
Old Dominion University
ODU Digital Commons

Computer Science Faculty Publications Computer Science

1999

Smart Objects, Dumb Archives: A User-Centric,
Layered Digital Library Framework
Kurt Maly
Old Dominion University

Michael L. Nelson
Old Dominion University

Mohammad Zubair
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Computer Sciences Commons, and the Digital Communications and Networking
Commons

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Maly, Kurt; Nelson, Michael L.; and Zubair, Mohammad, "Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library
Framework" (1999). Computer Science Faculty Publications. 3.
https://digitalcommons.odu.edu/computerscience_fac_pubs/3

Original Publication Citation
Maly, K., Nelson, M.L., & Zubair, M. (1999). Smart objects, dumb archives: A user-centric, layered digital library framework. D-Lib
Magazine, 5(3), 1-14. doi: 10.1045/march99-maly

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/3?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

D-Lib Magazine
March 1999

Volume 5 Issue 3
ISSN 1082-9873

Smart Objects, Dumb Archives

 A User-Centric, Layered Digital Library Framework

Kurt Maly

Old Dominion University

Computer Science Department

Norfolk, VA 23592

maly@cs.odu.edu

Michael L. Nelson

NASA Langley Research Center

MS 158

Hampton, VA 23681

m.l.nelson@larc.nasa.gov

Mohammad Zubair

Old Dominion University

Computer Science Department

Norfolk, VA 23592

zubair@cs.odu.edu

 


Abstract

Currently, there exist a large number of superb digital libraries, all
of which are, unfortunately,
 vertically integrated and all presenting a monolithic
interface to their users. Ideally, a user
 would want to locate resources
from a variety of digital libraries dealing only with one
 interface. A number of approaches exist to this interoperability issue exist including: defining
 a universal
protocol for all libraries to adhere to; or developing mechanisms to translate

between protocols. The approach we illustrate in this paper is to push
down the level of
 universal protocols to one for digital object communication
and for communication for simple
 archives. This approach creates the opportunity
for digital library service providers to create
 digital libraries tailored
to the needs of user communities drawing from available archives and
 individual
publishers who adhere to this standard. We have created a reference implementation

based on the hyper text transfer protocol (http) with the protocols being derived from the
 Dienst protocol.
We have created a special class of digital objects called buckets and a
number
 of archives based on a NASA collection and NSF funded projects.
Starting from NCSTRL [2]
 we have developed a set of digital library services
called NCSTRL+ and have created digital

mailto:maly@cs.odu.edu
mailto:m.l.nelson@larc.nasa.gov
mailto:zubair@cs.odu.edu


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 libraries for researchers, educators
and students that can each draw on all the archives and
 individually created
buckets.


Introduction


Currently, there exist a large number of superb digital libraries (DLs),
all of which are,
 unfortunately, vertically integrated and all presenting a monolithic interface to their users.
 Ideally, a user would want to locate
resources from a variety of digital libraries dealing only
 with one
interface. A number of approaches to this interoperability issue exist including:

defining a universal protocol for all libraries to adhere to; or developing mechanisms to
 translate between protocols. The approach we illustrate
in this paper is to push down the level
 of universal protocols to one
for digital object communication and for communication for
 simple
archives. This creates the opportunity for digital library service
providers to integrate
 digital libraries tailored to the needs of user
communities drawing from available archives and
 individual publishers
who adhere to this standard. It argues for generally available tools to

create (publish) rich digital objects and it further argues that
organizations exist which will put
 their imprimatur on these objects as a well understood standard of quality.

For a Digital Library Service Provider (DLSP) to build a successful
digital library, there have
 to be standard methods to interact with archives
and digital objects. In this paper we propose
 such a standard, and we have
created a reference implementation based on http. Since we can
 no longer
be sure which digital library will be used for the discovery and presentation
of an
 object, we feel that it is necessary to evolve the notion of the
object and to imbue it with
 greater functionality and responsibility. We argue
for self-contained, intelligent, and
 aggregative DL objects that are capable
of enforcing their own terms and conditions,
 negotiating access, and displaying
their contents. We call this specialized class of digital
 objects "buckets".
Once a DLSP has delivered to the customer a location of a bucket it is
up to
 the bucket to interact with the customer. On the other hand, in our
model archives are simply
 collections of buckets characterized by some
management policy that controls publishing. It is
 the archive-owning organization
that negotiates with the DLSP for access to the archive's
 buckets. Since all
the important presentation services are associated with the buckets
 themselves,
the archive services can be few and simple such as "list locations of all
buckets".

In our view, a DLSP builds a DL by:

Identifying a user group;
Identifying archives holding buckets of interest and individual bucket owners;
Negotiating terms and conditions with publishing organizations (archive and
individual
 bucket owners);
Creating indices of appropriate subsets by interacting with buckets for their
metadata;
Creating DL services such as search and browse;
Creating user interaction services such as authentication and billing.


