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Changes in Lower Extremity Biomechanics Due to a
Short-Term Fatigue Protocol
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CSCS†; Jatin Ambegaonkar, PhD, ATC, OT, CSCS*; James A. Onate, PhD, ATC,
FNATA‡

*Sports Medicine Assessment, Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA;
†Human Movement Sciences, Old Dominion University, Norfolk, VA; ‡School of Allied Medical Professions, The Ohio
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Context: Noncontact anterior cruciate ligament injury has
been reported to occur during the later stages of a game when
fatigue is most likely present. Few researchers have focused on
progressive changes in lower extremity biomechanics that occur
throughout fatiguing.

Objective: To evaluate the effects of a sequential fatigue
protocol on lower extremity biomechanics during a sidestep-
cutting task (SS).

Design: Controlled laboratory study.
Setting: Laboratory.
Patients or Other Participants: Eighteen uninjured female

collegiate soccer players (age¼ 19.2 6 0.9 years, height¼ 1.66
6 0.5 m, mass ¼ 61.6 6 5.1 kg) volunteered.

Intervention(s): The independent variable was fatigue
level, with 3 levels (prefatigue, 50% fatigue, and 100% fatigue).
Using 3-dimensional motion capture, we assessed lower
extremity biomechanics during the SS. Participants alternated
between a fatigue protocol that solicited different muscle groups
and mimicked actual sport situations and unanticipated SS trials.
The process was repeated until fatigue was attained.

Main Outcome Measure(s): Dependent variables were hip-
and knee-flexion and abduction angles and internal moments
measured at initial contact and peak stance and defined as
measures obtained between 0% and 50% of stance phase.

Results: Knee-flexion angle decreased from prefatigue
(�178 6 58) to 50% fatigue (�168 6 68) and to 100% fatigue
(�148 6 48) (F2,34 ¼ 5.112, P ¼ .004). Knee flexion at peak

stance increased from prefatigue (�52.98 6 5.68) to 50% fatigue
(�56.18 6 7.28) but decreased from 50% to 100% fatigue (�50.58

6 7.18) (F2,34 ¼ 8.282, P ¼ 001). Knee-adduction moment at
peak stance increased from prefatigue (0.49 6 0.23 Nm/kgm) to
50% fatigue (0.55 6 0.25 Nm/kgm) but decreased from 50% to
100% fatigue (0.37 6 0.24) (F2,34 ¼ 3.755, P ¼ 03). Hip-flexion
angle increased from prefatigue (45.48 6 10.98) to 50% fatigue
(46.28 6 11.28) but decreased from 50% to 100% fatigue (40.98

6 11.38) (F2,34 ¼ 6.542, P ¼ .004). Hip flexion at peak stance
increased from prefatigue (49.88 6 9.98) to 50% fatigue (52.98 6

12.18) but decreased from 50% to 100% fatigue (46.38 6 12.98)
(F2,34 ¼ 8.639, P ¼ 001). Hip-abduction angle at initial contact
decreased from prefatigue (�13.88 6 6.68) to 50% fatigue (�9.18

6 6.58) and to 100% fatigue (�7.88 6 6.58) (F2,34¼ 11.228, P ,
.001). Hip-adduction moment decreased from prefatigue (0.14
6 0.13 Nm/kgm) to 50% fatigue (0.08 6 0.13 Nm/kgm) and to
100% fatigue (0.06 6 0.05 Nm/kg) (F2,34 ¼ 5.767, P ¼ .007).

Conclusions: The detrimental effects of fatigue on sagittal
and frontal mechanics of the hip and knee were visible at 50% of
the participants’ maximal fatigue and became more marked at
100% fatigue. Anterior cruciate ligament injury-prevention
programs should emphasize feedback on proper mechanics
throughout an entire practice and not only at the beginning of
practice.

Key Words: anterior cruciate ligament, knee, fatiguing,
kinematics, kinetics

Key Points

� A progressive change in lower extremity mechanics occurred for knee-flexion angle, hip-abduction angle, and
internal hip-adduction moment.

� Hip flexion at initial contact and peak stance and knee flexion at peak stance had subtle altered patterns from
prefatigue to 50% fatigue and a sudden change at 100% fatigue.

� As participants progressed from prefatigue to 50% fatigue, they adopted a posture that may protect knee structures
during hip flexion at initial and peak stance and knee flexion at peak stance.

