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ABSTRACT 

ANTI-PREDATOR BEHAVIOR OF SQUID THROUGHOUT ONTOGENY 

Carly Anne York 

Old Dominion University, 2016 

Director: Dr. Ian K. Bartol  

 

 

  Multiple sensory modalities and a complex array of escape behaviors have evolved as 

components of anti-predator responses in squids. The goals of this study include: (1) examine the 

role of the lateral line analogue and vision in successful predator evasion; (2) measure kinematics 

of escape jetting; (3) document how chromatic patterning, posturing and inking in squid change 

in response to predators; and (4) investigate escape jet hydrodynamics of squid. Given that 

squids undergo considerable morphological, ecological, and behavioral changes throughout 

ontogeny, the goals above were all investigated across different life history stages. To test the 

respective roles of vision and the lateral line analogue, squid of different life stages were 

recorded in the presence of natural predators under light and dark conditions with their lateral 

line analogue intact and ablated via a pharmacological technique. Anti-predator behaviors of 

squid throughout ontogeny were studied in a series of predator-prey trials using high-speed 

videography. Additionally, the hydrodynamics and kinematics of high velocity escape jets in 

squid were examined using a combination of 2D/3D velocimetry. The lateral line analogue 

played a role in initiation of an escape response at the earliest life stages, and continued to 

contribute to successful evasion by aiding visual cues in juvenile/adult squid. Paralarvae relied 

heavily on stereotyped swimming behaviors and translucent coloration to avoid capture, while 

juvenile and adults used multiple cues associated with the predator’s approach to determine 

whether posturing or inking and escape jetting is the most suitable anti-predator behavior. 



 

 

Throughout ontogeny, squid produced two escape jet patterns: (1) escape jet I characterized by 

short rapid pulses resulting in vortex ring formation and (2) and escape jet II characterized by 

long high volume jets, often with a leading edge vortex ring. Paralarvae exhibited significantly 

higher propulsive efficiency (94.55%) than adult squid (87.71%) during jet ejection.  These 

results indicate that all life stages of squid are well adapted for predator avoidance; they employ 

multiple sensory modalities for predator detection, use a variety of anti-predator behavioral 

responses, and utilize a highly efficient and flexible escape jet to maximize escape from 

predation.  
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“Jetting animals are just hearts set free…”  

O’Dor and Webber, 1991 
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CHAPTER 1 

INTRODUCTION 

Predation is a major factor in the biology of organisms and influences a species’ life 

history and behavior (Polis, 1981). An animal whose form and behavior aids in predator 

avoidance or escape will increase its probability of survival to reproductive age. As a result, 

there is a possibility for greater reproductive success relative to animals that are unable to avoid 

predators (Alcock, 1993). As almost all animals are subject to predation, a wide variety of 

adaptations have evolved to reduce detection by predators and, if detected, escape successfully.  

Primary defenses function to decrease exposure to a predator, and often involve crypsis and 

cryptic behavior. Secondary defenses are brought into play once the animal has been detected 

and often include a threat or escape behavior (Hanlon and Messenger, 1996).   

 The unique anti-predator defenses of cephalopods include having high sensory acuity, 

using adaptive coloration, generating ink, and employing a powerful escape jet. The wide variety 

of techniques for predator avoidance makes cephalopods a particularly interesting organism for 

the study of anti-predator behavior and biomechanics. While cephalopods are themselves 

predators, they also serve as food to many higher predators of the ocean, including fish, marine 

mammals, sea birds, and even other cephalopods, and are therefore an integral component of 

marine food webs (Clarke, 1996; Piatkowski et al., 2001). Despite being a highly sought after 

food source, cephalopods have survived since the Cambrian era, as evidenced by the fossil 

record (Kröger et al., 2011).  

 

Cephalopod Sensory Systems 

The eyes are the most prominent sensory feature of cephalopods (Budelmann, 1996) with 
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the optic lobes being the most dominant region of the brain (Young, 1962). Resembling the 

vertebrate eye, the squid eye incorporates a large posterior chamber, lens, iris, retina, choroid, 

sclera and argenta (Budelmann, 1994). However, there are several key differences between the 

cephalopod and vertebrate eye anatomy. Cephalopods have a rhabdomeric structure of the retina 

in which there are no rods or cones, as found in other mollusks and arthropods (Mäthger et al., 

2009). The visual image also falls directly on the photoreceptor cells without interneurons, as 

found in the retina of vertebrates (Budelmann, 1994). The photoreceptors contain only one visual 

pigment peaking in spectral sensitivity around 480-500 nm (Budelmann, 1996), rendering 

cephalopods colorblind, which has been confirmed in behavioral studies (Mäthger and Hanlon, 

2006). Unlike the eyes of most teleost fish, cephalopods have motile pupils that respond to 

changes in illumination.  The time required for pupil closure is far less than in most other 

animals. The common cuttlefish (Sepia officinalis) and brief squid (Lolliguncula brevis) require 

only 0.32 s and 0.49 s, respectively, to attain half maximal pupil constriction, while the fastest 

teleost fish response is 0.75 s (Douglas et al., 2005). Cephalopods have laterally placed eyes and 

consequently see their environment monocularly. As the eyes are utilized individually, the pupils 

of coleoid cephalopods respond independently to light (Douglas et al., 2005) and exhibit 

asymmetrical constriction under increasing irradiance levels (McCormick and Cohen, 2012). The 

highly evolved visual system of cephalopods likely plays a large role in predator detection and 

initiation of an escape response.   

In addition to their complex visual system, cephalopods can detect disturbances from 

small water movements using mechanoreceptors on their head and arms, which resemble hair 

cells in the fish lateral line system (Bleckmann et al., 1991; Budelmann and Bleckmann, 1988). 

The fish lateral line consists of the superficial and canal neuromasts. The superficial neuromasts 
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have the highest response rates to direct-current and low frequency flows, while the canal 

neuromasts respond best to high frequency flows  (Coombs et al., 2001; Montgomery et al., 

2001). With both types of neuromasts, hair cell cilia housed under a gelatinous cupula are 

stimulated by water motion. The cupula has a distinct infrastructure organization that enhances 

the mechanical coupling of the ciliary bundles under the hair cells (Shadwick and Lauder, 2006). 

The cephalopod lateral line analogue is not as well described as the fish lateral line.  It consists 

of polarized epidermal hair cells that have several kinocilia and an axon extending from their 

base (Budelmann and Bleckmann, 1988). Polarization occurs in a precise pattern (anteriorly, 

posteriorly, left and right), allowing the animals to respond to water movements as low as 18.8 

µm/s, which is equivalent to the sensitivity of fish lateral lines (Bleckmann et al., 1991).  The 

epidermal lines respond to bursts of sinusoidal water movements with a receptor potential in a 

phasic-tonic manner (Bleckmann et al., 1991). In the squid Loligo vulgaris, five epidermal lines 

are present on each side of the head running in an anterior-posterior direction (Budelmann and 

Bleckmann, 1988).  

The lateral line of fishes plays a large role in detecting a predator (Feitl et al., 2010).  

Larval zebrafish (Danio rerio) react swiftly (within 30 ms) to the flow field produced by an 

attacking predator via a C-start escape response that quickly moves the fish out of the predator’s 

path (Hale, 1999; McHenry et al., 2009). The C-start is initiated when neuromasts comprising the 

lateral line are stimulated by pressure gradients generated by an oncoming predator (McHenry et 

al., 2009; Wainwright et al., 2007). There are two pressure gradients that can stimulate C-starts, 

one produced by the push of water in front of the predator and another by suction generated by 

the predator during mouth opening.  Interestingly, Stewart et al. (2013) demonstrated that larval 

zebrafish have most success at evading predators when they react to the push of water in front of 
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the predator, as opposed to the suctional flows, and when they are positioned at an optimal 

intermediate distance away from the predator.  Fishes generally lack canal neuromasts during 

early ontogenetic stages, which also has an impact on escape success.  In herring larvae (Clupea 

harengus), responsiveness to predator attacks is very low in newly formed larvae, but increases 

with size as the lateral line canal system develops (Blaxter and Fuiman, 1990).  The role of the 

lateral line in these escape responses has been confirmed by lateral line ablation, whereby the 

escape response rapidly diminishes with ablation but returns with hair cell regeneration (Feitl et 

al., 2010; McHenry et al., 2009).  To date, no research has been performed on the lateral line 

analogue of cephalopods to assess whether it plays a similar role in predator detection at any life 

history stage.  

 

Cephalopod Anti-predator Behavior  

An array of complex behaviors is associated with escape responses in cephalopods 

(Hanlon and Messenger, 1996; Staudinger et al., 2011; Wood et al., 2010). Along with a jet-

driven escape, a widely used strategy for predator evasion in cephalopods is camouflage (Hanlon 

et al., 1994; Hanlon et al., 1999; Mäthger and Hanlon, 2007; Messenger, 2001). Cephalopods can 

adapt their color and body patterning quickly according to various features in their environment 

via chromatophores and iridophores (Sutherland et al., 2008). Chromatophores are complex 

organs containing a large compartment of pigment granules (Florey, 1966), including those that 

are yellow, orange, red, brown and black (Fingerman, 1970; Messenger, 2001). No blue or green 

pigments are found in cephalopods (Messenger, 2001). Each chromatophore organ contains an 

elastic sacculus with pigment granules and is surrounded by a series of 15-25 radial muscles. 

These muscles are under nervous control and therefore expansion and contraction can occur 
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rapidly and selectively to create patterns (Florey, 1966). Squid generally have two layers in their 

skin, a superficially located layer of chromatophores and an underlying layer of structural 

reflector cells called iridophores (Mäthger et al., 2009). Chromatophore and iridophore 

arrangement varies among taxa (Boyle and Rodhouse, 2008). Expanding and retracting 

chromatophores over the iridophores influences the light that is reflected  (Mäthger and Hanlon, 

2007; Sutherland et al., 2008). Chromatophores are also used to produce a countershading effect, 

which eliminates any silhouette or shadow created by downward light (Boyle and Rodhouse, 

2008). During countershading, the dorsal chromatophores are expanded and the ventral 

chromatophores are retracted, while the side of the mantle and the arms are graded between the 

two extremes (Hanlon and Messenger, 1996).  

Cephalopods use crypsis in the form of body patterning and chromatophore change 

during secondary defense behaviors to maximize the effectiveness of escape jets (Hanlon et al., 

1994). A typical response to a threat is the “blanch-ink-jet” maneuver (Hanlon and Messenger, 

1996; Hanlon et al., 1994). During this sequence, the cephalopod blanches white and ejects ink 

as it jets away. This visually confuses the predator and allows for an escape. Many intraspecific 

body patterns are highly stereotyped; however, it is unclear whether the chromatophore change 

in the “blanch-ink-jet” maneuver is a fixed-action pattern (Hanlon et al., 1994). The secretion of 

ink can occur in several forms. One method is producing a pseudomorph, which is a blob of ink 

that is held together by mucus. The pseudomorph typically is the size of the cephalopod, which 

serves to distract a predator while the animal escapes. Another method is to create a cloud of ink 

behind which the cephalopod can disappear (Hanlon and Messenger, 1996). There are several 

other shapes of ink such as “ropes” and “puffs” that have been observed in nature (Bush and 

Robison, 2007). Squid ink also contains chemicals that elicit escape responses in nearby 
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conspecifics (Gilly and Lucero, 1992). L-dopa and dopamine are largely responsible for the 

chemical signals (Lucero et al., 1994). There is also anecdotal evidence that chemicals in ink 

may block olfactory or taste receptors in predators (Caldwell, 2005; Hanlon and Messenger, 

1996).  Little research is currently available on how this anti-predator behavior sequence changes 

throughout life history stages.  

 

Escape Jet Biomechanics and Hydrodynamics  

The escape response of cephalopods is largely driven by jet propulsion, which is 

produced by the rapid expulsion of water from the mantle cavity through a funnel aperture 

(O’Dor, 1988; Packard, 1969; Young, 1938). Water is drawn into the mantle cavity around the 

sides of the head through intakes via mantle expansion produced by radial muscle contraction 

and elastic recoil of connective tissue fibers.  Circular muscles in the mantle then contract to 

pressurize the water in the mantle cavity, resulting in the closure of the intakes (Young, 1938). A 

high velocity jet is produced when water is forcibly expelled through the funnel, which has 

relatively small cross-sectional area. The funnel is flexible and capable of directing the jet 

anywhere within a hemisphere below the body, allowing the animal to move in various 

directions (Bartol et al., 2001a).  Estimates of peak jet velocity range between 2.9 and 6.9 m/s for 

octopus and cuttlefish and between 6.7 and 11 m/s for squid (Shadwick, 1995).  The high 

velocity created by the jet allows for quick evasion from the path of a predator. The motor 

systems of the mantle and funnel presumably allow for control of the trajectory, volume, and 

flow speed of escape jets (Otis and Gilly, 1990), though variation in escape jetting has not been 

documented to date. 

The mantle hydrostatic system that allows for jet propulsion consists of a three-
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dimensional arrangement of circular and radial fibers and connective tissue (Thompson and Kier, 

2001a). The mantle cavity is enclosed by a wall of flexible muscle with an array of connective 

tissue within the mantle musculature. There are two distinct muscle types of circular muscle 

fibers in the mantle: superficial mitochondria rich (SMR) fibers and central mitochondria poor 

(CMP) fibers. SMR fibers have a large core of mitochondria, have high succinic dehydrogenase 

activity, and have a high ratio of oxidative to glycolytic enzymes. These fibers are present in thin 

(i.e., 50 to 200 μm) layers at the inner and outer zones of the circular muscle fibers (Bone et al., 

1981; Mommsen et al., 1981). CMP fibers make up the circular muscle fibers of the central zone 

and have a small core of mitochondria, low succinic dehydrogenase activity, and a low ratio of 

oxidative to glycolytic enzymes (Bone et al., 1981; Mommsen et al., 1981). The SMR circular 

muscle fibers are similar to the red muscles of vertebrates and provide power for ventilation of 

the mantle cavity and slow prolonged swimming (Bartol et al., 2001a; Bartol et al., 2008; 

Gosline et al., 1983; Thompson et al., 2008). In contrast, the CMP circular muscle fibers are 

similar to the white muscles of vertebrates and provide power for short, high powered jets 

(Bartol et al., 2001a; Gosline et al., 1983; Thompson et al., 2008). Bartol (2001a) correlated 

mantle kinematics with electromyography records and found that SMR activity occurs at low 

speeds, increased CMP activity occurs at intermediate speeds and full activation of CMP fibers 

occurs at high speeds in the squid L. brevis. 

Although current hydrodynamic research on squid does not focus on escape jets, a large 

body of knowledge has been acquired on jet propulsion in steady swimming. Many studies have 

examined swimming energetics of squid (Bartol et al. 2001a; Finke et al., 1996; O’Dor, 1982; 

O’Dor et al., 1991; O’Dor et al., 1995; Webber and O’Dor, 1986), but fewer studies have 

addressed the hydrodynamics of squid locomotion. An examination of the forces acting on adult 
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squid (Loligo opalescens and Illex illecebrosus) was provided by O’Dor (1988), and Anderson 

and DeMont (2000) examined propulsive efficiency and unsteady hydrodynamics of D. pealeii. 

Bartol et al. (2001b) found that small squid, such as L. brevis, use a suite of behavioral fin and jet 

strategies with speed and provided qualitative descriptions of vortex ring formation.  These flow 

features are especially intriguing because they may provide thrust benefits through acceleration 

of fluid via entrainment and added mass effects (Krueger and Gharib, 2003).  Subsequent studies 

involving more quantitative digital particle image velocimetry (DPIV) measurements (Bartol et 

al., 2008; 2009a; 2009b) and volumetric velocimetry (Bartol et al. 2016) have shown that vortex 

ring formation is a common feature of the wakes of squid.  Bartol and his colleagues have shown 

that several different types of jet flow patterns are produced by squid of different life history 

stages. In juvenile and adult brief squid, two principal jet modes occur: (1) jet mode I, where 

ejected fluid rolls into an isolated vortex ring and (2) jet mode II, where ejected fluid forms into a 

leading vortex ring that pinches off from a long trailing jet (Bartol et al., 2008; Bartol et al., 

2009b). Jet mode I is associated with greater propulsive efficiency, lower slip and higher 

frequency of fin activity, while jet mode II is associated with greater time-averaged thrust and lift 

forces and is used more heavily than the first jet mode.  D. pealeii paralarvae produce jets 

consisting of elongated vortical ring structures but with no clear pinch-off as present in jet mode 

II of larger size classes (Bartol et al., 2009a; Bartol et al., 2009b).  Bartol et al. (2009a) suggested 

that the absence of pinch-off may be a product of either (1) viscous diffusion blurring the 

separation between the ring and jet or (2) vortex ring formation being preempted by viscous 

diffusion such that a vortical tail remains behind the ring.  Bartol et al. (2008, 2009a, 2009b) 

found that not only do flow features differ between paralarval and juvenile/adult squid, but that 

paralarval squid also have higher propulsive efficiency during jet ejection than older squid.  
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In addition to jet propulsion, lateral fins in sepioids and squids play an important role in 

stability, steering, and thrust/lift production. Undulatory motions of the fins alone are used 

during hovering or small movements (Anderson and Grosenbaugh, 2005; Bartol et al., 2001a; 

Hoar et al., 1994a; O’Dor, 1988).  Cephalopods lack the rigid skeletal support elements that 

extend through the fins of teleost fishes. Instead, the fins consist of a three-dimensional array of 

musculature that serves as both the effector of movement and the support for the movement 

(Kier, 1988). The fins of the brief squid function as stabilizers during tail-first swimming at low 

speeds, but shift to propulsors as speed increases. During arms-first swimming, the fins primarily 

provide lift with a reduced role in thrust production (Stewart et al., 2010).  Recent volumetric 

velocimetry studies has provided further support for the role of fins as stabilizers and producers 

of lift and thrust, with 3D visualizations revealing that complex fin and fin/jet flows are common 

during steady swimming (Bartol et al., 2016). Although the jet is largely responsible for the 

majority of thrust associated with an escape response, the fins potentially play an important role 

for stability and steering, though this has not been addressed in the literature to date.    