We have a reference implementation, NCSTRL+ [18], which implements a DL
using the
 Dienst protocol and http services. (Other implementations, such
as CORBA or simple TCP/IP,
 are possible.) The Digital Library Services (DLSs) are provided by using
the basic core of
 Dienst for searching, browsing and similar services.
The archive functionality was originally
 implemented using a modified version
of Dienst, but we are now transitioning to a simpler
 archive system. We
have created a special class of digital objects called buckets and a number

of archives based on a NASA collection and NSF funded projects.

The rest of the paper is organized as follows. In the next section,
we discuss the model
 supporting DLSP, SODA. Following, we discuss our reference
implementation, to date, of the
 SODA model. We then discuss our status and
future plans. This is followed by a brief



Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 discussion of related work.


The SODA Model


We present a model that defines DLs as composed of 3 strata (Figure 1):

digital library services - the "user" functionality and interface:
searching, browsing,
 usage analysis, citation analysis, selective dissemination
of information (SDI), etc.
archive - managed sets of digital objects. DLs can poll archives
to learn of newly
 published digital objects, for example.
digital object - the stored and trafficked digital content. These
can be simple files (e.g.,
 PDF or PS files), or more sophisticated objects
such as buckets (described below).


 

 
Figure 1: The Three Strata of DLs


In most DLs, the digital library services (DLS) and the archive functionality
are tightly
 coupled. A digital object is placed in an archive, and this
placement uniquely determines in
 which DL it appears. We believe that if there
is not a 1-1 mapping between archives and DLs,
 but rather a N-M mapping,
the capacity for interoperability is greatly advanced. A DL can
 draw from
many archives, and likewise, an archive can contribute its contents to
many DLs.

However, since we can no longer be sure which DL will be used for the
discovery and
 presentation of an object, we feel it is necessary to
evolve the notion of the object and to
 imbue it with greater functionality
and responsibility. We argue for self-contained, intelligent,
 and aggregative
DL objects that are capable of enforcing their own terms and conditions,

negotiating access, and displaying their contents.

We refer to the above as the Smart Objects, Dumb Archive (SODA) model.
Much of the
 traditional functionality associated with archives (terms and
conditions, content display, etc.)
 has been "pushed down" into the objects,
making the objects "smarter" and the archives
 "dumber". To demonstrate
a SODA DL, we have a reference implementation, NCSTRL+,
 which implements
each of the 3 strata listed above using the Dienst protocol and http services.

The DLSs are provided by using the basic core of Dienst for searching, browsing
and similar
 services. The archive functionality was originally implemented
using a modified version of
 Dienst, but we are now transitioning to a simpler
archive system. Our implementation of smart
 objects is "buckets", a special
case of digital objects designed for DL use.



Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

The observation that motivates the SODA model for DLs is that digital
objects are more
 important than the archives that hold them. Many DL systems
and protocols are reaching a
 level of complexity where DL interoperability
and object mobility are hindered by the
 complexity of the archives that
hold the objects. Our goal is to increase the responsibilities of
 objects,
and decrease the responsibilities of archives. If digital objects themselves
handle
 presentation, terms and conditions and their own data management,
it will be easier to achieve
 interoperability between heterogeneous DLs
as well as increase object mobility and longevity.
 As a consequence, more
DLSPs should be encouraged to build digital libraries for various user
 communities.

Note that digital libraries are used for user discovery of objects.
Once the object has been
 found, the user interacts directly with the object
itself. Archives exist primarily to assist DLs in
 locating objects -- they
are generally not for direct user access. It is our belief that many digital

libraries and the associated access protocols (e.g., Dienst [3], Repository
Access Protocol
 (RAP) [10]) have become unnecessarily complex. We feel
that the archived objects, not
 archives, should be responsible for the
enforcement of terms and conditions, negotiation and
 presentation of content,
etc. Although we expect some archive implementations to retain
 portions
of the above functionality -- indeed, SOSA (Smart Objects, Smart Archives)
may
 become the most desirable DL model -- we present a "dumb archive" to
illustrate the full
 application of smart objects (buckets). When archives
become "smart" again, it will be in other
 functionalities, not in duplication
of bucket functionality. Using this terminology, Table 1
 illustrates how
the archive design space partions.

Smart Archives  Dumb Archives 

Smart
 Objects 

SOSA: Smart Objects, Smart
 Archives 

DL Example: none known 

SODA: Smart Objects, Dumb Archives 

DL Example: NCSTRL+ 

Dumb
 Objects 

DOSA: Dumb Objects, Smart
 Archives 

DL Example: NCSTRL 

DODA: Dumb Objects, Dumb Archives 

DL Example: any anonymous FTP server with .ps.Z
 files 

Table 1: Archive Design Space


Publishing in the SODA Model


Separating the functionality of the archive from that of the DLS allows
for greater
 interoperability and federation of DLs. The archive's purpose
is to provide DLs the location of
 buckets (the DLs can poll the buckets
themselves for their metadata), and the DLs build their
 own indexes. And
if a bucket does not "want" to share its metadata (or contents) with certain

