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and Condon, a quantum-mechanical particle having mass m and energy E may penetrate 

a classical potential barrier V = V(x). From Baym [33] particles can penetrate into 

regions that are forbidden classically. This means that even though a classical particle 

would be unable to penetrate a barrier, a quantum mechanical particle incident from the 

left has a certain probability of being found to the right of the barrier. If we consider a 

potential barrier of height V over [0,a] and if E represents an energy state such that 

E < V then a mathematical model illustrating this phenomenon is

f W  =

Ae"*,h + Be'*"*,* < 0 
Ce~b + Dek,0<x < a 
AS(E)e‘p'x- v\x>a

where \|/ (x) is derived from the time independent Schrodinger equation

ih 3\|/(x,t) - h 2 a 2\|/(x,t) T„  N
 -------1 = - --------—;— + V(x)u/(x, t) . . .
2k dt 4k m dx with boundary conditions.

The function S(E) is called the tunneling matrix element or transmission amplitude. It is 

essentially the probability amplitude for the process that a particle incident on the left 

with energy E will tunnel through the step. For E <V,

S(E) = ------ Ti— T T T 1—. 2, .  wfiere p =yJlmE ,4ikphxcoshka + (4k p -  h k )sinhka

hk = 2k V2m (V- E) and m represents the mass of the particle, and h is Planck’s

constant. The probability that a particle striking the barrier from the left will tunnel 

through to the right, is given by
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T(E) = |S|2 =

(as is shown in standard texts on quantum mechanics, e.g. Schiff [41]). In a similar 

manner, cancer is made up of many “particles” (cells) that obviously would not exist if 

the immune system were 100% effective. While indeed the immune system may kill 

some or all of the invading cancer cells, (i.e. by acting as a barrier to the cancer growth), 

sometimes the cancer evades the immune response mechanism and subsequently 

prevails. In this light, we borrow the idea of quantum tunneling to examine the 

cancer/immune system response from a somewhat novel perspective, noting that the 

cells are macroscopic quantities (compared with atomic particles) and so the relevant 

mathematical model contains no reference to h and m. Nevertheless, the methodology is 

similar; an eigenvalue problem can be posed for the effective “transmissivity” of the 

immune system.

THE MATHEMATICAL MODEL

Let Xj represent the number of cells in a malignant tumor. We would expect that 

Xc would be no more than O(1013) which is the approximate number of cells in a human 

being. A tumor may be palpable when the number of cells is of 0(10®) ( as occurs for

example in the breast area). Thus, instead of using x,. as the independent variable, it

sinh2 ka 
+ 4 (£  I V ) ( \ - E I V )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

would seem more natural to use x  = log x,. as our independent variable. Let V  ( x  ) be

the measure of the host immune response to tumorigenesis, i.e. the beginning of a tumor. 

Next assume x  is defined on [0,xj where x,„ =13 on the log scale or 1013 on the

X
original scale. Rescale [0 ,x j onto [0,1] by using a new variable x= —  . We will

assume a barrier interval [p,q] of width q - p and height V(x) where [p,q] is contained 

within the interval [0,1]. We might think of the width of the barrier as a measure of the 

efficiency of the immune system in preventing “leakage” from a state of low cancer cell 

number to a correspondingly higher (and dangerously so) state. The height of the 

barrier can be thought of as a measure of the aggression of the cancer, insofar as a 

higher barrier can contain more “ levels” of cancer aggression (i.e. more energy levels).

It is as if the cancer interacts with the immune system (which it does) to induce a yet 

higher level of aggression which may not be present in lower barriers. Of interest would 

be to take a barrier of given height (such that there are at least two eigenvalues, and 

progressively widen the barrier, keeping the height constant, to see how the 

eigenfunctions (and hence probabilities) change across the barrier.

Consider the one-dimensional “Schrodinger-type” equation for the cancer cell 

population in a steady-state

£ j r + [ i - V ( x ) ] y = 0  (52)

where y(x) is the probability amplitude of cancer being found at location x. Here ^ is
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an eigenvalue representing the energy or “progression” of the cancer cells towards a 

highly malignant and dangerous state, while V(x) is the height of the barrier (i.e. V is 

constant).