The basic framework for producing an escape jet is thought to be stereotyped regardless 

of the life history stage and size of the animal (Thompson and Kier, 2001), though variations in 

wake topology are certainly possible with slight modifications to this underlying framework. The 

series begins with the mantle hyper-inflating, which allows the mantle cavity to fill with water. 

The collar flaps then close and the anterior edge of the mantle begins to contract. Next, the fins 

fold against the side of the mantle and the remainder of the mantle contracts, rapidly expelling 

water through the funnel (Thompson and Kier, 2001). Although the basic approach to escape 

jetting is conserved across ontogeny, it is likely that other components of the escape-response, 

such as mantle/funnel kinematics and fin use, vary through life history stage as several of the 
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major elements of jet propulsion change throughout ontogeny. Squid undergo major 

morphological changes throughout ontogeny that affect both jet propulsion and fin use  (Hoar et 

al., 1994a; Okutani, 1987; Packard, 1969). Paralarvae have small rounded bodies with 

rudimentary fins. This forces hatchlings to rely primarily on jet propulsion for locomotion 

(Bartol et al., 2008).  Juveniles and adults have less rounded bodies and larger, more developed 

fins (Hoar et al., 1994a).   In the oval squid (Sepioteuthis lessoniana), the weight-specific peak 

thrust of jet propulsion and the mechanics of the circumferential muscles of the mantle change 

significantly from hatchling to juvenile/adult stages (Thompson and Kier, 2002). Juvenile and 

adult squid also have smaller relative funnel apertures than paralarvae (Thompson and Kier, 

2001). Additionally, ontogenetic changes occur in the relative amplitude of mantle contraction, 

relative maximum amplitude of mantle hyperinflation and relative maximal mantle contraction 

during escape jetting (Thompson and Kier, 2001). Given these morphological and behavioral 

changes, locomotive escape responses are likely variable throughout ontogeny.  In particular, 

escape jet propulsive efficiency, bulk jet wake properties and locomotive escape strategies are 

expected to change with life stage.   

 As squids grow from hatchlings to adults they also experience a variety of flow regimes 

(Bartol et al., 2008; Thompson and Kier, 2002). The Reynolds number (Re) describes the 

relationship between the size of the animal, the speed of the animal, and the kinematic viscosity 

of the fluid media with the following equation: 

Re=lU/v     (Lighthill, 1975), 

where l is a characteristic length of the organism, U is the velocity of the organism in the fluid 

and v is the kinematic viscosity of the fluid.  Re characterizes the relationship between inertial 

forces and viscous forces felt by the swimming animal (Vogel, 2013). At high Re (>10
3
) inertial 
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forces dominate, while at low Re (<1), viscosity is dominant. At intermediate Reynolds numbers 

(1<Re<10
3
), both inertial and viscous forces play important roles (Vogel, 2013). Paralarval 

squids often operate at Re of 1-10
2
, while juveniles and adults operate at Re of 10

3
-10

6 
(Bartol et 

al., 2008).  Given the wide Re regimes experienced by squid throughout ontogeny, it is likely 

that escape response dynamics will vary significantly with life history stage. 

 

Objectives 

The purpose of this study is to evaluate anti-predator defenses of squid throughout 

ontogeny. Three general areas of research are explored: (1) sensory biomechanics, whereby I 

explore the role of vision and mechanoreceptors in predator avoidance throughout ontogeny; (2) 

anti-predator behavior, whereby I document body patterning, posturing and inking throughout 

ontogeny; and (3) hydrodynamics and kinematics of the escape jet, whereby I focus on the 

swimming mechanics of escape responses to assess vortex-wake flow structure, propulsive 

efficiency, escape speeds and accelerations throughout ontogeny. Although the physiology and 

morphology of the visual system of cephalopods has been studied extensively, the role of the 

visual system for predator avoidance has not been quantified.  Moreover, mechanoreception and 

its importance for predator detection relative to the visual system has been largely ignored. 

Given that similar mechanoreception systems in fishes are important for predator detection, it is 

likely that the lateral line analogue in squids is integral to their ability to detect and escape 

predators.  Although it is well known that inking often occurs in predation events, documentation 

of inking patterns in squids during predator confrontations has not been performed to date. 

Additionally, considerable research has been conducted on how the chromatophore organs create 

patterns that can reduce detection.  However, a further investigation of chromatophore changes 
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throughout the escape response is needed to fully understand how chromatophore patterns can 

increase survivability. Currently, little research has focused specifically on the hydrodynamics 

and kinematics of escape responses in cephalopods. While jets associated with steady swimming 

have been studied in some squid species, nothing is known about the hydrodynamics of escape 

jets, including data on peak jet velocities, vorticity structure, and propulsive efficiency. Most 

importantly, none of the areas above have been explored throughout an ontogenic range of 

squids. 

This dissertation includes 4 data chapters that focus on escape responses of squid 

throughout ontogeny.  In Chapter 2, I describe a pharmaceutical mechanoreceptor ablation 

technique and demonstrate for the first time that this approach can be performed successfully on 

cephalopods.  I also provide the first data documenting that the lateral line analogue, together 

with the visual system, is important for predator detection and survival in juvenile/adult squid.  

In Chapter 3, I document escape responses in ablated and non-ablated squid in light and dark 

conditions to examine the relative roles of vision and the lateral line analogue in survival 

throughout ontogeny.  For Chapter 4, I document how chromatic patterning, posturing and inking 

in squid change in response to predators throughout ontogeny and measure kinematic variables 

associated with squid-predator interactions to better understand the behavioral cues that trigger 

anti-predator responses. Finally, in Chapter 5, I study the hydrodynamics of escape jetting in 

squid throughout ontogeny using 2D and 3D velocimetry, with an emphasis on documentation of 

vortex wake structures and propulsive efficiency.  Collectively, the four chapters above represent 

the most comprehensive assessment of escape responses in squid throughout ontogeny to date. 

 

 



13 

 

CHAPTER 2 

LATERAL LINE ANALOGUE AIDS VISION IN SUCCESSFUL PREDATOR 

EVASION FOR BRIEF SQUID LOLLIGUNCULA BREVIS 

 

INTRODUCTION 

Cephalopods rely on multiple sensory systems for detection of predators (Budelmann, 

1996). The eyes are the most prominent sensory feature of cephalopods with the optic lobes 

being the dominant region of the brain (Young, 1962). The highly evolved visual system of 

cephalopods likely plays a large role in predator detection and initiation of an escape response.  

However, to date, the role of vision relative to other sensory modalities in predator evasion has 

not been examined in any cephalopod.  

In addition to their complex visual system, cephalopods have a sensory system that 

resembles the lateral line system of fishes (Bleckmann et al., 1991; Budelmann, 1996; 

Budelmann and Bleckmann, 1988).  The cephalopod lateral line analogue consists of polarized 

epidermal hair cells that have several kinocilia and an axon extending from their base 

(Budelmann and Bleckmann, 1988). Polarization occurs in a precise pattern (e.g., anteriorly, 

posteriorly, left and right), allowing the animals to respond to water movements as low as 18.8 

µm/s, which is equivalent to the sensitivity of fish lateral lines (Bleckmann et al., 1991).  

Behavioural responses have also been elicited in cuttlefish (Sepia officinalis) by stimulating their 

lateral line analogue using a wide range of frequencies (10-600 Hz) (Komak et al., 2005). While 

fish can react swiftly to the flow field produced by an attacking predator using their lateral line 

system (McHenry et al., 2009; Stewart et al., 2013), it is unknown if the lateral line analogue of 

cephalopods plays a similar role in predator detection. The goal of this study was to develop a 
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technique to successfully ablate cephalopod sensory hair cells, and test the hypothesis that the 

lateral line analogue of squid (Lolliguncula brevis) aids vision in successful predator evasion.  

 

MATERIALS AND METHODS 

Animal collection and maintenance 

Lolliguncula brevis (2.5 cm-6.0 cm dorsal mantle length (DML)) used in this project 

were captured by otter trawl in Wachapreague, VA, USA.  Squid were kept in 1.2 m diameter 

circular tanks using protocols described in Hanlon (Hanlon, 1990). Animals were allowed to 

acclimate for at least 2 h before experiments. Only animals that appeared healthy and exhibited 

normal behaviour were utilized. For the lateral line analogue ablation validation (see below), 

Doryteuthis pealeii paralarvae were purchased from the Marine Biological Laboratory, Woods 

Hole, MA, and maintained in a recirculating seawater system at a salinity of 30-32‰ and at 

temperatures of 19-24°C until hatching.  

 

Lateral line analogue ablation validation 

Antibiotic solutions have successfully been used for lateral line ablation in fish studies 

(Harris et al., 2003; McHenry et al., 2009; Stewart et al., 2013); however, the technique had 

never been performed on cephalopods and therefore validation of this approach was required. To 

determine the appropriate concentration of the neomycin sulphate solution for lateral line 

analogue ablation, a series of antibiotic trials were conducted.  Doryteuthis pealeii paralarvae 

were used in the antibiotic trials because of the large number available and small body size, 

which is conducive for scanning electron microscopy (SEM) prep. Paralarvae were divided into 

four treatment groups (N=15 per group): 0 µM, 150 µM, 250 µM and 500 µM neomycin 
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sulphate. Paralarvae were placed into the antibiotic solution for one hour, and then were 

anesthetized using water at 5°C before fixation. SEM was employed to survey the success of 

ablation within each of the experimental groups. For SEM, the squid were placed overnight in a 

fixative (concentrations: 3% glutaraldehyde, 6% sucrose, 0.5% tannic acid, 0.065M Sӧrensen’s 

buffer), rinsed and stored in a buffer (concentration: 1% glutaraldehyde, 6% sucrose, 0.065M 

Sӧrensen’s buffer) and then dehydrated in a graded ethanol series. Specimens were dried using 

the chemical drying agent hexamethyldisilazane and mounted on aluminium stubs with double-

stick tape. Specimens were sputter-coated with 15-30 nm gold and examined with a Hitachi S-

3400N JEOL 6300-F field emission scanning electron microscope at an accelerating voltage of 

15kV.  SEM images revealed consistently successful lateral line ablation after being treated with 

500 µM neomycin sulphate solution (Fig.1). Similar protocols were used with L. brevis juveniles 

to confirm lateral line ablation at this treatment concentration.  Based on successful ablation in 

D. pealeii hatchlings and L. brevis juveniles, a 500 µM concentration was selected for predator-

prey experiments. Although this treatment was effective at decreasing the number and integrity 

of lateral line hair cells, the lateral line regeneration capabilities of squid were not tested and are 

not currently known. Observation of both D. pealeii and L. brevis after treatment showed that 

squid maintained normal behaviours and did not lose any orientation abilities that would indicate 

damage to the statocycsts.    
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Figure 1. SEM images of the lateral line analogue shown on a Doryteuthis pealeii paralarvae. 

Lines of hair cells on the head highlighted with arrows (a); close-up views of sensory hair cells 

of the lateral line analogue (b); sensory hair cells after treatment with a 500 µM solution of 

neomycin sulphate (c). The majority of hair cells were destroyed completely after treatment with 

the remaining hair cells being porous and heavily damaged.  Scale bar for a = 400 µm; b, c =5 

µm. 
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Predator-prey experiments 

 Predator-prey interaction experiments were used to evaluate the use of vision and 

mechanoreception in predator evasion. Trials took place in a 1.2 m diameter x 0.76 m deep round 

tank lined with gravel substrate. The arena was lined with curtains to avoid disturbing 

acclimating animals. Black plastic sheeting was used to block light during the dark trials. For 

each experiment, a single squid was placed in an arena with two flounder (13.2 cm and 15.5 cm 

total length). Flounder have shown successful captures for the relative prey size presented in this 

study (Staudinger and Juanes, 2010), and were chosen as predators due to their exceptional 

vision in both bright and dark conditions (Horodysky et al., 2010). Multiple predators were used 

to increase the odds of a predation event. The flounder were fed live squid prior to the trials so 

that they could become proficient in squid capture before data collection. Food was withheld 24 

h prior to the start of all trials to standardize predator hunger.  

One hour prior to trials, squid were placed in a container, which either held the neomycin 

sulphate solution for ablation groups or untreated water for the non-ablation groups. Prior to the 

start of each trial, a cylinder made of 5 mm plastic mesh was lowered into the experimental tank 

and a single squid was placed inside for a 30 min acclimation period. The trials commenced 

when the partition was raised above the tank and the flounder and squid were allowed to interact.  

Each trial ran for 10 min before surviving squid were removed. Four different conditions were 

tested: 1) light non-ablated, 2) light ablated, 3) dark non-ablated, and 4) dark ablated. Separate 

squid (N=10) were tested in each treatment condition. All interactions were recorded ad libitum 

by a single observer.  Interactions used for subsequent statistical analysis were defined as: (1) 

successful predator strikes, (2) unsuccessful predator strikes, and (3) approaches where a strike 
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was not initiated because of an escape response by the squid. 

 

Statistical analysis 

Statistical analysis was performed in SPSS (v. 18 SPSS Inc., Chicago, IL, USA). The 

proportion of interactions survived for each squid was calculated to show success relative to the 

number of capture attempts. Since this measure does not reveal the total number of interactions 

survived, the sum of interactions survived for each squid in each treatment group was also 

calculated. All data were tested for normality using Shapiro-Wilk tests. Data from several groups 

varied from normality (all p≤0.02), and therefore all data were transformed prior to parametric 

analysis. A regression was performed on the total number of interactions survived and the mantle 

length of the squid in each condition to determine the relationship between size and survivability. 

No significance was found (all p≥0.10), and thus all sizes were pooled for further analysis. 

Analysis of variance (ANOVA) was performed on the total number of interactions survived and 

the proportion of interactions survived in each treatment group. Means and standard deviations 

are presented unless otherwise noted.  

 

RESULTS 

Successful predator evasion differed among the four treatment conditions (Table 1). The 

proportion of interactions survived significantly differed across treatment groups (F3,36=6.16, 

p=0.002; Fig.2). Tukey post-hoc comparisons showed the light non-ablated group 

(mean=1±0.00) had higher proportion of interactions survived than the dark ablated group 

(mean=0.33±0.44), p=0.001). Additionally, the light ablated group (mean=0.78±0.34) showed 

higher survivability than the dark ablated group (mean=0.33±0.44, p=0.046).   
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Table 1: Descriptive information for each treatment group.   

Treatment Condition N DML±S.E. 

(cm) 

Total # 

Squid 

Survived 

Total # 

Interactions 

Survived 

(pooled) 

Range # 

Interactions 

Survived (per 

squid) 

 

Light 

Non-ablated 10 4.2 ± 0.3 10 60 4-11 

Ablated 10 3.9 ± 0.3 6 34 0-5 

 

Dark 

Non-ablated 10 3.9 ± 0.4 5 22 0-4 

Ablated 10 3.9 ± 0.3 2 15 0-4 
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Figure 2. Survivorship for non-ablated and ablated squid during light and dark conditions.  Mean 

proportion of interactions survived in each treatment group (a) and mean number of interactions 

survived (b) in each treatment group. Bars with different letters are significantly different. Mean 

± s.e.m. are presented.  

 

 

 

a 

b 
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While not significant at α=0.05, the light non-ablated group, exhibited a trend in higher 

proportion of interactions survived, relative to the dark non-ablated group (mean=0.5±0.50, 

p=0.056). The mean number of interactions survived differed significantly across treatment 

groups (F3,36=8.69, p<0.001). Tukey post-hoc comparisons of the four groups indicate that the 

light non-ablated group (mean=6.00±2.20) had significantly higher mean number of interactions 

survived than the light ablated group (mean=2.90±1.52, p=0.031), the dark non-ablated group 

(mean=2.20±1.62, p=0.002) and the dark ablated group (mean=1.50±1.27 , p<0.001) (Fig. 2). 

 

DISCUSSION 

The results of this study indicate that both vision and the lateral line analogue provide 

sensory information for successful predator evasion. The light non-ablated group survived a 

higher number of interactions than the light ablated and dark treatment groups, indicating the 

importance of both sensory systems. The observed higher proportion of interactions survived for 

the light non-ablated group relative to the dark ablated group, and the trend in higher proportion 

of interactions survived for the light non-ablated versus the dark non-ablated group demonstrate 

that vision is the most important modality (of the two tested here) for predator avoidance. The 

higher mean proportion of interactions survived in the light ablated than dark ablated group 

provides further support for this conclusion. Increased number of interactions survived, in the 

light non-ablated than the light ablated group, however, suggests that the lateral line analogue 

also plays a role in predator evasion even when vision can be utilized. Although the dark non-

ablated and dark-ablated groups were not significantly different, there was a 30% decline in the 

total number of animals that survived when the lateral line analogue was ablated indicating that 
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having the sensory hair cells intact aided survival in dark conditions as well.  