DLs or users, its terms and conditions will prevent this from occurring.
For example, we
 expect the NASA digital publishing model to begin with
technical publications, after passing
 through their respective internal
quality control, to be placed in a NASA archive. The NASA
 DL (which is the set of the NASA buckets, the NASA archive(s), the NASA DLS, and the user

communities at each level) would poll
this archive to learn the location of buckets published
 within the last week.
The NASA DL could then contact those buckets, requesting their
 metadata.
Other DLs could index NASA holdings in a similar way: polling the NASA
archive
 and contacting the appropriate buckets. The buckets would still
be stored at NASA, but they
 could be indexed by any number of DLs, each
with the possibility for novel and unique
 methods for searching or browsing. Or perhaps
the DL collects all the metadata, then performs
 additional filtering to
determine applicability for inclusion into their DL. In addition to an

archive's holdings being represented in many DLs, a DL could contain the
holdings of many
 archives. If we view all digitally available publications
as a universal corpus, then this corpus
 could be represented in N archives
and M DLs, with each DL customized in function and



Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 holdings to the needs
of its user base. Figure 2 illustrates the SODA publishing model.

Figure 2: The SODA Publishing Model


The metadata implications are that buckets are the canonical source for
their metadata. If a
 digital library service provider wishes to index a
bucket, it simply asks the bucket for its
 metadata:

http://dlib.cs.odu.edu:8000/test-bucket3/?method=metadata

Or the DLS asks a proxy service that has already asked the bucket for
its metadata. The DLS
 can then index the metadata according to its own
indexing rules. If the DLS wishes to receive
 the metadata in a different
format, it can ask for that format in the metadata method. We are
 implementing
a metadata translation service (mdt) [16] that handles the dynamic conversion
of
 bucket metadata. Buckets keep the translations of their metadata in
a write-through cache.
 Buckets modify their own metadata files when objects
are added to or deleted from them.


Bucket Services


We have been involved with a number of high traffic production NASA DLs
since 1994,
 including the Langley Technical Report Server [11], the NASA Technical Report Server [15],
 and the NACA Report Server [14]. One of our early findings was that DL users wanted more
 than just the traditional literature; they also desired to have the associated software, datasets,

images, video, and other supporting material related to a project or study
[20]. We term this
 the Pyramid of Scientific and Technical Information
(STI) (Figure 3). We argue that the
 traditional journal article, the
common element in many DL projects, is often a mere abstract
 of a larger
body of STI, most of which is informally archived or not archived at all
[4].

http://dlib.cs.odu.edu:8000/test-bucket3/?method=metadata


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 
Figure 3: The Pyramid of STI


Another observation from NASA DL http log files is that a surprising number
of people do not
 find the NASA and NACA publications via the NASA and NACA
DLs. Since the full contents
 of the NASA DLs are browsable, both the abstract
lists and the reports are indexed by web
 crawlers, spiders and the like.
Users are formulating complex queries to services such as
 Yahoo, Altavista,
Lycos, Infoseek, etc. We presume this is indicative of the resource discovery

problem: people start there because they do not know all the various DLs
themselves; and the
 meta-searching problem: they are trusting these services
to search many sources, not just the
 holdings of a single DL.

Although we believe we have built attractive and useful interfaces for
the NASA DLs, our
 main concern is that people have access to holdings and
not that they use any given DL
 interface. It is desirable that NASA publications
are indexed by many services. Since there are
 several paths to the information
object, the information object must be a first class network
 citizen, handling
presentation, terms and conditions, and not depending on archive
 functionality.

Buckets are object-oriented container constructs in which logically
grouped items can be
 collected, stored, and transported as a single unit.
For example, a typical research project at
 NASA Langley Research Center
produces information tuples: raw data, reduced data,
 manuscripts, notes,
software, images, video, etc. Normally, only the report part of this
 information
tuple is officially published and tracked. The report might reference on-line

resources, or even include a CD-ROM, but these items are likely to be lost
or degrade over
 time. Some portions, such as software, can go into separate
DLs, but this leaves the researcher
 to re-integrate the information tuple
by selecting pieces from multiple sources. Most often, the
 software and
other items, such as datasets are simply discarded. After 10 years, the
manuscript
 is almost surely the only surviving artifact of the information
tuple. Archives could have
 buckets with many different functionalities.
Not all bucket types or applications are known at
 this time. However, we
can describe a generalized bucket as containing many formats of the
 same
data item (PS, Word, Framemaker, etc.) but more importantly, it can also
contain
 collections of related non-traditional STI materials (manuscripts,
software, datasets, etc.) Thus,
 buckets allow the digital library to address
the long standing problem of ignoring software and
 other supportive material
in favor of archiving only the manuscript [22] by providing a
 common mechanism
to keep related STI products together. The current semantics of buckets

include "elements", which are the unit of storage in buckets, and "packages",
which are groups
 of elements. Figure 4 illustrates a typical bucket in
a NASA DL application.



Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

Figure 4: A Typical Bucket in a NASA DL


Our bucket prototypes are written in Perl 5, and make use of http
as a transport protocol.
 Bucket metadata is stored
in RFC-1807 format, and package and element information is stored
 in newly
defined optional and repeatable fields.  A bucket  has all relevant
files collected
 together using directories from file system semantics.
Thus, an administrator can "cd" into the
 appropriate directory and access
the contents. However, access for regular users occurs
 through the WWW.
The bucket is accessible through a Common Gateway Interface (CGI)
 script
that enforces terms and conditions, and negotiates presentation to the
WWW client. The
 bucket presentation format is included in the bucket code,
but we are currently planning to
 model presentation requirements using
the Resource Description Framework (RDF) [13] to
 provide a mechanism for
providing dynamic presentation templates that can exploit known
 semantics
during presentation. Table 2 provides a glimpse of bucket interaction. These
 methods are all invoked on a single test bucket filled with typical NASA data, but they could
 be invoked on any bucket. For example, all the methods in Table 2 could be invoked on:

http://www.cs.odu.edu/~dlibuser/nsf/nie/iri/


which is a bucket for the NSF project for the Interactive Remote Instruction
(IRI) project.
 Buckets are further described in "Buckets: Aggregative, Intelligent Agents for Publishing"
 [17], including a discussion of their
relation to Kahn-Wilensky Framework (KWF) Digital
 Objects (DOs) [5].

Method  Description 
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display 

or 

http://dlib.cs.odu.edu:8000/test-bucket3/ 

Displays the bucket contents (default
 method) 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_methods  Lists all the methods known by the
 bucket 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_principals 
Lists defined principals (entries in the
 password file). Access can
be
 restricted to these principals. 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=metadata  Returns metadata in the default
 format 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_source 

or 
 Lists general source code for the

http://www.cs.odu.edu/~dlibuser/nsf/nie/iri/
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display
http://dlib.cs.odu.edu:8000/test-bucket3/
http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_methods
http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_principals
http://dlib.cs.odu.edu:8000/test-bucket3/?method=metadata
http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_source


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

http://dlib.cs.odu.edu:8000/test-bucket3/?
method=list_source&target=display 

 bucket (or for a particular method) 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_logs  Lists the names of all logs kept by the
 bucket 

http://dlib.cs.odu.edu:8000/test-bucket3/?
method=get_log&log=access.log 

Displays the access log for this
 bucket 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_tc  Lists the terms and conditions for the
 bucket 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&

pkg_name=appendix.pkg&element_name=NASA-95-tm4648-
appendixA.html 

Retrieves a restricted element
 ("michael"/"michael" to access) 

http://dlib.cs.odu.edu:8000/test-bucket3/?method=display

&redirect=http://babelfish.altavista.digital.com/cgi-bin/translate?

urltext=http://dlib.cs.odu.edu:8000/test-bucket3/ 

An element as a reference to a 3rd
 party network service (a translation

service in this example) 

Table 2: Some Methods for Bucket Interaction


 


Archive Services


Our first implementation of a dumb archive was made by removing functionality
from Dienst.
 The philosophy of Dienst is to minimize the dependency on
http. Except for the User Interface
 service, Dienst does not make specific
assumptions about the existence of http or the
 Hypertext Markup Language
(HTML). However, Dienst does make very explicit assumptions
 about what
constitutes a document and its related data formats. Built into the protocol
are the
 definitions of PostScript, ASCII text, inline images, scanned images,
etc. We felt that tightly
 coupling the DL protocol with knowledge of individual
file formats reduces the flexibility of
 the DL protocol.

We favor making Dienst less knowledgeable about dynamic topics such
as file format, and
 making that the responsibility of buckets. In NCSTRL+,
Dienst is used as an index, search,
 and retrieval protocol. When the user
selects an entry from the search results, Dienst would
 normally have the
local User Interface service use the Describe verb to peer into the contents

of the documents directory (including the metadata file), and Dienst itself
would control how
 the contents are presented to the user (Figure 5). In
NCSTRL+, the final step of examining the
 directories structure is skipped,
and the directory's index.cgi file is invoked. The default
 method for an
index.cgi is generally the display method, so the user should notice little

difference. However, at that point the bucket, not Dienst, determines what
the user sees. This
 was our first dumb archive, a Dienst server that simply
points to buckets rather than examining
 their contents.

