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ABSTRACT 

HIGH RESOLUTION SPECTRA OF CARBON MONOXIDE, PROPANE AND AMMONIA 

FOR ATMOSPHERIC REMOTE SENSING 

 

Christopher Andrew Beale 

Old Dominion University, 2017 

Director: Dr. Peter F. Bernath 

 

 

Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric 

parameters such as temperature, pressure and the existence and concentrations of constituent gases 

via remote sensing techniques are only possible with spectroscopic data. These form the basis of 

model atmospheres which may be compared to observations to determine such parameters. To this 

end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon 

monoxide. 

Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These 

spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform 

Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded 

experimental lower state energies. These spectra resulted in the measurement of roughly 30000 

lines and about 3000 quantum assignments. In addition spectra of propane were recorded at 

elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require 

molecular data at appropriate conditions. This dissertation describes collection of such data and 

the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to 



 
 

 
 
 

those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. 

The spectra of propane and ammonia provide the highest resolution and most complete 

experimental study of these gases in their respective spectral regions at elevated temperatures. 

Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will 

most likely rely on the work presented here. 

The best laboratory that we have to study atmospheres is our own planet. The same 

techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate 

to discuss remote sensing of our own atmosphere. This idea is explored through analysis of 

spectroscopic data recorded by an FTS on the Atmospheric Chemistry Experiment satellite of 

carbon monoxide. The effect of the atmosphere’s chemistry and physics on this molecule is 

measured through its isotopologues, primarily 13CO (carbon-13 substituted carbon monoxide). 

Isotopic chemistry allows a key analysis of the atmosphere as it may be used as a tracer for 

chemical reactions and dynamical processes. The carbon monoxide fractionation results in Chapter 

IV present the first global measurements of isotopic fractionation of CO, showing significant 

fractionation in the upper atmosphere (60-80 km) as a result of the photolysis of carbon dioxide 

(CO2). 
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CHAPTER I 

 

INTRODUCTION 

 

The complexity of the Earth system cannot be overstated. Humans have always had an influence 

on the planet; however, in recent history, with the advent of industrialization and huge population 

growth, the effect of humans on the planet has increased dramatically (Steffen et al., 2007). The 

effects of human activity are now being felt across the planet with increased extreme weather, sea 

level rise, changes in wildlife patterns and human health problems (Hansen, 1998). The constant 

changes in the environment are now accelerating and understanding the environment in which we 

live is important for mitigating the effects of global and localized climate change. 

The interaction between the atmosphere and oceans is significant. For example, higher carbon 

dioxide concentrations in the atmosphere lead to a change in the carbon chemistry of the oceans, 

making them more acidic (Sabine et al., 2004). This affects the biota of the oceans (Hughes et al., 

2003). Indeed the effect of the oceans on the atmosphere is just as significant in that much of the 

oxygen in the atmosphere comes from oceanic plankton (Falkowski and Oliver, 2007). The 

changing biodiversity of the oceans has a direct effect on our atmosphere.  

The understanding of the origins of the Earth is also important. The origins of planet Earth and the 

Solar System as a whole are unknown. Previous explanations of planetary formation have been 

called into question with the discovery of other planetary systems that do not conform to the 

models of Solar System formation (Ida and Lin, 2005). Studies of planets outside of our Solar 

System, known as extrasolar planets or exoplanets, help us to explain the origins of planet Earth. 
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Equally, the Earth provides an excellent laboratory with which planetary physics and chemistry in 

general and the potential existence of life on other planets can be better understood. 

Measurements of the atmosphere are important because of its constantly changing composition. 

Sources of atmospheric gas vary in both space and time as do the physical effects in the atmosphere 

which lead to the transport of air masses. Laboratory studies of the constituent gases in the 

atmosphere allow better determination of the concentrations of individual species. Measurement 

of a spectrum provides a chemical signature of the molecule in question which may be compared 

to observations. The concentration of a gas in the atmosphere determines the amount of absorption 

or emission of the lines recorded in the observed spectrum. The technique of infrared spectroscopy 

(detailed in Chapter III) is frequently used in satellite measurements of the atmosphere. 

Atmospheric spectra are complex and higher resolution laboratory measurements at appropriate 

conditions (temperature and pressure) allow more precise quantification of atmospheric 

constituents. 

Chapter II provides an introduction to atmospheric chemistry and detection techniques for 

determining the atmospheric conditions of Earth and astronomical objects. Chapter III discusses 

the basic spectroscopic theory used to measure the spectra recorded in this dissertation. The 

infrared region of the spectrum is generally used to measure vibration-rotation transitions of 

molecules. Electronic spectroscopy will not be discussed. Importantly, the effect of temperature 

on a spectrum is discussed.  

Chapter IV describes results from the first global measurements of isotopic fractionation of carbon 

monoxide (CO). The ACE-FTS (Atmospheric Chemistry Experiment-FTS) satellite instrument 

was used to record spectra (analyzed by Chris Boone at the University of Waterloo) of the 

atmosphere from 2004-2012. Following retrieval, ACE data are available as volume mixing ratios 
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of gases and other atmospheric parameters. These were used by me to measure fractionation effects 

of CO and compared to a comprehensive numerical model (model results obtained from Eric 

Buzan at Old Dominion University). The results and much of the text and figures from this chapter 

have been previously published in Beale et al. (2016a). 

Chapter V discusses the measurement of the spectrum of propane (C3H8) in the 3000 cm-1 region 

at high temperatures. These elevated temperatures are appropriate for measuring C3H8 in auroral 

regions of Jupiter and exoplanets. As the spectrum of propane is complex, many of the individual 

lines ‘blend’ in to each other. As a result the spectrum is presented as an infrared absorption cross-

section which is the amount of absorption of all constituent lines at a given frequency. The results 

and much of the text and figures from this chapter have been previously published in Beale et al. 

(2016b). 

Chapter VI presents high resolution spectra of ammonia (NH3) in the 2500-9000 cm-1 region at 

elevated temperatures suitable for characterization of exoplanets and brown dwarfs. Also 

presented are lower state energies as calculated from experimental lines. The lower state energy 

of a line allows extrapolation of observed absorption for a particular line with temperature. As 

such, with the line positions, intensities and lower state energies provided as a result of this work, 

spectra can be predicted outside of the temperature range measured. For one region of the NH3 

spectra recorded (2500-5500 cm-1), the experimental linelist was compared to lines from other NH3 

linelists containing quantum number assignments. This allows some of the lines measured to be 

matched and given a full quantum mechanical description. The results and much of the text and 

figures from this chapter have been previously published in Beale et al. (2017). 

Chapter VII presents the overall conclusions and future work from this dissertation. 
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CHAPTER II 

 

ATMOSPHERIC CHEMISTRY BACKGROUND 

 

VERTICAL STRUCTURE OF THE ATMOSPHERE 

The Earth’s atmosphere is made up of four layers: the troposphere, the stratosphere, the 

mesosphere and the thermosphere, the boundaries of which are defined by the change of 

temperature with altitude. The typical vertical profiles of both the temperature and pressure of the 

atmosphere up to 80 km are shown in Figure 1. 

The troposphere is the bottom layer of the atmosphere, ranging from the surface of the Earth up to 

approximately 8-18 km, and is characterized by decreasing temperature with increasing altitude 

caused by adiabatic cooling of air as the pressure decreases. The variation in the altitude of the 

troposphere-stratosphere boundary, known as the tropopause, is dependent on the latitude, with 

the troposphere being thinnest at the poles and thickest at the Equator, and also the season, being 

higher in the warmer months and lower in the cooler months. The chemical distribution of the 

troposphere is relatively consistent for long-lived molecules as it is well mixed (Ehhalt, 1999) and 

despite being the thinnest layer of the atmosphere, the troposphere contains 75-80% of the total 

atmospheric mass (Charlson et al., 1992).   

The stratosphere extends from the tropopause to around 50 km and is marked by increasing 

temperature with altitude, caused by absorption of UV radiation by ozone. Increasing temperature 

with altitude reduces vertical mixing in this layer, resulting in the stratification of this part of the 

atmosphere. When the density of ozone is no longer high enough to absorb enough energy to heat 
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the atmosphere, the temperature once again begins to decrease with altitude. This point is known 

as the stratopause and marks the start of the mesosphere which extends up to approximately 80 km 

where absorption of solar energy by nitrogen and oxygen again cause increase in atmospheric 

temperature; this layer is known as the thermosphere.  

 

Figure 1. Mean pressure (red) and temperature (black) profiles of the atmosphere. Adapted from 

Jacob (1999). 

The mesosphere and thermosphere contain, on average, the coldest and hottest parts of the 

atmosphere respectively. 
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COMPOSITION OF THE ATMOSPHERE 

Figure 1 shows how the pressure of the atmosphere decreases with altitude. The amount of various 

gases in the atmosphere are frequently given as volume mixing ratios (VMR) which relates the 

number density of a particular gas to the number density of the atmosphere at a particular altitude. 

The major constituents of the dry atmosphere (Figure 2) are nitrogen (78%), oxygen (21%) and 

argon (1%). Of the remaining fraction of one percent, carbon dioxide is notable as its VMR is 

increasing due to anthropogenic emissions, from pre-industrial levels of 280 ppm (parts per 

million) (Etheridge et al., 1996) to a year-long average of over 400.9 ppm for the first time in 2015 

(Betts et al., 2016). These surface averages differ through the vertical column due to chemical 

reactions, dynamics and photolytic reactions from solar radiation. 

 

Figure 2. Composition of the dry atmosphere at the Earth’s surface. The upper chart represents 

the major constituents. The lower chart represents the trace gases with the highest concentrations. 

Figure adapted from https://commons.wikimedia.org/wiki/File:Atmosphere_gas_proportions.svg, 

accessed June 15 2017. 
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METHODS OF ATMOSPHERIC MEASUREMENT 

Measurement of the chemical composition of the atmosphere can be accomplished in two ways: 

in situ and via remote sensing. In situ measurement requires collection of a sample, which may be 

ground based (Kato et al., 2000), from a balloon (Lämmerzahl et al., 2002), an aircraft (Thiemens 

et al., 1995a) or a rocket (Thiemens et al., 1995b). The sample is then measured, either at the point 

of collection or in a laboratory, usually with a mass spectrometer. Remote sensing platforms can 

be ground based, airborne or via satellite. Ground based remote sensing platforms are relatively 

cheap, although they give limited spatial coverage as the measurement is restricted to the 

geographic location of the instrument. Airborne platforms can more easily resolve vertical 

differences in atmospheric composition, but are less stable than either ground based or satellite 

measurements. Satellite remote sensing offers much broader coverage of the globe, on a very stable 

platform, although the costs of such missions are much higher than other methods and repairs to 

space-borne instruments are often not possible. 

 

SATELLITE REMOTE SENSING 

There are two main geometries of remote sensing from satellites: nadir and limb views. Nadir 

observations measure radiation emitted from the surface of the Earth and the atmosphere itself. In 

the limb geometry, the line of sight views across the edge of the atmosphere (Figure 3). Nadir 

measurements generally provide better horizontal resolution than limb measurements whereas 

limb view measurements generally have better vertical resolution and have a higher sensitivity to 

trace species as this view has a longer path length through the atmosphere.  
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A type of limb viewing technique, known as solar occultation, uses the Sun as a light source, 

allowing absorption measurements to be made whenever the geometry allows, i.e. the Sun, 

atmosphere and instrument are aligned (Figure 4). Using the Sun as a source provides high signal 

to noise ratios and as the satellite moves in its orbit, the geometry changes and allows measurement 

through the atmosphere, giving the high vertical resolution of this measurement type. 

 

Figure 3. Two main geometries of passive satellite remote sensing of the Earth’s atmosphere. 

Nadir-viewing instruments measure radiation emitted from the surface of the Earth while the limb 

viewing instruments measure radiation emitted from the limb of the atmosphere. 

 

THE ATMOSPHERIC CHEMISTRY EXPERIMENT 

The Atmospheric Chemistry Experiment (ACE) is a Canadian scientific satellite which was 

launched in August 2003. The satellite has two instruments, the ACE-FTS and MAESTRO. 

MAESTRO is a UV-visible spectrophotometer, which shall not be discussed here for the sake of 

brevity. The primary instrument is the ACE-FTS: a high-resolution Fourier Transform 

Spectrometer (FTS), designed to study the chemical and physical processes that affect the 

Limb View Nadir view 
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distribution of ozone in the stratosphere above the Arctic (Bernath et al., 2005). The 74° orbital 

inclination of the satellite allows near global coverage (85° S to 85° N) providing the capability to 

study processes in the tropical, subtropical, mid-latitude and polar regions of Earth. 

 

 

 

Figure 4. Solar occultation measurements through different atmospheric layers. Figure courtesy 

of Randall Skelton. 

 

The ACE-FTS instrument (Figure 5) was built by ABB-Bomem and operates in the infrared, in 

the region (750-4400 cm-1) at high resolution (0.02 cm-1). Measurements of the vertical profiles of 

Earth’s atmosphere are achieved using the solar occultation technique. The limb view through the 

exoatmosphere (Figure 4) measures solar radiation without atmospheric attenuation. As the 

viewing geometry changes and the atmosphere begins to be in the line of sight of the satellite, the 

chemicals in the atmosphere absorb radiation and attenuate the signal. Measurement of the solar 
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spectrum through the different layers of the atmosphere gives the chemical composition of the 

atmosphere as a function of altitude. 

 

 

Figure 5. The ACE satellite. Adapted from a schematic from Bristol Aerospace (Walkty and 

Kohut, 2013). 

Spectra (Figure 6) are compared to a model of an atmospheric spectrum with certain 

concentrations. The forward model parameters are then changed until the spectra match. The 

retrievals of the concentrations of gases in the atmosphere from ACE observations were performed 

by Chris Boone at the Science Operations Center at the University of Waterloo in Canada. The list 

of volume mixing ratios (VMRs) of each molecule as a function of altitude are provided by Boone 

as the ACE data product. These data can then be analyzed by the end user. All retrieval of ACE-

FTS data in this dissertation (and for most end users) was performed by Boone. ACE data are 

validated by comparison to available in situ or remote sensing measurements. Validation has been 
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achieved for total CO (Clerbaux et al., 2008); however, no validation exists for the minor 

isotopologues of CO. 

 

ATMOSPHERIC MODELS 

Each of the measurement techniques described above have limitations. In situ measurements suffer 

from a lack of spatial or temporal coverage and satellite remote sensing measurements lack 

precision and accuracy for single measurements. Atmospheric chemical models can be used to 

predict the chemical composition of the atmosphere at any given location. The accuracy of such 

predictions is restricted only by the completeness of the chemical model and the boundary 

conditions used to create it. 

 

Figure 6. A sample of the ACE-FTS spectrum with HCl and CH4 lines in the stratosphere and 

lower mesosphere (Bernath et al. 2005). 
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The Whole Atmosphere Community Climate Model (WACCM) is a component of the Community 

Earth System Model, primarily developed by the National Center for Atmospheric Research 

(Marsh et al., 2013). WACCM analysis for comparison to ACE data for this research was 

performed by Eric Buzan (Department of Chemistry & Biochemistry, Old Dominion University). 

WACCM uses 66 vertical levels up to 140 km and a horizontal grid of 4° latitude by 5° longitude.  

This grid spacing is sufficient for comparison with the 10° latitudinal bins of the observed satellite 

results. There is no native support for isotopologues in WACCM, although equations for particular 

reactions can be added with the rate constants that control the speed of reactions for different 

isotopologues added. Comparison between the model and observational results may be used to 

improve each other. Differences may be due to errors in the retrieval process or as a result of 

chemical reactions or dynamics not included in the model. For example, the comparison of 13CO 

discussed in Chapter IV shows the need for improved hydrocarbon isotopic chemistry in the 

stratosphere of the WACCM model. Differences between the model and observations may also 

show errors in the retrieval process which can then be improved. 

 

ASTRONOMICAL ATMOSPHERES 

 

Many of the techniques used to study the Earth’s atmosphere may be similarly applied to 

astronomical objects. Interstellar space is continually enriched by atoms and molecules expelled 

by stellar explosions. The regions in which material has been ejected from stars are higher in 

density than the interstellar medium and this increases the probability of collisions leading to the 

creation of more complex molecules and perhaps, even planets. The study of molecules in the 

interstellar medium is known as astrochemistry and this field has discovered 194 different 
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molecules in the interstellar medium or the circumstellar shells of stars (as of October 2015) and 

61 different molecules have been detected from sources outside of the Milky Way galaxy 

(https://www.astro.uni-koeln.de/cdms/molecules, accessed July 8th, 2017).  

The study of astronomical molecules in planetary and stellar atmospheres is usually considered a 

separate field from astrochemistry. The low temperatures of the interstellar medium allow complex 

molecules to form, whereas the much higher temperatures of stellar atmospheres usually result in 

very simple molecules forming. In 1995, the discovery of the first brown dwarf (Rebolo et al., 

1995) and exoplanet (Mayor and Queloz, 1995) were the first in an ensuing large number of 

atmospheres outside of our Solar System with temperatures cool enough for the detection of 

molecules which would otherwise be dissociated in  the hot atmospheres of stars. 