This study provides, to our knowledge, the first examination of the role of the lateral line 

analogue in cephalopods for predator avoidance. The lateral line analogue appears to play a 

similar role to the fish lateral line, serving as a sensory component to predator evasion (McHenry 

et al., 2009; Stewart et al., 2013). Although vision and the lateral line analogue clearly contribute 

to survival, there are other sensory modalities that could potentially add to successful predator 

evasion. Olfactory cues were likely present and could have alerted the squid to the predator’s 

presence. Additionally, mechanoreceptors within the muscle or on the fins could have detected a 

pressure wave created by an approaching predator. It is possible that several sensory components 

not tested here contribute to successful predator avoidance; therefore further research is needed 

to examine other potential sensory modalities involved in predator detection and evasion in 

cephalopods. This study, however, demonstrates for the first time that mechanoreceptor ablation 

techniques can be performed successfully on cephalopods and the lateral line analogue, together 

with the visual system, is important for predator detection and survival. 
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CHAPTER 3 

MULTIPLE SENSORY MODALITIES USED BY SQUID IN SUCCESSFUL 

PREDATOR EVASION THROUGHOUT ONTOGENY 

 

INTRODUCTION 

Hydrodynamic stimuli provides important information for aquatic animals, and 

consequently most taxa have developed a sensory system for the detection of water movements 

and pressure fluctuations (Bleckmann, 1994; Coombs et al., 1989b). Over the past two decades, 

many studies have brought to light the functional significance of the fish lateral line, a system of 

hair cells that detects animal flows/pressure fields (Bleckmann, 1994; Bleckmann and Zelick, 

2009; Coombs et al., 1989a; Coombs et al., 1989b; Engelmann et al., 2000; Montgomery et al., 

1995). The role of the lateral line in fish predator-prey interactions has been investigated using 

lateral line ablation techniques, whereby the escape response rapidly diminishes with ablation, 

but returns with hair cell regeneration (Feitl et al., 2010; McHenry et al., 2009; Stewart et al., 

2013). In fish, the C-start escape response is initiated when neuromasts comprising the lateral 

line are stimulated by pressure gradients generated by an oncoming predator (McHenry et al., 

2009; Wainwright et al., 2007).  Larval zebrafish (Danio rerio) react swiftly (within 30 ms) to 

the flow field produced by an attacking predator via a C-start escape response that quickly moves 

the fish out of the predator’s path (Hale, 1999; McHenry et al., 2009).  

While the vertebrate lateral line systems have been well studied, hydrodynamic receptor 

systems are also commonly used among invertebrates for predator evasion. In fact, the ability to 

detect fluid motion is found throughout many aquatic invertebrate groups from protozoans to 

lower chordates (Coombs et al., 1989b). For example, copepods are capable of sensing flow 
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using setae along the first antenna, which can alert them to an oncoming predator  (Fields and 

Yen, 2002; Heuch et al., 2007; Viitasalo et al., 1998; Visser, 2001; Yen et al., 1992).  The setae 

extend into the surrounding fluid environment, allowing copepods to detect predator flows 

within a three-dimensional volume surrounding the copepod body (Browman et al., 2011; Doall 

et al., 2002). Another invertebrate example are tunicates, which also have specialized sensory 

receptor cells along their tentacles that sense hydrodynamic cues from predators (Burighel et al., 

2003).  

Like fishes and the invertebrates described above, cephalopods also have flow sensing 

structures. Squid and cuttlefish have epidermal hairs along their head and arms that resemble the 

lateral line system of fishes (Bleckmann et al., 1991; Budelmann, 1994; Budelmann, 1996; 

Budelmann and Bleckmann, 1988; Sundermann, 1983). This lateral line analogue is not as well 

described as the fish lateral line system. It consists of polarized epidermal hair cells that have 

several kinocilia and an axon extending from their base (Budelmann and Bleckmann, 1988). 

Polarization occurs in a precise pattern (e.g., anteriorly, posteriorly, left and right), allowing the 

animals to detect water movements as low as 18.8 µm/s, which is equivalent to the sensitivity of 

fish lateral lines (Bleckmann et al., 1991). Behavioural responses have been elicited in cuttlefish 

(Sepia officinalis) by stimulating their lateral line analogue using a wide range of frequencies 

(10-600 Hz) (Komak et al., 2005). In addition, York and Bartol (2014)(see Chapter 2) 

demonstrated that ablation of the lateral line analogue leads to reduced survivability of juvenile 

and adult squid (Lolliguncula brevis) when interacting with a predator.  

One important advantage of squid in predator evasion is their reliance on multiple 

sensory systems for detection of predators (Budelmann, 1996). In addition to the lateral line 

analogue system, cephalopods have a highly evolved visual system, with prominent eyes and 
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dominant optic lobes useful for predator detection and initiation of escape responses 

(Budelmann, 1994; Budelmann, 1996; Young, 1962). Resembling the vertebrate eye, the 

cephalopod eye incorporates a large posterior chamber, lens, iris, retina, choroid, sclera and 

argenta (Budelmann, 1994). Additionally, a squid’s visual acuity is approximately 5-10 minutes 

of arc (Muntz and Johnson, 1978), and recordings from the optic lobe have revealed that the 

fusion frequency, i.e. the number of flashes of light perceived per second, is between 20 and 60 

Hz and intensity dependent (Bullock and Budelmann, 1991). Both of these values are 

comparable to measurements of the vertebrate eye (Budelmann, 1994). Used together, visual 

processing and flow sensing represent a powerful integrated mechanism for predator detection in 

cephalopods.   

Many organisms live in distinct environments during different life stages of their 

development, requiring their sensory systems to change throughout ontogeny. While 

cephalopods do not experience a distinct metamorphosis, and therefore do not have true larva 

(squid hatchlings are called paralarvae) (Shea and Vecchione. 2010), hatchlings are nonetheless 

ecologically different from older life history stages (Robin et al., 2014; Shea and Vecchione, 

2010; Young and Harman, 1988). Unlike juveniles and adults, which are capable of powerful 

long distance locomotion (Robin et al., 2014), paralarvae are planktonic and cover only short 

distances by active swimming, often moving through the water column in diel vertical migrations 

(Boyle and Boletzky, 1996; Robin et al., 2014). Moreover, although squid do not experience a 

distinct metamorphosis, paralarvae do indeed differ morphologically from older life stages, 

having a more rounded mantle, relatively smaller arms, a proportionally larger funnel, and 

rudimentary fins (Boletzky, 1974; Okutani, 1987; Packard, 1969).  Important physiological 

changes also occurs throughout ontogeny, with paralarvae having greater proportions of surface 
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mitochondria rich (SMR) mantle fibers (Preuss et al. 1997), shorter thick myofilament lengths 

(Thompson and Kier, 2006; Thompson et al. 2010), and less coordination of giant and non-giant 

motor systems (Preuss and Gilly, 2000) relative to adults. Additionally, the brain volume of 

squids increases exponentially with age and different regions of the brain develop at distinct 

points through ontogeny (Kobayashi et al., 2013).  

Squids undergo morphological, physiological and ecological changes throughout 

ontogeny (Boyle and Boletzky, 1996), and therefore may perceive predators differently at 

various life stages, as is the case with certain fishes and invertebrates. Because herring larvae 

(Clupea harengus) lack canal neuromasts during early ontogenetic stages, they have reduced 

responsiveness to predator attacks, but increase their wake sensing capabilities with size as the 

lateral line canal system develops (Blaxter and Fuiman, 1990). Squids do not appear to have a 

canal neuromast system, but they still may exhibit important differences in hair cell sensitivity 

with ontogeny given differences in ecology, morphology, and physiology with life stage.  

Additionally, the visual capabilities of alewife (Alosa pseudoharengus), yellow perch (Perca 

flavescens) and bloaters (Coregonus hoyi) improve throughout ontogeny, and these changes may 

lead to improvements in predator avoidance due to the increased ability to detect potential 

predators (Miller et al., 1993). Crustaceans also undergo considerable reorganization of their 

visual systems throughout ontogeny, where larvae have eyes that are structurally suited for 

orientation and vertical migration, whereas adults are capable of more elaborate visual tasks such 

as navigation, prey recognition and capture, mate selection and communication (Cronin and 

Jinks, 2001). Given the variation of sensory capabilities seen in other taxa, it is likely that 

differences in ecology, morphology, and physiology of squid throughout ontogeny translate to 

differences in their abilities to perceive an oncoming predator.  No information is currently 
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available on the role of vision and the lateral line analogue in predator evasion throughout 

multiple life history stages of squid.   

 While it has been shown that the lateral line analogue plays a role in successful predator 

detection in juvenile and adult squid (see Chapter 2), the kinematics of predator-prey interactions 

have not been examined for squid under different light conditions and levels of lateral line 

analogue ablation. Additionally, the relative roles of the lateral line analogue and vision 

throughout ontogeny have not been explored in any cephalopod. Therefore, this study addresses 

two primary questions: 1) are epidermal hairs and vision both important for successful predator 

evasion in squid throughout ontogeny, and 2) do orientation angles, swimming velocities, 

accelerations, and response times change throughout ontogeny when visual cues and the lateral 

line analogue are modified.     

 

MATERIALS AND METHODS 

Animal collection and maintenance 

This project was conducted in accordance with Old Dominion University’s Institutional 

Animal Care and Use Committee (Protocol #12-016). Paralarval Doryteuthis pealeii (dorsal 

mantle length (DML) = 0.18 cm) and juvenile and adult Lolliguncula brevis (DML=3.0-7.0 cm) 

were used for this research. Despite their abundance in the Chesapeake Bay, coastal Atlantic, and 

Gulf of Mexico as juveniles and adults, L. brevis egg mops are extremely difficult to locate and 

obtain. Therefore, D. pealeii was selected to study early ontogenetic stages.  D. pealeii is a 

reasonable substitute for L. brevis because both species have similar body size, fin size and 

shape, and ecological niches as paralarvae (Bartol et al., 2008).  
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D. pealeii paralarvae were purchased from the Marine Biological Laboratory, Woods 

Hole, MA, and maintained in buckets with drilled 5 cm diameter holes covered by mesh (for 

water circulation).  The buckets were suspended in a larger 450-gallon recirculating seawater 

system at a salinity of 30-32‰ and at temperatures of 19-24°C until hatching. Upon hatching, 

paralarvae were separated to track their age.  Squid L. brevis used in this project were captured 

by otter trawl in Wachapreague, VA, USA. Trawls were conducted in August, September and 

October as the catch probabilities are highest in these months (Bartol et al., 2002). After capture, 

squid were transferred to a 114 L, circular holding tank (Angler Livewells, Aquatic Eco-

Systems, Inc., Apopka, FL, USA) fitted with a portable battery powered aerator (Model B-3, 

Marine Metal Products Co., Inc., Clearwater, FL, USA) for transport to the lab. Squid were then 

placed in 450-gallon seawater systems configured with several forms of filtration (e.g., BioBalls, 

protein skimmers, ozone filtration, etc.), where they were maintained until the experiments were 

performed. Seawater was maintained at temperatures and salinities equivalent to those of the 

capture sites (19-22 °C; 30-35 ‰). A moderate current flow was maintained to promote active 

swimming and squid were fed a diet of live Palaemonetes pugio and Fundulus heteroclitos as 

suggested by Hanlon et al. (Hanlon, 1990; Hanlon et al., 1983). Squid were allowed to acclimate 

for at least 2 h prior to experimental trials. Only those animals that appeared healthy and 

exhibited normal behaviours were used.  In total, 80 paralarval squid and 40 juvenile and adult 

squid were selected for this study.  

Two summer flounder (Paralichthys denatus) (13.2 cm and 15.5 cm body length (BL)) 

and mummichogs (Fundulus heteroclitus) (1.3 cm and 1.5 cm BL) were purchased from the 

Marine Biological Laboratory, Woods Hole, MA, and maintained in a recirculating seawater 

system at salinities of 30-32‰. The flounder and mummichogs were fed live squid (L.brevis and 
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D. pealeii, respectively) for one week prior to experimental trials so that they could become 

proficient in squid capture before data collection. Although we are using different fish species 

for the paralarvae and juvenile/adult trials, the species chosen reflect predators that the squid 

often encounter in each ontogenetic phase in the waters of the mid-Atlantic region, with the goal 

of documenting behaviors that reflect natural conditions. 

 

Predator-prey experiments 

Predator-prey interaction experiments were used to evaluate the importance of vision and 

the lateral line analogue in predator evasion. Lateral line ablation was accomplished with a 500 

µm neomycin solution, which is commonly used in ablation studies in fish (Harris et al., 2003) 

and which has been validated as an effective technique in squid (see Chapter 2). One hour prior 

to trial acclimation, squid were placed in a container that either held the neomycin sulphate 

solution for ablation groups or untreated seawater for the non-ablation groups. Four different 

conditions were tested: 1) light non-ablated, where the trials were held in bright light conditions 

with squid having intact hair cells; 2) light ablated, where the trials were held in bright light 

conditions with squid having ablated hair cells; 3) dark non-ablated, where the trials were held in 

dark conditions with squid having intact hair cells; and 4) dark ablated, where the trials were 

held in dark conditions with squid having ablated hair cells. 

Paralarvae trials were conducted in a 10x10 x10 cm clear acrylic tank. Two DALSA 

Falcon video cameras (DALSA Corp., Waterloo, ON, Canada; 1400 x 1024 pixel resolution, 100 

frames per second) outfitted with a 25 mm lens (FOV=2.7x3.7 cm) were positioned above the 

arena for a dorsal view, and another DALSA Falcon outfitted with a 25 mm lens was positioned 

beside the tank for a lateral view. A 500-watt halogen light provided illumination for the light 
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experimental trials. An IR56 infrared light (C&M Vision Technologies Inc., Houston, TX, USA) 

was used to illuminate the working section during the dark trials. Video frames from the cameras 

were stored in real time on hard disk using a CLSAS capture card (IO Industries, London, ON, 

Canada) and Streams 5 software (IO Industries, London, ON, Canada).  For each experiment, 5-

10 paralarvae were placed in the arena with two small mummichogs (Fundulus heteroclitus). 

Food was withheld from the mummichogs 24 h prior to the start of all trials. Multiple predators 

were used to increase the frequency of predation events. At the beginning of each trial, the squid 

were placed in the arena for a 30 min acclimation period. After the acclimation period, the fish 

were added and the experiments commenced. Each trial lasted 10 minutes, after which the fish 

were removed and surviving paralarvae were returned to their holding tank.  

The experimental set-up for the adult and juvenile trials is described in York and Bartol 

(2014) (see Chapter 2) and briefly repeated here for convenience. Trials took place in a 1.2 m 

diameter x 0.76 m deep round tank with a crushed coral substrate. The arena was lined with 

curtains to avoid disturbing acclimating animals. A UNIQ UP-685 CL high-speed color camera 

(Uniq Vision; 659 x 494 pixel resolution, 110 frames per second) outfitted with a 5 mm lens 

(FOV = 130 cm x 170 cm) was suspended from scaffolding over the tank. Video frames from the 

cameras were stored in real time on hard disk using a CL160 capture cards (IO Industries, 

London, ON, Canada) and Video Savant 4.0 software (IO Industries, London, ON, Canada).  

Four 500-watt halogen lights provided illumination for the light experimental trials.  Infrared 

lighting was used for dark treatments; however, the lighting did not provide sufficient lighting 

for detailed kinematic measurements (see below).  

For each juvenile and adult experiment, a 40 cm diameter cylinder made of 5 mm plastic 

mesh was lowered into the experimental tank containing two summer flounder Paralichthys 
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denatus, and a single squid was placed inside the mesh cylinder for a 30 min acclimation period. 

The trials commenced when the cylinder partition was raised above the tank, and the flounder 

and squid were allowed to interact.  Each trial ran for 10 min; after this time any surviving squid 

were removed. Multiple predators again were used to increase the odds of a predation event, and 

as was the case for paralarval trials, food was withheld from the predators 24 h prior to the start 

of all trials. Ten separate squid were tested in each of the four treatment conditions. Each group 

contained squid of similar sizes (mean ± s.d:  light non-ablated = 4.2±0.3 cm DML; light 

ablated= 3.9±0.3 cm DML; dark non-ablated= 3.9 ±0.4 cm DML; dark ablated= 3.9±0.3 cm 

DML).  

Frame-by-frame position tracking of the squid body features was accomplished using 

image tracking software (Hedrick, 2008). Infrared lighting used during the dark trials for 

juveniles and adults did not provide sufficient lighting to capture detailed kinematic 

measurements and were therefore excluded from analysis. In juveniles and adults, eight points 

were tracked: (1) mouth of fish, (2) middle of the fish body, (3) tail of squid, (4) eye of squid, (5) 

tip of the squid mantle, (6) tip of squid arms, (7) leading edge of ink, and (8) trailing edge of ink. 

In paralarvae, four points were tracked in both dorsal and lateral views: (1) mouth of fish, (2) 

middle of the fish body, (3) tip of the squid mantle, and (4) eye of squid.  The tracked points 

were used to determine (1) distance between the predator and prey at the initiation of escape 

response, (2) the minimum distance between predator and prey, (3) the velocity of the squid at 

the beginning of the interaction, (4) the maximum and mean velocity of the predator and prey 

during the encounter, (5) the time the prey reached maximum velocity after initial predator 

recognition, (6) the maximum acceleration of the predator and prey, (7) time when maximum 

acceleration was reached and (8) distance between predator and prey at point of maximum 
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acceleration. These parameters were calculated using Matlab routines developed in-house. The 

routine performed a low pass filter of the data using a cutoff frequency between 10-20 Hz and a 

2
nd

 order Butterworth filter. The double filter operation increases the effective order of filtering 

to the 4
th

 order.  

The angular orientation of squid relative to the approaching predator (θ) and the angular 

orientation of the squid escape trajectory () were measured at the initiation of the predator’s 

attack and over several frames of the escape response, respectively (Fig. 3A). θ was the angle 

between the squid’s longitudinal axis and the line connecting the tip of the predator rostrum to 

the squid’s center of mass, whereas  was the angle between the line connecting the tip of the 

predator rostrum to the prey’s center of mass and the path of the escape over multiple frames. 

Predator-squid distance (d) was measured from the predator’s rostrum to the closest component 

of the squid. Interactions were divided into four groups of angular orientations for both θ and : 

(1) < 45°, (2) 46°-90°, (3) 91°-135°, (4) 136°-180°. These groupings were useful in determining 

whether the predator approached the squid from an anterior, lateral or posterior direction, as well 

as for determining the direction of the squid escape trajectory (Fig. 3B).  