http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_source&target=display
http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_source&target=display
http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_logs
http://dlib.cs.odu.edu:8000/test-bucket3/?method=get_log&log=access.log
http://dlib.cs.odu.edu:8000/test-bucket3/?method=get_log&log=access.log
http://dlib.cs.odu.edu:8000/test-bucket3/?method=list_tc
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&pkg_name=appendix.pkg&element_name=NASA-95-tm4648-appendixA.html
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&pkg_name=appendix.pkg&element_name=NASA-95-tm4648-appendixA.html
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&pkg_name=appendix.pkg&element_name=NASA-95-tm4648-appendixA.html
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&redirect=http://babelfish.altavista.digital.com/cgi-bin/translate?urltext=http://dlib.cs.odu.edu:8000/test-bucket3/
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&redirect=http://babelfish.altavista.digital.com/cgi-bin/translate?urltext=http://dlib.cs.odu.edu:8000/test-bucket3/
http://dlib.cs.odu.edu:8000/test-bucket3/?method=display&redirect=http://babelfish.altavista.digital.com/cgi-bin/translate?urltext=http://dlib.cs.odu.edu:8000/test-bucket3/


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 
Figure 5: Shift of Responsibility in Dienst


We are currently working on an even simpler dumb archive, DA, which could
operate with or
 without Dienst. This archive implements only a small number
of functions (Table 3). DA is
 basically a set manager -- notice the
DA has no search capabilities. The methods are currently
 being extended
to support such things as arguments and conditional statements (i.e., "list
all
 objects entered after December 12, 1995").

Method  Description 
put  insert an item into the archive 
delete  remove an item from the archive 
list  display the holdings of the archive 
info  display metadata about the archive 
get  redirects to the object's URL or URN 

Table 3: Dumb Archive Methods


To date, we have created 3 test archives: 1 for the NASA STI from LTRS,
and 2 with sample
 NSF material. Table 4 illustrates the implemented DA
methods for the LTRS archive as listed
 in machine readable format.

Method  URL 

List All Buckets  http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?
method=list 

List All Buckets Added By
 "mln" 

http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?
method=list&originator=mln 

Information (metadata) about
 the archive 

http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?
method=info 

Table 4: DA Methods for the LTRS Archive


Digital Library Services


The NCSTRL+ project is based on the creation of buckets and the extension
of the Dienst
 protocol. Dienst is a collection of DL "services" that receive
messages encoded and
 transmitted via http. In addition to changing Dienst
to properly handle buckets, we have added
 a new verb, Recluster, to the
User Interface Service to assist in dynamically changing the
 display of
search results. We have defined clusters as a way of segregating search
results by
 predefined metadata terms provided at the time of publishing.
We have defined clusters for

http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?method=list
http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?method=list
http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?method=list&originator=mln
http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?method=list&originator=mln
http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?method=info
http://www.cs.odu.edu/~dlibuser/ltrs/populate/testout/da.cgi/?method=info


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 subject, archival type, terms and conditions,
and language. Table 5 provides a list of searches
 of NCSTRL+, as well as
the corresponding searches in LTRS. Although NCSTRL+ draws
 from the same
corpus as LTRS, it is clear that NCSTRL+ is a richer, more expressive DLS.

Search  DL  URL 
(default
 interface)  NCSTRL+  http://dlib.cs.odu.edu:8000/ncstrlplus.html 

(default
 interface)  LTRS  http://techreports.larc.nasa.gov/ltrs/ 

computational
 fluid
 dynamics 

NCSTRL+ 

http://dlib.cs.odu.edu:8000/Dienst/UI/2.0/Query/?author=&title=&

abstract=computational+fluid+dynamics&authority=all&organization=&

ncstrlplus_subject=&ncstrlplus_archivaltype=&ncstrlplus_tc=&boolean=and&

cluster=authority&sort= 

computational
 fluid
 dynamics 

LTRS  http://techreports.larc.nasa.gov/ltrs/ltrs.cgi?

search_words=computational+AND+fluid+AND+dynamics 

Table 5: NCSTRL+ Searches


With the NCSTRL+ searches, it is possible to re-cluster and re-sort the
results pages. With
 LTRS, the
search results once created are static. Experimentation with reclustering
is the best
 way to observe its benefits.


Status and Future Work


Our future work follows two main thrusts: deployment of our current technology
base into the
 NASA DLs, and the continued development of new technology.
With respect to deployment
 of buckets and SODA, we are currently in the
process of refining the aggregative operations of
 buckets, converting the
entire LTRS corpus to buckets, and, most importantly, fine tuning the
 bucket toolset. Table 6 lists the current bucket tools (any username/password
is sufficient). We
 are currently redesigning the interface for the Publishing
Tool.

Tool  Description  Test URL 
Publishing  creates and populates buckets  http://dlib.cs.odu.edu:8000/buckets/author.cgi 

Management  controls the movement of buckets into
 archives  http://dlib.cs.odu.edu:8000/buckets/manage.cgi 

Administration  used for update and other administration
 purposes  not suitable for demo at this time 

Table 6: Bucket Tools

 There are additional features in development for buckets as well. One is the inclusion of
 intelligence in the bucket so it can communicate with other buckets, people, and arbitrary
 network services. Elevating the status of buckets to computational and communicative entities
 creates a number of possible DL applications. The Bucket Matching System (BMS) will allow
 for buckets to search for possible "matches" and related works off-line. Buckets functionalities
 will include among others: format conversion of
their contents, aging their contents, and
 updating their contents.