 

SOLAR SYSTEM PLANETS 

The planets in the solar system have a wide variety of atmospheres. Mercury, being so close to the 

Sun has almost no atmosphere (Kabin et al., 2000). In comparison, Venus has a very thick 

atmosphere (Lebonnois et al., 2010) of mostly carbon dioxide and sulfuric acid clouds (Kolodner 

and Steffes, 1998). Earth’s atmosphere is mostly molecular oxygen and nitrogen (Figure 2) and 

Mars has a very thin carbon dioxide atmosphere (Nier and McElroy, 1977). The outer planets, 

Jupiter, Saturn, Uranus and Neptune are known as giant planets which make up most of the mass 

of the solar system outside of the Sun. The smallest, Uranus, has a mass of 15 times that of the 

Earth (Thommes et al., 2002). The atmospheres of the outer planets are dominated by hydrogen 

and helium, but they also contain appreciable amounts of water, ammonia, methane and other 

hydrocarbons (Weidenschilling and Lewis, 1973; Strobel, 1975). 
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The atmospheres of the gas giants are generally cool compared to that of Earth; however, there are 

wide temperature variations within the different atmospheric layers. The auroral regions (areas of 

light emission caused by charged particles generally at high altitudes near the magnetic poles) of 

Jupiter, for example, can reach temperatures of up to 1000 K. In such regions, strong hydrocarbon 

emissions have been detected and models predict the possibility of a wider variety of hydrocarbons 

(Kim et al., 2009). 

 

BROWN DWARFS 

Brown dwarfs are sub-stellar objects defined by their inability to fuse hydrogen in their cores. 

However both deuterium  and lithium may be fused (Burrows et al., 2001). As such, they emit 

almost no visible light, although they may be detected in the infrared. These objects range in size 

from 13 to around 90 Jupiter masses; this upper limit being roughly 0.08 Solar masses. 

Brown dwarfs are similarly characterized with the L, T and Y dwarfs representing objects in three 

approximate temperature ranges. L-type dwarfs are the hottest of the brown dwarfs and have 

surface temperatures of 1300-2400 K. In addition to temperature ranges, brown dwarfs are 

characterized by the molecules present in their atmospheres. Figure 8 shows the near-IR spectra 

of three cool M-class stars and two hot L-class dwarfs. The M-class stars have noticeable titanium 

oxide (TiO) and vanadium oxide (VO) features which are not present in the L-dwarfs; however, 

the strength of the metal hydride (FeH and CrH) features increase in the L-dwarfs.  

Cooler than the L-dwarf stars are the T dwarfs, having an approximate temperature range of 700-

1300 K. The main spectral feature of this class is methane absorption (Figure 9), hence the 

nickname for this class of ‘methane dwarf’. Cooler still are the Y-type dwarfs which have 
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temperatures of under 700 K. The Y-dwarfs, discovered in 2011 (Cushing et al., 2011) are the 

coolest confirmed brown dwarfs , some of which have temperatures close to that of Earth’s surface. 

Ammonia is apparent in these objects and may be the defining spectral characteristic of such 

objects. Accurate linelists of relevant molecules, including ammonia, at appropriate temperatures 

are required in order to determine the atmospheric properties of these dwarfs. 

Table 1. Stellar classifications based on color, temperature and mass. Using this classification, the 

Sun would be classified as a G2-type star. (Jaschek and Jaschek, 1990; Gray and Corbally, 1994; 

Brown et al., 2011) 

Class Color  Effective 

Temperature (K) 

Mass (solar 

masses) 

O Blue >30000 >16 

B Blue-white 10000-30000 2.1-16 

A White 7500-10000 1.4-2.1 

F Yellow-white 6000-7500 1.04-1.4 

G Yellow 5200-6000 0.8-1.04 

K Orange 3700-5200 0.45-0.8 

M Red 2400-3700 0.08-0.45 

L Maroon 1300-2400 0.05-0.08 

T Purple 700-1300 0.01-0.06 

Y Dark purple <700 0.01-0.04 
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Figure 7. The Hertzsprung-Russell diagram plotting color of a star (x-axis) against its absolute 

magnitude (y-axis). The color of a star is an analog of temperature (see Table 1) and the absolute 

magnitude is related to luminosity or mass (Freedman and Kauffmann, 2007). 
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Figure 8.  Near-infrared spectral energy distribution of three cool M-class stars and two hot L-

dwarfs (Mark et al., 2004).  
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Figure 9. Spectra of L- and T-dwarfs compared to those of Jupiter and an M-class star. The strong 

methane features of the T-dwarf are defining features of this class. This specific cooler T-dwarf 

has the ammonia (NH3) band at 10.5 μm; this band is apparent in the spectra of Y dwarfs also 

(Marley and Leggett, 2009).  

 

EXOPLANET ATMOSPHERES 

In the same year as the discovery of brown dwarfs, the first planet outside of our solar system was 

discovered (Mayor and Queloz, 1995). Such planets are known as extrasolar planets or simply 

exoplanets. Since their discovery, the ubiquity of such objects has been established with almost 
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3500 confirmed planets as of May 2017 (the majority of which (2335), have been detected from 

NASA’s Kepler mission (https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html). 

There are two main detection techniques for exoplanets: the radial velocity method and the transit 

method. The radial velocity method relies on the motion of the planet around the parent star 

perturbing the spectral lines of that star due to the Doppler effect as the parent star ‘wobbles’ 

around the common center of mass of the system. The second predominant method, the transit 

technique which is that used by the Kepler mission, observes the brightness of the star as an object 

passes in the line of sight between the Earth and the star (Figure 10). These methods of detection 

have inherent biases towards larger planets. The radial velocity technique is biased to more 

massive planets while the transit method is biased towards planets with larger radii. As a result, 

many of the planets discovered are of the ‘hot Jupiter’ type although there have been a number of 

rocky Earth-like exoplanets discovered (Lauren and Geoffrey, 2014). 

 

 

Figure 10. The transit method of exoplanet detection. Periodic dips in the brightness of the star 

can demonstrate the presence of a planet. The magnitude of this dip is representative of the size 

of the object transiting the star. Figure adapted from 

https://commons.wikimedia.org/wiki/File:Planetary_transit.svg, accessed June 15 2017. 

Star 

Light curve 

Planet 
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As the planet transits the star, the light passes through the atmosphere of the planet if it is not 

opaque. The opacity of the atmosphere as a function of wavelength gives a spectrum of the 

atmosphere and from this spectrum, the physical and chemical properties of the atmosphere may 

be determined. The first such detection of an exoplanet’s atmosphere was that of Charbonneau et 

al. in 2002 (Charbonneau et al., 2002); since then the atmospheres of exoplanets have been probed 

to discover water (Barman, 2008), methane (Swain et al., 2008), carbon dioxide (Swain et al., 

2009) and  carbon monoxide (Swain et al., 2009). 

Detection of a molecule using any remote sensing technique relies on observations being compared 

to a radiative transfer model. These models require molecular data as an input. Molecular linelists 

at high resolution and at appropriate temperatures produce models most capable of reproducing 

observations.  Atmospheric models may be used to predict a spectrum of an atmosphere based on 

the radiative transfer code in that model. For the radiative transfer calculations to be optimal, 

accurate molecular data is needed, namely the position (frequency or wavelength of an absorption 

or emission line), the observed absorption of that line at a given concentration and how the 

observed absorption or shape of the line changes with conditions such as temperature and pressure. 

The conditions (temperature, pressure, composition) of the predictive model (generally known as 

a forward model) are then altered to optimally match the observations. 
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CHAPTER III 

 

SPECTROSCOPY BACKGROUND 

 

INTRODUCTION 

Atmospheric remote sensing is an application of spectroscopy, the science of the interaction 

between light and matter. Whether spectroscopy is being used to make a measurement of an 

atmosphere or to record laboratory spectra with which remote sensing measurements can be 

understood, the principles are the same. This chapter will outline the basic theory behind infrared 

spectroscopy and Fourier transform measurements, including the instrumental setup in the Bernath 

laboratory at Old Dominion University. 

Molecules exist with quantized energy levels. Transitions between different states requires discrete 

amounts of energy and molecules can therefore make a transition from one state to another when 

subjected to a photon, equal in energy to the energy difference between the two states. Radiation 

absorbed can cause a transition in the rotational, vibrational or electronic states or even cause 

dissociation of the molecule.  

In general, rotational transitions require the lowest energy (microwave), followed by vibrational 

transitions (infrared) and then electronic transitions (visible/ultraviolet). A molecule can undergo 

a transition changing both the rotational and vibrational state; this is known as rotational-

vibrational spectroscopy. The work in this dissertation focuses on results from rotational-

vibrational spectroscopy. 
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ROTATIONAL SPECTROSCOPY 

Pure rotational transitions generally occur in the microwave region of the electromagnetic 

spectrum. Classically, the moment of inertia of a molecule can be modeled by: 

𝐼 =  ∑ 𝑚𝑖𝑟𝑖
2

𝑖               (1) 

where mi is the mass of each atom and ri is the distance between each atom and the rotational axis. 

Assuming a linear rigid rotor diatomic molecule, the classical representation of rotational energy 

is given by: 

𝐸𝑅 =  
1

2
𝐼𝑥𝜔𝑥

2 +
1

2
𝐼𝑦𝜔𝑦

2,     (2) 

where I is the moment of inertia and ω is the angular velocity. Angular momentum about the x 

axis is given as Jx = Ixωx, so the rotational energy may be given by: 

𝐸𝑅 =  
𝐽𝑥

2

2𝐼𝑥
+

𝐽𝑦
2

2𝐼𝑦
,      (3) 

and in terms of the total angular momentum, J, as: 

𝐸𝑅 =  
𝐽2

2𝐼
.      (4) 

In quantum mechanical terms, the Schrödinger equation for the rotational energy becomes: 

𝐽2𝜓

2𝐼
= 𝐸𝜓.      (5) 

The rotational energy is quantized and with the eigenvalue, E: 

𝐸𝑅 =  
ℏ2

2𝐼
𝐽(𝐽 + 1) = 𝐵𝐽(𝐽 + 1),    (6) 
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where B= ℏ2/2I and is known as the rotational constant, given above in SI units. In spectroscopy, 

the rotational energy, shown above as ER, is expressed as F(J). The separation between subsequent 

rotational levels can therefore be shown to be equal to 2BJ. 

The assumption for the above is that the bond length between two nuclei in the molecule does not 

change, i.e. it is a rigid rotor. Since this bond is not fixed, when the molecule rotates, the 

internuclear distance, r, varies as the rotating masses of each of the nuclei distorts the bond length. 

Taking into account the centrifugal force and the restoring force from Hooke’s law, the full 

rotational energy level expression is given by:  

𝐹(𝐽) = 𝐵𝐽(𝐽 + 1) − 𝐷(𝐽(𝐽 + 1))
2

+ 𝐻(𝐽(𝐽 + 1))
3

+ 𝐿(𝐽(𝐽 + 1))
4

+ ⋯  (7) 

where D is known as the centrifugal distortion constant and H, L (and subsequent constants) are 

higher order distortion constants. 

The observed absorption of a transition depends on the population of the states involved. From  

statistical thermodynamics, it can be shown that the population of a rotational energy level (PJ) is 

given by: 

𝑃𝐽 = 𝑁(2𝐽 + 1)
𝑒−𝐵𝐽(𝐽+1)/𝑘𝑇

𝑞𝑟
,    (8) 

in which k is the Boltzmann constant, T is the temperature, N is the total number molecules and qr 

is the rotational partition function. Therefore, the absorption depth of a molecular transition is 

dependent on the molecule’s temperature. 
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VIBRATIONAL SPECTROSCOPY 

For a diatomic molecule with atoms A and B, the bond can be modeled as a Hookean (harmonic) 

spring, having spring constant K. For a non-rotating molecule, the Hamiltonian is given by: 

𝐻̂ =  
−ℏ2

2𝜇

𝑑2

𝑑𝑟2 +
𝐾(𝑟−𝑟𝑒)2

2
,     (9) 

where r is the internuclear distance and re is the equilibrium internuclear distance and μ is the 

reduced mass. The eigenvalues of the vibrational Schrödinger equation are: 

𝐸𝑣 = ℏ𝜔 (v +
1

2
),     (10) 

where ω is the vibrational frequency and v = 0, 1, 2, … and is known as the vibrational quantum 

number. The energy level expression for the harmonic potential is given by: 

𝐺(v) =  𝜔 (v +
1

2
).     (11) 

The potential energy curve of a real molecule however is not harmonic. 

A commonly used anharmonic potential energy function is the Morse potential (Figure 11). The 

vibrational part of the solution of the Schrödinger equation for the Morse potential is (in cm-1): 

𝐺(v) = 𝜔𝑒 (v +
1

2
) −  𝜔𝑒𝑥𝑒 (v +

1

2
)

2

,     (12) 

where 𝜔𝑒 is the vibrational frequency and 𝜔𝑒𝑥𝑒 is an anharmonicity constant. The anharmonicity 

term is positive and decreases the energy relative to the energy given by the harmonic potential. 
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Figure 11. Two-dimensional representation of the harmonic and Morse oscillators. From 

https://commons.wikimedia.org/wiki/File:Morse-potential.png, accessed June 17th 2017. 

 

FUNDAMENTAL, OVERTONE, HOT BAND AND COMBINATION TRANSITIONS 

Fundamental vibrational transitions of a molecule occur when there is a transition from v=0 to 

v=1. For a linear molecule, there are in 3N-5 vibrations (where N is the number of atoms in the 

molecule) and for a non-linear (polyatomic) molecule there are 3N-6 vibrations. The vibrational 

modes of polyatomic molecules are approximated as a sum of harmonic oscillators. Carbon 

monoxide (CO) will have one fundamental vibrational mode (the C-O stretching mode) and 

ammonia (NH3) will have 6 fundamental modes. Possible vibrational transitions are summarized 

in Figure 12. 
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At higher energies, transitions between the states v=0 and v=2 or higher are possible. This is 

referred to as an overtone. Assuming the harmonic oscillator approximation, the v=0 to v=2 

transition will occur at twice the transition frequency of the fundamental, although in a more 

realistic anharmonic system this energy will be slightly less than that predicted by the harmonic 

oscillator. 

Hot bands are observed for a transition between two excited vibrational energy levels, for example 

v=1 to v=2. The observed absorption of any transition is related to the population of the energy 

levels involved. At room temperature, the ground state (v=0) is the most populated, followed by 

v=1. As such fundamental transitions are the strongest observed. The population of vibrational 

energy levels are based on the Maxwell-Boltzmann distribution and therefore the observed 

absorption of hot bands increase with temperature. For example, at 298 K, the v=0 state population 

of the CO molecule is 99.997% and the v=1 state has a population of 0.00282%. At 1000 K the 

ground state population is 95.6% and the population of the v=1 state is 4.21%. Due to the 

anharmonicitiy of molecules, hot bands occur at lower energies than fundamental transitions. 
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Figure 12. Energy level diagram showing fundamental (1-0), overtone (2-0, 3-0, 4-0) and hot 

band (2-1 3-1, 4-1) transitions. Figure from: 

https://chem.libretexts.org/@api/deki/files/78873/%253Dvib_diatomic_molecule.png?revision=, 

accessed June 15th 2017.  

For polyatomic molecules with more than one fundamental vibrational mode, combination bands 

occur when quantum numbers for two more vibrational modes change (Bernath, 2005). 

Combination bands break the selection rules of the harmonic oscillator and are generally weak, 

although they become important in spectra at energies above the fundamental such as those studied 

in this dissertation. 

 

SELECTION RULES 

A molecule can undergo rotational transitions while also changing vibrational states, these are 

known as rotational-vibrational transitions. For a rotational-vibrational transition to occur, there 
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must be a change in the dipole moment of the molecule as it vibrates. A transition is allowed for a 

diatomic molecule for ΔJ = ±1 if the molecule has no net spin or orbital angular momentum, where 

ΔJ is the difference in rotational quantum number J in the transition between v=0 and v=1 

(fundamental band). For diatomics with net spin or orbital angular momentum transitions of ΔJ = 

0 are also possible (see Figure 13). A transition of ΔJ = -1 is known as a P branch, ΔJ = 0 as a Q 

branch and ΔJ = +1 as an R branch. 

 

Figure 13. Schematic of P, Q and R transitions. Adapted from 

https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Spectroscopy/Fundamenta

ls_of_Spectroscopy/Selection_rules_and_transition_moment_integral, accessed June 15th, 2017. 
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SPECTRAL LINESHAPE 

A molecular transition from one quantized energy state to another should result in a spectral feature 

of infinitesimal width. Real spectra however show that spectral lines have widths and characteristic 

shapes. The shape of a spectral line is known as its lineshape and falls in to one of two categories: 

homogeneous and inhomogeneous. Homogeneous lineshapes occur when every molecule in the 

system is affected equally, i.e. they have the same lineshape function. This usually results in a 

Lorentzian lineshape.  