The boundary conditions are

• y(l) = 0  ( no cancer beyond this maximum value of x = 1)

• for some parameter a, such that 0  < a  < 1 , a  y (0 ) -  (1  -  a  )y ' (0 ) = 0  ,and

• y and y '  are continuous at p and q

I |2The first two conditions follow from the fact that we are assuming that |y| is equal to

the probability of the system (host) being found at “location” x. The last condition is 

required for purposes of continuity. In addition V = 0 outside the interval [p,q] and

J* |y| = 1 . The solution of equation (52) is 
o

Asin(V^x) + Bcos( VaTx) for 0 < x < p V = 0 (53)

y=  < N e Vv“Xx+ M e vV for p < x < q  and V > \ (54)

Fsin(V T)x+G  cos(V^T)x for q < x < 1 V = 0 (55)
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1 -  a
Let k  = yfk , h = -yjV -  X , and (3 =  then the constants for equation (53) are

a

A = (A1 + A2 + A3 + A4  + A5) where

A1=Ik
( k 2p2 -  l)sin(2kp)

+ k (k 2p2p + 2p + p) -  2kp cos2(kp)

A2 =
1 N l2e(4hq) -  Ml2 + 4NlMle(2hq) hq
2  e(2hq) h

A3= -
(N l2e(4hp) -  Ml2 + 4NlMle(2hp)hp)

e{2hp) h

A4 =
FI2
2k

(tan2 k - 1) sin 2k
+ ktan2 k+ k + 2tankcos2 k

A5 =
FI2

2 k
(1 -  tan2 k )sin 2 kq

-  kqtan2 k -  k q -  2 tankcos2 kq

and B = Akp. The constants for equation (54) are M = Ml- A and N = Nl-A,

-kQ 3coskp+ 04sm kp , k01coste+ 02s\nkp
where M l = — =--------------  and N 1 = — ------— -------—

2 h e p 2 hehp
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The constants for equation 55 are:

kQlcoskp + Q2sinkp h,„ .
F = A ------------- ----------- — - --------   e q_p) (56)

( k - h  tank) cos kq+(h+k tank) sin kq

where Q l=  1+ph,  Q2  = h - k 2p , Q3= l - p h , a n d  Q4 = h+ k2p

and G  = -  F ta n k  . Also, in solving we find that F must also equal equation (57)

r _ A Q4sinkp-kQ3coskp ck|p-,) (57)
(h - ktank)sinkq- (k+ htank)coskq

An eigenvalue problem is a boundary value problem that has nontrivial solutions only 

when a parameter X has special values called eigenvalues. In order for this problem to 

have solutions equation (56) must equal equation (57). Rewriting equation (56) in terms 

of X we obtain:

vr(i-pvv-x)cosvrp+(yv-x +pa.)smvrp
1 (Vx-  V v^T  tanVT)cosVUi+ (V v ^ I  + VT tanVT)sinVTq 6

and for equation (57) in terms of X we obtain:

(W - X -  PX)sinVTp- VTd- PVy - X jcosVTp vv̂ (P-q) 
2 (VV-X -  VTtan-\/X)sinVXq-(V^" + V V -1 tanVk )cosVkqC
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Setting fi(A) = f2(A.) and rewriting, we obtain two functions to be called f3(A.) and 

f4(A) defined as follows

f j O )  = e ‘"/^ :(q~l>) , (58)

(VV-X + 3 J . ) s i n V j T p - V X ( l - P i / v ^  A.)cosVTp 

f  = (VV-Jt  - ( U ) s m V T p  + V U l+ P V V - A .  )cosV^P

. (V Y - X + y/X tan-v/rjsinVTq-f (V T - V V - X tanVAOcosVTq
4( )= ( (VV-X -  <A tan«A) sinVTq- (VT + VV -  X tanVx~)cosVTq

The parameters needed to graph f3(A.) and f4(X) are the height V, and position of 

the width, p and q. For example, for p = .6 and q = .8 with a height of V = 4 the graph 

of equations (58) and (59) are given in Figure 25.