Another extension is the addition of customized viewers for buckets.
Currently buckets will
 reveal their contents with the display method. However,
we are working on buckets that
 maintain their metadata in extensible markup
language (XML) and bucket-aware browsers can

http://dlib.cs.odu.edu:8000/ncstrlplus.html
http://techreports.larc.nasa.gov/ltrs/
http://dlib.cs.odu.edu:8000/Dienst/UI/2.0/Query/?author=&title=&abstract=computational+fluid+dynamics&authority=all&organization=&ncstrlplus_subject=&ncstrlplus_archivaltype=&ncstrlplus_tc=&boolean=and&cluster=authority&sort=
http://dlib.cs.odu.edu:8000/Dienst/UI/2.0/Query/?author=&title=&abstract=computational+fluid+dynamics&authority=all&organization=&ncstrlplus_subject=&ncstrlplus_archivaltype=&ncstrlplus_tc=&boolean=and&cluster=authority&sort=
http://dlib.cs.odu.edu:8000/Dienst/UI/2.0/Query/?author=&title=&abstract=computational+fluid+dynamics&authority=all&organization=&ncstrlplus_subject=&ncstrlplus_archivaltype=&ncstrlplus_tc=&boolean=and&cluster=authority&sort=
http://dlib.cs.odu.edu:8000/Dienst/UI/2.0/Query/?author=&title=&abstract=computational+fluid+dynamics&authority=all&organization=&ncstrlplus_subject=&ncstrlplus_archivaltype=&ncstrlplus_tc=&boolean=and&cluster=authority&sort=
http://techreports.larc.nasa.gov/ltrs/ltrs.cgi?search_words=computational+AND+fluid+AND+dynamics
http://techreports.larc.nasa.gov/ltrs/ltrs.cgi?search_words=computational+AND+fluid+AND+dynamics
http://dlib.cs.odu.edu:8000/buckets/author.cgi
http://dlib.cs.odu.edu:8000/buckets/manage.cgi


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 ask the bucket for their XML
metadata, and then create a custom display (based on the user's
 preferences)
from the bucket contents. The data remains inside the bucket, subject to
the
 bucket's terms and conditions, but its structure is being viewed by
an arbitrary and independent
 client. This work is currently being done
within the context of bucket use in undergraduate
 education.


Related Work


There is extensive research in the area of redefining the concept of "document"
or providing
 container constructs. In this section we examine some of these
projects and technologies that
 are similar to buckets, as well as projects
that similar to dumb archives.

Bucket-like Projects

Buckets are most similar to the digital objects first described in the
Kahn/Wilensky Framework
 [5], and its derivatives such as the Warwick Framework
containers [9] and the more recent
 Flexible and Extensible Digital Object
Repository Architecture (FEDORA) [1]. In FEDORA,
 DigitalObjects are containers,
which aggregate one or more DataStreams. DataStreams are
 accessed through
an Interface, and an Interface may in turn be protected by an Enforcer.
The
 relationship between buckets and KWF DOs is discussed further in [17].
FEDORA has not
 been completely implemented at this point, and it is unknown
what repository or digital library
 protocol limitations will be present.
Also, it is unknown if FEDORA plans to allow DOs to be
 intelligent agents.

Multivalent documents [19] appear similar to buckets at first glance.
However, the focus of
 multivalent documents is more on expressing and managing
the relationships of differing
 "semantic layers" of a document, including
language translations, derived metadata,
 annotations, etc. There is not
an explicit focus on the aggregation of several existing data types
 into
a single container.

E-commerce applications are producing a number of bucket-like projects.
One example is
 IBM's cryptolopes [7], which are designed to allow for unlimited
distribution of digital
 objects, but controlled access to their contents.
Similarly, DigiBox has been developed with
 the goal "to permit proprietors
of digital information to have the same type and degree of
 control present
in the paper world" [21]. As such, the focus of the DigiBox capabilities
are
 heavily oriented toward cryptographic integrity of the contents, and
not so much on the less
 stringent demands of the current average digital
library. There appears to be no hooks to make
 either DigiBoxes or Cryptolopes
intelligent agents. DigiBox and Cryptolope are commercial
 endeavors and
are thus less suitable for our research purposes.

To a lesser extent, buckets are not unlike some of the proposals from
various experimental
 filesystems and scientific data types. The Extensible
File System (ELFS) [6] provides an
 abstract notion of "file" that includes
both aggregation, data format heterogeneity, and high
 performance capabilities
(striping, pre-fetching, etc.). While ELFS is designed primarily for a

non-DL application (i.e., high-performance computing), it is typical of
an object-oriented
 approach to file systems, with generic access APIs hiding
the implementation details from the
 programmer.