The width of a line may be broadened by a number of physical factors. An example of homogenous 

broadening is pressure broadening. The cosine wave associated with the oscillation of the dipole 

moment is interrupted by collisions with other molecules. The frequency components obtained by 

Fourier transformations of the time dependent cosine wave result in a FWHM (full width at half 

maximum) of: 

∆𝜈1/2 =  
1

𝜋𝑇
      (13) 

where T is the average time between successive collisions. The average time between collisions is 

inversely proportional to the pressure, p so the FWHM of a line is therefore proportional to the 

pressure. The effect of pressure on a spectrum can be seen in Figure 14, where at 10 Torr the 

spectral features of ammonia are more easily identifiable. The spectrum at 100 Torr provides more 

signal (due to the Beer-Lambert law) but suffers from line broadening. Broadening of two or more 

lines close together may result in them overlapping and even blending into one single line. The 

blending of three resolved lines into one is shown in Figure 14 at 6479.25 cm-1. The lower pressure 

spectrum results in less line blending and therefore better determination of individual line 

absorption whereas a higher pressure spectrum allows much weaker lines to be identified. 
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Inhomogeneous lineshapes result from molecules in the system having different lineshapes. An 

example of inhomogeneous broadening is Doppler broadening. At temperatures above absolute 

zero, molecules will move with a distribution of velocities. A moving molecule will emit a photon 

that is Doppler shifted, depending on the direction of motion relative to the observer. This effect 

results in a distribution of frequencies about some line center, with the scale of the distribution 

dependent on the molecular motion and ultimately the temperature of the system, resulting in a 

Gaussian lineshape. 

 

Figure 14. Transmission spectra of ammonia at both 10 Torr (red) and 100 Torr (blue; offset by 

5%). 

Other line broadening effects are possible, but will not be discussed here since pressure and 

Doppler broadening are the dominant effects on the lineshape in the experiments discussed here. 
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A convolution of these two lineshape functions is known as the Voigt lineshape function (Figure 

15). 

 

Figure 15. Gaussian (black), Lorentzian (blue) and Voigt (green) lineshapes. Units are arbitrary. 

Adapted from https://commons.wikimedia.org/wiki/File:Fonction_voigt.png, accessed June 15, 

2017. 

 

LINELISTS 

The main motivation for the laboratory spectroscopy experiments conducted for this dissertation 

is to provide linelists from which atmospheric models can be constructed. In order to produce an 

accurate atmospheric model, the position (transition frequency), line intensity and lower state 

energy are required. The lower state energy of a transition allows the intensity to be extrapolated 



32 
 

 
 

(or interpolated) for temperature; this will be detailed in Chapter VI. Each transition has a unique 

set of parameters that describe the upper and lower state involved. These parameters are known as 

quantum numbers and assignment of these quantum numbers allows a more complete description 

of the transition. Quantum assignments are desirable for comparison to ab initio calculations so 

that corrections can be made to the theory; however, assignments are not necessary for construction 

of an accurate atmospheric model. 

The HIgh resolution TRANsmission molecular absorption database (HITRAN (Rothman et al., 

2013)) is a compilation of linelists and absorption cross-sections (effective area of the molecule 

for absorption of a photon as a function of wavelength) for 47 different molecules including 

ammonia, carbon monoxide and propane. This database generally provides the most accurate 

assignments for the molecules included. HITRAN is designed for use at 296 K, primarily for 

applications to the Earth’s atmosphere. HITRAN is a mix of experimentally obtained linelists and 

calculated ones. Calculated linelists have the advantage of being more complete; however, 

experimental linelists generally have more accurate line positions. Often a combination of both 

techniques approaches yields the best linelist. Many of the lines measured for this dissertation are 

already in HITRAN; however, this work includes the line intensities at higher temperatures and 

adds additional lines, especially at higher wavenumbers and those from hot bands. The results of 

these are detailed in Chapter V. 

 

FOURIER TRANSFORM SPECTROSCOPY 

This dissertation contains experimentally obtained spectra of two molecules: ammonia (NH3) and 

propane (C3H8). Both of these studies were carried out using a Bruker IFS 125HR Fourier 
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transform spectrometer (FTS). The basis of an FTS is the Michelson interferometer, a schematic 

of which is given in Figure 16, an instrument developed by Michelson in the 1880s to study the 

speed of light. 

 

Figure 16. Layout of a Michelson interferometer, the fundamental component of a Fourier 

transform spectrometer (Krishnavedala 2014). 

The incident light from an external source, S, is separated into two beams by the beamsplitter, M. 

The two beams are directed to two mirrors, one of which is fixed and the other can be moved a 

distance d. When the beams recombine at the beamsplitter, an interference pattern is created from 

the changing optical path difference x (x = 2d) from the movable mirror. If the light is coherent 

(monochromatic), the intensity I(x) of the interferogram of the recombined beam is given by: 

𝐼(𝑥) = 𝐵(𝜈)[1 + cos(2𝜋𝜈𝑥)]     (14) 
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where B(𝜈) is the spectral power density as a function of wavenumber. For an incoherent source 

(i.e. from a continuous spectrum of frequencies), the total intensity is the sum over all frequencies, 

in wavenumber notation, in which 𝜈 is in wavenumbers (cm-1) and x is in cm, this becomes: 

𝐼(𝑥) = ∫ 𝐵(𝜈)[1 + cos(2𝜋𝜈𝑥)]𝑑𝜈
∞

0
,    (15) 

where the first term in the brackets is a constant and the second (cosine) term contains all the 

information of the spectrum. This part and its Fourier transform pair are as follows: 

𝐼′(𝑥) = ∫ 𝐵(𝜈)[cos(2𝜋𝜈𝑥)]𝑑𝜈
∞

−∞
    (16) 

𝐵(𝜈) =  ∫ 𝐼′(𝑥)
+∞

−∞
[cos(2𝜋𝜈𝑥)]𝑑𝑥.    (17) 

There is a fundamental limit to the possible resolution obtained as the mirrors can only be moved 

a finite distance. The limits to the integral will be given by the optical path difference, x.  

The Bruker IFS 125HR Fourier transform spectrometer has a maximum optical path difference 

(MOPD) of 5 meters corresponding to a resolution (defined as 1/MOPD) of 0.002 cm-1. The optical 

layout of the Bruker IFS 125HR is given in Figure 18. The source for the system was a tube 

furnace, shown in Figure 17. The light path from the lamp enters the spectrometer at the 

spectrometer input aperture (labeled as C in Figure 18). The two parts of the apparatus are shown 

in photograph in Figure 19. 
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Figure 17. Schematic of the tube furnace used as a source. 

 

The signal from the tube furnace enters the aperture of the spectrometer (C in Figure 18). In the 

schematic the beamsplitter (D) ideally reflects half of the signal onto the fixed mirror (E) and half 

onto the movable mirror (F) and the light is recombined at the beamsplitter. These are analogous 

to the half-silvered mirror and mirrors M1 and M2 in Figure 16 of the Michelson interferometer, 

the essential component of an FTS. The detector arm of the FTS uses a series of mirrors to lead 

the signal to the detector (A). For the frequency range studied in this work, a liquid nitrogen cooled 

indium antimonide (InSb) detector was used, providing detection over the spectral range 1850-

9600 cm-1. 
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Figure 18. Schematic of the Bruker IFS 125HR FTS with labels of main components. Adapted 

from Bruker IFS 125HR User Manual (Bruker 2006). 
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Figure 19. Photograph of the tube furnace (on the right with exhaust hood over it) and the Bruker 

IFS 125HR FTS (center) in the Bernath laboratory at ODU. 

 

Bruker provides software, called OPUS, for controlling the instrument parameters and the 

processing of spectra obtained from the spectrometer. In order to calculate a desired transmission 

spectrum, absorption and emission (as well as background) spectra were recorded. Chapter VI 

describes the calculation in detail. One common problem with analysis of spectra in the infrared 

is the ubiquity of water vapor lines. Water is both abundant in the atmosphere and variable in its 

concentration throughout the day. For full analysis of the obtained spectrum, water must be 
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removed. If the concentration of water were constant, then water lines would be removed when 

calculating the transmission spectrum. Figure 21 shows the three spectra. The black spectrum 

(offset -20%) is the absorption spectrum with ammonia in the tube furnace, the green plot is a 

background spectrum with the tube furnace evacuated. The blue plot is the background plot 

corrected to have the baseline at zero. Subtraction of this new ‘water spectrum’ from the sample 

spectrum should remove the contribution of water (and other background signals) from the signal 

spectrum; however, the varying concentrations of atmospheric water result in a residual signal 

which is demonstrated in Figure 20. This can then be removed by manually cutting sections from 

the spectrum as shown in the black signal. In the spectrum shown in Figure 20 there is no ammonia 

signal; if there is a mix of target gas and water then care must be taken not to cut out sections of 

spectrum containing the sample. 

 

Figure 20. Water line removal, the sample is shown in the blue trace, initial water removal in red 

and the cut spectrum in black. 



39 
 

 
 

 F
ig

u
re

 2
1
. 

T
h

e 
sa

m
p
le

 s
p
ec

tr
u
m

 (
b
la

ck
, 
sh

if
te

d
 -

2
0
%

) 
in

cl
u
d
es

 s
ig

n
al

 f
ro

m
 t

h
e 

sa
m

p
le

 (
N

H
3
) 

an
d
 o

th
er

 g
as

es
, 
m

ai
n
ly

 w
at

er
 i

n
 

th
e 

ai
r 

g
ap

 b
et

w
ee

n
 t

h
e 

fu
rn

ac
e 

an
d

 t
h
e 

sp
ec

tr
o
m

et
er

. 
T

h
e 

g
re

en
 t

ra
ce

 s
h
o

w
s 

th
e 

b
ac

k
g
ro

u
n
d

 s
ig

n
al

, 
w

h
ic

h
 d

o
es

 n
o
t 

in
cl

u
d

e 

am
m

o
n
ia

, 
w

h
en

 c
o
rr

ec
te

d
 f

o
r 

th
e 

b
as

el
in

e,
 t

h
is

 b
ec

o
m

es
 t

h
e 

b
lu

e 
tr

ac
e 

w
h
ic

h
 m

a
y
 b

e 
su

b
tr

ac
te

d
 f

ro
m

 t
h
e 

o
ri

g
in

al
 s

p
ec

tr
u
m

. 



40 
 

 
 

In order to obtain a linelist, individual spectral features must be measured for their frequencies and 

intensities. WSpectra (Carleer, 2001) is a program used to pick peaks in a spectrum. This program 

is run to automatically find the peaks in a spectrum and has a wavenumber accuracy of 9 x 10-6 

cm-1 and an intensity accuracy of 1% or better (Carleer, 2001).  This peak picking is used with an 

intensity threshold; however, the automation is not always perfect and the spectrum must be 

checked manually to ensure that erroneous lines have not been included and that sample lines have 

not been missed. WSpectra allows the user to simply select or deselect lines on the interface.
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CHAPTER IV 

 

ISOTOPIC FRACTIONATION OF ATMOSPHERIC CARBON 

MONOXIDE 

 

The results and the majority of the text presented in this chapter have been published in the 

Atmospheric Science special edition of the Journal of Molecular Spectroscopy (Beale et al., 

2016a). The co-authors for this work are; Eric Buzan (Old Dominion University), who obtained 

the WACCM output and produced the data from which Figure 27 was made as well as sourcing 

the data for Table 7; Chris Boone (University of Waterloo) who, as the retrievals scientist for the 

ACE mission, calculated the forward model and obtained the volume mixing ratios for each 

occultation, and Peter Bernath (Old Dominion University) who is the Mission Scientist for ACE 

and oversaw the project. As first author of this paper, all further ACE analysis after retrieval, all 

experimental data analysis, all other figures (unless explicitly cited) and all writing presented here 

is my original work. 

 

INTRODUCTION 

Carbon monoxide (CO) is an important molecule in atmospheric chemistry. Although it has a small 

direct global warming potential, it acts as an indirect greenhouse gas as a result of the formation 

of carbon dioxide (CO2) through the reaction with the hydroxyl radical (OH). The reaction between 

CO and OH also leads to the formation of tropospheric ozone (O3) (Pommier et al., 2010) which 

acts as both a pollutant and a greenhouse gas (Finlayson-Pitts and Pitts, 1997). The lifetime of CO 
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(~2 months) makes it an excellent tracer of atmospheric dynamics, in particular vertical transport 

at high latitudes (Clerbaux et al., 2008). Both CO and O3 are considered major pollutants in the 

troposphere (Parrish, 1993) and have detrimental effects on human health, including lung disease 

and cancer (Ebi and McGregor, 2008). 

Table 2. Estimates of sources (first four rows) and sinks (last two rows) (both in Tg/yr) for carbon 

monoxide. 

 WMO 

(Haigh, 1993) 

Seiler & Conrad (Conrad 

and Seiler, 1988) 

Khalil & Rasmussen (Khalil 

and Rasmussen, 1990) 

Fossil Fuel 440 640±200 400-1000 

Biomass burning 640 1000±600 335-1400 

CH4 oxidation 660 900±500 300-1400 

NMHC oxidation 600 600±300 400-1000 

OH reaction 900±700 2000±600 2200 

Soil uptake 256 390±140 250 

 

CO has four major sources in the troposphere: fossil fuel combustion, biomass burning, methane 

oxidation and non-methane hydrocarbon oxidation. The contributions of each of these are 

summarized in Table 2. The major sink throughout the atmosphere is the reaction with OH. Since 

the concentration of OH is strongly dependent on the actinic flux, and therefore the time of year, 

the tropospheric lifetime of CO varies seasonally (1-6 months). The spatial distribution is also 

varied given the relatively short lifetime and the disparity of fossil fuel production between the 

Northern and Southern Hemispheres. In the troposphere CO is a precursor (through production of 

HO2) to the formation of ozone under high NOx conditions (Funke et al., 2009; Röckmann et al., 

2002; Pommier et al., 2010). In the stratosphere and mesosphere the main sources of CO are from 
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formaldehyde (CH2O), which is formed through hydrocarbon oxidation (Feilberg et al., 2004; 

Feilberg et al., 2005), and photodissociation of CO2, respectively. 

The volume mixing ratio and lifetime of CO in the mesosphere is much higher than in the 

troposphere or stratosphere (Figure 22) and it can be used as an atmospheric tracer of vertical 

transport and other dynamical effects in the upper atmosphere. 

CO exists predominantly as the 12C16O isotopologue, but there are appreciable amounts of 13C16O 

in the atmosphere and to a lesser extent 12C17O and 12C18O. The various CO sources have different 

isotopic signatures (Gros et al., 2002; Brenninkmeijer et al., 1999; Wang et al., 2012) because of 

the different isotopic compositions of the reactants and the different fractionation processes that 

they undergo during CO formation. Indeed removal by OH oxidation also has considerable 

isotopic fractionation (Feilberg et al., 2005). Measurements of the isotopic makeup of CO can 

therefore lead to a determination of the various sources and sinks (Mak et al., 2003; Manning et 

al., 1997; Röckmann et al., 2002; Brenninkmeijer et al., 1999). 

The variation of the isotopic composition of a sample from the standard isotopic abundance is 

given in δ notation and expressed as ‘per mil’ (‰) changes. For 13C, this would be expressed as: 

𝛿 C = [
[ C𝑆

13 ]/[ C𝑆
12 ]

[ C𝑅
13 ]/[ C𝑅

12 ]
− 1]13 × 1000 ‰,                (18) 

In which the S and R subscripts refer to the concentrations for the sample and reference, 

respectively. For 13C, this reference is the Vienna Pee Dee Belemnite (V-PDB) which has a 

[13C]/[12C] value of 0.0112372. 
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Figure 22. Global distribution of carbon monoxide volume mixing ratio by season as measured 

by the ACE-FTS. MAM represents the binned months of March, April and May (spring); JJA 

represents June, July and August (summer); SON represents September, October and November 

(autumn) and DJF represents December, January and February (winter). The colder and therefore 

denser air, traced by CO formed by CO2 photolysis (high VMR), in each hemisphere’s respective 

winter can be seen to descend to lower altitudes (Beale et al., 2016a). 
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A number of previous studies have used CO isotopologues to quantify the relative contributions 

of the various sources and sinks. In situ collection and measurement of suitable samples can be 

difficult due to the small volume mixing ratio of CO and generally sophisticated cryogenic traps 

are used (Brenninkmeijer et al., 1999) to isolate the sample. This technique is clearly spatially 

limited, although analysis with mass spectrometry techniques provides highly precise values for 

the isotopic composition of a sample. Samples from the high latitude northern hemisphere 

(Röckmann et al., 2002),  Japan (Kato et al., 2000), Barbados (Mak et al., 2003), a transect along 

the Trans-Siberian railroad (Tarasova et al., 2007) and other locales have been analyzed and 

modeling efforts have included a two dimensional model employed by Manning et al. (1997) to 

predict CO concentrations and δ13C values in the extra tropical Southern Hemisphere. The 

CARIBIC project has provided isotopic fractionation values for CO in the upper troposphere and 

lower stratosphere (Gromov and Brenninkmeijer, 2015), although the sampling method suffered 

from contamination. However, all of these results are relatively local and cover a limited altitude 

range. Given the seasonal and spatial variability of CO, as well as the different contributions of 

sources and sinks, a more comprehensive study is needed. Nadir sounding instruments such 

SCIAMACHY (de Laat et al., 2006) and MOPITT (Deeter et al., 2003) and limb sounders such 

as MIPAS (Funke et al., 2009), IASI (George et al., 2009) and ACE (Clerbaux et al., 2005) have 

successfully measured CO from satellite platforms, although this has not yet been extended to 

isotopic measurements. 

 

EXPERIMENTAL 

SCISAT is a Canadian-led satellite mission that was launched in 2003. The primary instrument on 

board is the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) 
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which is a high resolution (0.02 cm-1) spectrometer covering the spectral region 750-4400 cm-1. 