F
atigue consistently is implicated as a mechanism of
injury for the lower extremity in athletes. Acute and
extended periods of fatigue can occur within

peripheral and central control systems,1 the latter of which
is considered the predominant cause of injury.2 In previous
longitudinal studies3–5 over a competitive season, investi-
gators have demonstrated that injuries occur at a greater
rate in the latter portion of practices and games and the

latter portion of the season. Decomposition of neuromus-
cular control has been the focus of researchers studying
injuries due to fatigue.6

Deficiencies in neuromuscular control can predispose an
athlete to an increased risk of lower extremity injury.7,8 For
athletes who initially do not demonstrate such deficiencies
in neuromuscular control, the onset of fatigue can decrease
neuromuscular control to levels that increase the likelihood
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of injury. Researchers2,9 have viewed the effects of fatigue
during single-leg landings and stop-jump tasks and have
demonstrated that fatigue alters neuromuscular control.
When coupled with simulated gamelike tasks requiring
decision-making processes, the effects of fatigue may
exacerbate the risk factors for lower extremity injury.1

Specifically, fatigue alters knee-flexion angle and moments,
hip internal rotation, and knee-abduction angles and
moments.1,2,6,9 These variables have been identified as
potential risk factors for anterior cruciate ligament (ACL)
injuries.10,11 Furthermore, Hewett et al8 found that knee-
valgus angle and moment predicted ACL injury. When the
ACL tears during a noncontact mechanism, the lower
extremity typically is positioned with the foot firmly
planted on the ground, knee abducted and near full
extension, femur internally rotated, and tibia externally
rotated.12–16 In several observational studies,12,17,18 investi-
gators have shown that ACL injuries occur shortly after
initial contact (approximately 40 milliseconds) and with a
decreased knee-flexion angle.

A short-term fatigue protocol that uses common athletic
skills is of interest for assessing lower extremity biome-
chanical changes throughout the fatiguing process.6 To our
knowledge, only a few researchers2,6,9,19 have included
drills that athletes commonly use (eg, soccer skills) in their
fatigue protocols. A regimen that incorporates athletic drills
specific to the athletic event (eg, cut right, up-and-down)
and deceleration and accelerations (eg, 5-10-5) with
changes in direction has not been applied in a fatigue
protocol. We wanted to understand how multiple neuro-
muscular demands solicited through specific athletic drills
(eg, deceleration, acceleration) performed during cutting
and pivoting tasks commonly are associated with ACL
tears.14 Therefore, the purpose of our study was to evaluate
the effects of a short-term fatigue protocol on lower
extremity biomechanics during a sidestep-cutting task. We
hypothesized that throughout the fatigue protocol (prefa-
tigue, 50% fatigue, and 100% fatigue), participants would
have a sequential (1) decrease in knee- and hip-flexion
angles, (2) increase in knee- and hip-abduction angles, and
(2) increase in internal knee-adduction moment.

METHODS

Participants

Based on the effects of fatigue on lower extremity
biomechanics reported in the literature1,2,9 and to achieve
80% statistical power with an a level of .05, a convenience
sample of 18 National Collegiate Athletic Association
(NCAA) Division I female soccer players (age ¼ 19.2 6
0.9 years, height¼ 1.66 6 0.05 m, mass¼ 61.6 6 5.1 kg)
was deemed adequate for this study. They did not have any
lower extremity injuries and were excluded if they reported
a history of lower extremity surgery within 2 years of the
study, an injury to the lower extremity within 6 months of
the study, ACL injury or surgery, or pregnancy. Participants
wore tight-fitting clothing and used the team running shoes
(Supernova; adidas AG, Herzogenaurach, Germany). All
participants provided written informed consent, and the
study was approved by the Institutional Review Board of
Old Dominion University.

Experimental Procedures

Lower extremity 3-dimensional joint kinematic and
ground reaction force data were recorded throughout the
execution of unanticipated tasks. Before testing, we
recorded each participant’s mass and height and provided
approximately 10 minutes to warm up (bicycling and
stretching). After the warm-up, we used a VERTEC (Sports
Import, Hilliard, OH) device as previously described to
obtain maximal vertical jump.9

Participants performed 2 unanticipated tasks (stop jump,
sidestep cutting).9,20,21 To create the anticipation factor, a
light beam was placed across the area where the
participants were running and 2 m before the force plates.
When the light beam was interrupted, it triggered a custom-
made software program to randomly generate the athletic
task (stop jump or sidestep) and project it onto a screen in
front of the participant.22 Two timing systems (Brower,
Draper, UT) were used to control the approach speed. For
the purpose of this study, only the sidestep-cutting task was
analyzed, and the stop-jump task was discarded before
analysis.