As observed in Figure 25, for each barrier there always exists at least one 

eigenvalue namely X = V, but there may not exist an eigenvalue X < V for all heights V. 

As we will see, for some larger values of V it is possible to obtain more than two 

eigenvalues less than V. A graph of the function y from equations (53), (54) and (55) for 

a = .3, X = 3.61, V = 4, p = .6  and q = .8 is given in Figure 26. The graph of the square 

of the function y is given in Figure 27 for the same barrier values as given above in 

Figure 26. Following Figure 26 are various other figures depicting different 

immune/cancer responses. At the conclusion of the figures there is a table of 

eigenvalues for various values of a , V, p, and q.
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3

2.5 3 3.5 4

X

Figure 25: f3 is represented by the solid line, and f4 by the dotted line. You can see the 

intersection at V = X. Our interest is in the X < V. In this graph a = .3,

V = 4, p = .6 , and q = .8 . The intersection of f3 and f4 is at X =3.61.

5

y t(x )  4

3

2

0
0.4 0.60 0.2 0.8 1.2I

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 26: The function yl,y2, and y3 forms the three pieces of the function y from

equations (53), (54), and (55). y6 , y7,and y4 forms the rectangular barrier. 

The parameter values are identical to those used in Figure 25.
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y l(x ) 4 _

y6(z)

y7(zl)

0.2 0.6 0.80.4 1.2

x .x 2 ,x 3 ,z ,z l,x 2

Figure 27 : This is the square of the function y of Figure 26.

-100

Figure 28: V = 26, a = .5, p = .2 and q = .4. This produces two eigenvalues as shown 

above. The first = 11.1 and the second X2 = 25.77.
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3

0
0.6 0.80 0.2 0.4 1

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 29: V = 26 and A, = 1 1.1, p = .2, and q = .4. The immune system does not 

appear to affect the cancer significantly.

3

y6(z)

0 0 0.2 0.4 0.6 0.8 1
x ,x 2 ,x 3 ,z ,z l,x 2

Figure 30: The graph of y2 corresponding to Figure 29.
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0.4 0.6 0.S0.2

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 3 1: V = 26, and X2 = 25.77, a, p, and q as in Figure 28. Now the immune barrier 

prevents the cancer from tunneling through.

3

y l(x )

0
0.60 0.2 0.4 0.8 I

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 32: The graph of y2 corresponding to Figure 31.
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- io

a.

Figure 33: V = 30, a = .4, p = .5 and q = .55. The graph shows two eigenvalues which 

are = 5.03 and X2 = 25.1.

y l(x )

y7(zl)

0.5

0.80.2 0.4 0.6 1.2

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 34: V = 30, a = .4, p = .5 and q = .55. This graph was formed using the 

eigenvalue ^  = 5.03.
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yiCx)

y4(x2)

0.2 0.4 0.6 0.8 1.2

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 35: The graph of y2 corresponding to Figure 34.

y l(x )

y7(z l)

0.5

0.2 0.4 0.6 0.8

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 36: V = 30, a = .4, p = .5 and q = .55. This graph was formed using the

eigenvalue X2 = 25.1. It would appear that the cancer tumor was destroyed 

for reasons other than the presence of the immune barrier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

y l(x )

0.2 0.6 0.80.4

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 37: The graph of y2 corresponding to Figure 36.

l . i

1.05

2.85 2.952.9 3

I

Figure 38: V = 3, a  = .01, p = .3, q = .4. The eigenvalue is 2.92.
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y6(z)

0.2 0.4 0.6 0.8

x ,x2,x3,z,zl,.x2

Figure 39: The graph of y for V = 3, a = .01, p = .3, q = .4. The eigenvalue is 2.92

3

y l ( x )

y6(z)

y7(zl)
I

0 0 0.2 0.4 0.6 1.20.8

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 40: The graph of y2 corresponding to Figure 39.
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Figure 41: This graph represents the special case when a = 0 V = 3 and p = .7 q = .8 . 