The instrument records solar occultation spectra, recording transmission spectra through the limb 

of the Earth’s atmosphere at sunrise and sunset over a latitudinal range of about 85˚S to 85˚N. The 

satellite’s orbital inclination of 74˚ provides near global coverage with a strong weighting toward 

occultations at higher latitudes (Figures 23 and 24). Profiles of over 30 trace gas species are 

obtained from ACE-FTS spectra, at a vertical resolution of around 3-4 km (Bernath et al., 2005).  

Retrievals of ACE-FTS data were obtained using version 3.5 of the ACE-FTS software (Boone et 

al., 2013).  Pressure and temperature profiles are first derived from the ACE-FTS spectra through 

the analysis of CO2 lines, and then volume mixing ratio (VMR) profiles are retrieved for the 

various atmospheric constituents of interest using a forward model in which the target molecule’s 

concentration is adjusted until the calculated spectrum matches observations. Spectroscopic 

parameters for the forward model calculations were taken from the HITRAN 2004 database 

(Rothman et al., 2005).  

The subsidiary isotopologues from a number of molecules are routinely retrieved from ACE-FTS 

measurements, including H2O, CO2, O3, N2O, CH4, OCS, and CO (http://www.ace.uwaterloo.ca/).  

For carbon monoxide, in addition to the main isotopologue (12C16O), VMR profiles are retrieved 

for 13C16O, 12C18O and 12C17O isotopologue (12C16O), VMR profiles are retrieved for 13C16O, 

12C18O and 12C17O. The high altitude portion (above ~95 km) of the retrieval for main isotopologue 

CO in version 3.5 differs significantly from version 3.0, the previous processing version.
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Figure 24. Latitudinal coverage of SCISAT for one year. Each circle represents one occultation. 

Figure from Jones et al. (2012). 

 

In version 3.0, the CO VMR profile in the thermosphere was assumed to be increasing rapidly 

with altitude, which yielded an overestimation of the contribution to the calculated spectrum from 

the altitude region above the highest analyzed measurement (~110 km).  In version 3.5, a constant 

VMR was assumed above the highest analyzed measurement.    

The spectral microwindows employed in the CO and 13CO retrievals are presented in Tables 3 and 

4, respectively. The ACE-FTS measurements cover the 1-0 and 2-0 CO vibration-rotation bands, 

both of which are included in the 12CO microwindow set, with the weaker 2-0 band used for low 

altitudes where many of the lines in the 1-0 band are saturated.  The microwindow set for the 13CO 
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isotopologue only contains lines from the fundamental band.  Unlike the main isotopologue, lines 

in the 1-0 band for 13CO do not saturate in the low-altitude ACE-FTS spectra thanks to the lower 

atmospheric abundance compared to 12CO. At low altitudes, microwindows with relatively weak 

CO lines must be used as strong lines will be saturated (making determination of line intensity and 

therefore concentration difficult or even impossible). At high altitudes as atmospheric pressure 

decreases so (generally) does the concentration of gas. As a result, the microwindows used for 

high altitudes include lines that are more intense than those used at lower altitudes. 

Table 3. List of microwindows used for 12CO retrievals (ACE-FTS version 3.5 data product). 

Table from Beale et al. (2016a). 

Center Frequency 

(cm-1) 

Microwindow Width 

(cm-1) 

Lower Altitude 

(km) 

Upper Altitude 

(km) 

1950.10[1] 0.35 7 15 

1986.09[1] 0.30 6-7 22 

2033.08[1] 0.30 5 8 

2046.29 0.24 8 25 

2050.90 0.30 20 45 

2081.88 0.48 13-15 100 

2083.05[1] 0.70 5 15 

2086.36 0.40 15 100 

2094.76 0.40 70 110 

2098.97 0.50 40 110 

2107.46 0.40 60 110 

2115.50 0.60 40 110 

2119.70 0.50 70 110 

2131.65 0.50 18 105 

2135.40 1.00 14-16 105 

2139.35 1.00 13-15 105 
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Table 3. continued 

2140.00 

 

1.25 

 

5 

 

22 

2140.80[1] 0.60 5 22 

2146.75 1.00 5 22 

2147.05 0.90 13-15 105 

2149.75[1] 0.60 5 15 

2150.90 0.70 16-17 105 

2154.65 0.80 17-18 110 

2158.30 0.50 19 110 

2161.95 0.50 20 110 

2164.00[1] 0.50 10 20 

2165.48 0.55 20 110 

2169.13 0.55 20 110 

2172.68 0.50 50 110 

2176.25 0.45 20 110 

2179.85 0.40 60 110 

2183.20 0.40 40 110 

2186.60 0.40 60 110 

4209.38 0.40 5 15 

4222.90 0.45 5 15 

4227.37 0.70 5 15 

4236.01 0.45 5 15 

4248.34 0.40 5 15 

4274.77 0.30 5 15 

4285.10 0.55 5 15 

[1] Microwindow contains no information on the target.  Used to improve the retrieval of 

interferers. 

 

 



51 
 

 
 

Table 4. List of microwindows used for 13CO retrievals (ACE-FTS version 3.5 data product) 

Table from Beale et al., (2016a). 

Center Frequency 

(cm-1) 

Microwindow Width 

(cm-1) 

Lower Altitude 

(km) 

Upper Altitude 

(km) 

1446.50[1] 0.35 30 50 

1649.34[1] 0.30 20 30 

1950.10[1] 0.35 5-7 20 

1977.66[1] 0.60 5-7 22 

1986.09[1] 0.30 5-7 22 

2020.90 0.40 5-8 12 

2024.90 0.40 5 12 

2033.37 0.30 5 15 

2045.67 0.35 12 20 

2045.90 0.40 50 85 

2049.42 1.00 50 85 

2049.92 0.40 12 50 

2053.74 0.40 50 85 

2057.80 0.30 15 50 

2058.05 0.50 50 90 

2061.57 0.70 50 90 

2061.87 0.35 12 50 

2065.82 0.40 50 90 

2069.60 0.26 20 90 

2073.38 0.55 50 90 

2077.45 0.50 60 90 

2081.60 1.00 45 90 

2084.98 0.40 10 90 

2088.77 0.40 45 90 

2092.43 0.30 12 20 

2103.32 0.40 45 90 
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Table 3. continued 

2107.15 

 

0.70 

 

55 

 

90 

2111.0 1.25 50 90 

2113.95 0.40 50 90 

2117.35 0.35 55 90 

2120.90 0.35 55 90 

2124.00 0.80 60 90 

2127.65 0.30 60 90 

2131.34 1.00 40 90 

2134.35 0.35 45 90 

2137.60 0.30 5-7 85 

2140.80 0.60 5 40 

2144.10 0.40 5 45 

2147.10 0.40 20 40 

2153.28 0.45 5 12 

2159.60 0.40 5-7 12 

[1] Microwindow contains no information on the target.  Used to improve the retrieval of 

interferers. 

 

ISOTOPIC EFFECTS ON INFRARED SPECTRA 

The vibrational energy of a molecule is related to the masses of the atoms in that molecule 

(Equation 9). When a neutron is added to the nucleus of an atom in a molecule, as is the case with 

a heavier isotopologue, the vibrational energies change. The vibrational energy is inversely 

proportional to the square root of the reduced mass, as such the vibrational band center of the 

heavier isotopologue is at a lower energy than a lighter one. The vibrational band centers for 12CO 

and 13CO are given in Table 3. Carbon monoxide, being a diatomic molecule only has one 

vibrational mode (Figure 25). 
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Table 5. Vibrational band centers of 12CO (Mina-Camilde et al., 1996) and 13CO (Chen et 

al.,1976). 

Isotopologue 1-0 band center (cm-1) 2-0 band center (cm-1) 

12CO 2146.9 4263.2 

13CO 2099.71 4170.43 

 

The rotational energy expression (Equation 7) is also dependent on the mass of the atoms in the 

molecules (by Equation 1). As such the infrared transitions and therefore the rotational-vibrational 

spectrum of a heavier (or indeed lighter) isotopologue is different from the most common form of 

that molecule. The rotational constant, B, is inversely proportional to the reduced mass and 

therefore the line spacing (given by 2B) is lower for a heavier isotopologue than a lighter one. For 

12CO the rotational line spacing is 3.842 cm-1, for 13CO this is equal to 3.673 cm-1. 

 

Figure 25. The stretching mode for carbon monoxide. Figure adapted from 

https://commons.wikimedia.org/wiki/File:Carbon-monoxide-3D-balls.png, accessed July 8 2017. 
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Different isotopologues are obtained from the ACE-FTS independently as if they are separate 

molecules and their volume mixing ratios are provided at 1 km vertical intervals. The infrared 

contains many isolated lines for the various isotopologues. Accurate spectroscopic line data are 

required as fractionation is often rather small so that errors in spectroscopic data can lead to much 

larger errors in the δ-values calculated (Equation 18). Total CO concentration measurements have 

been validated (Clerbaux et al., 2008) and the δ-values obtained from ACE have been compared 

to independent in situ measurements in the troposphere and the agreement between the values was 

within 5%. 

Due to the number of molecules in the atmosphere with active infrared transitions, there are a 

number of interfering molecules in the CO microwindows. The vertical profiles of these interfering 

molecules are determined simultaneously. As isotopologues of molecules generally have different 

profiles, a separate profile is used for each interfering isotopologue. Where the contribution of an 

interfering molecule to a particular microwindow is relatively weak, additional microwindows 

with information about the interfering molecule (rather from the CO isotopologue) are used. If the 

contribution from an interferer is too small, the least squares fit may not converge.  For the main 

isotopologue, the interferers in the version 3.5 microwindow set were H2
16O, H2

17O, CO2, 

18O12C16O, 17O12C16O, O3, 
18O16O16O, N2O, 15NNO, N15NO, 13CO, C18O, CH4, and OCS.  For 

13CO, the interferers were H2
16O, H2

18O, H2
17O, CO2, 

13CO2, 
18O12C16O, 17O12C16O, O3, 

18O16O16O, 

16O18O16O, 17O16O16O, 16O17O16O, N2O, 12CO, C18O, CH4, and OCS. The ACE retrievals used in 

this work were carried out by Chris Boone at the University of Waterloo. 

An extensive validation of ACE measurements, using satellite, airborne and ground-based data, of 

total CO from the 2.2 dataset has been provided by Clerbeaux et al., (2008) and this work showed 

the retrieval error for the main isotopologue to be within 5% from the upper troposphere to 40 km 
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and 10% above 40 km. The ACE-FTS may therefore be considered as a reliable platform for CO 

measurements in the atmosphere from 8-110 km.  The 13CO retrieval has not been formally 

validated yet, except for tropospheric comparisons. 

 

Table 6. The fractionation effects (with respect to V-PDB) of the four main tropospheric CO 

sources (Adapted from Brenninkmeijer et al., (1999) and sources therein). 

Source Amount Tg/year δ13C (‰) 

Fossil fuel combustion 300-550 -27.5 

Biomass burning 300-700 -21.3/-24.5 

Methane oxidation 400-1000 -52.6 

NMHC oxidation 200-600 -32.2 

 

WACCM 

The Whole Atmosphere Community Climate Model (WACCM) is an atmospheric component of 

the Community Earth System Model (Marsh et al., 2013) developed by the National Center for 

Atmospheric Research (NCAR) to include interactive chemistry, radiation and dynamics 

(Verronen et al., 2016). WACCM spans from the Earth’s surface up to 5x10-6 hPa (approximately 

140 km, in the thermosphere) which fully covers the altitude range of ACE retrievals for 12CO, 

13CO, C17O and C18O. The native WACCM resolution is 1.9˚ latitude by 2.5˚ longitude, but for 

this work WACCM was used with a resolution of 4° latitude by 5°.  
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WACCM has no in built support for isotopic chemistry, but it is fully interactive and isotopologues 

may be input as separate species, with rate constants for their various reactions differing from the 

main isotopologues as given by the kinetic isotope effect (Table 7). Many kinetic isotope effects 

are temperature and pressure dependent. This dependency was not included in the model runs and 

will introduce small errors in the results at the surface, increasing with altitude as the atmospheric 

temperature and pressure changes. From initial conditions WACCM was run for 20 years, with 

years 18, 19 and 20 being used for data collection. 

  

Table 7. List of major reactions for CO in the atmosphere with their related kinetic isotope 

effects k12/k13. All KIEs for the chemical reactions are reported at 298 K and 1 atmosphere 

pressure. CO2 photolysis is reported at 295 K. 

 

Reactants Products k12/k13 Source 

CH4 + OH CH3O2 + H2O 1.00288 (Sander et al., 2011) 

CH3Cl + Cl HO2 + CO + 2 HCl 1.07 (Gola et al., 2005) 

CH2O + NO3 CO + HO2 + HNO3 0.96 (Feilberg et al., 2004) 

CH2O + OH CO + H2O + H 0.952 (Feilberg et al., 2004) 

CH2O + Br HBr + HO2 + CO 1.13 (Feilberg et al., 2004) 

CH2O + Cl HCl + HO2 + CO 1.058 (Feilberg et al., 2004) 

CO + OH + M CO2 + HO2 + M 1.00597 (Röckmann et al., 1998) 

CO2 + hν CO + O varies (Schmidt et al., 1996) 
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The major source of CO at high altitudes in the photolysis of carbon dioxide (CO2). The 

fractionation effect of CO2 photolysis is dependent on the wavelength of the light. Above 150 nm 

theoretical values for the cross-sections are used (Schmidt et al., 2013). Below 150 nm there only 

exists cross-section data for the 12C16O isotopologue, experimental values for these cross-sections 

(Yoshino et al., 1996) are used for both isotopologues.  

Isotopic fractionation data for CO surface emissions are available and these were added to 

WACCM. WACCM natively includes boundary conditions for CH4, although the heavy 

isotopologues of these molecules were added. The NOAA ESRL Carbon Cycle Cooperative 

Global Air Sampling Network (Novelli and Masarie, 2014) collects surface CO concentrations 

and these values were interpolated over all latitudes. For the heavy isotopologue, 13CO boundary 

conditions were calculated using δ13C measurements from Bergamaschi et al. (2000). δ13C 

relations for methane (CH4) and CO2 were derived by Eric Buzan from experimental data by 

Rockmann et al. (2011), and Assamov et al. (2010): 

𝛿 𝐶 (𝐶𝐻4)/‰13 =
1.29×104

[𝐶𝐻4]/(𝑝𝑝𝑚)
− 151.4    (19) 

𝛿 𝐶 (𝐶𝑂2)/‰13 =
6.47×103

[𝐶𝑂2]/(𝑝𝑝𝑚)
− 25.3.    (20) 

These were combined with boundary condition data (Lamarque et al. 2010) from WACCM to 

calculate boundary conditions for each isotopologue.  
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RESULTS FOR 13CO 

A total of 25855 occultations containing concentrations of 12CO and 13CO were successfully 

obtained. Physically unrealistic data are removed from the data product of the obtained 

occultations. Quality flags are assigned to the data based on a statistical fitting and outliers, which 

may be due to instrumental or processing errors (Sheese et al., 2015); these quality flags are 

available as part of the ACE data products. Data with quality flags of 1 were accepted, individual 

data with quality flags of 2 or greater, or any occultation containing any data with quality flags of 

4, 5 or 6 were rejected. The accepted occultations are grouped into one of eighteen 10° latitude 

bins. The data are further binned by altitude (1 km bins). The global distribution of the total 

concentration of CO by season can be seen in Figure 22. The δ13CO values from ACE are 

calibrated by comparing subtropical values at 8-10 km with δ13CO values at the same latitude and 

altitude from aircraft transects in the troposphere obtained by Mak and Brenninkmeijer (1998). A 

calibration factor of 0.99582 was applied to the ACE 13CO concentrations in order to match the 

satellite and in situ δ13CO values. This factor is likely due to a small inconsistency between the 

12CO and 13CO line intensities. VMRs of around 100 ppb in the troposphere, decreasing to between 

20 and 50 ppb in the stratosphere can be seen and these results are consistent with previous satellite 

measurements (Clerbaux et al., 2008). The large production by photolysis of CO2 at high altitudes 

can clearly be seen, as can the dynamics of the air masses between the seasons. Another interesting 

feature is the asymmetrical distribution of CO between the Northern and Southern Hemispheres in 

the troposphere, with higher CO concentrations in the Northern Hemisphere being expected 

because of the larger emissions and in situ formation. 

There is a distinct hemispheric and seasonal disparity in the distribution of CO in the atmosphere 

(Figure 22). This is caused by atmospheric dynamics, specifically the upwelling of tropical air 
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(Brewer-Dobson circulation) and the downwelling of air from the upper mesosphere and 

thermosphere in the polar regions in the winter. This effect can be seen more clearly in our 

WACCM results. The effect of this is that during winter months, CO from UV photolysis of CO2 

in the thermosphere descends into the stratosphere where the concentration of CO at a particular 

altitude is higher than other latitudes by a factor of ten or more. Ground-based FTIR measurements 

(Velazco et al., 2007) show the rapid change of CO column densities by season with increased CO 

in the winter in each hemisphere with the greatest changes coming at high latitudes.  