 

Statistical analysis 

Statistical analysis including t-tests, ANOVAs and MANOVAs were performed in SPSS 

(v. 18 SPSS Inc., Chicago, IL, USA). The proportion of escape responses and interactions 

survived for each squid was calculated to show success relative to the number of capture 

attempts. All data were tested for normality using Shapiro-Wilk tests. Data from several groups 

varied from normality (all p≤0.02), and therefore all data were transformed via arcsine 

transformation prior to parametric analysis. A regression was performed on the total  



33 

 

 

 

 

Figure 3. Angular orientation of squid during interactions with predator. A) The angular 

orientation of squid to approaching predator (θ) was the angle between the squid’s longitudinal 

axis (solid black line extending from squid) and the line connecting the tip of the predator’s 

upper rostrum to the squid’s center of mass (dashed grey line). The angular orientation of the 

squid escape jet () was the angle between the line connecting the tip of the predator’s upper  

rostrum to the prey’s center of mass and the path of the escape over multiple frames (dashed 

arrow extending from squid).  B) Diagram of squid orientations. Interactions were divided into 

four groups of angular orientations for both  and θ: 1) < 45°, (2) 46°-90°, (3) 91°-135°, (4) 

136°-180°.  
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number of interactions survived and the mantle length of the juvenile and adult squid in each 

condition to determine the relationship between size and survivability, and no significance was 

found (all p≥0.10). Additionally, kinematic measurements were compared between juveniles and 

adults with no significant differences found (all p≥0.05), and thus all juvenile and adult squid 

were pooled into one ontogenetic group for further analysis. Paralarvae, which had consistent 

dorsal mantle lengths of 0.18 cm, were considered a second ontogenetic group.  

As there were often multiple predator-prey encounters per trial, kinematic parameters 

were compared between multiple encounters to access differences as the trial progressed; 

however, no significant differences were found in any of the kinematic parameters tested 

(ANOVA: all p>0.05). Therefore, measurements from multiple encounters were averaged per 

individual for further comparison between treatment groups. Analysis of variance was used to 

compare survival and escape between treatment groups through ontogeny. Multivariate analysis 

of variance (MANOVA) was used to compare kinematic variables in squid among treatment and 

ontogenetic groups.  

 

RESULTS 

Paralarval and Juvenile/Adult Escape and Survival  

Overall success in predator-prey interactions  differed significantly among treatment 

groups within paralarvae (F6,152 = 3.205, p=0.005,Wilk’s Δ = 0.788, ƞ
2
=0.112). Significant 

differences were found among the mean proportion of paralarvae that initiated an escape 

response within each treatment group (F3,77=5.08, p=0.003; Fig.4A). Tukey post-hoc tests 

revealed that both the light, non-ablated paralarval group (mean proportion for escape= 

0.68±0.47) and the dark non-ablated paralarval group (mean proportion escape= 0.76±0.44) had 
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a higher proportion of escape responses than the dark ablated paralarval group (mean proportion 

escape= 0.29±0.46). Additionally, the light, ablated paralarval group (mean proportion escape= 

0.33±0.48) had a significantly lower proportion of escape responses than the dark, non-ablated 

condition (mean proportion escape= 0.76±0.44). Although not statistically significant at α=0.05, 

light ablated paralarvae exhibited a trend in lower proportion of escape responses (0.33±0.48) 

than the light non-ablated paralarvae (p=0.08). The number of paralarvae that survived 

interactions with the predator also significantly differed according to treatment groups 

(F3,77=2.78, p=0.04: Fig. 4B), with greater survival being detected for both light treatment groups 

and the dark, non-ablated group relative to the dark ablated group (mean proportion survival= 

0.06±0.25).  

When paralarval data are compared with juvenile and adult data reported in Chapter 2 

significant differences were found between the two groups in the proportion of escape responses 

and the proportion of squid that survived in each treatment group. Juveniles and adults were 

more likely to initiate an escape response than paralarvae in all four treatment groups (all p<0.05; 

Fig 4A). Juveniles and adults also had significantly greater survival than paralarvae in all 

treatments (all p<0.05; Fig. 4B). 

 

Paralarvae Kinematics 

The mean velocity, maximum velocity and maximum acceleration of the predator did not 

significantly vary among the four treatment groups (MANOVA: F9,151 = 1.28, p=0.251,Wilk’s Δ = 

0.836, ƞ
2
=0.058), indicating that the fish behaved similarly throughout the paralarvae trials 

irrespective of treatment level. No differences in the escape kinematics of paralarvae were found 

among the four treatment conditions (MANOVA: F15,166 = 0.973, p=0.485,Wilk’s Δ = 0.792,  
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Figure 4. Mean proportion of escape responses (A) and surviving individuals (B) for paralarval 

and juvenile/adult squid. Non-ablated and ablated squid in light and dark conditions are shown. 

Lower case letters indicate significant differences among paralarvae treatment conditions and 

upper case letters indicate differences among juvenile/adult treatment groups. Bars with the same 

letters are not significantly different (Tukey post hoc comparison tests). Significant differences 

between paralarvae and juvenile/adults in each treatment group are indicated with asterisks. Non-

transformed means and s.e.m. are presented. Juvenile/adult data derive from Chapter 2. 
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ƞ
2
=0.075).  Indeed, neither the mean nor maximum velocity of the paralarval squid differed 

among treatment groups (mean velocity: F3,64= 0.89, p=0.45; maximum velocity: F3,64=0.60, 

p=0.62)(Fig. 5A, 5B). Additionally, no differences were found in the time to reach maximum 

velocity (F3,64=0.89, p=0.45)(Fig. 5D) or maximum acceleration of the paralarval squid 

(F3,64=2.49, p=0.07)(Fig. 5C).  Furthermore, the distance between the predator and prey at the 

initiation of the escape response, minimum distance between predator and prey, and the velocity 

of the squid at the beginning of the interaction were not found to be significantly different among 

treatment groups (all p>0.05). No significant correlation was detected between the mean velocity 

of the approaching predator and the escape response of the squid within all treatment groups (all 

p>0.05).  

 Throughout all of the treatment groups, the angular orientation of the squid to the 

approaching predator (θ) was 0°-90°.  Within this narrow angular range, there were some 

significant differences in θ among the treatment groups (F3,62=3.34, p=0.025; Fig.6A,C). In 

particular, squid in the light, ablated group oriented themselves at lower angles (mean= 

26.08±17.14°) than the dark, non-ablated group (mean=55.55±24.41°; p=0.01). The mean angle 

of the squid’s escape trajectory () did not differ by treatment group (F3,62=0.12, p=0.94; Fig. 

6B,D), with all mean angles falling between 90 and 180°. Inking behavior was not observed 

among the paralarval squid.    

 

Juvenile and Adult Kinematics 

 As mentioned earlier, interactions in the dark conditions involving juveniles and adults 

were not recorded with high resolution due to insufficient lighting and were therefore excluded 

from kinematic analysis. The mean velocity, maximum velocity and maximum acceleration of  
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Figure 5. Kinematics of the paralarval escape responses. A) The mean velocity of the paralarval 

escape response in each treatment group. B) The peak velocity of the escape response. C) The 

peak acceleration of the escape response. D) The time to peak velocity in each treatment group. 

Non-transformed means and s.e.m. are presented. No differences were found among the 

treatment groups as indicated by horizontal bars.     
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Figure 6. Angular orientation of the squid to the predator (θ) (A, C) and paralarval escape 

trajectories () during predator encounters (B, D). A and B represent light conditions, whereas C 

and D represent dark conditions. The grey color represents the non-ablated treatment group and 

the black represents the ablated treatment group. Each sectional increment in the diagrams 

represents two squid.  
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the predator did not significantly differ between light ablated and light non-ablated treatments 

(F3,16 = 1.06, p=0.393,Wilk’s Δ = 0.83, ƞ
2
=0.166), indicating that the fish behaved similarly 

throughout the trials. Conversely, significant differences in squid kinematics were found 

throughout the treatment groups (F8,11 = 4.13, p=0.005, Wilk’s Δ = 0.25, ƞ
2
=0.75).  The mean 

velocity of the squid’s escape response was significantly higher in non-ablated than ablated light 

conditions (F1,19 =8.98, p=0.008, non-ablated= 29.20±17.2 DML s
-1

, ablated= 10.4±9.73 DML s-

1
) (Fig. 7A). Additionally, significant differences were found between the maximum velocity of 

the squid in the light non-ablated and ablated groups (F1,19 =5.84, p=0.002) with the non-ablated 

group having significantly higher peak velocities (65.29±28.78 DML s
-1

) than the ablated group 

(27.08±18.78 DML s
-1

)(Fig. 7B). The time for squid to reach maximum velocity also differed 

between treatment groups (F1,19 =10.35, p=0.005), with the ablated group taking significantly 

longer to respond than the non-ablated group (non-ablated= 0.49±0.35 s, ablated= 0.93±0.26 s; 

Fig.7D). The maximum acceleration reached by the squid also differed according to treatment 

group (F1,19 =5.84, p=0.026), with the ablated group only reaching half of the acceleration of the 

non-ablated group (non-ablated= 437.16±249.31 DML s
-2 

ablated= 210.04±161.7 DML s
-2

)(Fig. 

7C). 

The squid in both treatment groups actively oriented between 0° and 90° during all 

predator interactions; however the ablated group had a significantly higher mean angle towards 

the predator (θ) than the non-ablated group (F1,19=2.92, p=0.01; non-ablated= 38.5±11.86°; 

ablated= 69.00±30.94°; Fig.8). The mean angle of escape trajectories () did not differ between 

non-ablated and ablated groups F1,19=0.93, p=0.37; non-ablated= 148±5.47°, ablated= 

144±11.94°; Fig. 8). Interestingly, the ablated group demonstrated a lower proportion of inking  
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Figure 7. Kinematics of the juvenile and adult escape responses. A) The mean velocity (DML s
-

1
) of the escape response in each treatment group. B) The peak velocity (DML s

-1
) of the escape 

response. C) The peak acceleration (DML s
-2

) of the escape response. D) The time to peak 

velocity (s) in each treatment group. Non-transformed means and s.e.m. are presented.  Asterisks 

denote significant differences. 
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Figure 8.  Angular orientation of the squid to the predator (θ)(A) and juvenile and adult squid 

escape trajectories () during predator encounters (B) under lighted conditions. The grey color 

represents the non-ablated treatment group and the black represents the ablated treatment group. 

Each sectional increment in the diagrams represents two squid.  
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events than the non-ablated group (F1,19 =2.18, p=0.038, non-ablated= 0.52±0.35 proportion ink 

events, ablated= 0.22±0.22 proportion ink events). 

When inking was performed, both ablated and non-ablated groups inked at similar 

distances from the predator (t7=0.19, p=0.90; non-ablated= 2.65±1.11 DML, ablated= 2.41±2.96 

DML). Other kinematic parameters (distance between the predator and prey at the initiation of 

escape response, minimum distance between predator and prey, the velocity of the squid at the 

beginning of the interaction) were not significantly different between treatment groups (all 

p>0.05). Additionally, no significant correlation was detected between the mean velocity of the 

approaching predator and the escape response of the squid within either treatment group (all 

p>0.05).  

 

DISCUSSION 

 The findings of this study demonstrate for the first time that both vision and the lateral 

line analogue provide sensory information for initiation of an escape response and successful 

predator evasion in squid throughout ontogeny. Cephalopod vision has been viewed as the 

dominant sensory modality used in predator detection due to the well-developed complex nature 

of cephalopod eyes (Budelmann, 1994; Budelmann, 1996). Cephalopods have a wide visual field 

that can extend over 360° in the horizontal plane, allowing them to detect predators within an 

extensive sensory sphere (Cronin, 2005; Messenger, 1968). Despite the highly advanced 

visual system, there are many situations where visual cues are reduced and/or unreliable, such as 

in turbid waters, at night, in complex environments where visual indicators are overwhelming, or 

in cases where predators are well camouflaged (Budelmann, 1994; Budelmann, 1996). Under 

these conditions, cephalopods can benefit from other sensory systems, such as the lateral line  
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 analogue, which is sufficiently sensitive to detect a swimming 1-meter fish at a distance of about 

30 meters away, even when vision is disabled (Budelmann, 1994).   

The use of the lateral line analogue was evident in paralarval squid where significantly 

different escape responses were observed among the four treatment groups. In both the light and 

dark conditions, the non-ablated groups showed a higher proportion of escape responses than the 

dark ablated group.  A clear trend in higher proportion of escape responses for light non-ablated 

paralarvae versus light ablated paralarvae was also noted.  Together these results indicate that the 

lateral line analogue plays a role in initiation of an escape response in paralarvae. Interestingly, 

there was no difference in the initiation of an escape response of the paralarvae in the light non-

ablated and dark non-ablated conditions, as would be expected given the importance of the visual 

system in cephalopods.  This unexpected finding may derive from reduced visual capabilities at 

early ontogenetic stages, though this topic has not been examined to date.  If paralarvae do 

indeed have reduced visual capabilities during early ontogeny, the sensory function of the lateral 

line analogue may be relatively more important for paralarvae than older life stages, when the 

visual system is fully developed.   

The lack of survival differences across the light ablated, light non-ablated and dark non-

ablated treatments in paralarvae is likely due to swimming speed differences between the prey 

(squid) and predator (fish).  The mean velocity of the predator (2.31 cm s
-1

) was much higher 

than that of the paralarvae (0.75 cm s
-1

), making successful escape difficult even when the lateral 

line analogue and visual systems were accessible. Interestingly, when both visual and lateral line 

sensing were removed (i.e., the dark ablated treatment), survival was lowest, indicating use of 

these two sensory modalities in concert is important for successful predator evasion for 

paralarvae. These results are consistent with previous studies on zebrafish, where zebrafish 



45 

 

larvae with intact lateral line systems are able to avoid many more attacks than larvae with 

ablated lateral line systems (Stewart 2013). As described in Chapter 2, light non-ablated 

adult/juvenile squid have a higher proportion of interactions survived (1.00±0.00) than dark 

ablated squid (0.33±0.44) and exhibit a trend in higher proportion of interactions survived than 

dark non-ablated squid (0.57±0.50).  These results demonstrate that vision is an important 

modality for predator avoidance in addition to the lateral line analogue. The higher mean 

proportion of interactions survived in light ablated adults (0.78±0.34) than dark ablated adults 

(0.33±0.44) provides further support for this conclusion.  

Significant differences were found in the proportion of escape responses and survival 

between the paralarvae and older squid throughout the treatment conditions. Overall, juveniles 

and adults performed more escape responses than paralarvae, which led to a significantly higher 

rate of survival for juveniles and adults in all treatment conditions. This result may reflect 

different anti-predator strategies of squid throughout ontogeny, whereby paralarvae use different 

approaches to compensate for an underdeveloped nervous system and life in a more viscous flow 

regime (Re paralarvae = 1-10
2
; Re juvenile and adults = 10

3
-10

6
) (Chen et al., 1996; Bartol et al., 

2009). In 32% of the predator-prey interactions, paralarvae did not change their behavior as a 

predator was approaching, other than orienting arms-first to the predator. The juveniles and 

adults, however, always responded to an approaching predator with an escape response, 

regardless of ablation treatment. Unlike juveniles and adults, paralarvae often rely on a repertoire 

of stereotyped behaviors, such as circling and spiraling in combination with a clear body pattern, 

to avoid predation over employing a directed escape response (see Chapter 4). This reliance on 

random, constant motion may be the paralarvae’s best defense given presumed sensory 

limitations during early ontogeny and residence in a highly viscous flow field.  Nonetheless, 
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reduction in the frequency of escape jetting likely produced the observed differences in escape 

responses and survival.     

In juveniles and adults, the kinematics of the escape responses under lighted conditions 

(detailed kinematic analysis was not performed in dark conditions because of camera resolution 

issues) differed based on ablation conditions. The mean velocity of the juvenile and adult’s 

escape response was significantly higher for non-ablated versus ablated squid, with the ablated 

group having mean velocities of 10.4±9.73 DML s
-1

, while the non-ablated group had mean 

velocities of 29.20±17.2 DML s
-1

. The peak velocity of the ablated group (27.08±18.78 DML s
-1

) 

was also significantly lower than the peak velocity of the non-ablated group (65.29±28.78 DML 

s
-1

). Additionally, the time for the squid to reach maximum velocity was almost half a second 

longer in the ablated versus non-ablated group, and the ablated group only reached 

approximately half of the peak acceleration of the non-ablated group. Collectively, these results 

strongly suggest that juveniles and adults use their lateral line analogue to sense the 

hydrodynamic signatures of oncoming prey, similar to zebrafish (Danio rerio), which detect the 

bow wave generated by an approaching predator using their lateral line system (Stewart et al., 

2014). When flow sensing hairs are disabled through ablation, the squid reacts more slowly and 

with a lower velocity escape response than those with intact sensory hairs, thereby leading to 

reduced survivability.  These results make sense given the sensitivity of the lateral line analogue 

to flow perturbations (Bleckmann et al. 1991) and its importance as an early warning system for 

predators. 

Another potential reason for reduced survivability of ablated juvenile and adult squid is 

their lower frequency of inking events than non-ablated squid. Juvenile and adult squid in the 

non-ablated group inked in 52% of predator-prey interactions, whereas ablated squid inked in 
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only 22% of interactions. Previous studies have indicated that an inking event is one of the most 

important anti-predator behaviors for successful predator evasion with a > 50% increase in 

survival occurring in squid Doryteuthis pealeii when inking is used during attacks by fish versus 

when it is not (Staudinger et al., 2011). In addition to ink causing visual confusion during 

predator encounters, chemicals in the ink are also thought to block olfactory or taste receptors in 

predators, causing them to abandon their approach (Caldwell, 2005; Hanlon and Messenger, 

1996).  Thus, reduced inking in ablated squid likely played some role in reduced survivorship. 

Interestingly, unlike the juveniles and adults, the paralarval squid did not demonstrate any inking 

behavior and this may have contributed to lower survivorship in paralarvae. The reason for this is 

unclear as paralarval squid can produce ink. However, perhaps the lack of inking in paralarvae is 

a reflection of more restrictive use of this defense given the high energetic requirements of 

producing ink (Wood et al., 2008) coupled with the need to allocate high levels of energy toward 

development (Russo et al., 2003).  