The eigenvalue is 2.55.

3

y l(x )

2
y3(x3)

y 7(z l) i

0
0.20 0.60.4 0.8 1 1.2

x ,x 2 ,x 3 ,z ,z l,x 2

Figure 42: This is the graph of y2 for a  = 0, V = 3, p = .7, q = .8 and k = 2.55.
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Table 8. A Table of Eigenvalues

a V P q A

.01 4 .2 .3 3.157

.01 4 .2 .4 3.721

.01 5 .2 .5 4.57

.01 6 .2 .7 6.428

.01 3 .5 .6 2.734

.01 3 .5 .7 2 .8 8

.01 3 .5 8 2.95

.01 3 .7 .8 2.57

.01 3 .7 .9 2 .6

.01 24 .2 .3 6.19, 23.1

.01 24 .2 .4 9, 23.2

.01 27 .2 .5 12.2, 24.42

.01 27 .5 .6 4.26, 26.1

.01 27 .7 .8 3.0843, 26.25

.01 76 .7 .8 3.6255, 31.18, 75.7

.3 4 .2 .3 3.917

.3 5 .2 .4 4.805

.3 6 .2 .5 5.8027

.3 8 .2 .9 8.52

.3 4 .5 .6 3.614

.3 4 .5 .7 3.833

.3 5 .5 .8 4.1

.3 4 .7 .8 3.38
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Table 8 Continued

a V P q X

.3 4 .7 .9 3.42

.5 6 .2 .3 5.08

.5 6 .2 .4 5.977

.5 8 .2 .5 7.595

.5 11 .2 .7 10.52

.5 13 .2 .9 11.97

.5 5 .5 .6 4.62

.5 6 .5 .7 5.06

.5 6 .5 .8 5.23

.5 5 .7 .1 4.28

.5 5 .7 .9 4.35

1 12 .2 .3 10.95

I 13 .2 .4 12.73

1 17 .2 .5 16.23

1 35 .2 .7 34.72

1 74 .2 .9 73.74

I 13 .5 .6 12.26

1 15 .5 .7 14.6

1 17 .5 .8 16.23

1 12 .7 8 10.95

1 12 .7 .9 11.32

.8 8 .2 .3 7.72

.8 10 .2 .4 9.498

.8 12 .2 .5 1 1 .8 8 6
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Table 8 Continued

a V P q A

.8 21 .2 .7 20.492

.8 25 .2 .9 24.01

.8 8 .5 .6 7.68

.8 9 .5 .7 8.56

.8 10 .5 .8 9.16

.8 8 .7 .8 7.06

.8 8 .7 .9 7.19

0 4 .2 .3 3.14

0 4 .2 .4 3.7

0 5 .2 .5 4.55

0 7 .2 .7 6 .2

0 7 .2 .9 6.4

0 3 .5 .6 2.719

0 3 .5 .7 2 .8 6

0 3 .5 .8 2.93

0 3 .7 .8 2.55

0 3 .7 .9 2.57
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CONCLUSION ON TUNNELING

As the table and graphs show, there are many models for the many situations that 

are possible in the cancer/immune relationship. While we use terms like “aggressive”, or 

“slow” to describe certain types of cancer, at present there is no numerical value 

associated with cancer progression. In this model, in forming the table, the 

“minimum” values were sought, i.e. in terms of whole number quantities, which would 

produce an eigenvalue. For example, for a = .01, and p = .2 and q = .3 a barrier height 

of 4 was the first whole number which produced an eigenvalue X < V. Naturally, we 

would be interested in knowing more about the circumstances which lead the immune 

system to triumph over the cancer as in Figure 29. From a mathematical standpoint, 

Figure 29 seems to occur in similar circumstances, i.e. a large height which permits two 

eigenvalues less than V and the eigenvalue closest to V being the value producing the 

result of immune barrier stopping the cancer. Wide barriers, implying the immune 

system is very effective, also induce a decline in the probability that cancer is present. 