Figure 26 shows how the isotopic fractionation of 13CO varies by season. The bands of highly 

positive fractionation near 10 km and 40-50 km are most likely due to systematic errors in the CO 

VMR retrievals in the vicinity of those altitudes.  Although seemingly a problem, these results 

highlight the sensitivity of our method. The individual atmospheric concentration profiles of CO 

isotopologues from the ACE-FTS (Clerbaux et al., 2008) do not show any glaring errors, but this 

analysis shows that isotopic fractionation can be used to diagnose problems in the retrievals from 

satellite observations. Although the VMR of formaldehyde (CH2O) peaks in the troposphere and 

at around 40 km (Vigouroux et al., 2009; Ricaud et al., 2007) which could explain a slight positive 

fractionation as oxidation of formaldehyde favors 13CO production over 12CO (Feilberg et al., 

2004). However, the apparent enhanced fractionation near 40 km seen in Figure 26 is very high, 

exhibits a suspiciously flat variation with latitude, and no such feature is seen in our WACCM 

results, all of which suggests that the feature is an artifact.  

The positive fractionation observed at 20-30 km, just above the tropical and subtropical 

tropopause, is another noticeable feature in all seasons. Perhaps this positive fractionation is 

indicative of the reaction of CO with OH, which will fractionate the air mass by preferentially 

removing the lighter isotope and therefore the remaining CO has a higher relative abundance of 



60 
 

 
 

13CO. This kinetic isotope effect has a small positive value of 5‰ (Brenninkmeijer et al., 1999) 

(Table 7).  

Figure 26. Seasonal variation of δ13CO as a function of latitude between 8 and 90 km from the 

ACE-FTS (Beale et al., 2016a). 

Outside of the tropics and subtropics, the CO has the fractionation signature of that created by the 

oxidation of methane of -52.5‰ (Table 6). This latitudinal dependence is not observed in 

WACCM, where the entire stratosphere has the isotopic signature of CO formed by the oxidation 

of methane. Unlike the features at 40 km, the observations in the tropics do not exhibit features 
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that are typical of a retrieval error and it is likely that these results show a real fractionation effect 

in the atmosphere not modelled by WACCM. Indeed, the concentrations of CO in the atmosphere 

are at their lowest in this region (Figure 22) so it is expected that the isotopic signature of CO in 

the tropics will be highly dependent on its oxidation by OH. 

The fractionation of CO isotopologues in the mesosphere varies spatially and seasonally; in 

general, the values are highly negative around 60 km and positive at 80 km and higher. CO at high 

altitudes is primarily formed from photolysis of CO2. Photolysis of CO2 from UV light between 

167 nm and 210 nm is the main source of CO in the mesosphere and lower thermosphere (MLT) 

(Schmidt et al., 2013). This photolysis has a very high fractionation effect and given the increase 

of UV radiation in the respective summers, explains the highly negative values in the MLT shown 

in Figure 26 in the summer, where the air is subjected to UV radiation and therefore photolysis. 

Indeed, in a simulated photolysis experiment Schmidt et al. (2013) found 12CO2 to photolyze much 

faster than 13CO2, leading to 12CO enrichment, in agreement with ACE observations. However, 

downwelling from the thermosphere in the winter results in CO that is enriched in 13CO (positive 

δ value) to descend into the mesosphere and even in the upper stratosphere as seen in the southern 

hemisphere in JJA and the northern hemisphere in DJF (Figure 22). In the winter, the air at these 

latitudes is subject to much less photolysis as it receives little sunlight and as a result the highly 

negative fractionation observed in other seasons does not occur.  

WACCM results in Figure 27 represent the observed data well in the mesosphere. The tropospheric 

values of WACCM are consistent with in situ measurements (Kato et al., 2000; Röckmann et al., 

2002; Mak et al., 2003) and are less variable than the ACE-FTS data at low altitudes. The observed 

fractionation at 40-50 km is not seen in Figure 27, but the evidence of the effect of dynamics 

(which WACCM includes) on the distribution of CO fractionation is.  As with CO concentrations, 
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this is best viewed as a month by month animation, but winter descent as part of the polar vortex 

can be seen in the upper right and lower right panels of Figure 27. Although the trend of 

fractionation is similar to ACE-FTS results, the strength of fractionation is different between the 

two results with ACE results showing much higher depletion of 13CO in the lower and middle 

mesosphere.  

 

Figure 27. Seasonal variation of δ13CO as a function of latitude between 0 and 90 km from 

WACCM (Beale et al., 2016a). 

Figure 28 shows the difference between δ13CO determined from ACE measurements and 

WACCM. The band of high fractionation at 40-50 km and the smaller positive fractionation in the 
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tropical stratosphere at 20-30 km, which were not shown from WACCM, are highlighted in Figure 

28. The band at 40-50 km is likely due to an artefact in the retrieval process.  

 

Figure 28. Difference between ACE measurements of δ13CO and WACCM output (Beale et al., 

2016a). 

The residuals in the mesosphere show that our WACCM runs underestimate fractionation in that 

region of the atmosphere. Although our treatment of CO2 photolysis is not comprehensive, due to 

the fact that isotopic dependent cross-sections are not available for all wavelengths, appropriate 

cross-sections have been used where possible. This first attempt to model 13CO in the atmosphere 
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is at least semi-quantitative. Indeed the differences between WACCM and ACE shown in Figure 

28 at high altitudes may be due to our inability to implement correct cross-section data below 150 

nm or at the appropriate temperatures or pressures. These isotopic measurements suffer from very 

high levels of noise, due to the difficulty in accurately determining the 13CO concentration from 

very weak absorption lines and interfering lines in the microwindows used. Disagreement between 

the model results and observations in the tropics at 20-30 km may be due to missing isotopic 

chemistry of hydrocarbons in the stratosphere. The oxidation of hydrocarbons plays an important 

role in the cycling of carbon in this region of the atmosphere although fractionation values are only 

available for methane, the simplest hydrocarbon.  

There have been a number of studies of CO isotopic fractionation on the surface of the Earth. ACE 

has coverage of CO in the troposphere, although spectral congestion in the low atmosphere results 

in measurements at the surface being less accurate than those higher in the troposphere. As the 

troposphere is relatively well mixed, ACE δ13CO values from the higher troposphere may be 

compared to surface measurements. In the sub tropics, the average δ13CO value from ACE in the 

troposphere is -32 ‰. Measurements from Mount Sonnblick, Austria (47° N) have δ13CO values 

ranging between -25 and -30 ‰, (Gros et al., 2001), from Happo, Japan (37° N) have values 

between -24 and -29 ‰ (Kato et al., 2000) and a transect across the Trans-Siberian Railroad had 

values ranging between -26 to -29.5 ‰ (Tarasova et al., 2007). These measurements were used to 

independently validate the ACE δ13CO values and provided satisfactory agreement.  
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ISOTOPIC FRACTIONATION OF C17O AND C18O 

The ACE-FTS data set also includes retrievals of two oxygen isotopologues of carbon monoxide, 

namely C17O and C18O. The relative abundance of the oxygen isotopologues (Table 8) are much 

lower than that of 13CO, making retrievals much more difficult. As a result of this, the altitudinal 

range of C17O and C18O measurements and therefore fractionation is much lower. 

 

Figure 29. Total CO volume mixing ratios from 6-30 km as measured by the ACE-FTS.  

 

As the altitude ranges for the oxygen isotopologues ranges only up to the lower-mid stratosphere, 

the total CO concentrations as measured by the ACE-FTS shown in Figure 22 up to 90 km are 

reproduced in Figure 29 up to 30 km. 
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The fractionation of C17O shown in Figure 30 suffers from low altitude coverage. However, some 

trends are identifiable. Fractionation generally increases with CO concentration above 20 km at 

high latitudes and the very highest levels of fractionation follow the lower stratosphere just above 

the tropopause. The values for fractionation are believed to only be semi-quantitative. A 

quantitative analysis would require greater altitudinal coverage and higher quality retrievals. Such 

retrievals are not possible with current C17O molecular data. 

 

Table 8. Summary of C17O and C18O abundance and retrieval ranges. Oxygen isotopic abundances 

are based on Vienna Standard Mean Ocean Water (SMOW). 

Molecule Abundance Altitude range (km) 

12C16O 0.99757 5-110 

12C17O 3.799x10-4 8-25 

12C18O 2.005x10-3 5-30 

 

C18O fractionation shown in Figure 31 is of higher quality than that of C17O, mostly due to the 

higher fractional abundance (Table 8). Seasonal trends are shown with this dataset with highly 

negative fractionation above 25 km in the Northern Hemisphere summer (JJA) and the Southern 

Hemisphere summer (DJF) and conversely fractionation of approximately zero in each 

hemisphere’s winter at this altitude. Comparison with the 13CO isotopologue in Figure 26 at this 
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altitude shows that this fractionation is qualitatively opposite. There is also more positive 

fractionation in the summer of each hemisphere at 6-12 km. 

 

Figure 30. Isotopic fractionation of C17O from 9-25 km. 

The primary cause of fractionation in the oxygen isotopologues of CO in the lower atmosphere is 

the reaction of ozone (O3) with hydrocarbons, specifically terpenes and isoprene emitted by plants 

(Röckmann et al., 1998). This reaction produces CO with the same 18O fractionation as the O3 from 

which it was made of 25-40 ‰ (Krankowsky et al., 1995). Seasonally, concentrations of CO are 

highest in winter as removal by OH is reduced. As sources are greater than the sink in winter, the 
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isotopic makeup of CO reflects those of the sources, in the Northern Hemisphere this is mainly 

fossil fuels, which have a high value for δC18O (Röckmann and Brenninkmeijer, 1997). As with 

data for C17O, the results for C18O are most likely not quantitatively correct. These data have not 

been validated by in situ measurements throughout the atmosphere. Ground based fractionation 

results are available, and tropospheric values from ACE were compared to generally validate these 

results. 

 

Figure 31. Isotopic fractionation of C18O from 6-30 km. 
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CONCLUSION 

This chapter presents the first near global atmospheric data set of the isotopic fractionation of CO 

based on infrared remote sensing measurements from orbit. The advantage of measuring the 

various isotopologues of CO is that δ values identify the particular chemical or physical source. 

The satellite observations and model results show the high concentrations of 13CO in winter to 

have descended from the thermosphere. The ACE instrument is a useful tool to study the seasonal 

variation in atmospheric dynamics and may be used to analyze the isotope chemistry of the upper 

atmosphere. Observations of C17O and C18O fractionation are also presented. C17O is limited 

coverage and data quality to enable any substantial analysis; however C18O fractionation allows a 

quantitative comparison with chemical reactions affecting CO fractionation trends in the 

troposphere and lower stratosphere. 
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CHAPTER V 

 

PROPANE CROSS-SECTIONS IN THE 3 μm REGION 

 

The results presented in Chapter V have been published in the Journal of Quantitative 

Spectroscopy and Radiative Transfer (Beale et al., 2016b). The co-authors for this paper were 

Robert Hargreaves (Old Dominion University, now University of Oxford) and Peter Bernath (Old 

Dominion University). Hargreaves assisted with the recording of the data, as propane is a 

flammable gas which is dangerous at high temperatures, more than one person is required in the 

laboratory when recording spectra for safety purposes. Bernath was the overall project PI who 

guided the research. As primary author of the paper, I took the lead on experimental setup 

(including selection of temperature range, number of scans), was the primary collector of data and 

conducted all analysis, writing and production of figures for the journal article and also for this 

chapter (unless explicitly cited). 

 

INTRODUCTION 

Propane (C3H8) is the second most abundant non-methane hydrocarbon (NMHC) in the Earth’s 

atmosphere after ethane (C2H6) (Doskey and Gaffney, 1992). Propane and the other NMHCs only 

have a small radiative forcing effect on the Earth’s atmosphere. Nevertheless, the chemistry of 

these molecules has a significant impact on the troposphere through the reaction with the hydroxyl 

radical (OH), which leads to the formation of acetone. This reaction also leads to the production 

of peroxyacetyl nitrate (PAN) (Harrison and Bernath, 2010), which has a relatively long lifetime 
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in the upper troposphere where it acts as a reservoir for NOx, a catalyst for the production of ozone 

(Tereszchuk et al., 2013). 

Propane has been identified in a number of Solar System objects. These include the atmospheres 

of Jupiter, from observations with the Galileo Probe Neutral Mass Spectrometer (Niemann et al., 

1998), and Saturn, using the TEXES instrument on NASA’s Infrared Telescope Facility 

(Greathouse et al., 2006). For both planets, emission features from the ν21 band (748 cm-1) were 

detected (Greathouse et al., 2006; Tokunaga et al., 1983). Propane has also been detected on Titan, 

first in the stratosphere with infrared spectra from Voyager 1 (Maguire et al., 1981; Hanel et al., 

1981; Kim and Caldwell, 1982) and more recently with TEXES (Roe et al., 2003) and the CIRS 

instrument onboard Cassini (Nixon et al., 2009; Coustenis et al., 2007). Efforts to accurately 

quantify the propane concentration on Jupiter, Saturn and Titan have suffered from a lack of 

reliable spectroscopic data (Nixon et al., 2009; Sung et al., 2013) or laboratory spectra of sufficient 

resolution (Greathouse et al., 2006) for the regions covered by these instruments. On board 

NASA’s Juno mission (Matousek, 2007) is the Jovian Infrared Auroral Mapper (JIRAM) (Adriani 

et al., 2008), which arrived at Jupiter in July 2016. The JIRAM spectrometer covers the 2-5 μm 

range and will be used to study hot emission in Jupiter’s auroral regions that has been assigned to 

H3
+ and a number of hydrocarbon species (Adriani et al., 2008). Although the JIRAM spectrometer 

has a relatively low spectral resolution, it has previously been shown (Nixon et al., 2009) that 

recent high resolution propane spectra in the 7-15 μm region (Sung et al., 2013) were crucial to 

accurately modelling the propane contribution in low resolution spectra of Titan (Figure 32) and 

thus enabling the detection of propene (C3H6) (Nixon et al., 2013). 
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Figure 32. Detection of propene (unlabeled peak at 912.5 cm-1 in left panel) in Titan. This 

measurement relied on high resolution data to accurately model the other hydrocarbons present 

and observe C3H6 in the residual (right panel) (Nixon et al., 2013). 

The existence of propane and other hydrocarbons in the atmosphere of Jupiter, Saturn, Titan and 

other Solar System objects indicates the possibility of such molecules existing in the atmosphere 

of cool brown dwarfs and exoplanets. Methane (CH4) has already been detected in exoplanet 

atmospheres (Swain et al., 2008; Swain et al., 2009) and a number of additional hydrocarbons, 

including propane, are predicted to exist in the atmospheres of such objects (Venot et al., 2015; 

Lodders and Fegley, 2002). The relatively cool temperatures of brown dwarf atmospheres result 

in their spectra being dominated by molecular features. Models have predicted brown dwarf 
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atmospheres may include propane, although at much lower concentrations than methane or ethane 

(Lodders and Fegley, 2002). The atmospheres of hot Jupiters and brown dwarfs provide 

environments at elevated temperatures that could contain complex hydrocarbons such as propane. 

However, the laboratory data on which spectral models for these objects rely are incomplete or not 

recorded under the appropriate temperatures or pressures. 

 

SPECTROSCOPY OF PROPANE 

Propane, an asymmetric top molecule with C2v symmetry (Lide, 1960), has been the subject of a 

number of spectroscopic studies. Of the 27 fundamental modes of propane detailed in Shimanouchi 

(1972), several have been studied in high resolution, including the ν4 (a1, 1476 cm­1), ν18 (b1, 1378 

cm-1), ν19 (b1, 1338 cm-1), ν24 (b2, 1472 cm-1) bands (Flaud et al., 2001), the ν9 band (a1, 369 cm­1) 

(Kwabia Tchana et al., 2010), the ν21 band (b1, 748 cm-1) (Perrin et al., 2015), the ν26 (b2, 748 

cm­1), 2ν19 (a1)-ν19 (b1) (1338 cm-1) and the cross-sections of the 690-1550 cm-1 region (Sung et 

al., 2013) and 2550-3300 cm-1 (Harrison and Bernath, 2010). In the 3 μm region there are 8 C-H 

stretching modes (ν1 (a1), ν2 (a1), ν3 (a1), ν10 (a2), ν15 (b1), ν16 (b1), ν22 (b2) and ν23 (b2)) of which 7 

modes are allowed, with only the ν10 mode being forbidden (Shimanouchi, 1972), as such the 

spectrum of propane is extremely congested in this region. 
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Table 9. The 27 fundamental modes of propane, data from Shimanouchi,  (Shimanouchi 1972). 

Modes with wavenumbers marked with an asterisk are infrared inactive. 

Symmetry Mode Mode type Wavenumber (cm-1) 

a1 ν1 CH3 stretch 2977 

 ν2 CH3 stretch 2962 

 ν3 CH2 stretch 2887 

 ν4 CH3 deform 1476 

 ν5 CH2 scis 1462 

 ν6 CH3 deform 1392 

 ν7 CH3 rock 1158 

 ν8 CC stretch 869 

 ν9 CCC deform 369 

a2 ν10 CH3 stretch 2967* 

 ν11 CH3 deform 1451* 

 ν12 CH2 twist 1278* 

 ν13 CH3 rock 940* 

 ν14 Torsion 216* 

b1 ν15 CH3 stretch 2968 

 ν16 CH3 stretch 2887 

 ν17 CH3 deform 1464 

 ν18 CH3 deform 1378 

 ν19 CH2 wag 1338 

 ν20 CC stretch 1054 

 

b2 

ν21 

ν22 

CH3 rock 

CH3 stretch 

922 

2973 

 ν23 CH2 stretch 2968 

 ν24 CH3 deform 1472 

 ν25 CH2 rock 1192 

 ν26 CH2 rock 748 

 ν27 Torsion 268 
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Figure 33. Stick and ball figure of propane. The mode types in Table 9 refer to the central 

methylene group (CH2), the two methyl groups (CH3) either side of the methylene group or 

vibrational modes between the carbon atoms. Adapted from: 

https://commons.wikimedia.org/wiki/File:Propane-3D-balls-B.png, accessed June 15th, 2017. 