While the paralarvae did show differences in the proportion of escape jets employed 

across treatment groups, there were no differences in mean or peak swimming velocity, time to 

reach peak swimming velocity or acceleration across the treatment groups. The lack of observed 

kinematic differences may derive from an underdeveloped motor system at this ontogenetic 

stage. The squid mantle undergoes muscular changes throughout ontogeny, where the superficial, 

mitochondria rich (SMR) fibers are used for jetting as paralarvae, but central, mitochondria-poor 

(CMP) fibers increase in number and produce the power for an escape jet as juveniles and adults 

(Preuss et al., 1997a). To produce an escape jet, the squid nervous system is comprised of  giant 

axons that generates a powerful all-or-none contraction of the circular muscle fibers of the 

mantle (Young, 1938), as well as parallel non-giant motor axons that can generate equally strong 
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contractions, but require repetitive firing (Gilly et al., 1996; Prosser and Young, 1937). During 

escape responses, juvenile and adult squid show two recruitment patterns for the giant axons 

where either (1) a stereotyped escape response is driven by a single giant axon spike, or (2) a 

more complex escape jet is produced by a synchronized recruitment of non-giant and giant motor 

neurons (Otis and Gilly, 1990). Paralarvae squid hatch with functional giant and non-giant motor 

systems (Marthy, 1987; Martin, 1965; Preuss et al., 1997a), but concerted recruitment of the two 

systems does not become fully established until several weeks post-hatching (Preuss and Gilly, 

2000). The paralarvae examined in this study were 24-48 h post hatching.  Therefore it is likely 

the paralarval escape responses were driven by the single giant motor neuron, whereas more 

complex and variable escape responses were demonstrated in the juveniles and adults through 

recruitment of non-giant axon activity. This is supported by observations that paralarvae 

responded with a similar kinematic jet response, regardless of predator approach, whereas 

juveniles and adults showed greater variation in the escape response (e.g., variation in velocity, 

time to peak velocity and acceleration), particularly in the ablated groups. Additionally, the basal 

lobe system of the brain, which is associated with the control of movements in cephalopods, 

increases in size exponentially throughout ontogeny (Kobayashi et al., 2013), which may also 

relate to control over the escape response in predator-prey interactions. 

 Throughout all of the predator-prey interactions, the squid actively oriented themselves at 

angles of 0° - 90° relative to the oncoming predator. While it is conceivable that this positioning 

is driven by a preference for the fish to attack the anterior portion of the prey, the squid in this 

study consistently kept their arms towards the predator once the threat was detected (typically at 

the beginning of the experimental trial). Thus the observed orientation angles most likely reflect 

a behavioral preference by the squid. This position is advantageous for hydrodynamic sensing 
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given the anterior position of the lateral line analogue along the arms and head of the animal. By 

positioning themselves anteriorly, the squid are able to detect hydrodynamic cues produced by 

the oncoming predator with the greatest population of hair cells. This is important as other 

studies on fish lateral line systems have revealed greatest escape success when fish prey are 

orientated with maximum hair cell exposure to the oncoming predator (Stewart et al., 2014).  For 

example, zebrafish larvae escape oncoming predators most effectively when they are positioned 

laterally to the predator because this orientation exposes the maximum area of the fish lateral line 

(Coombs et al., 1989b; Stewart et al., 2014). Furthermore, previous studies have indicated fish 

that move much faster than an approaching predator should execute a fast start (i.e., C-start) at a 

right angle from the predator’s heading to maximally increase their distance from the predator 

(Weihs and Webb, 1984), which was supported by Stewart et al. 2014.  Squid do not produce 

body-derived C-starts for escape; they use an escape jet.  When oriented anteriorly to a predator, 

squid can more readily perform a tail-first escape jet (the predominant orientation for escape 

responses) to maximally increase their distance from the predator. In the juveniles and adults, the 

ablated group positioned themselves at a higher angle to the predator than the non-ablated group, 

which indicates that without lateral line analogue sensory input, they are less capable of sensing 

the predator, particularly its bow wave, and unable to position themselves optimally for their 

escape response. The paralarvae in the light, ablated group, however, had lower angles than the 

dark, non-ablated group.  This result suggests that vision may be important for optimal 

positioning for escape jetting.  Nonetheless, optimal positioning does not necessarily guarantee 

an escape response, as significantly less escape responses were recorded in the light ablated 

group relative to the dark non-ablated group, indicating that the lateral line analogue input is 

crucial for successful escape at the paralarval stage  
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 The escape response of squid is driven primarily by a rapid powerful jet, which propels 

the animal away from the predator. The flexible funnel can direct the jet at any angle within a 

hemisphere below the body (Ward and Wainwright, 1972) and the funnel can even alter the jet 

trajectory during an escape jet (Otis and Gilly, 1990). Based on geometric models, escaping with 

a trajectory of 180° corresponds to maximizing the distance from a predator approaching at a 

speed lower than that of the prey (Domenici, 2002; Domenici et al., 2011). Non-ablated juvenile 

and adult squid in this experiment performed escape jets at speeds as high as 256.70 cm s
-1

 

(63.15 DML s
-1

), whereas the predator only approached peak velocities of 86.51 cm s
-1

 (6.55 BL 

s
-1

).  Given this speed discrepancy, juvenile and adult escape trajectories close to 180° provide 

good spatial separation from the approaching predator. While squid L. brevis are highly 

maneuverable (Jastrebskey et al., in press), they maintained largely straight escape paths when 

responding to a predator. In juveniles and adults, 90% of all the squid examined performed an 

escape trajectory between 136-180°.  Paralarvae, however, had more variable escape trajectories 

with 42% of escapes falling between 90-135° and only 58% between 136-180°. Unlike the 

juveniles and adults, the paralarvae did not achieve higher peak velocities than the predator, with 

the squid reaching only mean velocities of 0.75 cm s
-1 

(4.16 DML s
-1

) while the fish reached 2.31 

cm s
-1

 (1.53 BL s
-1

). Given the inability of paralarvae to outswim the predator along a similar 

rectilinear path, it certainly seems reasonable that paralarvae would select other escape angles 

than 180° and even employ random, more unpredictable escape paths.  Indeed, employing 

multiple swimming paths decreases the probability that predators will lock onto repeated escape 

behaviors and improves survivability (Domenici et al., 2011). Interestingly, survival of 

paralarvae with escape trajectories of 90-135° did not differ from those with trajectories of 136-

180° across those treatment groups with survivorship exceeding 0%.  These results support the 
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conclusion that unpredictable escape trajectories are advantageous during the paralarval life 

history stage. 

Throughout ontogeny, squid are prey targets for many marine predators, including fish, 

marine mammals, sea birds, and even other cephalopods, making predator detection an 

extremely important aspect of survival to reproductive age (Clarke, 1996; Piatkowski et al., 

2001). Additionally, squid undergo substantial morphological, ecological and physiological 

transitions as they develop from planktonic paralarvae to larger, more neurologically advanced 

adults. This is the first study to examine the use of multiple sensory modalities in predator 

detection throughout ontogeny of squid. Our findings indicate that the lateral line analogue plays 

a role in predator detection and initiation of escape responses at the earliest life stages, and 

continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. 

These results provide novel insight into the sensory modalities used by squid to evade predators 

from the earliest life stages to maturity.  
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CHAPTER 4 

ANTI-PREDATOR BEHAVIOR OF SQUID THROUGHOUT ONTOGENY 

 

INTRODUCTION 

Throughout their lives, squids are prey targets for many marine predators, including fish, 

marine mammals, sea birds, and even other cephalopods, making them an integral component of 

marine food webs  (Clarke, 1996; Mather, 2010; Piatkowski et al., 2001; Wood et al., 2008). An 

array of complex behaviors have evolved as components of anti-predator responses in squids 

(Hanlon and Messenger, 1996). Along with a jet-driven escape, a widely used strategy for 

predator evasion in cephalopods is camouflage (Barbosa et al., 2008; Hanlon and Messenger, 

1996; Messenger, 2001). Postural displays are also commonly used to deter a predator from 

attacking (Bush et al., 2009; Hanlon et al., 1999; Huffard, 2006), and inking is often employed to 

confuse oncoming predators and allow time for escape (Bush and Robison, 2007; Hanlon and 

Messenger, 1996; Wood et al., 2010). Collectively, these responses provide a wide behavioral 

repertoire for predator avoidance.   

The ability of squid to change body patterning and color quickly is central to their 

camouflage and postural display strategies (Hanlon and Messenger, 1996). Chromatophores, the 

organs largely responsible for color change and body patterning, contain a large compartment of 

pigment granules (Florey, 1966), including those that are yellow, orange, red, brown and black, 

with the pigment color combination varying with species (Fingerman, 1970; Messenger, 2001).  

Each organ contains an elastic sacculus with pigment granules and is surrounded by a series of 

15-25 radial muscles to contract and expand the chromatophore (Messenger, 2001). These 

muscles are under nervous control and therefore expansion and contraction can occur rapidly and 
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selectively to create a wide variety of patterns (Hanlon and Messenger, 1996; Messenger, 2001). 

The complexity of patterns that squid can produce are correlated to their habitat complexity, with 

species living in coral reefs, rock reefs or kelp showing the highest number of chromatic 

components and pattern combinations (Hanlon and Messenger, 1996). Different body patterns 

have also been described during mating, antagonistic displays and predator avoidance (Barbato 

et al., 2007; Hanlon and Messenger, 1996; Hanlon et al., 1994; Hanlon et al., 1999).   

Furthermore, squid perform a wide repertoire of deimatic behaviors that involve chromatic, 

postural and locomotor components, which are intended to signal a warning to a predator  

(Cornwell et al., 2009; Hanlon and Messenger, 1996; Hanlon et al., 1994; Hanlon et al., 1999; 

Jantzen and Havenhand, 2003; Staudinger et al., 2011).  

In addition to crypic behavior, inking events are often employed to maximize the 

effectiveness of an escape response by confusing predators (Hanlon and Messenger, 1996; 

Staudinger et al., 2011; Wood et al., 2010).  A typical response to a predation threat is the “ink-

blanche-jet” maneuver, during which the cephalopod ejects ink as it jets away and blanches 

white (Hanlon and Messenger, 1996; Hanlon et al., 1994). Inking can occur in several forms, 

such as a ‘pseudomorph’, which is a blob of ink that is held together by mucus and approximates 

the volume of the cephalopod, serving to distract a predator while the animal swims off. Another 

method is to create a cloud of ink behind which the cephalopod can disappear (Bush and 

Robison, 2007; Hanlon and Messenger, 1996). Several other shapes of ink release have been 

observed, including ‘ropes’ and ‘puffs’ (Bush and Robison, 2007). Squid ink also contains 

chemicals such as L-dopa and dopamine that elicit escape responses in nearby conspecifics 

(Gilly and Lucero, 1992; Lucero et al., 1994; Wood et al., 2008; Wood et al., 2010). Not only do 

the chemicals in this ink potentially warn conspecifics, they may block olfactory or taste 
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receptors in predators, causing them to abandon their approach (Caldwell, 2005; Hanlon and 

Messenger, 1996).   

Although the various anti-predator behaviors have been well studied in some species of 

adult squid, little is known about how squid respond to threats throughout ontogeny. 

Cephalopods undergo major morphological and morphometric changes throughout their life and 

alter their ecological niches (Boyle and Boletzky, 1996).  While cephalopods do not experience a 

distinct metamorphosis, and therefore do not have true larva, hatchlings are ecologically distinct 

from older life history stages (Robin et al., 2014; Shea and Vecchione, 2010; Young and 

Harman, 1988). The term “paralarva” is used instead of ‘larva’, and is defined as a newly 

hatched cephalopod that has a unique mode of life from the adults, often with an endpoint 

identified by changes in morphological characteristics (Shea and Vecchione, 2010). Moreover, 

relative to the adult, paralarvae have a more rounded mantle, relatively smaller arms, a 

proportionally larger funnel, and rudimentary fins (Boletzky, 1974; Okutani, 1987; Packard, 

1969).  Ecologically, paralarvae differ from older squid in that they cover shorter overall 

distances by active swimming driven primarily by the jet (Bartol et al., 2009a), move through the 

water column in diel vertical migrations (Boyle and Boletzky, 1996; Robin et al., 2014), and 

reside in an intermediate Reynolds number (Re) regime (Re~1-10
2
) (Bartol et al., 2008; Bartol et 

al., 2009a; Thompson and Kier, 2002; Webber and O’Dor, 1986). Conversely, many juvenile and 

adult squids are capable of powerful and long distance locomotion covering significant 

horizontal distances, generally employ less vertical migratory behavior, though there are 

certainly some species that undergo significant vertical migrations (Boyle and Rodhouse, 2008), 

and operate in a higher Re regime (Re~10
3
 – 10

6
) (Bartol et al., 2009b; O’Dor, 1988). Paralarvae 

squid also have largely transparent bodies with relatively fewer chromatophores than juvenile 
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and adult stages (Messenger, 2001; Okutani, 1987), suggesting they likely use camouflage 

differently than juveniles and adults.   

Although it is clear there are large physical, behavioral, and ecological differences in the 

life history stages of squid, few studies have examined how anti-predator behavior changes from 

paralarvae to adults.  The goal of this study is to (1) document how chromatic patterning, 

posturing and inking in squid change in response to predators throughout ontogeny and (2) 

measure kinematic variables associated with squid-predator interactions to better understand the 

behavioral cues that trigger anti-predator responses. 

 

MATERIALS AND METHODS 

Animal collection and maintenance 

This project was conducted in accordance with Old Dominion University’s Institutional 

Animal Care and Use Committee (Protocol #12-016). Paralarval Doryteuthis pealeii (dorsal 

mantle length (DML) = 0.18 cm) and juvenile/adult Lolliguncula brevis (DML = 3.0-7.0 cm) 

were used for this research. Little information is currently available on the breeding habits of L. 

brevis, and they are extremely difficult to obtain as hatchlings. Therefore, D. pealeii was selected 

to study early ontogenetic stages.  D. pealeii is a reasonable substitute for L. brevis because both 

species have similar body size, fin size and shape, and ecological niches as paralarvae (Bartol et 

al., 2008). Additionally, juvenile and adult L. brevis demonstrate similar body patterning to 

juvenile and adult D. pealeii (Hanlon et al., 1999).  

D. pealeii paralarvae were purchased from the Marine Biological Laboratory, Woods 

Hole, MA, and maintained in a recirculating seawater system at a salinity of 30-32‰ and at 

temperatures of 19-24°C until hatching. Once the paralarvae hatched they were kept in separate 
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containers to keep track of age. L. brevis used in this project were captured by otter trawl in 

Wachapreague, VA, USA. Trawls were conducted in August, September and October as the 

catch probabilities are highest in these months (Bartol et al., 2002). After capture, squid were 

transferred to a 114 L, circular holding tank (Angler Livewells, Aquatic Eco-Systems, Inc., 

Apopka, FL, USA) fitted with a portable battery powered aerator (Model B-3, Marine Metal 

Products Co., Inc., Clearwater, FL, USA) for transport to the lab. Squid were maintained in 450-

gallon seawater systems in the lab with several forms of filtration (e.g., BioBalls, protein 

skimmers, ozone filtration, etc.). Seawater was maintained at temperatures and salinities 

equivalent to those of the capture sites (19-22 °C; 30-35 ‰). A moderate current flow was 

maintained to promote active swimming and squid were fed a diet of live Palaemonetes pugio 

and Fundulus  heteroclitos as suggested by Hanlon et al. (Hanlon, 1990; Hanlon et al., 1983). 

Squid were allowed to acclimate for at least 2 h prior to experimental trials. Only those animals 

that appeared healthy and exhibited normal behaviors were used.  In total, 60 paralarval squid 

and 20 juvenile/adult squid were selected for this study.  

Two summer flounder (Paralichthys denatus) (13.2 cm and 15.5 cm total length) and two 

mummichogs (Fundulus heteroclitus) (1.3 cm and 1.5 cm total length), were purchased from the 

Marine Biological Laboratory, Woods Hole, MA, and maintained in a recirculating seawater 

system at a salinity of 30-32‰. The flounder and mummichogs were fed live squid (L.brevis and 

D. pealeii, respectively) for one week prior to experimental trials so that they could become 

proficient in squid capture before data collection. Although we used different fish species for the 

paralarvae and juvenile/adult trials, the species chosen reflect predators that the squid are most 

likely to encounter in each ontogenetic phase in the waters of the mid-Atlantic region, with the 

goal of documenting behaviors that reflect natural conditions. 
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 Predator-prey experiments  

Paralarvae trials were conducted in a 10x10x10 cm clear acrylic tank. A DALSA Falcon 

video camera (DALSA Corp., Waterloo, ON, Canada; 1400 x 1024 pixel resolution, 100 frames 

per second) outfitted with a 25 mm lens (FOV = 2.7x3.7 cm) was positioned above the arena. A 

500 watt halogen light provided illumination for the experimental trials. Video frames from the 

cameras were stored in real time on hard disk using a CLSAS capture card (IO Industries, 

London, ON, Canada) and Streams 5 software (IO Industries, London, ON, Canada).   For each 

experiment, 5-10 paralarvae were placed in the arena with the two mummichogs (Fundulus 

heteroclitus), which are a natural predator for paralarvae squid. Multiple predators were used to 

increase the frequency of predation events. At the beginning of each trial, the squid were placed 

in the arena for a 10 minute acclimation period. After the acclimation period, the fish were added 

and the experiments commenced. Each trial lasted 10 minutes, after which the fish were removed 

and surviving squid were returned to their holding tank.  

 Adult and juvenile trials took place in a 1.2 m diameter x 0.76 m deep round tank with a 

crushed coral substrate. The arena was lined with curtains to avoid disturbing acclimating 

animals. A UNIQ UP-685 CL high-speed color camera (Uniq Vision; 659 x 494 pixel resolution, 

110 frames per second) outfitted with a 5 mm lens (FOV = 130x170 cm) was suspended from 

scaffolding over the tank. Four 500-watt halogen lights provided illumination for the 

experimental trials. For each experiment, a single squid was placed in the arena with two 

summer flounder (Paralichthys denatus). Multiple predators again were used to increase the 

probability of a predation event. Prior to the start of each trial, a 12 cm diameter cylinder 

composed of 5 mm plastic mesh was lowered into the experimental tank and a single squid was 

placed inside the cylinder for a 30 minute acclimation period. The trials commenced when the 
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partition was raised above the tank and the flounder and squid were allowed to interact. Each 

trial lasted 10 min, after which the squid was removed from the arena and returned to its holding 

tank. Video frames from the cameras were stored in real time on hard disk using CL160 capture 

cards (IO Industries, London, ON, Canada) and Video Savant 4.0 software (IO Industries, 

London, ON, Canada).   