The sidestep-cutting task consisted of a running
approach, stepping with the dominant foot on the force
plate, cutting to the contralateral side of the dominant foot,
and touching the force plate at an angle of approximately
458.23 The dominant foot was defined as the foot a
participant would use to kick a ball the farthest. Before
data collection, participants practiced the task 3 times or
until they were comfortable with it (average ¼ 4 practice
trials). Participants had to perform 2 successful trials of
each task between fatigue sets. A trial was considered
unsuccessful and repeated if the participant did not land
completely on the force plate or could not execute the trial
at a minimum speed of 3.5 m/s.20 A single experimenter
(N.C.) determined if the trials were successful or unsuc-
cessful.

Functional Agility Short-Term Fatigue Protocol

The functional agility short-term fatigue protocol (FAST-
FP) consisted of a series of athletic exercises. Each set of
the FAST-FP included 3 countermovement jumps at 90%
of maximal vertical jump, step ups and step downs on a 30-
cm box for 20 seconds, 3 squats to 908 of knee flexion, and
a proagility shuttle run (5-10-5 agility run).24 The protocol
started with the participant performing 3 consecutive
countermovement jumps, followed by a series of step-up
and step-down movements on a 30-cm box for 20 seconds
with a metronome set at 200 beats per minute.6 Immedi-
ately after completing the step ups, the participant
performed 3 squats to 908 of knee flexion. After completing
the squats, the participant performed the 5-10-5 agility drill.
Between fatigue sets, she had to successfully complete 4
unanticipated trials (2 stop jump, 2 sidestep). Within 5
seconds of successfully completing the 4 tasks, the
participant began another set of the fatigue protocol. This
was repeated until she achieved maximal fatigue. The
criteria for maximal fatigue were (1) the participant did not
attain 90% of her maximal jump on all 3 vertical jumps for
2 consecutive fatigue sets or (2) she achieved a heart rate
plateau over 3 consecutive fatigue sets that was within 90%
of her estimated maximal heart rate.25 We continuously
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monitored heart rate through a Polar system (model FS2C;
Polar Electro, Lake Success, NY).

Biomechanical Analysis

We placed 40 reflective markers, 10 of which were
calibration markers, on specific body landmarks.26 Before
data collection, we obtained a standing trial and a dynamic
trial to calculate hip joint center.27,28 For these trials,
participants stood in a neutral position with their upper
extremities across their chests. We removed the calibration
markers before the fatigue protocol started. We secured
pelvic tracking markers with surgical glue, prewrap, and
Powerflex tape (Andover Healthcare, Inc, Salisbury, MA)
and thigh and shank cluster markers with Powerflex tape.
Cluster plates with 5 markers were made to attach to the
participants’ shoes and secured with athletic tape (Cramer
Products Inc, Gardner, KS).

We used 8 high-speed motion-analysis cameras (Vicon,
Oxford, UK) sampling at 300 Hz to track marker trajectory
and 2 force plates (Bertec Corporation, Columbus, OH)
sampling at 1200 Hz to measure ground reaction forces.
From the standing trial, a kinematic model (pelvis, thigh,
shank, and foot) was created for each participant using
Visual 3D software (C-Motion, Germantown, MD) with a
least-squares optimization.29 The kinematic model was
used to quantify the motion at the hip, knee, and ankle
joints, and rotations were expressed relative to the standing
trial. A fourth-order, zero-lag Butterworth filter with 7- and
25-Hz cutoff frequencies was used to filter trajectory data
and ground reaction force data, respectively.30 To the
kinematic and ground force data, we applied an inverse
dynamic method with segment inertial characteristics
estimated for each participant to calculate 3-dimensional
joint forces and moments.31,32 Intersegmental joint mo-
ments were defined as internal moments and were
expressed to the respective joint-coordinate system (eg, a
knee internal-extension moment will resist a flexion load
applied to the knee). All data were normalized to 100% of
stance, and initial contact was the point at which vertical
ground reaction force exceeded 10 N and ended with toe-
off.