Infrared absorption cross-sections are typically presented instead of a list of individual lines. 

Several molecular databases include data for propane. HITRAN (Rothman et al., 2013) contains 

cross-sections for propane, broadened by air, from Harrison and Bernath (2010) for 195-296.4 K 

at high resolution (0.015 cm-1) in the range 2540-3300 cm-1 (Harrison and Bernath, 2010). GEISA 

(Jacquinet-Husson et al., 2016) includes cross-sections for 220-2000 cm-1, broadened by N2, 

recorded at 296 K at a resolution of 0.25 cm-1, as well as 8983 transitions in the range 700-800 

cm­1, the CH2 rocking mode region at a resolution of 0.08 cm-1. Absorption cross-sections of 

propane broadened by N2 are available from the Pacific Northwest National Laboratory (PNNL), 

recorded in the infrared at 278, 293 and 323 K, in the range 600-6500 cm-1 at medium resolution 

(0.1 cm-1) (Sharpe et al., 2004). Cross-sections provided by Sung et al. (2013) were also recorded, 

broadened by N2, at various temperatures between 145-297 K, in the range 690-1550 cm-1 at 

resolutions of 0.0033-0.0056 cm-1. Absorption cross-sections for propane broadened by N2 have 
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been measured in the 3 μm region (2500-3400 cm-1) at elevated temperatures (Grosch et al., 2010), 

although at medium resolution (0.09 cm-1) and relatively low temperatures (298, 373 and 473 K).  

 

Figure 34. Comparison of propane spectra (C3H8) at high resolution (0.005 cm-1, blue trace) and 

medium resolution (0.08 cm-1), orange trace. Figure from Buzan et al. (2016). 

The efficiency of a number of fuels and engines is important for industrial applications. The 

combustion reactions involved can be analyzed by sophisticated models which include a large 

number of temperature dependent reactions from the constituents of fuels and the products of their 

combustion. To this end, spectra have been recorded to monitor a number hydrocarbons in 

combustion reactions (Klingbeil et al., 2007; Chrystie et al., 2015; Eiji et al., 2003; Sahlberg et 

al., 2016; Grosch et al., 2011).  
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Cross-sections from high resolution spectra (0.1 cm-1 or better) of a number of hydrocarbons have 

been studied in the 3 μm region at elevated temperatures, including ethane (Hargreaves et al., 

2015), propylene (C3H6) (Klingbeil et al., 2007; Es-sebbar et al., 2014), methane, ethane and 

ethylene (C2H4) (Es-sebbar et al., 2014).  Klingbeil et al., (2007) have also obtained spectra of a 

number of larger hydrocarbons (12 in total) at 1 cm-1 resolution up to 500°C. However there do 

not exist high resolution cross-section measurements of propane for the 3 μm region. Such data 

are required to accurately model hot environments such as auroral regions on Jupiter, exoplanets 

or brown dwarfs. Figure 34 shows the lack of structure in the spectrum of propene at low resolution 

and the inclusion of line structure in high resolution data. The results in this Chapter address the 

lack of high resolution cross-sections of propane at high temperature. 

 

EXPERIMENTAL 

High resolution (0.005 cm-1) propane spectra were recorded between 2500 and 3500 cm-1, at five 

temperatures from 296 K to 700 K using a Bruker IFS 125HR Fourier transform spectrometer. 

This region contains the seven active C-H stretching modes (Shimanouchi, 1972) and a number of 

combinations and overtones of the various other modes. The propane gas is contained in a quartz 

cell which is heated to the appropriate temperature using a tube furnace as described in Chapter 

III.  

To obtain a transmission spectrum (𝜏) two individual spectra are recorded for each temperature 

and combined as:  

𝜏 =  
𝐴𝑎𝑏

𝐴𝑟𝑒𝑓
 ,       (21) 
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where the C3H8 absorption component is given by Aab and Aref is the background spectrum. 

Table 10. Experimental conditions and setup of the Bruker IFS 125 HR 

Spectral range (cm-1) 2500-3500 

Temperature range (K) 296-700 

Resolution (cm-1) 0.005 

Cell path length (cm) 50 

Detector InSb 

Filter Germanium 

Windows CaF2 

Beamsplitter CaF2 

Number of scans 300 

 

The conditions for the experiment are detailed in Table 10. At higher temperatures (600 and 700 

K) there is an emission component which is significant enough that it must be corrected for. As a 

result two additional spectra were recorded for these temperatures without the infrared source, one 

with propane in the sample cell and one without. These emission spectra were subtracted from Aab 

and Aref respectively. The experimental setup and procedure for obtaining the transmission 

spectrum are described in Hargreaves et al. (2015a) where it was used to produce temperature 

dependent line lists for CH4 and to obtain temperature dependent cross-sections for C2H6 

(Hargreaves et al., 2015b).  

The C-H stretching region contains a number of water lines that were removed using the OPUS 

software once the transmission spectra were obtained. 
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RESULTS 

The experimental transmission spectra are converted to absorption cross-sections, σ (cm2 

molecule­1) using the equation: 

𝜎 =  −𝜉
104𝑘𝐵𝑇

𝑃𝑙
ln𝜏(𝜈),                                                     (22) 

where kB is the Boltzmann constant (1.38065 x 10-23 J K-1), T is temperature (K), P is the propane 

pressure (Pa), l is the optical path length (m), τ(ν) is the transmittance at each wavenumber and ξ 

is a factor which is used to normalize the experimental cross sections to PNNL (Harrison and 

Bernath, 2010).  

Table 11. Propane integrated cross-section calibration. 

Temperature 

(K) 

Sample 

Pressure (Pa) 

Normalization 

Factor 

Effective Pressure 

(Pa) 

Integrated Cross-Section 

(x 10-17 cm molecule -1) 

296 173.85 1.395 124.64 4.257 

400 216.92 1.227 176.86 4.257 

500 264.11 1.325 199.32 4.258 

600 375.97 1.105 340.21 4.258 

700 428.63 1.049 408.59 4.257 

 

PNNL cross-sections are given in units of ppm-1 m-1 at 296 K, which may be converted into units 

of cm molecule-1 using the conversion kB x 296 x ln(10) x 104/0.101325. The PNNL integrated 

cross-sections in the region 2550-3500 cm-1 for 278, 293 and 323 K are 4.248 x 10-17, 4.214 x 10­17 
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and 4.310 x 10-17 cm molecule-1, respectively. The mean of the three PNNL integrated cross-

sections is 4.257 x 10-17 and are within 2.3% of each other (Sharpe et al. 2004). 

 

Figure 35. Cross-sections (0.005 cm-1 resolution) for increasing temperatures in the range 2700-

3100 cm-1 (Beale et al., 2016b). 

 

In the experimental setup, the temperature and path length can be more reliably determined than 

pressure, P. The normalization factor ξ is applied to the recorded pressure and typical corrections 

are of the order of 5% (Hargreaves et al., 2015), however a small leak of air in the regulator 

resulted in an overestimation of the cell pressure by approximately 40 Pa. This additional pressure 

was sufficiently small that no adverse increase in the recorded line widths was observed.  However 



81 
 

 
 

sample pressures were overestimated by approximately 40 Pa leading to an increased 

normalization factor (Table 11). This pressure error is accounted for when calibrating to the 

integrated cross-sections of PNNL. 

 

 

Figure 36. A more detailed view of each spectrum (2971.5-2974.5 cm-1) where the strong features 

are seen to weaken with increasing temperature (Beale et al., 2016b). 

 

The normalization factors are used to establish the effective propane pressures of the sample and 

are given in Table 11. The resulting calibrated integrated cross-sections for each temperature over 
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the range 2550-3500 cm-1 are also provided in Table 11 and shown in Figure 35. The peak cross-

sections for the modes at 2887 cm-1 (Figure 10), 2962 cm-1 and 2967 cm-1 are stronger at lower 

temperatures than at high temperatures.  

 

 

Figure 37. A more detailed view of the ν3 and ν16 modes centered at 2887 cm-1. Sharp features 

that are identifiable in room temperature spectra blend into the continuum as the temperature 

increases (Beale et al., 2016b). 

 

The spectrum at each temperature was recorded at high resolution (0.005 cm-1) and the evolution 

of the sharp, individual features of the low temperature spectra can be seen to gradually decrease 
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to form a continuum with increasing temperature (Figure 36). This is primarily caused by Doppler 

broadening of spectral lines and increasing populations of higher rotational states and hot bands. 

Figure 37 demonstrates the temperature-dependence of the propane continuum between 2860 and 

2910 cm-1. The prominent P, Q and R branch structure (due to the ν3 and ν16 bands) is effectively 

reduced to a gradual slope with no defining features over the observed temperature range. 

  

DISCUSSION 

The discrepancy between the recorded pressure and the effective pressure, used to calculate the 

calibrated integrated cross-sections, was up to 40% (at room temperature, see Table 11) and is 

much larger than with previous measurements. This pressure error was relatively consistent in 

absolute terms (around 40 Pa) and came from the propane gas tank regulator. The cell path length 

of 50 cm is determined to within 0.5% and the elevated temperatures (those above room 

temperature) are accurate to within 2%. The pressures were recorded along the same gas line as 

the cell using a 10 Torr MKS Baratron, which is accurate to within 0.5%. In addition to the 

experimental errors, photometric errors, estimated to be within 2%, were observed by variations 

between recorded baselines. These may be due to a number of reasons such as deposition of 

impurities on the cell windows, variation in the intensity of the light source during the recording 

of the spectra and changing environmental conditions over the course of measurement, such as 

room temperature and humidity. The PNNL propane spectra are composites of approximately 10 

pathlength concentrations, making them suitably accurate to be used for calibration. These 

combined errors of our recorded spectra are therefore accounted for by calibration against the 

averaged integrated cross-sections of the three PNNL spectra. Our estimated error in the calibrated 
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absorption cross-sections is therefore approximately 5 %, which is consistent with the estimated 

errors from PNNL.   

The integrated cross-section over an isolated band has been shown to be independent of 

temperature (Hargreaves et al., 2015; Breeze et al., 1965; Crawford, 1958).  For comparison 

between temperatures, the cross-sections should be integrated over isolated bands, i.e. the 

transmission at the integration limits must be 100%.  For propane, the large number of absorption 

bands within the observed 3 μm region (particularly at high temperature) means that complete 

isolation is not guaranteed. The 2550 and 3500 cm-1 integration limits were chosen as they provide 

the transmission maxima within the observed region. 

The development of pseudo-continua with increasing temperature has been observed in CH4 

(Hargreaves et al., 2015) for which the large number of weak lines contribute significant 

absorption at higher temperatures. For larger hydrocarbons such as C2H6, the low frequency 

torsional modes result in a larger continuum effect (Hargreaves et al., 2015). The changing shape 

of the spectral features of C3H8 with increasing temperature in this region can be seen in Figure 

35. The populations of the low frequency torsional modes at 216 cm-1 (ν14, a2) and 268 cm-1 (ν27, 

b2) increase with temperature resulting in the growth of a broad continuum.  

These measurements are the first high resolution absorption cross-sections of propane at high 

temperature and will find use in the remote sensing of propane on exoplanets, brown dwarfs and 

for combustion monitoring. The temperature-dependence of the propane cross-section in this 

region makes it suitable for inferring the temperature, particularly the sharp Q branches at 2887 

cm-1 and 2967 cm­1. It is only at high resolution that many of the temperature dependent features 

can be identified. Certain sub-regions are also unsuitable for temperature determination of 

propane. For example, the crossover point at 2945 cm-1 between the stronger continuum of the 
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higher temperatures and the sharp features of the low temperature Q branches here shows no 

temperature dependence. 

 

CONCLUSION 

High resolution absorption cross-sections have been measured for pure propane in the region 2550-

3500 cm­1 at 296, 400, 500, 600 and 700 K. The integrated cross-sections were calibrated against 

PNNL values for the same spectral region. The data (available as wavenumber dependent cross-

sections in the supplementary material of the paper published from this work (Beale et al., 2016b)) 

may be included in simulations of astronomical atmospheres at appropriate temperatures, such as 

those of exoplanets and brown dwarfs.  
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CHAPTER VI 

 

INFRARED SPECTRA OF AMMONIA 

 

The results in Chapter VI span two separate sets of data. The first set encompasses the 2400-5500 

cm-1 spectral range. The analysis for this dataset has been published in the Journal of Quantitative 

Spectroscopy and Radiative Transfer (Beale et al., 2017). Co-authors for this article are Robert 

Hargreaves (Old Dominion University, now Oxford University), Phillip Coles (University College 

London), Jonathan Tennyson (University College London) and Peter Bernath (Old Dominion 

University). Robert Hargreaves assisted in data collection as hot ammonia requires special safety 

considerations, necessitating more than one person in the laboratory at the time of recording. 

Phillip Coles produced the ‘BARVEL’ dataset which was used to compare to the experimental 

data for quantum number assignment. Jonathan Tennyson is the group leader of Coles at University 

College London and Peter Bernath was the overall PI for the project. For the 4800-9000 cm-1 

region, Andy Wong (Old Dominion University) assisted with data collection. All text and figures 

(unless explicitly cited) in this chapter are my original work. All analysis of the experimental data 

is my own work, including calculation of experimental lower state energies, production of linelists 

and comparison of the data to BARVEL and HITRAN to obtain quantum numbers. 
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INTRODUCTION 

Ammonia (NH3) is a widely-studied molecule in atmospheric chemistry. In the Earth’s 

atmosphere, where sources include animal waste and fertilizers (Beer et al., 2008), it acts as a 

precursor in the production of aerosols (Höpfner et al., 2016) and particulate matter (Clarisse et 

al., 2009). Deposition of atmospheric NH3 can lead to fertilization, a side effect of which may be 

decreased biodiversity (von Bobrutzki et al., 2010). 

NH3 has also been observed in a number of astrophysical environments. In the solar system, it has 

been detected in the atmospheres of Jupiter (Wildt, 1931; Carlson et al., 1996), Saturn (Fletcher 

et al., 2012) and Titan (Nelson et al., 2009) as well as on comets (Bird et al., 1997; Biver et al., 

2012). The pure rotational transitions and inversion transitions of NH3 have been detected in 

molecular clouds (Cheung et al., 1968; Ho and Townes, 1983) making it one of the first 

extraterrestrial polyatomic molecules discovered. The atmospheres of cool astronomical objects, 

such as brown dwarfs and exoplanets, have low enough temperatures to allow small molecules 

such as NH3 to form and maintain large enough concentrations to be detected. 

 

AMMONIA IN BROWN DWARFS 

Sub-stellar objects with sufficiently low mass (<0.08 solar masses) are known as brown dwarfs 

and cannot fuse hydrogen within their cores (Burrows et al., 2001). The first such object discovered 

was Gliese 229B (Oppenheimer et al., 1995) and since then a large number of brown dwarfs have 

been detected with atmospheres cool enough (500 – 2400 K) for a number of molecular species to 

exist. Indeed, brown dwarfs, similar to stars, are classified by the presence or absence of particular 

atomic and molecular features. The hottest such objects, the L dwarfs, contain features from 
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electronic transitions of metal hydrides such as FeH (Hargreaves et al., 2010) and CrH (Burrows 

et al., 2002; Kirkpatrick et al., 1999). T dwarfs are distinguished by hot H2O and CH4 transitions 

(Burgasser et al., 2006; Cushing et al., 2006). NH3 is observed in late T dwarfs, with increasing 

concentrations as the objects cool (Cushing et al., 2006; Line et al., 2015) as shown in figures 38 

and 39. As such, NH3 is expected to characterize a yet cooler class, the Y dwarfs that have an 

approximate maximum temperature of ~700 K. Y-dwarfs have now been observed and NH3 

appears as a shoulder on a feature at 1.58 μm (Leggett et al., 2016; Cushing et al., 2011). 

 

Figure 38. Spectra of 5 different T dwarf stars. As the temperature of the stars decrease from 

approximately 1300 K for a T0 to 900 K for a T7.5, the strength of the P and R branches of the 

NH3 bending mode at 10.5 μm increase. Figure from Cushing et al., (2006). 
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Figure 39. Bottom: opacity calculations for NH3, CH4 and H2O at 600 K. Top: H-band spectra of 

several T-type dwarfs. Note the increasing absorption in the shoulder of the feature at 1.58 μm as 

the temperature of the objects decreases. Figure from Cushing et al. (2011). 

 

AMMONIA IN EXOPLANETS 

Since the discovery of the first exoplanet in 1995 (Mayor and Queloz, 1995) more than 3500 have 

been discovered (http://exoplanet.eu/). If the planet passes in front of the star it orbits, then it may 

be detected by observation of periodic decreases in light intensity of the parent star. This technique 
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is known as the transit method and was first used successfully to detect the planet HD 209458b 

(Charbonneau et al., 2000) and has since been used by the Kepler mission to observe large 

numbers of exoplanet candidates (Batalha et al., 2013).  