 

Behavioral Responses and Kinematics 

 Kinematic variables were measured using National Institute of Health’s public domain 

software ImageJ (http://rsb.info.nih.gov/ij/). Predator-squid distance (d), angular orientation of 

squid to approaching predator (θ), angular orientation of the squid escape trajectory (), and 

orientation (i.e., tail-first or arms-first body position) were measured at the initiation of each 

squid’s defensive response to the predator (i.e., at the beginning of inking, posturing, and/or 

body patterning). Predator-squid distance (d) was measured from the predator’s rostrum to the 

closest component of the squid. θ was the angle between the squid’s longitudinal axis and the 

line connecting the tip of the predator rostrum to the squid’s center of mass., whereas  was the 

angle between the line connecting the tip of the predator rostrum to the prey’s center of mass and 

the path of the escape over multiple frames (Fig. 9). Interactions were divided into four groups of 

angular orientations for both θ and : (1) < 45°, (2) 46°-90°, (3) 91°-135°, (4) 136°-180. These 

groupings were useful in determining whether the squid oriented themselves in an anterior, 

lateral or posterior direction towards the approaching predator, as well as for determining the 

direction of the squid escape trajectory).  

Body postures were grouped into two categories: (1) “splayed arms” where the arms were 

spread apart with minimal contact between the arms, and (2) “raised arms” where unilateral or 

http://rsb.info.nih.gov/ij/
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bilateral raising of the arms was observed, often with 4-arm groupings occurring on one or both 

sides of the body (Hanlon et al., 1994) (Fig. 10). These postures were the only two observed and 

therefore other postures observed in cephalopods were not included in this study.  Several types 

of body patterns were examined in juveniles and adults including: (1) clear body, where 

chromatophores are retracted, rendering the animal mostly translucent; (2) dark body, where 

most chromatophores are expanded producing a dark body coloration; (3) banded pattern, where 

chromatophores are expanded in striped sections across the mantle, fins, head and/or arms; and 

(5) dark arms and clear body, where chromatophores are retracted on the body but expanded 

along the head and arms. Unlike juveniles and adults,the range of body patterns displayed by 

paralarval D.  pealeii has not been previously reported. Based on our observation of paralarvae in 

the presence of a predator, three body patterns were identified: (1) clear body, where the 

chromatophores are not contracted, rendering the animal mostly translucent; (2) intermediate 

body, where the chromatophores are partially contracted; and (3) dark body, where the 

chromatophores are contracted fully, producing a dark body coloration. The mean areas of three 

chromatophores on the dorsal portion of mantle were measured on each individual (N=60) to 

determine the body pattern category during the predator encounter.  

 Inking patterns were grouped according to the following categories: (1) “ropes”, (2) 

“pseudomorph”, (3) “puffs”, and (4) “clouds”.  Ink “ropes” consist of long continuous streams of 

ink (Bush and Robison, 2007), while a “pseudomorph” is described as a dense blob of ink that is 

approximately the same size and shape as the cephalopod (Hanlon & Messenger 1996). “Puffs” 

are defined as short releases of ink that quickly dissipate (Bush and Robison, 2007).   
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Figure 9. Angular orientation of squid during interactions with predator. A) The angular 

orientation of squid to approaching predator (θ) was the angle between the squid’s longitudinal 

axis (dashed black line) and the line connecting the tip of the predator’s upper rostrum to the 

squid’s center of mass (solid black line). Interactions were divided into four groups of angular 

orientations for  θ: 1) < 45°, (2) 46°-90°, (3) 91°-135°, (4) 136°-180°.  
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Figure 10. Squid body postures examined in this study: (a) “splayed arms” where all eight arms 

are spread outward, (b) “raised arms” where there is unilateral or bilateral raising of groups of 

arms. 
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Cephalopods can also create diffuse “clouds” during escape responses that generally involve 

large volumes of ejected ink with irregular borders (Hanlon and Messenger, 1996) (Fig.11). 

  The swimming velocity of squid during escape jets, which occur in conjunction with 

inking, was also measured. Several kinematic components of the predator’s approach were 

considered, including the velocity of the predator during the interaction, overall distance 

travelled by the predator and the distance travelled before a response was initiated for paralarval, 

juvenile and adult squid. The velocity of the fish was determined by measuring displacement 

from the beginning of the approach to the end of the attack (usually denoted by the fish catching 

the squid or changing trajectory) divided by the duration of the attack. The velocity of the squid 

was determined by measuring the net displacement from the beginning of the escape response to 

the end (denoted either by capture or ceasing to jet) divided by the duration of the escape 

response.   

 

Statistical Analysis 

 Statistical analysis was performed in SPSS (v. 18 SPSS Inc., Chicago, IL, USA).  

Paralarve squid (N=60) were treated as a single ontogenetic group as they consistently had a 

dorsal mantle length of 0.18 cm.  Juvenile squid were those animals 3.0–5.0 cm DML (N=9), 

while adults were animals 5.1–7.0 cm DML (N=11). When individuals had multiple predator-

prey interactions, mean proportions were calculated for body pattern type, posture type, and ink 

shape. Different predator-prey interactions were considered for postural encounters and inking 

encounters. Before analysis, all data were tested for normality using Shapiro-Wilk tests. The 

proportion data deviated from normality (all p<0.05) and thus were arcsine transformed prior to  
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Figure 11. Schematics of inking patterns examined in predator-prey experiments (modified from 

Bush and Robison, 2007). Inking patterns include: (a) ink “ropes”, which consist of long 

continuous streams of ink; (b) a “pseudomorph”, which is described as a dense blob of ink that is 

approximately the same size and shape as the cephalopod; (c) “puffs”, which are short releases of 

ink that quickly dissipate; and (4) “clouds” that generally involve large volumes of ejected ink 

with irregular borders. 
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parametric analysis. No differences were found between juveniles and adults (t-tests: all p>0.05) 

for any of these variables, and therefore data were combined for further analysis of this group 

(N=20).  Kinematic variables (predator-squid distance (d), angular orientation of squid to 

approaching predator (θ), angular orientation of the squid escape trajectory (), and body 

orientation) associated with inking events and posturing events were compared via independent 

two-tailed t-tests. For analysis of squid behaviors and predator distance, comparisons were made 

between behavioral events that occurred in the beginning of the interaction (≤50% total distance) 

and the end of the interaction (>50% total distance).  

Independent two-tailed t-tests were used to compare orientation, posture, inking events 

and body patterns between the two size class groups. Analysis of variance (ANOVA) was 

performed to compare groups of angular positions and behavioral responses (body patterning, 

posture events, inking events). The average proportion of interactions with inking events and 

with body patterning (i.e., posturing and/or chromatic changes) were calculated for each 

individual squid and ANOVAs were performed on these data to determine preference when 

confronted with a predator. Significance was tested at p<0.05 and all means are presented ± 

standard deviation unless otherwise noted.  

 

RESULTS 

Paralarvae kinematics 

Throughout the predator-prey interactions, paralarval squid did not demonstrate posturing 

and only one inking event was recorded. Significantly more predator-prey interactions occurred 

while paralarval squid were oriented with arms towards the predator versus tail-first relative to 

the approaching predator (t-test: t118=16.4, p<0.001), with only five total interactions (0.08%) 
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occurring while the paralarvae were oriented tail-first. Paralarvae responded to an approaching 

predator with an escape jet in only 35% of total interactions. When paralarvae did respond, the 

mean average swimming velocity during escape jetting was 32.42±15.66 squid dorsal mantle 

lengths (DML) s
-1

. Distance and velocity of the predator did not determine whether an escape jet 

was performed (distance t-test: t58 =-0.36, p=0.71; velocity t-test: t58 =-1.4, p=0.17). The distance 

that the predator travelled, however, played a role in whether an escape jet was performed by the 

squid (t-test: t58=-2.55, p=0.01), with escape responses occurring at larger predator travel 

distances (mean travel distance=0.67±0.31 predator body lengths (PBL)) than non-escape 

responses (mean travel distance=0.45±0.39 PBLs). No difference in θ or  was found between 

escape and non-escape responses (angular orientation of the squid relative to the approaching 

predator: t-test: t58= 1.3, p=0.20; squid escape trajectory t-test: t58=-0.12, p=0.91).  

For the 65% of predator-prey interactions that did not result in an escape jet, the 

paralarvae performed stereotyped swimming behaviors that potentially could aid in predator 

avoidance. These behaviors included swimming repetitively in a circle in both the xy and xz 

plane, varying in diameter from 1-3 DML (Fig.12a). In some cases the paralarvae exhibited no 

net displacement during these circular motions (i.e., starting and ending points of the loop were 

the same), whereas in other cases, net displacement was present, resulting in movement in a 

spiral pattern (Fig. 12b). Additionally, several different forms of jetting were performed. These 

included short, pulsed, sequential jets in which the squid moved rectilinearly through the water 

column in either an arms-first or tail-first orientation over relatively short distances, 

distinguishing these jets from larger displacement escape jets (Fig. 12c). Erratic zig-zag jetting, 

in which the paralarvae employed short vectored jets with multiple changes in direction, was 

found in both arms-first and tail-first orientations (Fig. 12d). The paralarvae also exhibited  
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Figure 12. Stereotyped swimming behaviours of paralarvae squid: (a) swimming repetitively in a 

circular pattern in both the xy and xz plane; (b) swimming in a spiral pattern; (c) pulsed 

sequential jets in which the squid moved rectilinearly through the water column in either an 

arms-first or tail-first orientation; (d) erratic zig-zag jetting, in which the paralarvae employed 

short vectored jets with multiple changes in direction (squid perform this pattern in both tail-first 

and arms-first orientations; arms-first orientation is depicted here).  
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rolling (rotation about the x-axis or y-axis) and pitching (rotation about the z-axis), but these 

behaviors were unlikely to have anti-predator benefits as there was no translational motion.  

 

Juveniles/adults kinematics 

Response initiation distance was significantly greater for those juvenile/adult squid 

exhibiting only postural responses versus those demonstrating ink/escape responses (t-test: t17= -

7.1, p<0.001; Fig. 13a). Squid showing only postural displays (i.e., raised or splayed arms) also 

were associated with lower predator approach velocities than those exhibiting an ink/escape 

response (t-test: t19=-3.03, p=0.006) (Fig. 13b). Interestingly, squid using ink/escape responses 

were also associated with greater overall predator travel distances than those showing only 

postural responses (t-test: t18= -5.25, p< 0.001; mean predator travel distance=2.52±0.34 PBL 

(ink/escape response), 0.68±0.35 PBL (postural response)). No significant differences in 

response initiation distance were found between ‘splayed arm’ postural responses, which were 

only displayed during tail-first orientations, and ‘raised arm’ postural responses, which were only 

observed during arms-first orientations (t-test: t19=0.25, p=0.80), nor was there a significant 

difference in the velocity of the approaching predator between the two behaviors (t-test: t10= 

1.34, p= 0.21). The squid was more likely to actively position itself anteriorly facing the predator 

when the predator was within 2.5 predator body lengths of the squid (t-test: t16=-2.20, p=0.046). 

However, predator-prey distance did not affect the specific body pattern or inking pattern 

selected (all p> 0.05).   

 

Inking and escape jet differences through ontogeny 
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Figure 13. The mean (a) distance of predator from the squid when the squid initiated a behavioral 

response, expressed in predator body lengths (PBL) and (b) velocity of the predator approach 

when squid initiated a behavioral response, expressed in PBL s
-1

. Significant differences between 

juvenile and adult squid were not evident, and thus juvenile and adult data were pooled for 

analysis (grey bars). Paralarval squid did not demonstrate postures or frequent inking behaviour 

and were therefore excluded from this figure.  Mean ± s.e.m is presented.  
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 The juvenile and adult squid in this study responded to an oncoming predator with an 

inking event in approximately 60% of all interactions. Inking events were always exhibited in 

sequence with an escape jet, where inking occurred either at the initiation of the escape jet (61%) 

or at another point throughout the escape jet (39%).  Inking in paralarvae only occurred in 0.02% 

of all interactions.  Significant differences were found in relative swimming velocities during 

escape responses between paralarval squid and juvenile/adult squid (ANOVA: F3,121=89.36, 

p<0.001). Tukey post-hoc analysis revealed paralarvae have significantly slower escape 

responses (mean=32.42±15.66 DML s
-1

) than juveniles/adults (mean= 47.9±1.41 DML s
-1

, 

p=0.001) (Fig.14). However, no significant differences in predator approach velocities were 

found between paralarvae (mean=1.75±3.17 PBL s
-1

) and juveniles/adults (mean=1.14±0.43 PBL 

s
-1

). In paralarvae, escape was only initiated in 35% of interactions, leading to an overall survival 

rate of only 40%, whereas juveniles and adults survived all interactions in these trials.    

The proportion of inking events during encounters varied significantly with the angular 

orientation of the squid relative to the approaching predator for juveniles/adults (ANOVA: F2,16= 

14.1, p< 0.001); inking events were more prevalent when θ were 46-90º (mean proportion of 

inking events=0.90±0.25) compared with θ<45º (mean proportion of inking events=0.45±0.33, 

p>0.001). The squid escaped at speeds significantly greater than the predator approach for both 

age groups (paralarvae: p<0.001; juveniles/adults: p<0.001; Fig.14). Juvenile/adult squid 

demonstrated a significantly higher proportion of inking events when displaying a clear body 

pattern than when displaying other body patterns (ANOVA: F2,16=5.47, p<0.015).  No significant 

differences were found between squid postures, i.e., splayed arms vs. raised arms, based on θ (all 

p>0.05). The average angular orientation of the squid escape trajectory () was 152.34±35.23º.  

did not influence the selection of postures (ANOVA: F1,14=0.09, p=0.77),  
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Figure 14. The mean velocity of the fish and the squid when an escape jet was performed during 

predator-prey interactions for paralarval and juvenile/adult trials. 100% of the juvenile squid 

survived the encounters; 40% of paralarvae survived the encounters.  Bars with different letters 

are significantly different. Mean ± s.e.m. are presented.  
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orientation (ANOVA: F1,16>0.16, all p>0.69) or proportion of ink and escape events (ANOVA: 

F2,16=0.49, p=0.62).  

  

Body pattern differences through ontogeny  

Different body patterns were observed for paralarvae and juveniles/adults. Paralarvae 

demonstrated clear body patterning (N=33, mean area of chromatophores= 2.74x10
-5 

±1.13x10
-5

 

cm²), intermediate body patterning (N=18, mean area of chromatophores= 1.45 x10
-4

±9.86x10
-6

 

cm²), and dark body patterning (N=9, mean area of chromatophores= 2.50x10
-4 

±5.50x10
-5

 cm²). 

The mean area of the chromatophores in the three body classifications were significantly 

different, indicating that they are indeed three distinct body patterns (ANOVA: F2,57=379.7, 

p<0.001; Fig. 15).  The proportion of clear, intermediate and dark body patterning displayed 

during predator-prey responses were significantly different for paralarvae (ANOVA:F2,177 = 12.4, 

p<0.001). Tukey post-hoc tests revealed that clear body patterns (mean proportion=0.55±0.50) 

were used significantly more often than intermediate body patterns (mean proportion= 

0.31±0.43, p<0.001) and dark body patterns (mean proportion=0.15±0.36, p=0.007, Fig. 16a).  

The velocity of the approaching predator did not affect the body pattern selection of the 

paralarvae (all p>0.05), nor did the angle of the predator approach (θ), distance of the predator or 

distance travelled by the predator at the time of the interaction (all p>0.05).  When responding to 

an approaching predator, juvenile and adult squid were significantly more likely to demonstrate 

the banded pattern than the dark body, dark arms with clear body, or clear body pattern 

(ANOVA: F3,76= 26.1, p<0.001; Fig. 16b). When the juvenile/adult squid responded with an 

inking event (something that is very rare for paralarvae), it was significantly more 
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Figure 15. Distinct body patterns of paralarvae during predator-prey interactions and the 

associated mean area of chromatophores in the clear body, intermediate body and dark body 

patterns. Bars with different letters are significantly different. Mean ± s.e.m. presented. 
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Figure 16. Mean proportion of body patterns demonstrated in (a) paralarvae, and (b) 

juvenile/adult squid during predator approaches. Mean ± s.e.m. is presented. Lines above bars 

indicate no significant difference.  
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likely to be in the form of a ‘pseudomorph’ than a ‘cloud’ or ‘puff‘ (ANOVA: F2,57= 91.2, 

p<0.001). The rope shape was not observed in these experiments. 

 

DISCUSSION 

 The results of this study reveal the unique differences in anti-predator strategies of squid 

as they undergo morphological and ecological transformations throughout ontogeny.  Paralarval 

squid did not react to an oncoming predator with posturing or consistent inking responses, as 

only one inking event occurred throughout all of the trials. Instead, they either produced an 

escape jet (35% of encounters) or demonstrated routine stereotypical behaviors (65% of 

encounters) in the presence of a predator. In contrast, juvenile and adult squid exhibited frequent 

inking/escape jetting and postural responses to an oncoming predator, with the selection of anti-

predator behavior being impacted by characteristics of the predator’s approach. During the 

slower predator approaches, the juvenile/adult squid were more likely to posture, while faster 

approaches triggered inking and escape jet responses.  In juveniles/adults, postural responses 

were favored when the predator was positioned at large distances from the squid while inking 

responses were selected when the predator was close to the squid. Additionally, postural displays 

were selected when the predator travelled only a short distance toward the squid, while ink 

responses were used when the predator travelled a significantly greater distance toward the 

squid. Postural displays are likely an attempt to dissuade the predator at the beginning of the 

attack while minimizing energy expenditure associated with an inking response (Wood et al. 