Statistical Analyses

Before statistical analyses, we normalized fatigue sets to
percentage of fatigue. The first set was considered
prefatigue (ie, 0%); the last set when maximal fatigue
was achieved was considered 100% fatigue. The half point
of the total number of sets was determined as 50% fatigue.
For example, if 12 total fatigue sets were completed, the
sixth set would be 50% fatigue. Independent variables
included fatigue level with 3 levels (prefatigue, 50%
fatigue, and 100% fatigue). A 1-way, repeated-measures
analysis of variance was conducted for each dependent
variable at each time instant. Dependent variables were hip-
and knee-flexion and -abduction angles and moments,
which were measured at initial contact and peak stance.6

Peak-stance dependent measures were obtained between
0% and 50% of stance phase.6 We reduced all data with
Visual 3D and a custom-made MATLAB (The MathWorks,
Natick, MA) program. Statistical procedures were conduct-
ed in PASW (version 18.0; IBM, Somers, NY). Tukey post
hoc analysis was used for further evaluation when a main
effect was present. The a level was set at .05.

RESULTS

Participants completed an average of 9.4 6 2.7 sets to
achieve maximal fatigue as determined by our criteria. We
observed a reduction in approach speed (F2,34¼ 5.781, P ,
.001). Specifically, participants had decreased speeds
between prefatigue and 100% fatigue; however, they still
met the requirement of at least 3.5 m/s. The Table presents
descriptive statistics (means and standard deviations) with
the associated statistical values for each dependent
measure.

Fatigue influenced several kinematic variables at initial
contact. Specifically, knee flexion was less at 100% fatigue
than at prefatigue and 50% fatigue (F2,34 ¼ 5.112, P ¼
.004). Similarly, hip abduction at initial contact decreased
from prefatigue to 50% and 100% fatigue (F2,34¼11.228, P
, .001). This was accompanied by a decrease in hip-
adduction moment at initial contact from prefatigue to 50%
and 100% fatigue (F2,34 ¼ 5.767, P ¼ .007). Similarly, at
peak stance, internal hip-adduction moment was less at
100% fatigue than at prefatigue and 50% fatigue (F2,34 ¼

Table. Dependent Variables at Different Fatigue Levels (Prefatigue, 50% Fatigue, and 100% Fatigue) at Initial Contact and Peak Stance

During a Sidestep-Cutting Task (Mean 6 SD)

Variable

Fatigue Level

F2,34 PPrefatigue 50% 100%

Initial contact

Knee flexion, 8 �17 6 5 �16 6 6 �14 6 4a 5.112 .004

Knee abduction, 8 0.8 6 1.9b �0.3 6 1.9 0.3 6 2.1 3.784 .03

Knee-adduction moment, Nm/kgm 0.11 6 0.08 0.08 6 0.07c 0.05 6 0.09c 5.712 .003

Hip flexion, 8 45.4 6 10.9 46.2 6 11.2 40.9 6 11.3a 6.542 .004

Hip abduction, 8 �13.8 6 6.6 �9.1 6 6.5c �7.8 6 6.5c 11.228 ,.001

Hip-adduction moment, Nm/kgm 0.14 6 0.13 0.08 6 0.13c 0.06 6 0.05c 5.767 .007

Peak stance

Knee flexion, 8 �52.9 6 5.6b �56.1 6 7.2 �50.5 6 7.1b 8.282 .001

Knee-adduction moment, Nm/kgm 0.49 6 0.23 0.55 6 0.25 0.37 6 0.24b 3.755 .03

Hip flexion, 8 49.8 6 9.9 52.9 6 12.1 46.3 6 12.9c 8.639 .001

Hip-adduction moment, Nm/kgm 0.72 6 0.31 0.59 6 0.33 0.39 6 0.29a 9.483 ,.001

a Indicates lower than at prefatigue and 50% fatigue.
b Indicates lower than at 50% fatigue.
c Indicates lower than at prefatigue.
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9.483, P , .001). Internal knee-adduction moment at initial
contact also decreased throughout the protocol from
prefatigue to 50% and 100% fatigue (F2,34 ¼ 5.712, P ¼
.003). Altered lower extremity biomechanics for knee-
flexion and hip-abduction angles at initial contact and
internal hip-abduction and knee-abduction moments during
the fatigue protocol are represented in Figure 1.