 

Figure 40. Calculation of cross-sections of a number of molecules predicted to exist in 

exoplanetary atmospheres, including NH3 (orange). Between 1.4 and 5.0 μm (the region of 

interest in this experimental study) there are a number of strong absorption bands. Figure from 

Burrows (2014). 

This technique also allows the spectrum of the exoplanet atmosphere to be obtained by recording 

the transit dips as a function of wavelength (Bernath, 2014)  and use of the method has resulted in 

the detection of a number of molecules such as H2O (Barman, 2008; Grillmair et al., 2008), CH4 

(Swain et al., 2008), CO (Swain et al., 2009) and CO2 (Swain et al., 2009). As yet, NH3 has not 

been observed in the atmosphere of an exoplanet, however a number of modelling studies have 
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predicted its presence in hydrogen-rich hot-Jupiters (Line et al., 2011; Burrows, 2014; Venot et al., 

2012) Figure 40 demonstrates the important of the 2-5 μm region in the detections of NH3 in 

exoplanetary atmospheres. 

 

SPECTROSCOPY OF AMMONIA 

NH3 is a polyatomic molecule having four atoms arranged in a trigonal pyramid structure with C3v 

symmetry (Bernath, 2005). Ammonia has a complex infrared spectrum with 6 fundamental 

vibrational modes, two of which are doubly degenerate. The four fundamental vibrational 

frequencies are: the symmetric stretch at 3336.2 cm-1 (ν1, a1), the symmetric bend at 932.5 cm-1 

(ν2, a1), the antisymmetric stretch at 3443.6 cm-1 (ν3, e) and the antisymmetric bend at 1626.1 cm­1 

(ν4, e), Table 5.1 provides details of these modes. 

There has been extensive work on the spectroscopy of ammonia in the infrared. For example, 

experimental line lists have been obtained in the 2 μm (Brown and Margolis, 1996) and 3 μm 

(Kleiner et al., 1999) regions. The most complete line assignments for NH3 in the infrared are 

compiled in the HITRAN 2012 database (Rothman et al., 2013). However HITRAN is intended 

for applications near room temperature and lacks complete hot band coverage in this region (Down 

et al., 2013). The hot bands are essential when comparisons are made to high temperature 

atmospheres. A comprehensive theoretical line list, BYTe, has been calculated for NH3 that can 

be used at temperatures up to 1500 K and contains approximately 1.1 billion transitions (Yurchenko 

et al., 2011).  
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Table 12. Summary of the fundamental modes of ammonia. For each mode there are two 

frequencies, due to inversion doubling (Figure 3.4). Figures adapted from (Mills, 2008a). 

Mode Symmetry Wavenumber 

(cm-1) 

Description  

 

ν1 

 

a1 

 

3336.2 

3337.2 

 

Symmetric 

stretch 

 

 

 

ν2 

 

 

 

a1 

 

932.5 

968.3 

 

Symmetric 

bend 

 

 

ν3 

 

 

 

e 

 

3443.6 

3443.9 

 

Asymmetric 

stretch 

 

 

ν4 

 

 

 

e 

 

1626.1 

1627.4 

 

Asymmetric 

bend 
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The rotational-vibrational calculations from Huang et al., (2011a, 2011b) and references therein, 

provide an additional line list for ammonia in this region. 

High temperature experimental line lists have been obtained using emission spectroscopy at high 

resolution (0.01 cm-1)  from 740-2100 cm-1 (Hargreaves et al., 2011) and 1650-4000 cm-1 

(Hargreaves et al., 2012). Absorption spectra at moderate resolution (0.09 cm-1) of hot samples at 

atmospheric pressure have also been recorded in the 500-2100 cm-1 (Barton et al,. 2015) and 2100-

5500 cm-1 (Barton et al., 2016) spectral regions. Existing experimental line lists have been used in 

an energy level analysis (MARVEL) to predict a large number of unmeasured lines (Al Derzi et 

al. 2015). Our work reported below details an extension of these experimental line lists, in the 

2400-5500 cm-1 region using an improved cell design and technique (Hargreaves et al., 2015) to 

record transmission spectra of hot samples. This chapter details the determination of empirical 

lower state energies, intensities and line positions (± 0.002 cm-1) which can be used in atmospheric 

models for brown dwarfs and exoplanets. 

One interesting fact concerning the spectroscopy of ammonia is that each of the frequencies of the 

four fundamental modes (Table 12) is doubled. Ammonia has a low barrier to inversion and can 

therefore convert between its left and right handed forms via quantum mechanical tunneling 

(Figure 41). The interaction between the left and right handed forms causes the wavefunctions of 

each form to mix giving rise to splitting of energy levels and therefore the transition frequencies. 
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Figure 41. Energy level diagram of ammonia demonstrating the inversion doubling of the energy 

levels of ammonia. The x-axis represents the angle of the nitrogen-hydrogen bonds from a planar 

configuration and the y-axis gives the energy (Bernath, 2005). 

 

EXPERIMENTAL 

Transmission spectra were recorded for two separate regions in the infrared. The first region 

recorded spectra at seven different temperatures: 296 K, 473 K, 573 K, 673 K, 773 K, 873 K and 

973 K in the region 2400-5500 cm-1 and will be referred to as the low wavenumber range. The 

second region was recorded at 293 K, 400 K, 500 K, 600 K, 700 K, 800 K and 900 K in the region 

5400-9000 cm-1 and will therefore be referred to as the high wavenumber range. Both sets of 

spectra were recorded using a sealed quartz cell, tube furnace and Fourier transform spectrometer 
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as detailed in Chapter III. These ranges include the effective temperatures of the mid and late T 

dwarfs (Cushing et al., 2006) and Y dwarfs (Cushing et al., 2011) as well as the coolest observed 

hot Jupiters (Line et al., 2011). Above 973 K thermal decomposition of the sample gas reduces the 

signal to such an extent that reliable spectra could not be obtained. The decomposition of the 

sample at high temperature is gradual and was noticed even at 873 K and 973 K in the first set of 

measurements. For this reason, the second set of measurements was recorded with a maximum 

temperature of 900 K. Also, given that the second region contains no fundamental modes and only 

combinations or overtones (see Chapter III), the signals of which are inherently weaker than 

fundamental modes, the lower temperature was used. The first set of measurements, recorded in 

October 2014, have been published as Beale et al. (2017). The second set of measurements, 

recorded in February 2016, have been analyzed and will be submitted as a research paper. 

The transmission spectrum for each temperature is obtained from four individual spectra that, 

when combined, correct for NH3 and cell emission; this method has been used previously to record 

spectra for methane (Hargreaves et al., 2015). An absorption spectrum (Aab) is recorded with NH3 

in the cell at temperature with an external emission source (200 W tungsten halogen broadband 

lamp). A background reference spectrum for the absorption (Aref) is recorded without the NH3 in 

the cell. The emission spectrum (Bem) is recorded with NH3 in the cell at temperature without the 

lamp. The background reference spectrum for emission (Bref) is recorded without the sample in the 

cell and with the lamp turned off. These spectra are combined to calculate the transmission 

spectrum for each temperature as: 

𝜏 =  
𝐴𝑎𝑏−𝐵𝑒𝑚

𝐴𝑟𝑒𝑓−𝐵𝑟𝑒𝑓
 .           (23) 
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The experimental technique is essentially the same for both the low and high wavenumber ranges. 

However certain considerations, such as the optical setup (windows and filters) and the 

temperature units, differ between the two. They will therefore be considered separately in this 

chapter. The conditions and results for the low wavenumber region will be given first and the 

conditions and results for the second region will be given after. Some discussion will be shared 

between the two regions as it is relevant to the experimental procedure, or ammonia as a whole. 

This will be presented at the end of the chapter. 

 

TRANSMISSION SPECTRA OF NH3 IN THE 2400-5500 CM-1 REGION 

Spectra were recorded in the 2400 – 5500 cm-1 region, providing overlap with previous 

experimental work (Hargreaves et al., 2012). This previous work includes spectral regions that 

cover the 3ν2/ν2+ν4 (where 3ν2 represents three quanta of the ν2 mode and ν2+ν4 represents one 

quantum of the ν2 mode and one quantum of the ν4 mode) and ν1/ν3/2ν4 bands and the work 

provided here extends this coverage to include spectral regions that contain the ν1+ν2/ν2+ν3 and 

ν1+ν4/ν3+ν4 bands as well as associated hot bands. Notably, this region contains the bands 

associated with the ν1 and ν3 fundamental modes. 

The 50 cm quartz tube sample cell was used under static conditions, i.e. the gas sample was 

enclosed in the cell for the entire experimental run to contain the NH3 sample. The cell is contained 

within the tube furnace (Figure 17) which is heated to the appropriate temperature, which is 

accurate to within ±10 °C. The cell was aligned with the entrance aperture of a Bruker IFS 125 

HR Fourier transform spectrometer, and radiation was focused into the spectrometer using a CaF2 
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lens. The spectrometer used a CaF2 beamsplitter, covering the spectral region 1650–7000 cm-1, 

and an indium antimonide (InSb) detector. Experimental parameters are summarized in Table 13. 

 

Table 13. Experimental conditions for NH3 low wavenumber region. 

Parameter Value 

Spectral region (cm-1) 

Detector 

Beamsplitter 

Spectrometer Windows 

Lens 

Filter 

Scans 

Resolution (cm-1) 

NH3 Pressure (Torr) 

Zerofilling factor 

2400-5500 

InSb 

CaF2 

CaF2 

CaF2 

Ge 

300 

0.01 

40 

x 16 

 

Table 14. Total number lines, the number of added lines, partition functions and tentative 

assignments made via comparison with each line list at each temperature (Yurchenko et al., 2011). 

Temperature 

(K) 

Number 

of lines 

HITRAN 

additions 

Down et al. 

assignments 

MARVEL 

assignments 

296 

473 

573 

673 

773 

873 

973 

8494 

16019 

20300 

23010 

20066 

18794 

9985 

722 

789 

825 

834 

713 

691 

598 

2136 

3020 

2976 

2913 

2569 

2296 

1660 

1813 

2721 

2839 

2906 

2594 

2346 

1178 
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The resulting transmittance spectra contained a number of H2O lines which were removed 

manually using the Bruker OPUS software. After combining the spectra at each temperature to 

calculate a transmission spectrum, peaks were picked using WSpectra (Carleer, 2001) to measure 

their position and intensity, the lines are then fitted by WSpectra using a Voigt lineshape profile. 

Lines were calibrated for line position and intensity by matching strong and isolated lines that are 

also found in the HITRAN 2012 database. The number of lines found for each temperature is given 

in Table 14. 

 

FREQUENCY CALIBRATION 

The positions of the lines measured were calibrated to those of the HITRAN linelist. In order to 

do so, up to 25 strong, isolated lines were chosen that appear both in the experimental list and 

HITRAN. It is necessary to choose isolated lines, that is to say lines which do not overlap with 

other lines, because other lines interfere with the lineshape and potentially the line center (the 

position). Such lines would not be suitable for calibration as there is uncertainty in the location of 

the line. Table 15 summarizes the frequency calibration. For calibration, a ratio of the line positions 

from experiment and from HITRAN was taken to obtain an averaged linear factor through which 

all line positions could be multiplied. 

 

INTENSITY CALIBRATION 

The intensities of the lines obtained from the raw spectra have arbitrary units. In order for the 

linelists to have intensities that are useful quantitatively, they must first be calibrated. Similar to 

the calibration of the line position, calibration of line intensity is done by comparison to HITRAN.  
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However, calibration for intensity was carried out by comparison between all available lines. A 

line is considered suitable for calibration if the difference in calibrated line position is ±0.002 cm­1. 

For each temperature, a calibration factor is provided from the gradient of a plot of experimental 

intensity vs. HITRAN intensity, as can be seen in Figure 42. A summary of the intensity calibration 

factors is provided in Table 15 and this factor is used to give the experimental intensities useful 

units. 

 

Figure 42. Intensity calibration plot for 500 K at 10 Torr for the higher wavenumber region. The 

calibration factor is the value of the trend line, which for example with this calibration is 3.8 x 

10­21. 
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Table 15. Linear calibration factors for experimental line positions and intensities for each 

temperature in the low wavenumber region. 

Temperature (K) Position Calibration 

Factor 

Intensity Calibration Factor 

(x 10-17 molecule cm-1) 

296 1.000000871 5.11 

473 1.000000788 2.95 

573 1.000000749 3.92 

673 1.000000769 1.94 

773 1.000000772 1.84 

873 1.000000814 2.56 

973 1.000000833 8.88 

 

 

EFFECT OF TEMPERATURE ON INTENSITY 

The line intensity equation gives the line intensity as a function of temperature: 

𝑆′ =  
2𝜋2𝜈10𝑆𝐽′𝐽"

2𝜀0ℎ𝑐𝑄
exp (−

𝐸"

𝑘𝑇
) [1 − exp (

ℎ𝜈10

𝑘𝑇
)]    (24) 

where ν10 is the line frequency, SJ’J” is the line strength, ε0 is the permittivity of free space, h is 

Planck’s constant, c is the speed of light, Q is the internal partition function, 𝐸′′ is the lower state 

energy, k is the Boltzmann constant and T is the temperature (Bernath, 2005). To compare the 

room temperature HITRAN linelist to lines obtained at high temperatures, the HITRAN data was 

extrapolated using Equation 24 with the lower state energies from (Yurchenko et al., 2011). 
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Table 16. Partition function for NH3 (low wavenumber range) (Yurchenko et al., 2011). 

Temperature (K) Partition function 

296 1725.225 

473 3711.930 

573 5271.335 

673 7259.686 

773 9788.208 

873 12989.473 

973 17021.824 

 

If a line is measured at different temperatures, the intensity of the line at each temperature may be 

compared to the intensity at a reference temperature by taking a ratio of the line intensity equation: 

𝑆′

𝑆0
′ =

𝑄0

𝑄
exp (

𝐸"

𝑘𝑇0
−

𝐸"

𝑘𝑇
) [

1−exp (−
ℎ𝜈10

𝑘𝑇
)

1−exp (−
ℎ𝜈10
𝑘𝑇0

)
]    (25) 

where 𝑆0
′  and 𝑇0 refer to the line intensity and temperature of the reference measurement. For these 

results, 773 K was used as the reference as this temperature contained the most lines with which 

to compare the line intensities of other temperatures. If there was no line measured at 773 K, then 

the reference used was the temperature with the next greatest number of lines. The partition 

function used for NH3 was obtained from Yurchenko et al. (2011) and the values for each 

temperature are given in Table 16. 
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RESULTS FOR LOW FREQUENCY REGION 

Forty Torr (0.053 atm) of NH3 was used in the sample cell for these measurements in order to 

observe weaker transitions. However, at this pressure, many strong lines become saturated, 

particularly in the Q branch of the ν1 fundamental mode and the lines are pressure-broadened. The 

resulting line lists are provided at each temperature and contain line position, line intensity and 

lower state energy (if calculated). For observed lines that could be assigned using the MARVEL 

or HITRAN line lists, the corresponding position, intensity, lower state energy and quantum 

number assignment is provided. Observed saturated lines, for which accurate positions and 

intensities could not be measured, were excluded and replaced with HITRAN lines with intensities 

greater than 2.0 x 10-20 cm molecule-1. The experimental positions were calibrated to strong lines 

in HITRAN, and the mean difference between all matched lines is approximately 4.0 x 10-4 cm-1 

with a standard deviation of 3.0 x 10-4 cm-1 after calibration. Similarly, the accuracy of the 

intensities of the experimentally obtained lines is measured by comparison with matched HITRAN 

lines; for these the mean difference is within 20 %. 

The top panels of Figures 43 and 44 show overviews of the recorded spectra at 296 and 773 K, 

respectively. The middle panels show simulated spectra from the BYTe line list and the bottom 

panels similarly show simulated spectra from the HITRAN line list. The spectral simulation uses 

the Reference Forward Model (Dudhia, 2017), a line-by-line radiative transfer model, to calculate 

the transmission through a 50 cm cell with the experimental pressure and temperature. Individual 

line broadening parameters for the lines in BYTe were obtained as averages from HITRAN 2012 

and applied to all lines. The HITRAN spectral simulation uses the line positions and intensities 

from HITRAN 2012 as well as the averaged broadening parameters applied globally, therefore 

allowing for comparisons between HITRAN, BYTe and our measurements. HITRAN is a linelist 
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produced using a combination of experimental and theoretical data sets. Line positions are 

generally very good in HITRAN, however, although the line intensities may be extrapolated for 

temperature using Equation 24, the database is missing many hot or overtone bands which are 

important for high temperature studies. BYTe is a purely ab initio linelist. It includes many more 

lines than can be measure experimentally and includes the hot bands and overtones missing in 

HITRAN, although the accuracy of the line positions is less reliable than HITRAN. The linelists 

produced from the work in this chapter include the fundamental, hot and overtone bands that are 

important for high temperature studies. Line positions are determined to high accuracy. 