2008). Inking is then utilized only when crypsis or posturing has failed and the predator 

continues with its approach, as was seen in this study. 
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In many cephalopods, inking provides a distraction to oncoming predators, allowing them 

to escape from reach (Hanlon and Messenger, 1996). Additionally, the chemical properties of ink 

can act as a predatory deterrent as it disrupts the sensory systems of the predator (Derby, 2007; 

Gilly and Lucero, 1992; Wood et al., 2010). The juvenile and adult squid in this study responded 

to an oncoming predator with an inking event in approximately 60% of all interactions, whereas 

only one inking event was recorded in the paralarvae (0.02% of all interactions). It is possible 

that paralarvae are more selective in their use of inking events given the high energetic 

requirements of producing ink (Wood et al., 2008) coupled with the need to allocate high levels 

of energy toward development (Russo et al., 2003). In addition, juveniles and adults showed 

proportionally more inking events with clear body patterns relative to other body patterns and 

inking and escape jetting were always coupled, a sequence of behaviors that is consistent with 

the “ink-blanche-jet” maneuver described earlier.  In juveniles/adults, the ‘pseudomorph’ shape 

was produced more often than ‘rope’, ‘puff’ or ‘cloud’ shapes. This is consistent with previous 

observations, where shallow-dwelling cephalopods commonly use ‘pseudomorphs’ (Hanlon and 

Messenger, 1996), while a wider variety of shapes are evident in deep sea species (Bush and 

Robison, 2007). In several instances, the flounder were distracted by the ‘pseudomorph’ and 

directed their approach towards the ink instead of the squid. Ink has also been shown to act as a 

conspecific alarm cue that could be used when swimming in schools  (Wood et al., 2008; Wood 

et al., 2010). L. brevis do school in their natural habitat (I. Bartol, pers. obs.), and it is possible 

that the ‘pseudomorph’ not only acts as a decoy but also a social warning cue. Although 

‘pseudomorphs’ were found to be the most common ink response observed in the present study, 

it is conceivable that the ‘rope’ and ‘puff’ shapes, which involve smaller sequential ink release 
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patterns, are used as conspecific alarms. Since the experimental trials only considered one squid 

per trial, this social alarm possibility was not tested directly. 

Both paralarvae and juveniles/adults showed impressive average escape velocities of 

32.42±15.66 and 47.9±1.47 DML s
-1

, respectively. In fish, average escape velocities range only 

from approximately 14-23 BL s
-1 

in larvae (Williams et al., 1996) and roughly 20-28 BL s
-1 

in 

adults, depending on the species (Gibb et al., 2006). The velocities found here were markedly 

higher than those reported in Chapter 3 as only sequences where an escape jet was performed 

were used for analysis. The juvenile/adult squid reached significantly higher relative swimming 

velocities than the paralarvae in these experiments, which is likely reflective of the unique 

hydrodynamic and morphological conditions that squid encounter throughout ontogeny. 

Paralarvae operate at low to intermediate Reynolds numbers and must overcome high viscous 

forces, while juveniles and adults operate at higher Reynolds numbers where inertial forces are 

greater and gliding through the water column is more prevalent (Bartol et al., 2008). 

Additionally, relative to paralarvae, juvenile and adult squid have more streamlined bodies and 

larger, more developed fins to provide additional propulsive forces to complement the jet, at least 

at the start of the escape jet (Bartol et al., 2009a; Bartol et al., 2009b; Hoar et al., 1994a; Stewart 

et al., 2010). Both paralarvae and juveniles/adults escaped at speeds greater than the approaching 

fish, leading to a 100% survival rate for juvenile and adults, but only a 40% survival rate for 

paralarvae. In Chapter 3, the predator had a higher mean velocity than the squid, however 

sequences in which the squid was performing stereotyped behaviors, or did not respond to the 

oncoming predator at all, were included in velocity measurements. The low survival rate of 

paralarvae is a reflection of the absence of an escape response in many encounters, not their 

inability to escape a predator, as their swimming velocity during escape jetting was significantly 
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higher than the velocity of the predator approach when they did initiate an escape response. 

Paralarvae only responded with an escape jet in 35% of all interactions, whereas the juveniles 

and adults always responded with an escape jet when a posture failed to deter the approaching 

predator. The absence of any escape response in such a high percentage of paralarvae is 

intriguing and may relate to a reduction in the effectiveness of epidermal hair cells in early 

ontogeny, which have been shown to play an important role in predator wake sensing (see 

Chapters 2, 3). 

One of the most striking ontogenetic differences found in this study was the unique use of 

stereotyped behaviors by paralarvae, but not other life history stages. These behaviors included 

swimming movements such as repetitive circling, spinning and erratic jetting that were not seen 

in juveniles or adults. Since the paralarvae often did not change their behavior as a predator was 

approaching, it is possible that they rely heavily on their repertoire of stereotyped behaviors and 

clear body patterning to elude potential predators in the water column until they develop better 

neural and motor control, which can produce more complex body patterning and enhance 

hydrodynamic sensing capabilities. Indeed, the ability of paralarval squid to coordinate sensory 

inputs and motor outputs improves within the first month of hatching (Chen et al., 1996; Preuss 

and Gilly, 2000), suggesting that chromatophore control and hair cell functionality also increase 

throughout this period. Therefore, coupling stereotyped swimming strategies with transparency 

in the earliest days of hatching, when posturing is less achievable and sensing capabilities are 

limited, is a reasonable predator avoidance strategy for paralarvae.  Although brief squid vary in 

size from juvenile to adult, they maintain similar ecological niches and thrive in the same 

environment during these ontogenetic stages (Bartol et al., 2002). Therefore it is likely that 

similar behaviors are effective at deterring predators over these ontogenetic stages, which is 
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consistent with the findings reported here. The number of chromatophores increases on the 

mantle and fins of squid as their size increases (Dubas et al., 1986); however, the proportion of 

the body that is shaded to produce patterns stays approximately the same in juveniles and adults 

(banded pattern in juvenile= 34% shaded; banded pattern in adult= 41% shaded).   

In this study, paralarval squid demonstrated the clear body pattern significantly more 

often than intermediate or dark patterns. It is likely that maintaining a clear body pattern is 

advantageous given the planktonic nature of paralarvae. By sustaining a transparent state, the 

paralarvae allow for maximum transmission of background light, making them difficult to detect 

in the water column  (Okutani, 1987; Zylinski and Johnsen, 2011). However, for adults and 

juveniles, the banded body pattern was demonstrated far more than the dark body, clear body or 

dark arms with a clear body patterns. This banded body patterning was used during both ‘splayed 

arm’ and ‘raised arm’ postures. Banded patterns were also seen throughout the predator’s attack 

and did not vary based on the predator approach distance. The banded body pattern potentially 

acts as disruptive coloration, making it more difficult for a predator to identify the squid as prey 

(Hanlon and Messenger, 1996). It is likely that the coloration, in addition to body postures, 

allows the squid to look larger and more threatening to predators (Hanlon and Messenger, 1996; 

Staudinger et al., 2011), an option that planktonic paralarvae do not have given their inherently 

small size and more limited coloration palette. This banded body pattern is also used by adult D. 

pealeii in combination with descending in the water column and laying on the substrate to hide 

from cruising predators (Staudinger et al., 2011). The L. brevis examined in this study did not 

demonstrate the behavior of dropping to the substrate.  Instead they remained high in the water 

column throughout their behavioral response to the predator. Conceivably, this was because 

flounder typically have an ambush style of attack, where they remain camouflaged until striking, 
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as suggested by Staudinger et al. (2011). However, the majority of attacks made by the flounder 

in this study were not ambush style. The flounder were usually active and visible prior to 

striking, and they began their attack from as far as 1.1 m away from the squid.  It is likely, 

nonetheless, that if a different type of predator was used, the brief squid would have shown this 

behavior as well (i.e., dropping to substrate), as L. brevis and D. pealeii share similar ecological 

niches and therefore have likely adapted similar anti-predator tactics.  

Although the direction of the predator’s approach did play a role in the behavior of the 

juvenile and adult squid, it did not affect the behavioral response of paralarvae. These differences 

are likely the result of an underdeveloped sensory system in paralarvae (Chen et al., 1996), 

particularly the polarized lateral line analogue, which plays an integral role in successful predator 

detection (Chapters 2 and 3; York and Bartol, 2014). The lateral line analogue runs in an 

anterior-posterior direction along the head and each of the arms of the squid (Budelmann and 

Bleckmann, 1988). The wake of predators approaching the squid from different angles clearly 

will trigger different hair cells along the head and arms, potentially eliciting graded behavioral 

responses depending on the number and location of hair cells stimulated. Given that the 

paralarvae considered in the present study were only one day old and their sensory systems were 

not fully developed (Chen et al., 1996), it is conceivable that the lateral line analogue was not yet 

sufficiently integrated with neural processing centers to affect a wide range of behaviors based 

on the direction of the predator’s approach.  However, as shown in Chapter 3, the lateral line is 

nonetheless important for predator detection and survival at early ontogenetic stages, even if 

their behavioral repertoire is limited.  Clearly, further research is needed to fully understand how 

hydrodynamic cues stimulate the lateral line analogue and how this input contributes to 

behavioral escape responses throughout ontogeny.   
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Throughout all of the predator-prey interactions, 80% of the juvenile/adult squid were 

oriented arms-first in an angular position (θ) between 0° and 90° relative to the oncoming 

predator, with an average θ of 57º. Paralarvae were also likely to orient themselves in an arms-

first position with an average θ  of 42°. By facing the predator anteriorly, the squid can perform a 

fast escape jet in a tail-first heading, an orientation that contributes to higher swimming speeds 

with greater aperture throughput for jet ejection relative to the arms-first mode (Bartol et al., 

2001b; Bartol et al., 2009a; Bartol et al., 2009b).  Additionally, this position is advantageous for 

sensory perception, especially for optimal orientation of epidermal hair cells. Fish that move 

much faster or slower than a predator orient laterally to the predator and execute a fast start at a 

right angle form the predator’s heading to maximally increase their distance from the predator 

(Weihs and Webb, 1984), which was supported by Stewart et al. 2014 (Stewart et al., 2014).  The 

squid in this study, however, squid mostly oriented themselves anteriorly to the oncoming 

predator, not laterally. This strategy makes sense in light of the morphological differences 

between the fish and squid mechanoreceptors. Unlike fish that have mechanoreceptors along the 

length of their bodies, squid have lateral line analogue hairs only along the head and arms but not 

the mantle.  Thus, if squid were to position themselves laterally to the predator, a more limited 

portion of the lateral line analogue would be receiving direct hydrodynamic cues from the 

predator’s approach. By positioning themselves anteriorly to the predator, they are exposing the 

maximum area of epidermal hair cell lines in the direction of the oncoming predator. 

Furthermore, the proportion of total inking events varied based on the angular orientation of the 

squid relative to the approaching predator, with anterior and lateral approaches (46-90º) 

triggering more inking and escape events than approaches from other angles, potentially 
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indicating that hydrodynamic cues received by the lateral line analogue play a role in inking 

behavior.    

The anti-predator behavioral responses recorded for juveniles and adults in this study are 

consistent with previous research (Hanlon et al., 1994; Hanlon et al., 1999; Mather, 2010; 

Staudinger et al., 2011). Staudinger et al. (2011) found that the likelihood of survival when adult 

D. pealeii exhibit deimatic postures and inking events increases when confronted by a predator.  

In D. pealeii deimatic posturing involves having the arms and tentacles extended, which is 

similar to the ‘splayed arm’ posture observed in the present study for L. brevis, making the squid 

appear larger and more threatening. When this posture is exhibited in D. pealeii, 88% of the 

attacks are abandoned by the predator (Staudinger et al., 2011), indicating it is a successful anti-

predator strategy to employ in the earliest stages of the predator’s approach. We also found a 

high level of predator abandonment (51%) when a splaying arm or raised arm posture was 

exhibited.  Posturing was employed when the predator was far away, while inking was used at 

shorter distances.  When the predator was close and approaching at high velocities, the squid 

exhibited an inking response and escape jet, behaviors that have been shown to provide a high 

probability of escape (Staudinger et al., 2011).  All of the juvenile and adult squid used in this 

study avoided capture, indicating that their suite of anti-predator behaviors is extremely 

effective. 

Cephalopods undergo enormous morphological and ecological transitions as they develop 

from planktonic paralarvae to larger, more neurologically advanced adults. Each life stage has 

unique challenges that demand effective strategies for survival. This study is the first to examine 

anti-predator behavior of squid throughout ontogeny. Our findings indicate that anti-predator 

behavior of squids changes throughout development, with divergent strategies used in the 
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paralarval and juvenile/adult stages. Paralarvae had fewer behavioral responses directly linked to 

an oncoming predator compared with juvenile/adult stages, and tended to maintain a clear body 

pattern while either escape jetting or demonstrating stereotyped swimming behaviors, making 

them elusive to predators. Juveniles and adults, on the other hand, were adept at varying their 

response according to the predator approach and balancing the energetic requirements of escape 

with the urgency of the situation.  The observed variances in anti-predator strategy indicate that 

squid utilize suitable adaptations for their changing morphology and ecological niche to 

maximize survival throughout ontogeny.  
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CHAPTER 5 

HYDRODYNAMICS AND KINEMATICS OF ESCAPE JETS THROUGHOUT 

ONTOGENY  

INTRODUCTION 

Escape responses are used by many animals as their primary survival tactic against 

predation (Bullock, 1984). Typically, escape responses are characterized by extremely fast 

reaction times and high accelerations (Domenici et al., 2011).  A number of species, including 

scallops (Cheng and DeMont, 1996; Cheng et al., 1996; Dadswell and Weihs, 1990), jellyfish 

(Daniel, 1983; Daniel, 1985; Demont and Gosline, 1988; Katija et al., 2015), salps (Bone and 

Trueman, 2009; Madin, 1990) and frogfish (Fish, 1987) accomplish an escape response through 

jet propulsion. Cephalopods, including the chambered Nautilus, octopuses, cuttlefishes and 

squids, are well known for their rapid escape jet responses.  Unlike many octopuses and 

demersal cuttlefishes that can burrow and hide from predators, squids reside exclusively in the 

water column throughout ontogeny with predators approaching them from all directions.  Thus, 

they require highly effective escape responses for survival.   

The jet propulsive escape response of squids is produced by the rapid expulsion of water 

from the mantle cavity through a funnel aperture (O’Dor, 1988; Packard, 1969; Young, 1938). 

Water is drawn into the mantle cavity around the sides of the head through intakes via mantle 

expansion produced by radial muscle contraction and elastic recoil of connective tissue fibers.  

Circular muscles in the mantle then contract to pressurize the water in the mantle cavity, 

resulting in the closure of the intakes (Young, 1938). A high velocity jet is produced when water 

is forcibly expelled through the funnel, which has relatively small cross-sectional area. The 

funnel is flexible and capable of vectoring the jet within a hemisphere below the body, which can 
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propel the animal in various directions (Bartol et al., 2001a).  Estimates of peak jet velocity 

range from 2.9 - 6.9 m/s for octopus and cuttlefish and 6.7 - 11 m/s for squid (Shadwick, 1995).  

These high velocity jets accelerate the animal, allowing for quick evasions from oncoming 

predators. The axonal system of cephalopods together with their muscular hydrostatic systems 

(i.e., mantle and funnel) presumably allow for control of the animal’s trajectory, ejected water 

volume, and flow speed of escape jets (Otis and Gilly, 1990), though variation in escape jetting 

has not been documented to date. 

Although the hydrodynamics of squid escape jets have not been examined extensively, a 

number of studies have focused on steady routine jet propulsion in squid, with studies of both 

swimming energetics (Bartol et al., 2001a; Finke et al., 1996; O’Dor, 1982; O’Dor, 2002; O’Dor 

and Webber, 1991; O’Dor and Webber, 2011; Thompson and Kier, 2001; Webber and O’Dor, 

1986; Wells and O’Dor, 1991) and hydrodynamics (O’Dor, 1988; Anderson and DeMont, 2000; 

Bartol et al., 2001b; Anderson and Grosenbaugh, 2005; Bartol et al., 2008; Bartol et al., 2009a; 

Bartol et al., 2009b; Stewart et al., 2010; Staff et al. 2014; Bartol et al., 2016).  Many of the 

recent hydrodynamic studies have quantified velocity vector fields around steadily swimming 

squid and explored propulsive efficiency based on velocimetry measurements (Anderson and 

Grosenbaugh, 2005; Bartol et al., 2008; Bartol et al., 2009a; Bartol et al., 2009b; Bartol et al., 

2015), some of which have shown that flows from the fins and jet can involve complex vortical 

flows (Bartol et al., 2009a; Bartol et al., 2009b; Stewart et al., 2010; Bartol et al., 2016).  

However, to date, no study has explicity considered the hydrodynamics of the escape jet and how 

escape jetting may change throughout ontogeny.  

During ontogeny, squid undergo major morphological and physiological changes that 

affect their locomotive abilities (Boyle and Boletzky, 1996).  While squid do not experience a 
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distinct metamorphosis, and therefore do not have true larva (they are known as paralarvae (Shea 

and Vecchione, 2010)), hatchlings are ecologically distinct from older life history stages (Robin 

et al., 2014; Shea and Vecchione, 2010; Young and Harman, 1988). Moreover, relative to the 

adult, paralarvae have a more rounded mantle, relatively smaller arms, a proportionally larger 

funnel, and rudimentary fins (Boletzky, 1974; Okutani, 1987; Packard, 1969). Paralarvae also 

hold a proportionally greater volume of water in their cavities and have shorter thick filaments in 

the mantle muscles to provide jetting power (Gilly et al., 1991; Preuss et al., 1997b; Thompson 

and Kier, 2001; Thompson and Kier, 2006).  Ecologically, paralarvae differ from older squid in 

that they cover shorter overall distances by active swimming driven primarily by the jet (Bartol 

et al., 2009a), move through the water column in diel vertical migrations (Boyle and Boletzky, 

1996; Robin et al., 2014), and reside in an intermediate Reynolds number (Re) regime (Re~1-

10
2
) (Bartol et al., 2008; Bartol et al., 2009a; Thompson and Kier, 2002; Webber and O’Dor, 

1986). Conversely, many juvenile and adult squids are capable of powerful and long distance 

locomotion covering significant horizontal distances, generally employ less vertical migratory 

behavior (Boyle and Rodhouse, 2008), and operate in a higher Re regime (Re~10
3
 – 10

6
) (Bartol 

et al., 2009b; O’Dor, 1988).  

