresence BCI was developed and 

implemented using the motorized wheelchair and VESSELS software which 

allows a stationary individual to control the wheelchair remotely using real­

time video feed from a wireless camera. This system utilizes dry electrodes, 

requires no user calibration, and achieves quick and robust control th a t can 

allow immobile individuals to independently explore and interact with their 

surroundings.

Future Directions

Future work is planned to test the VESSELS software in multiple large-scale 

research studies. Additionally, work will be done towards packaging the VESSELS 

software with the popular BCI2000 software platform so tha t it can be utilized by 

other BCI research groups.

Future work will also involve the testing of the VESSELS software on Google 

Glass and other head-mounted displays to achieve an ergonomic visual overlay of the 

VEP stimuli. A study will be conducted testing the efficacy of using Google Glass 

for BCI control as well as eventually implementing the Google Glass with the BCI 

controlled wheelchair for a truly intuitive and transparent BCI.
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