A noteworthy pattern was observed for certain remaining
dependent measures. Hip flexion at initial contact (F2,34 ¼
6.542, P¼ .004) and peak stance (F2,34¼ 8.639, P¼ .001),
knee flexion at peak stance (F2,34¼ 8.282, P¼ .001), knee
abduction at initial contact (F2,34 ¼ 3.784, P ¼ .03), and
knee-adduction moment at peak stance (F2,34¼ 3.755, P¼
.03) increased from prefatigue to 50% fatigue, then
decreased from 50% fatigue to 100% fatigue, which
presented values less than prefatigue levels. This pattern
is shown in Figure 2. Knee-abduction angle at peak stance
was similar among fatigue conditions (prefatigue, 50%
fatigue, and 100% fatigue) (F2,34 ¼ 5.679, P . .05).

DISCUSSION

We evaluated the effects of a FAST-FP on lower
extremity biomechanics during a sidestep-cutting task.
Our results partially supported our hypothesis that sequen-
tial fatigue would alter lower extremity biomechanics.
Overall, we observed a progressive change in the lower
extremity mechanics for knee-flexion and hip-abduction
angles and for internal hip-adduction moment. The changes
observed for these variables have been reported to increase
the risk of injury particularly at initial contact, with
decreased knee-flexion angle noted to result in augmented
shear force on the ACL.12,17,18,33

Unexpectedly, an interesting pattern was observed for hip
flexion at initial contact and peak stance and knee flexion at
peak stance. These dependent measures had a subtle altered
pattern from prefatigue to 50% fatigue followed by a
sudden change at 100% fatigue. Whereas the altered
biomechanical patterns is in accordance with previous
descriptions2,9,19,21 of the effects of fatigue on lower
extremity biomechanics, the nonprogressive changes at
50% fatigue are novel findings of this study.

Investigators have used different fatigue strategies, such
as isolated muscle fatigue,34 and prefatigue–postfatigue
protocols9,19,21 to evaluate the effect of fatigue on lower
extremity biomechanics. Whereas other researchers1,2 have
used a similar approach to ours, they included fewer
multiple athletic activities that could elicit different muscle
groups and mimic actual sport situations, instead focusing
on controlled movements, such as squats, vertical forward
jumps, or vertical jumps.1,2,6,9,19 By including a multitude of
activities that elicited different muscle groups, we expected
to have a more accurate representation of what may happen
during sport participation (eg, soccer, basketball). Quam-
men et al26 used a prefatigue–postfatigue assessment, and
whereas they gained a better understanding of 2 distinct
fatigue protocols, they observed a weakening of the effects
of fatigue between preassessment and postassessment. For
this study, we adopted a volitional strategy for our protocol
to determine when participants would have achieved their
maximal fatigue as previously reported.2,6

We noted that the demands placed upon the lower limb
have been shown to be task dependent.23 Hence, comparing

our results of fatigue using a sidestep task with the results
of other researchers who used distinctly different tasks
could yield contradictory findings. Our results were
partially analogous to those reported by researchers21

investigating a sidestep task. Specifically, we saw a
progressive degradation of lower extremity mechanics
throughout the protocol. These variables included knee
flexion, knee-adduction moment, hip-adduction moment,
hip abduction at initial contact, and hip-adduction moment
at peak stance. Our findings are similar to those reported in
previous work and add to the concept of detrimental effects
of fatigue on biomechanics during high-demand activities.2

On secondary analyses, additional variables presented yet
another pattern worth noting. As our participants pro-
gressed from prefatigue to 50% fatigue, they adopted a
posture during hip flexion at initial and peak stance and
knee flexion at peak stance that may better protect the knee
structures. Essentially, as they progressed toward fatigue,
the participants went into a more-flexed position, which
may place an increased tensile load on the ACL rather than
a shear force.33 The adoption of this posture at 50% fatigue
that may place lower loads on the ACL contradicts most
fatigue studies in which researchers have shown a
continuous decline as fatigue progresses.1,2,9,19 A plausible
explanation for this observation is that our protocol used
activities commonly performed during practices and games,
which might have provided an initial central and muscular
adaptation to the fatigue protocol, as typically occurs
during practices and games. Although we cannot discern
differences between these 2 mechanisms of fatigue, we
believe that the observed changes probably are due to
degradation of both central and muscular fatigue. Still, as
the protocol progressively solicited the neuromechanical
demands, we observed a natural deterioration in lower
extremity mechanics.