The Hierarchical Data Format (HDF) and related formats (netCDF, HDF-EOS,
etc.) is a multi
 object, aggregative data format that is alternatively:
raw file storage, the low-level I/O routines
 to access the raw files, an
API for higher level tools to access, and a suite of tools to
 manipulate
and analyze the files [23]. While HDF is mature and has an established
user base,
 it is largely created by and for the earth and atmospheric sciences
community, and this
 community's constraints limit the usefulness of HDF
as a generalized DL application. It is



Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

 worth noting, however, that buckets
of HDF files are entirely possible and appropriate.

Dumb Archive-like Projects

DA is interesting because of what it leaves out, not what it implements.
As the name implies,
 there are any number of more sophisticated archive
related projects and technologies. For
 example, the proposed Repository
Access Protcol (RAP) [10] reveals many of the same
 operations of DA (VERIFY,
DEPOSIT, DELETE, etc.), but it defines separate explicit
 ACCESS operations
for both the digital object and its metadata. Such concepts in SODA have

been removed from DA and placed within the bucket itself. The Dienst
protocol has some DA-
like concepts as well. In particular, the Repository
Service in Dienst implements a List-
Contents verb, the LibMgt Service
implements a Submit verb, etc. However, the main function
 of the Repository
Service in Dienst is to regulate access to the items in the repository,
through
 verbs such as Body and Page. Again, in SODA these functions are
pushed down into the
 buckets. The Dienst group have proposed a more recent
service, the Collection Service [8].
 This service is more like DA than
the previous examples, in that its purpose is to group
 together arbitrary
network objects based on some criteria. However, future plans for the
 collection
service call for it to be involved in operations such as query routing,
which are
 obviously beyond the scope of DA. When the Collection Service
is available for testing, it is a
 good candidate to implement a SOSA model
DL.


Conclusions


We did not set out to prove that interoperability is necessary nor that
digital libraries are
 desirable, but rather we took these two statements
as axiomatic. Neither did we set out to
 prove that our approach to interoperability
is the right one. We did want to show that the
 approach is feasible, and
we did want to have an implementation in order to begin
 experimentation
with a large community and a large corpus. In this paper, we have described

the approach and the implementation. We believe we have made a case that
pushing the
 intelligence and standards down to the object is the right
model because that is where the
 ultimate information gain takes place for
a user. The user's intention is to interact with the
 object, not with higher
level library services -- these are just means to an end.


References

[1] R. Daniel & C. Lagoze, "Distributed Active Relationships
in the Warwick Framework," Proceedings of the 2nd
 IEEE Metadata Conference,
Silver Spring, MD, September 16-17, 1997.

[2] J. Davis & C. Lagoze, "The Networked
Computer Science Technical Report Library," Cornell CS TR96-1595,
 July 1996.

http://cs-tr.cs.cornell.edu:80/Dienst/UI/1.0/Display/ncstrl.cornell/TR96-1595

[3] J. R. Davis, D. B. Krafft, & C. Lagoze, "Dienst:
Building a Production Technical Report Server," Advances in
 Digital Libraries,
Springer-Verlag, 1995, pp . 211-222.

[4] S. L. Esler & M. L. Nelson, "Evolution of Scientific
and Technical Information Distribution," Journal of the
 American Society
of Information Science, 49(1), 1998, pp. 82-91.

http://techreports.larc.nasa.gov/ltrs/PDF/1998/jp/NASA-98-jasis-sle.pdf

[5] R. Kahn & R. Wilensky, "A Framework
for Distributed Digital Object Services," cnri.dlib/tn95-01, May, 1995.

http://www.cnri.reston.va.us/cstr/arch/k-w.html

[6] J. F. Karpovich, A. S. Grimshaw, & J. C. French,
"Extensible File Systems (ELFS): An Object-Oritented
 Approach to High Performance
File I/O," Proceedings of the Ninth Annual Conference on Object Oriented

Programming Systems, Languages and Applications, October 1994, pp. 191-
204.

http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR96-1595
http://techreports.larc.nasa.gov/ltrs/PDF/1998/jp/NASA-98-jasis-sle.pdf
http://www.cnri.reston.va.us/cstr/arch/k-w.html


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]

[7] U. Kohl, J. Lotspiech, & M. A. Kaplan, "Safeguarding
Digital Library Contents and Users: Protecting Documents
 Rather Than Channels,"
D-Lib Magazine, September 1997.

http://www.dlib.org/dlib/september97/ibm/09lotspiech.html

[8] C. Lagoze & D. Fielding, "Defining Collections
in Distributed Digital Libraries." D-Lib Magazine, November
 1998.

http://www.dlib.org/dlib/november98/lagoze/11lagoze.html

[9] C. Lagoze, C. A. Lynch & R. Daniel, "The Warwick
Framework: A Container Architecture for Aggregating Sets
 of Metadata,"
Cornell Computer Science Technical Report TR96-1593, July 1996.
http://cs-
tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR96-1593

[10] C. Lagoze, R. McGrath, E. Overly
& N. Yeager, "A Design for Inter-Operable Secure Object Stores (ISOS)",