This is obviously just a beginning in the modeling of cancer and the immune system from 

this perspective and much more remains to be done. One significant question concerns 

the validation of this type of model: how can this be done? The present results are 

suggestive that the “immune barrier” may be a useful metaphor for tumorigenesis, but to 

bring it down to the level of a model it must be predictive and testable. In this 

dissertation, a start has been made on the “metaphorical” aspect of the problem. 

Tumorigenesis is based on the notion that developing tumor cells acquire an ever-
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increasing growth advantage through gene mutations. These mutations create genetic 

variability; the cells with the most growth-favoring mutations proliferate rapidly, 

outcompete normal cells, and soon dominate. But to survive a tumor cell must also 

defeat the host’s defenses and become an effective parasite. Accomplishing this may 

depend upon its abilities to evade immune surveillance, to metastasize, and to attract a 

blood supply. The importance of immune defenses against cancer is a matter of 

controversy. One school of thought argues that specialized cells of the immune system 

continuously survey tissues for small nests of tumor cells that, once recognized, are 

attacked and wiped out. This view is supported by the discovery of natural killer 

lymphocytes that seem able to identify and destroy many types of tumor cells. Tumor 

cells may display specific antigens on their surfaces that alert the immune system to their 

presence. Tumors more than a few millimeters in diameter soon stop growing unless 

they have a blood supply. If immune surveillance by these and other cell types is indeed 

important in antitumor defenses, then cancer cells must acquire an ability to elude the 

immune system [38],
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APPENDIX A 

COMPARISONS OF THE AREAS OF THE 8-WIDTHS 

AND THE RADIUS OF THE WOUND

In Model I and II of the two-dimensional case in wound healing, and in the 

three-dimensional case, the critical 8 -region is found by approximation, and in each case 

is found to be dependant on the original wound size R. Figure 2, Figure 10, and Figure 

15 show monotone decreasing functions which imply that as the wound size R increases 

the 8 -values decrease. At first this may seem to be a contradiction to logic, i.e. that 

large wounds require smaller 8 -band widths. However, by comparing the area of the 8  

band width with the radius of the wound size we obtain the following formula

8 -Area(R) = tt(2R 8  + S2).

After non-dimensionalizing the area formula and substituting the minimum 8  values 

found we have the following equations.

For the two-dimensional Model I

Area(Y) = it nK0(Y) I nK,j(Y)J J

whose graph is Figure 43 for n = 3.
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A(Y) 6

4

2 0 31
Y

Figure 43: The graph of the area function for the two-dimensional model I and n = 3.

to

A2(Y) 5

0 0 I 2 3

Y

Figure 44: The graph of the area function for the two-dimensional model II and n = 3.
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For the two-dimensional model II the area equation is

Area(Y) = k
^2Y nYK0(Y)IO(Y) I nYKo(Y)I0(Y)j

and the graph is given in Figure 44. For the three-dimensional model the equation is

Area(Y) = n
f  Y + l

f Y+ l)
2̂

2 ------ +
I nY JV n y

and the graph is given in Figure 45.

10

8

A3(Y) 6

4

2

Y

Figure 45: The graph of the area function for the three-dimensional model and n = 3.
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The graphs of these three functions are all similar showing an almost parabolic shape 

with a relative minimum value beyond which the area of the 8 -region is increasing as Y 

gets larger.
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APPENDIX B 

JUSTIFICATION FOR THE CHOICE OF THE 

APPROXIMATION FUNCTION OF 0 (e 3)

In the three -dimensional model e* was approximated to O(e') but the 

approximation yielded no useful information. Even approximations (i.e. 0 (e2) etc.) 

yield functions which are monotonically decreasing and thus do not give the 

information needed (see Figure 46).

The approximations for e* are as follows:

Y + 1 Y + 1 l f K + 1 ' 2
O(e'): 1 - —  ; 0(e3): 1 - — — + -nY nY 2\ nY and

Y+ 1 l(Y+\)2 \(Y+ l V  

6 V nY;

The graph of 0(e2) is given in Figure 46.