The experimental spectrum at 296 K (Figure 43) shows some saturated lines of the ν1 fundamental, 

ν1+ν2/ν2+ν3 and ν1+ν4/ν3+ν4 modes which have been replaced in the final line list. In general, there 

is good agreement between the three spectra at 296 K. This is expected due to the fact that HITRAN 

is designed to be used at room temperature. For 773 K, the experimental and BYTe spectra in 

Figure 44 clearly show a number of additional hot bands that are not present in the HITRAN 

spectrum, most notably the Q-branch of the ν1+3ν2-2ν2 band at around 3850 cm-1 and the 2ν2+ν3-

ν2 band from 4000 cm-1 to 4200 cm-1. In fact, there are clearly no HITRAN lines in the 3600-4000 

cm-1 region. Both the BYTE and experimental spectra show the existence of hot band lines in this 

region. Other hot bands are included in the 3000-3600 cm­1 regions and 4200-4700 cm-1 regions 

although they are not shown because of the density of lines. Some lines in HITRAN have an 

incorrect lower state energy which can be seen clearly in Figure 44 at, for example, around 4650 

cm-1 (indicated by the blue arrow) where the extrapolated intensity (Equation 24) is incorrect due 

to an incorrect lower state energy (seen in Figure 47 circled in red). This work has helped identify 

a number of such errors. 
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A more detailed view of short segments of the three spectra is shown in Figures 45 and 46. Figure 

45 again shows the three spectra for 296 K. There are a number of lines that assignable in both the 

experimental and BYTe spectra; one example being the strong line at 4151.8 cm-1 (the R(6) line 

of the ν1 + ν2 band) that appears in all three spectra within 0.1 cm-1 with a similar intensity.  Even 

at room temperature, however, there are a number of lines in the experimental spectrum that are 

missing from HITRAN and a number of inconsistencies between the experimental spectrum and 

the BYTe simulation. 

Lines in the experimental line lists which have been matched to lines in either reference line list 

are marked by an asterisk. At 773 K, the hot lines in the experimental spectrum at 4141.0 cm-1, 

4147.4 cm-1 and 4153.2 cm-1 can be matched to lines in the BYTe spectrum, although their 

positions are shifted as there is uncertainty in the position of the vibrational band centers. In this 

region the shift is over 1 cm-1 towards higher wavenumbers, although in other regions the shift 

value and direction vary. While the strong lines can be identified, it becomes more problematic to 

assign weaker features from BYTe primarily due to the observed shifts. The lines in Figure 46 

which are not matched (i.e., those without an asterisk) include a number of strong lines, and these 

are mostly hot lines. This demonstrates the difficulty in assigning lines in regions with overlapping 

hot bands where the line position from calculated spectra is of insufficient accuracy. Line positions 

may be more quantitatively compared by using the method of combination differences (Bernath 

2005). However, this method is effort intensive and this more thorough analysis was not utilized 

due to time constraints. 
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LOWER STATE ENERGIES 

The line intensity equation (equation 24) gives the intensity of a line as a function of the partition 

function, the lower state energy and the temperature of the gas. If the intensity of a given line is 

known at multiple temperatures, the lower state energy can be obtained from a rearranged version 

of the line intensity equation: 

ln (
𝑆𝑄

𝑆0𝑄0
[

1−exp(−
ℎ𝜈10

𝑘𝑇
)

1−exp(−
ℎ𝜈10
𝑘𝑇0

)
]) =  

𝐸"

𝑘𝑇0
−

𝐸"

𝑘𝑇
    (26) 

where the intensity ratio on the left hand side can be plotted against 1/kT. Plotted for multiple 

temperatures, the gradient of this line gives the lower state energy. 

The empirical lower state energies are plotted against line position in Figure 47 in the lower panel 

along with those from HITRAN in the upper panel. The near-vertical lines belong to Q branches 

and the parabolic features the left and right of the Q-branches are from the P and R branches, 

respectively.  

There are a number of notable differences between the HITRAN lower state energies and those 

obtained by experiment (Figure 47). The incompleteness of HITRAN can be seen between 3600 

and 4100 cm-1, experimental data has been obtained in this region. There are also very few lower 

state energy values listed in HITRAN with energies above 2000 cm-1; some of these are from 

fundamental and combination transitions and can be seen in the bottom panel, particularly the Q 

branch of the ν1 band and the P and R branches of the ν1+ν2 band. However, most of the lines with 

high lower state energies are from hot transitions. The most notable ‘hot’ band in the lower panel 

is the strong Q branch at a position 3850 cm-1, extending from a lower state energy of 2000-3000 

cm-1, which is not provided in HITRAN. This feature can be seen in the 773 K NH3 spectra in 
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Figure 44 in both the experimental data (top) and BYTe (center) panels and not in the HITRAN 

(lower) panel.  

The MARVEL analysis of NH3 (Al Derzi et al., 2015) and re-analysis of the HITRAN NH3 

database (Down et al., 2013) are line lists in the region of interest which contain quantum number 

assignments. MARVEL provides a self-consistent list of fully assigned line positions, but no 

associated line intensities. Therefore, rather than using MARVEL directly, the MARVEL adjusted 

BYTe linelist BARVEL (produced by Phillip Coles, University College London) was used, which 

was computed by replacing BYTe energies with the corresponding values from MARVEL. 

Disregarding the 13% of MARVEL states that could not be matched to corresponding BYTe states, 

BARVEL provides intensity data for roughly 18,500 (66%) of MARVEL transitions, plus many 

predicted transitions between MARVEL energy levels that have not been observed experimentally. 

The remaining linelist consists of transitions for which either one or both of the energy states takes 

its energy from BYTe. Other transitions for which both upper and lower state had their values 

taken from MARVEL were used, to avoid any discrepancies in line positions due to the inaccuracy 

of BYTe. As a result BARVEL provides the MARVEL linelist with line intensities from BYTe 

and may therefore be compared with the experimental linelist. 

The positions and intensities from these lists may be compared to those obtained experimentally 

to provide tentative assignments. Lines with positions within 0.002 cm-1 and intensities between 

0.5 and 2.0 times that of the experimental lines were considered matched, with the number of 

assigned lines from each reference list given in Table 14, it should be noted that many of these 

assignments are for the same lines at different temperatures. Figure 48 shows the comparison of 

lower state energies from matched lines. 
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Figure 48. Comparison of matched lower state energies obtained from experiment (x-axis) and 

the HITRAN re-analysis of Down et al. (2013) (y-axis). Figure from (Beale et al., 2017). 

 

TRANSMISSION SPECTRA OF NH3 IN THE 4800-9000 CM-1 REGION 

The 2400-5500 cm-1 region contains the ν1 and ν3 modes, as well as a number of combinations and 

overtones. The 4800-9000 cm-1 region contains no fundamental modes, only combinations or 

overtones of the four fundamental modes listed in Table 12. At a given temperature, the 

populations of the states of the overtone or combination transitions are lower and therefore the 

intensity of transitions in this region are generally lower than those of the 2400-5500 cm-1 region. 

In order to compensate for the varied band intensities, the spectra in this higher wavenumber region 

were recorded at two pressures, 10 Torr (0.0132 atm) and 100 Torr (0.132 atm).  
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Pressure has two main effects on a spectrum. Increased pressure results in more of the sample gas 

and therefore stronger absorption of the lines. However, as discussed in Chapter III, higher 

pressure results in increased line width. In this higher wavenumber region, the 100 Torr spectra 

allow the weaker lines to be visible at the expense of line width. For a molecule such as ammonia, 

which has a congested spectrum, increased line width can result in a number of blended lines 

resulting in uncertainty in the position and intensity of individual lines. 

The temperatures used for the higher wavenumber region were changed to give a range that 

suffered less from decomposition of the sample that was identified in the lower wavenumber 

region at 973 K. For this reason, the maximum temperature used was 900 K, with an addition low 

temperature spectrum at 400 K. 

 

EXPERIMENTAL 

The basic experimental setup was not changed from the lower wavenumber region, although the 

filter was changed to silicon. 

Table 17. Experimental conditions for NH3 high wavenumber region 

Parameter Value 

Spectral region (cm-1) 

Detector 

Beamsplitter 

Spectrometer Windows 

Lens 

Filter 

Scans 

Resolution (cm-1) 

NH3 Pressure (Torr) 

Zerofilling factor 

4800-9000 

InSb 

CaF2 

CaF2 

CaF2 

Si 

300 

0.01 

10/100 

x 16 
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Transmission spectra were recorded as per Equation 23 and water lines removed as described in 

Chapter III. An additional interference filter was used for this region to block all wavenumbers 

below 5000 cm-1. Using WSpectra, lines were picked from 4800-9000 cm-1 for the 10 Torr spectra 

and from 5500-9000 cm-1 for the 100 Torr spectra. The combination band around 5300 cm-1 was 

not included for line selection for the higher pressure spectra as this region was on the edge of the 

region and suffers from low signal-to-noise (Figure 49). 

 

Figure 49. Transmission spectrum of 100 Torr of NH3 at 700 K in the high wavenumber region. 

The noise for most of this region is under ±0.2%, at 5200 cm-1 and below, the noise ranges up to 

±15%, which combined with high pressure results in lines with poorly determined line positions 

and intensities. 

For the 100 Torr spectra, the low signal-to-noise ratio of this region resulted in larger uncertainty 

in line intensity and position making analysis difficult and unreliable. Since this band is relatively 
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strong, the line positions and intensities from the 10 Torr spectra as well as from the edge of the 

2400-5500 cm-1 spectra are sufficient to provide a suitable line list for this band. 

The calibration method for both wavenumber and intensity was the same for the high wavenumber 

region as for the low wavenumber region. Line intensities are obtained using WSpectra, which 

applies a non-linear least squares fit, line-by-line, using the exponential of a theoretical Voigt 

profile. The output of this fit are the raw line intensities (in arbitrary units) which are then 

calibrated to HITRAN values. These calibration factors are summarized in Table 19. The partition 

function used for this wavenumber range, detailed in Table 18, is an updated NH3 partition function 

from Sousa-Silva (2014). 

Table 18. Calibration factors for experimental line positions and intensities for each temperature 

and pressure in the high wavenumber region. 

Temperature 

(K) 

10 Torr Pos. 

Calib. Factor 

10 Torr Int. Calib. 

Factor (x 10-21 

molecule cm-1) 

100 Torr Pos. 

Calib. Factor 

100 Torr Int. Calib. 

Factor (x 10-21 

molecule cm-1) 

293 1.000000081 2.14 1.000000094 1.01 

400 1.000000083 2.78 1.000000096 0.99 

500 1.000000125 3.83 1.000000100 1.42 

600 1.000000116 3.53 1.000000063 1.30 

700 1.000000115 4.56 1.000000090 1.29 

800 1.000000065 7.18 1.000000099 1.41 

900 1.000000109 3.10 1.000000083 1.51 
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Table 19. Partition function for NH3 (high wavenumber range). 

Temperature (K) Partition function 

293 1689.3 

400 2778.5 

500 4081.7 

600 5742.9 

700 7860.3 

800 10550.0 

900 13951.0 

 

 

RESULTS FOR HIGH FREQUENCY REGION 

A sample of these spectra (293 K at 10 Torr) is presented in Figure 50. Once calibrated, the line 

intensities should be same regardless of pressure. As such, a check may be made by plotting the 

calibrated intensity of a spectrum recorded at 10 Torr against that of a spectrum recorded at 100 

Torr (Figure 51). Once a calibrated linelist was obtained for each temperature and pressure, lower 

state energies could be calculated for this region using Equation 25. The experimental lower state 

energies obtained are presented in Figure 52 with comparison to HITRAN in the regions possible. 

The HITRAN linelist for NH3 is currently limited to 7000 cm-1 making a comparison difficult. 

From Figure 52 it is clear that this work adds substantially to the measured bands of NH3 in the 

near infrared. 
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Figure 51. Comparison of calibrated intensities from both pressures and a 1:1 trend line. 

 

The BYTe theoretical linelist extends up to 12000 cm-1, however the accuracy in line position in 

this region is poor with a claimed accuracy above 5000 cm-1 of only 5 cm-1 (Polyansky et al., 

2016). Such inaccurate data makes quantum assignment very difficult as the density of lines in this 

region is very high. 
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CONCLUSION 

High resolution transmission spectra of ammonia recorded at seven temperatures between 296 K 

and 973 K were used to calculate lower state energies in the 2400-5500 cm-1 region and between 

293 K and 900 K in the 4800-9000 cm-1 region. These spectra include several hot bands which are 

not present in HITRAN even at room temperature with tentative assignments of J up to 22. 

Therefore, this work currently provides the most accurate line list for simulating room temperature 

(and higher) NH3 observations in this spectral region. Extrapolating room temperature HITRAN 

results to higher temperatures results in a substantial decrease in total intensity as the hot bands 

are not included (Figure 46) and this work provides intensity estimates for the hot bands in this 

region.  

Calculated line lists such as BYTe (Yurchenko et al., 2011) provide more lines than are 

experimentally observable due weakness of millions of lines in the spectrum and the sensitivity 

required to measure them. Calculations give a much more complete total intensity sum over 

multiple bands, however, positions of individual lines in BYTe are less well determined than in 

the experiment measurements. The lower wavenumber region has been compared to HITRAN and 

BYTe as there is extensive and accurate coverage for this region. As these databases have low or 

inaccurate coverage in the higher wavenumber region, limited comparison has been made. 

The experimental line lists obtained can be used directly in atmospheric models for brown dwarfs 

and exoplanets. The line lists can also be used to create template spectra for cross correlation with 

high resolution spectra of planetary systems. The cross correlation method for detecting molecules 

on exoplanets, such as those used to detect CO on HD 209458 (Snellen et al., 2010) by analyzing 

Doppler-shifted spectral features of a transiting exoplanet, require high resolution template spectra 
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with accurate line positions and intensities. The line lists of this work satisfy both the high 

temperature and high resolution requirements for current exoplanetary research. 
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CHAPTER VII 

 

CONCLUSIONS AND FURTHER WORK 

 

This dissertation has detailed the use of high resolution spectroscopy in atmospheric science and 

presented the first global isotopic measurements of 13CO in the atmosphere, the most complete and 

accurate experimental spectroscopic studies of hot propane in the 3000 cm-1 region and hot 

ammonia in the 2400-9000 cm-1 region. On Earth, for remote sensing using the ACE-FTS, high 

resolution data has enabled isotopic fractionation to be measured but the current linelists for 13CO 

are perhaps the limiting factor in the determination of truly quantitative results. Use of WACCM 

has enabled comparison with the ACE data. Three different improvements would perhaps result 

in more reliable results for fractionation. The ACE 3.5 dataset was used in the analysis in Chapter 

IV. The current 3.6 dataset includes additional data from 2012 to 2017 and the upcoming 4.0 

dataset will represent improved data with better retrievals may allow more quantitative results for 

isotopic fractionation of 13CO and C18O, and may also result in somewhat better results for the 

fractionation of C17O for which the current dataset is insufficient (Figure 30). In addition, the 

retrievals process has demonstrated that improved linelists for 13CO are required for more reliable 

values for the volume mixing ratio profiles; small errors in line intensities can produce large errors 

in δ-values. Finally, additional validation of ACE retrievals of CO isotopologues are required for 

a truly quantitative analysis. Comparison with ground based, balloon or other satellite data are 

required, however such data do not yet exist for all altitudes as they do for isotopologues of other 

molecules in the ACE dataset, such as CH4 and N2O. 
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The success of high resolution spectroscopic data for analyzing Earth’s atmosphere has been 

established. Since the discovery of exoplanets and brown dwarfs, several molecules have been 

detected in their atmospheres. With the advent of more advanced astronomical instruments with 

ever higher resolving power observing these objects, as well as the JIRAM instrument on the Juno 

satellite, mean that high resolution linelists and cross-sections such as those obtained in this work 

may now be used to detect yet more molecules or more accurately determine the conditions of 

these objects. To this end, high resolution cross-sections have been recorded for propane in the C-

H stretching region at high temperatures. This molecule is one of a number of hydrocarbons in 

Jupiter’s auroral regions which the JIRAM instrument will study.  

Finally, linelists have been recorded for NH3 in the 2400-9000 cm-1 region. NH3 is a key molecular 

species in the atmospheres of cool stars and is predicted by a number of thermodynamic models 

to be present in the atmospheres of exoplanets. Both of these environments exist at elevated 

temperatures for which room temperature linelists are not sufficient. In addition, ab initio linelists 

for NH3 do not have the required accuracy for line positions, especially at higher wavenumbers 

and for the hot bands which become increasingly intense at higher temperatures. As such the data 

which was collected as described in this dissertation are crucial for the potential detection of NH3 

in exoplanets and for the characterization of Y type brown dwarfs. The accuracy of this data 

(±0.005 cm-1 for line position, within a factor of 2 for intensity) is important for inclusion in 

atmospheric models of exoplanets and brown dwarfs. 

Lower state energies allow the extrapolation of line intensity with temperature (Equation 24). The 

method presented in this dissertation allows the calculation of experimental lower state energies 

by comparing the strength of a line at multiple temperatures. Experimental lower state energies are 

useful, but limited. Those obtained here are not of high enough accuracy for quantum number 
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assignment, which is a strength of the ab initio approach. The linelists recorded should be used to 

constrain the vibrational band centers of higher wavenumber modes, especially combination and 

hot band modes. A more complete combination of an experimental-theoretical linelist for NH3 in 

the infrared is required for the best line by line input data for radiative transfer models. This would 

involve more quantum number assignment in the lower and higher wavenumber ranges as 

presented here, including use of combination differences. The linelists obtained should also be 

extended towards the visible to complete the coverage of high resolution data obtained to match 

that of the astronomical instruments with the highest resolving power, such as CRIRES which 

extends up to 0.95 μm (10530 cm-1). This will require careful selection of experimental conditions 

as evidenced by issues with pressure broadening in the high wavenumber region.  
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