Cornell CS TR95-1558, November 27, 1995.

http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR95-1558

[11] Langley Technical Report Server

http://techreports.larc.nasa.gov/ltrs/

[12] R. Lasher & D. Cohen, "A Format
for Bibliographic Records," Internet RFC-1807, June 1995.

http://info.internet.isi.edu/in-notes/rfc/files/rfc1807.txt

[13] E. Miller, "An Introduction to the
Resource Description Framework," D-Lib Magazine, May 1998.

http://www.dlib.org/dlib/may98/miller/05miller.html

[14] NACA Technical Report Server

http://naca.larc.nasa.gov

[15] NASA Technical Report Server

http://techreports.larc.nasa.gov/cgi-bin/NTRS

[16] M. L. Nelson, K. Maly, D. R. Croom, Jr., & S. W. Robbins,
"Metadata and Buckets in the Smart Object, Dumb
 Archive (SODA) Model,"
Proceedings of IEEE Meta-Data 99, Bethesda MD, April 6-7 1999.

[17] M. L. Nelson, K. Maly, S. N. T.
Shen, & M. Zubair, "Buckets: Aggregative, Intelligent Agents for Publishing,"

WebNet Journal 1(1), 1999, pp. 58-66. (Also available as NASA TM-1998-208419).
http://techreports.larc.nasa.gov/ltrs/PDF/1998/tm/NASA-98-tm208419.pdf

[18] M. L. Nelson, K. Maly, S. N. T.
Shen, & M. Zubair, "NCSTRL+: Adding Multi-Discipline and Multi-Genre

Support to the Dienst Protocol Using Clusters and Buckets," Proceedings
of Advances in Digital Libraries 98, Santa
 Barbara, CA, April 22-24, 1998.

http://techreports.larc.nasa.gov/ltrs/PDF/1998/mtg/NASA-98-ieeedl-mln.pdf

[19] T. A. Phelps & R. Wilensky, "Multivalent Documents:
Inducing Structure and Behaviors in Online Digital
 Documents," Proceedings
of the 29th Hawaii International Conference on System Sciences, Maui, HI,
January 3-6,
 1996.

[20] D. G. Roper, M. K. McCaskill, S. D. Holland, J. L.
Walsh, M. L. Nelson, S. L. Adkins, M. Y. Ambur & M. Y.
 Ambur, "A Strategy for Electronic Dissemination of NASA Langley Technical
Publications," NASA TM-109172,
 December 1994.
http://techreports.larc.nasa.gov/ltrs/PDF/tm109172.pdf

[21] O. Sibert, D. Bernstein & D. Van Wie, "DigiBox:
A Self-Protecting Container for Information Commerce,"
 Proceedings of the
1st USENIX Workshop on Electronic Commerce, New York, NY, July 1995.

[22] J. Sobieszczanski-Sobieski, "A
Proposal: How to Improve NASA-Developed Computer Programs," NASA CP-
10159,
1994, pp. 58-61.

[23] I. Stern, "Scientific Data Format Information FAQ,"
1995.

http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html

http://www.dlib.org/dlib/september97/ibm/09lotspiech.html
http://www.dlib.org/dlib/november98/lagoze/11lagoze.html
http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR96-1593
http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR96-1593
http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/Describe/ncstrl.cornell/TR95-1558
http://techreports.larc.nasa.gov/ltrs/
http://info.internet.isi.edu/in-notes/rfc/files/rfc1807.txt
http://www.dlib.org/dlib/may98/miller/05miller.html
http://naca.larc.nasa.gov/
http://techreports.larc.nasa.gov/cgi-bin/NTRS
http://techreports.larc.nasa.gov/ltrs/PDF/1998/tm/NASA-98-tm208419.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/1998/mtg/NASA-98-ieeedl-mln.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/tm109172.pdf
http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html


Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

http://www.dlib.org/dlib/march99/maly/03maly.html[5/3/2016 2:57:11 PM]


Top | Contents
Search
|
Author
Index |
Title
Index |
Monthly Issues

Previous Story | Next Story
Home| E-mail the Editor

D-Lib Magazine Access Terms and Conditions

DOI: 10.1045/march99-maly

http://www.dlib.org/dlib/march99/03contents.html
http://www.dlib.org/Architext/AT-dlib2query.html
http://www.dlib.org/author-index.html
http://www.dlib.org/title-index.html
http://www.dlib.org/back.html
http://www.dlib.org/dlib/march99/bunker/03bunker.html
http://www.dlib.org/dlib/march99/03ober.html
http://www.dlib.org/dlib.html
mailto:dlib@cnri.reston.va.us
http://www.dlib.org/access.html
http://www.doi.org/

	Old Dominion University
	ODU Digital Commons
	1999

	Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework
	Kurt Maly
	Michael L. Nelson
	Mohammad Zubair
	Repository Citation
	Original Publication Citation