Since these are only approximations and for m a positive integer 0(e2ra) gives 

rise to monotonically decreasing functions while 0 (e2m+1) produces monotonically 

increasing functions (the kind of approximation needed for our study) the choice 0 (e3)
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was made because it was also solvable and higher odd orders would have been more 

difficult or impossible to obtain explicitly.

4

0(Y )

2

0 0 0.5 1 1.5 2

Y

Figure 46: The graph of the approximation function to 0(e2) .
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APPENDIX C 

DETAILS ON MODIFIED BESSEL FUNCTIONS AND 

DERIVATION OF SELECTED FORMULAS WITHIN THE TEXT

The modified Bessel functions used in the text were I0, Ib Ko, and K, These 

functions are defined as follows:

I0(x) = J0(/x) where J0 is a Bessel function. . = I. (x)
dx

%
Ko(x)=lim 

p-> o  2

I -p (x ) - Ip(x)

sin(pTt)
d(K0(x))

and   ------ = -K.(x)dx

These functions satisfy the differential equation x2y" + xy' -  (x2 + n2)y = 0

for n = 0  or 1.

The Asymptotic Expansions (which were used to find the limits for large y values in 

Model I and Model II) for each of the four functions are as follows:

r , . ex L  1 9 75
I0 (X)» rz---- \ 1+ — + TTT-T +

J i n x  [ 8x 128x2 1024x3 "j
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The graphs of the four functions are below.

10

5

0 0 4

X

Figure 47: The top graph is I0(x) and the bottom graph is Ij(x).
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10

5
K l ( x )

0
0.5

x

Figure 48: The top graph is Kt(x) and the bottom graph is Kq(x).

The wronskian identity is I„(x) K,(x) + I,(x) Ko(x) = l/x.

DETAILS OF THE ONE-DIMENSIONAL MODEL

In the one-dimensional model, the solutions were hyperbolic functions. In this

model the wound edge is L/2. Thus c [y ]  >9 was examined for Model I which

assumes no bone remains in the wound area. The 6 -region was found to be only 

dependant on n, i.e. 5 e = ln^y—y j where n is defined in the same manner as the two

and three dimensional models. No result was given for L-critical in Model I. In
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Model II, a solution for L-critical is obtained in terms of the width of the growth factor

region, 8 , namely Lc = a 1 In-
2 - n ( l - e - “fi)

DERIVATION OF C(r) FOR THE TWO-DIMENSIONAL CASE MODEL I 

Since x = aR, we can write the solution in terms of aR. Thus,

C^r )  = AI0( a r )+BK 0(ar) + — f o r R ^ r s R  + 8  and
A,

C2 ( r )=  FI0 ( a r ) + G K 0 (ar)  f o r r > R  + 8 .

The boundary condition = 0  gives us B = A ■ . The boundary condition
dr K,(aR)

lim C (r) = 0 tells us that F = 0 since I0(aR) is an increasing function. K^aR)

approaches zero for large x. Thus C2(r) -  GK0( a r ) . The last boundary condition

, • • .  ,  dC(r)(contmuity at R + 8  for C and — -— ) will allow us to find A and G.
dr
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A I0 (a  (R  + 8 )) + B K 0(a  (R  + 5 ))  + -  = GK 0(a  (R  + 8 )) and
K

AIj(a(R+ 8 ) ) - BKj(a(R + 5 )) = GKj(a(R+8)).  Rearranging the terms

and substituting our solution for B, we obtain the system

a [ I 0(a(R+ 8))+ ^ 7^ : K : 0(a(R+ 8)] -  GK0(a(R+ 8)) = -  f  and
V K.,(aR) y/ A.

I1( a ( R +  5 ) ) -  ^ ^ Ki ( a ( R +  «) + G K , ( a ( R + 5 ) ) = 0

-t̂ K ^ o CR + S))
Using determinants A = 7--------------v-------------  and

(l0Kl + IlK0X a(R +8))

G =

P
X I1( a ( R + 5 ) ) - | ^ K , ( a ( R + S ) )

( l0K 1 + I lK0 )(a (R  + 8 ))
Similar method were used to

derive Model II and the three-dimensional model.
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