These altered joint mechanics typically are characterized
by decreased hip and knee flexion and knee-adduction
moment and by increased knee-abduction and internal
rotation.8,14,17,18,35–38 In our study, this pattern was attained
at the moment of volitional exhaustion (ie, 100% fatigue)
for knee- and hip-flexion angles but was not attained for all
the dependent measures. Nevertheless, the decline in the
biomechanical variables might not have reached the
position that is believed to create excessive ACL strain
and potentially cause its rupture.35,39 Although presented as
showing a difference between prefatigue and 100% fatigue,
the knee-abduction and knee-adduction moments do not
seem to be sufficient to increasingly strain and potentially
rupture the ACL.35,39

An extended position at landing, which was demonstrated
by the decreased hip and knee flexion, has been associated
with increased risk of ACL injury.12,14,17,18,40 Throughout
the fatigue protocol, our participants always presented
decreased knee flexion specifically at initial contact, which
has been associated with higher anterior tibial shear
force.36,37 This augmented force increases the load on the
ACL and thus the probability of rupture. In a cadaveric
study,36,37,41 investigators noted that anterior tibial dis-
placement is augmented between 158 and 458 of knee
flexion, with its peak occurring at 308. Perhaps the
hamstrings muscles cannot cocontract at smaller angles to
minimize anterior displacement of the tibia.39 Throughout
the fatigue protocol, our participants were within the range
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Figure 1. Changes in lower extremity biomechanics throughout the fatiguing protocol for hip-abduction angles at initial contact, A, hip-
abduction moment at initial contact, B, hip-abduction moment at peak stance, C, knee-abduction moment at initial contact, D, and knee-
flexion angle at initial contact, E. a Indicates less abducted than at prefatigue. b Indicates less than at prefatigue. c Indicates less than at
prefatigue and 50% fatigue. d Indicates less knee flexion than at prefatigue and 50% fatigue. These variables presented a progressive
deterioration from prefatigue to 100% fatigue.
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Figure 2. A remarkable pattern was observed for some of the dependent measures, hip flexion at initial contact, A, hip flexion at peak
stance, B, knee abduction at initial contact, C, knee-adduction moment at peak stance, D, and knee flexion at peak stance, E. These
variables describe improved performance from prefatigue to 50% fatigue and a sudden decline from 50% to 100% fatigue. a Indicates less
than at prefatigue and 50% fatigue. b Indicates less than at prefatigue. c Indicates less abducted than at 50% fatigue. d Indicates less than at
50% fatigue.
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that is thought to increase anterior tibial displacement and
consequently place greater stress on the ACL. In our study,
the change from prefatigue to postfatigue was smaller than
in previous studies,9 probably because of the earlier noted
difference in the tasks performed. Different tasks may
produce different outcomes based on the neuromuscular
solicitations specific to each task.42 The participants’
backgrounds also may have contributed to this difference.
As highly trained NCAA Division I athletes, our partici-
pants may experience similar loads during practices and
games, whereas participants in the other study were
recreational athletes who might not be able to adapt
appropriately to such neuromechanical and physiologic
demands.

CONCLUSIONS

Distinct patterns exist in the biomechanical variables
during fatigue. Some biomechanical variables had a
protective adaptation between prefatigue and 50% fatigue
and then showed a sudden deterioration from 50% to 100%
fatigue. A few variables presented a progressive decline in
performance from prefatigue to 100% fatigue. Highly
trained NCAA Division I collegiate athletes appear to be
able to sustain certain neuromechanical adaptations within
the first 50% of a fatigue protocol. This information may be
useful in developing future ACL injury-prevention pro-
grams. Reinforcement of proper mechanics needs to occur
from the early stages and throughout the practice. This
reinforcement exemplifies the training specificity principle
that the desired mechanics learned during training will
transfer to game situations and optimal performance.42

Therefore, developers of ACL injury-prevention programs
should consider the effect of fatigue throughout practices
and games rather than primarily during warm-ups. This
recommendation applies to highly trained individuals in
whom the detrimental effects of fatigue seem to be steadily
present between 50% and 100% fatigue.
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