Bartol et al. (2008, 2009a, 2009b) have shown that several different types of jet flow 

patterns are produced by squid of different life history stages during steady rectilinear 

swimming. In juvenile and adult brief squid L. brevis, two principal jet modes occur: (1) jet 

mode I, where ejected fluid rolls into an isolated vortex ring and (2) jet mode II, where ejected 

fluid forms into a leading vortex ring that pinches off from a long trailing jet (Bartol et al., 2008; 

Bartol et al., 2009b). Jet mode I is associated with greater propulsive efficiency, lower slip and 

higher frequency of fin activity, while jet mode II is associated with greater time-averaged thrust 
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and lift forces and is used more heavily than the first jet mode.  D. pealeii paralarvae produce 

steady jets consisting of elongated vortical ring structures but with no clear leading ring pinch-

off, as is the case in jet mode II of larger size classes (Bartol et al., 2009a; Bartol et al., 2009b).  

Bartol et al. (2009a) suggested that the absence of pinch-off may be a product of either (1) 

viscous diffusion blurring the separation between the ring and jet or (2) vortex ring formation 

being preempted by viscous diffusion such that a vortical tail remains behind the ring (Bartol et 

al. 2009b).  Bartol et al. (2008, 2009a, 2009b) found that not only do flow features differ 

between paralarval and juvenile/adult squid, but that paralarval squid also have higher propulsive 

efficiency during jet ejection than older squid during steady swimming when considering the 

whole range of modes.  

 In this study we expand upon our knowledge of squid hydrodynamics by focusing on 

high velocity escape responses throughout ontogeny. We use 2D and 3D velocimetry and high-

speed videography to study flow features and kinematics of escape jets. The primary objectives 

of this study were to: 1) document kinematics of escape jetting, 2) examine escape jet velocity 

and vorticity and 3) compute propulsive efficiency of escape responses using direct 

measurements of bulk properties of the jet wake. These objectives were examined along a 

continuum of life history stages from paralarvae to adults.  

 

MATERIALS AND METHODS 

 Paralarval Doryteuthis pealeii (dorsal mantle length (DML) = 0.18 cm) and juvenile 

(DML= 3.0-5.0 cm) and adult Lolliguncula brevis (DML = 5.1-7.0 cm) were used for this 

research. Little information is currently available on the breeding habits of L. brevis, and they are 

extremely difficult to obtain as hatchlings. Therefore, D. pealeii was selected to study early 
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ontogenetic stages.  D. pealeii is a reasonable substitute for L. brevis because both species have 

similar body size, fin size and shape, and ecological niches as paralarvae (Bartol et al., 2008).  

 D. pealeii eggs were purchased from the Marine Biological Laboratory, Woods Hole, 

MA, and maintained in floating buckets with mesh openings within a recirculating seawater 

system at a salinity of 30-32‰ and at temperatures of 19-24°C until hatching. Once the eggs 

hatched, the paralarvae were separated so that their age could be tracked. L. brevis used in this 

project were captured by otter trawl in Wachapreague, VA, USA. Trawls were conducted in 

August, September and October as the catch probabilities are highest in these months (Bartol et 

al., 2002). After capture, squid were transferred to a 114 L, circular holding tank (Angler 

Livewells, Aquatic Eco-Systems, Inc., Apopka, FL, USA) fitted with a portable battery powered 

aerator (Model B-3, Marine Metal Products Co., Inc., Clearwater, FL, USA) for transport to the 

lab. Squid were maintained in 450-gallon seawater systems with several forms of filtration (e.g., 

BioBalls, protein skimmers, ozone filtration, etc.). Seawater was maintained at temperatures and 

salinities equivalent to those of the capture sites (19-22 °C; 30-35 ‰). A moderate current flow 

was maintained to promote active swimming and squid were fed a diet of live Palaemonetes 

pugio and Fundulus  heteroclitos as suggested by Hanlon et al. (Hanlon, 1990; Hanlon et al., 

1983). Squid were allowed to acclimate for at least 24 h prior to experimental trials. Only 

animals that appeared healthy and that exhibited normal behaviors were used.   

 

Paralarvae DPIV Experiments 

 Digital particle image velocimetry (DPIV) has been successfully used to collect 

hydrodynamic data in paralarval squid (Bartol et al., 2009b; Bartol et al., 2008). We followed 

similar protocols to these studies, but provide a generalized overview of our approaches here for 
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convenience (see above papers for greater detail). For experimental trials, 3-8 paralarvae were 

added to a Plexiglas holding chamber (4.0x6.0x2.5 cm). Multiple squid were added to the 

chamber to increase the probability of imaging an escape jet within a limited field of view. A 

total of 52 trials were performed and a total of 170 animals were considered. The chamber was 

filled with seawater (30-32‰, 16-19°C) seeded with neutrally buoyant, silver-coated hollow 

glass spheres (mean diameter=14 µm, Potters Industries, Valley Forge, PA, USA). The spheres 

were illuminated within a 0.5-2.0 mm parasagittal plane using two (A and B) pulsed Nd:YAG 

lasers and a laser optical arm (wavelength-532 nm, power rating= 350mJ pulse
-1

; LABest 

Optronics, Beijing, China). Each laser was operated at 14 Hz (7 ns pulse duration) with a 1-4 ms 

separation between laser A and B pulses. A UNIQ UP-1830CL video camera (1024 x 1024 pixel 

resolution; paired images collected at 15Hz; Uniq Vision, Inc., Santa Clara, CA, USA) outfitted 

with a VZM 450i zoom lens (Edmund Optics, Barrington, NJ, USA) and interfaced with a CL-

160 capture card (IO industries, Inc., London, Ontario, Canada), which was used for image 

acquisition.  

 In addition to the UNIQ UP-1830CL video camera, two high-speed DALSA Falcon 

video cameras (Teledyne Dalsa, Inc., 1400 x 1200 pixels, 100 fps), each outfitted with Fujinon 

CF25HA-1 25 mm lenses, were used. To prevent over exposure of frames from the laser, each 

high-speed camera was fitted with a filter to block 532 nm wavelengths. One camera was 

positioned above the working section to record images from a dorsal perspective and the other 

was positioned directly beside the UNIQ camera for an expanded lateral field of view. A series 

of 40W lights equipped with a filter to transmit wavelengths >600 nm provided illumination for 

the high-speed DALSA cameras. A Kodak Wratten 58 green filter that transmits wavelengths of 
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410-600 nm was mounted to the UNIQ UP-1830CL video camera to prevent over exposure from 

the 40W halogen lights.  

For analysis of the DPIV data, each image was subdivided into a matrix of 32x32 pixel
 

interrogation windows. Using a 16 pixel offset, cross-correlation was used to determine the 

particle displacement within interrogation windows comprising the paired images.  These cross 

correlations were performed in Pixelflow
TM

 software (FG Group LLC, San Marino, CA, 

USA)(Willert and Gharib 1991). Particle shifts that were three pixels greater than their neighbors 

were removed as outliers and the data were smoothed to remove high frequency fluctuations. 

Using Pixelflow
TM

 software, velocity vector and vorticity contour fields were determined. 

Window shifting was performed to improve the accuracy of the results (Westerweel et al., 1997). 

 

Juvenile and Adult Experiments 

 Animals considered in these experiments included juvenile (N=22) and adult (N=26) L. 

brevis. For experimental trials, a water tunnel with a 15x15x44 cm working section (Model 

502(s) Engineering Laboratory Design, Lake City, MN, USA) was filled with seawater seeded 

with 50 µm plastic polyamide light reflective particles (Dantec Dynamics, Skovlunde, Denmark) 

and matching conditions in the squid’s holding tanks (salinity=30 ppt, temperature= 24°C, pH= 

8-8.2, and ammonia levels <0.2 ppm).  Each animal was added to the tunnel and allowed to 

acclimate for 5 minutes under low flow (3 cm s
-1

) conditions before beginning trials.  After the 

animal had acclimated to the water tunnel, the flow velocity was increased to prompt swimming. 

A range of tunnel speeds from 2-7 cm s
-1

 were presented to the squid in the tunnel. Escape jets 

were generally elicited by startling the squid using laser pulses, although some escape jet 

sequences were also recorded without laser provocation.  All of the escape jets analyzed in this 
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study involved squid swimming against the flow with minimal change in vertical position over 

the jet cycle period.  

 Defocusing digital particle tracking velocimetry (DDPTV) data were collected together 

with kinematic data (see description below) for juvenile/adult size classes.  The DDPTV 

technique and hardware were developed by Dr. Morteza Gharib’s lab (California Institute of 

Technology, Pasadena, CA, USA) at Caltech with further commercial development by TSI, Inc.  

and is currently marketed as the V3V
TM

 system. For DDPTV data collection, a 14x14x10 cm 

region of the working section was illuminated using two pulsed Nd:YAG lasers (wavelength= 

532 nm; power rating 350 mJ/pulse; LABest Optronics Co. Ltd., Beijing, China), each operating 

at 14 Hz (7 ns pulse duration) with a 0.5-2.0 ms separation between pulses. A V3V-8000 camera 

probe (TSI, Inc., Shoreview, MN, USA; three 12-bit, 2048x2048 pixel resolution cameras) was 

positioned orthogonally to the working section. Paired DDPTV images (∆t ≈ 0.5-2.0 ms) of the 

flow around the animal were captured at 7 Hz using a hyper-streaming image transfer and 

computer system.   

Identification of 3D particle locations and calculation of particle displacements were 

performed using INSIGHT 4G V3V software (TSI, Inc., Shoreview, MN, USA) using 

approaches described in Pereira et al. (2000) and Troolin and Longmire (2009). On average, 

100,000 particles were identified in each image with triplet yields of approximately 50,000-

60,000 (50-60%). Using a relaxation method for particle tracking (Pereira et al., 2006) available 

within the INSIGHT 4G V3V software, approximately 18,000-25,000 particle vectors were 

obtained in the imaging volume. The vectors were interpolated onto a structured grid using a 

Gaussian weighting interpolation available in the software. A voxel size of 16 mm, percent 

overlap of 95% and a smoothing factor of 1.5 were used for the Gaussian weighting interpolation 



91 

 

in these experiments. Velocity vector fields were calculated using the INSIGHT 4G V3V 

software.  

 During DDPTV experiments, high-speed video was collected using 3 high-speed DALSA 

Falcon video cameras (Teledyne Dalsa, Inc., Waterloo, Ontario, Canada; 1400x1200 pixels, 100 

fps).  The cameras were positioned to view the squid from lateral and ventral perspectives in the 

working section of the water tunnel. A series of 2-4 500 watt halogen lights, equipped with 

optical filters having low transmission at 532 nm, provided illumination. To prevent 

overexposure from the pulsed Nd:YAG laser (wavelength=532 nm), a notch filter to block 532 

nm wavelengths was used with each Falcon camera. The V3V-8000 probe was also outfitted 

with optical filters that transmitted wavelengths of 532±5 nm so only laser light illuminated the 

DDPTV CCD sensors. Two PCI NI-6602 timing boards, 2 BNC-2121 breakout boxes, and NI 

timing software (National Instruments, Austin, TX, USA) were used to send timing signals to the 

Falcon cameras, TSI synchronizer and BNC-565 pulse generator (Berkeley Nucleonics, San 

Rafael, CA, USA). The synchronizer and pulse generator in turn sent triggering signals to the 

V3V probe and Nd:YAG lasers, respectively.  

 

Kinematic Analysis  

 Frame-by-frame position tracking of the squid body features was accomplished using 

image tracking software (Hedrick, 2008). Five points were tracked on the paralarval squid: (1) 

the squid eye, (2) the dorsal edge of the widest point of the mantle, (3) the ventral edge of the 

widest point of the mantle, (4) the tip of the funnel and (5) the base of the funnel. The tracked 

points were used to calculate several kinematic variables including: (1) mantle diameter changes, 

(2) contraction and refill periods, (3) funnel angle, (4) mean velocity, (5) peak velocity, and (6) 
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peak acceleration. Swimming velocities of paralarvae were determined by dividing net 

displacement over the path of travel over complete jet cycles by the jet cycle period. Due to low 

resolution, fin motions and funnel diameter changes could not be determined.  

 For the juveniles and adults, six points were tracked: (1) the squid eye, (2) the most 

anterior point of the funnel opening, (3) the most posterior point of the funnel opening, (4) dorsal 

edge of the widest point of the mantle, (5) ventral edge of the widest point of the mantle, and (6) 

the tip of the fin at maximum chord length. The tracked points were used to determine the 

following kinematic variables: (1) mantle diameter changes, (2) contraction and refill periods, (3) 

funnel angle, (4) mean velocity, (5) peak velocity, (6) peak acceleration, (7) displacement of the 

fins and (7) diameter of the funnel. Swimming velocities of juveniles and adults were determined 

by measuring net displacement along the x-axis over complete jet cycles divided by the cycle 

period and adding this to the background water tunnel speed. Using a Matlab routine developed 

in house, acceleration, velocity and mantle diameter were calculated and smoothed with a fourth 

order Butterworth filter using a cutoff frequency between 3-5 Hz. 

 

DPIV Analysis 

 Most of the approaches used for paralarval DPIV analysis are similar to those presented 

in Bartol et al. (2009a).  For convenience, we report on the key features of the analysis below. 

Several Matlab (Mathworks, Inc., Natick, MA, USA) routines were developed in-house and used 

to calculate hydrodynamic impulse and kinetic energy. For the 2D DPIV data, axisymmetry 

about the axis of a shed vortex’s jet centroid was assumed. The slope and y-intercept of the jet 

centerline were determined based on a best fit of the velocity and vorticity data.  The length of 

the jet (L) was the extent of the velocity field above a set threshold of 0.2 along the jet centerline. 
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Using the angled centerline as the r = 0 axis, jet impulse (I) and kinetic energy (E) were 

calculated using the following equations:  

𝐼

𝜌
= 𝜋 ∫ 𝜔𝜃𝑟2𝑑𝑟𝑑𝑥     (1) 

 
𝐸

𝜌
= 𝜋 ∫ 𝜔𝜃𝜓𝑑𝑟𝑑𝑥    (2) 

 

where ωɵ is the azimuthal component of vorticity, r is the radial coordinate, I is the impulse 

magnitude (directed along the jet axis) and ρ is the fluid density. The length of the jet was 

computed based on the extent over which the jet vorticity field was above a specified magnitude 

of 0.5 (Lω) and the jet diameter was determined based on the distance between vorticity peaks 

perpendicular to the jet centerline in the leading vortex ring at the beginning of the jet (Dω). 

Using the direction of squid motion during mantle contraction, which was measured using the 

high-speed kinematic data, and the jet angle to the horizontal, the component of the impulse 

aligned with the direction of displacement was computed.   Thickness of the laser sheet varied 

from 0.5-2.0 mm. Given that velocity field measurements are depth averaged over the laser sheet 

thickness and laser thickness is similar in dimension to that of the funnel, a convolution 

adjustment is needed for accurate velocity and vorticity measurements. Therefore, an interative 

deconvolution algorithm described in Bartol et al. (2009) was applied to all velocity/vorticity 

fields to estimate the non-averaged flow field on the jet midplane.  

 

DDPTV Analysis 

Most of the approaches used here for juvenile and adult DDPTV analysis are similar to 

those presented in Bartol et al., (2016).  For convenience, we report on the key features of the 
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analysis below. For the 3D DDPTV data, the jet impulse (I) was computed using the following 

equation:  

I

𝜌
=

1

2
∫ x × ω𝑑𝑉   (3) 

where x is the position vector, ω is the vorticity vector (ω = ∇ × u and u is the velocity vector), 

𝜌 is the fluid density, and the integral is computed over the volume of the vortex. The 3D volume 

surrounding the vortex of interest was selected using a graphical user interface (GUI) developed 

in-house in Matlab and the integral was computed over this volume to minimize the influence of 

measurement noise near the flow of interest.  Since impulse is the time integral of the force 

vector that generated the flow, the average thrust vector (magnitude and 3D direction) was 

determined by dividing I by the period of the flow generation (T). Time-averaged jet thrust (𝐹̅𝑗𝑡) 

was calculated using 

 

 𝐹̅𝑗𝑡 = −I ∙ x̂ 𝑇⁄       

where  x̂ is the unit vector opposite the direction of tunnel flow and T is the jet period of interest 

(see below).  The negative sign is included because equation (3) computes the fluid impulse and 

the impulse applied to the squid is in the opposite direction by Newton’s Third Law. For each 

escape jet, the length of jet vorticity field (Lω) and distance between vorticity peaks 

perpendicular to the jet centerline (Dω) were measured in the xy plane using ImageJ software 

(Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2015 (Dω). 

Several different approaches for calculating kinetic energy (E) of the jet wake are 

described by Bartol et al. (2016). Kinetic energy in the present study was computed using: 

(4) 
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𝐸/𝜌 =
1

2
∫|𝑢|𝟐 𝑑𝑉  (5) 

   

where |𝑢| is the velocity magnitude.  The advantage of this approach is that it will always give a 

positive value for E. The disadvantage is that it does not necessarily isolate the E associated with 

only the vortex of interest because of the influence of the surface integral term.  One 

consequence is that equation (5) provides a conservative measurement of the kinetic energy 

because the selected region can contain flow from neighboring vortices and any background 

noise in the selected region will increase the computed energy value.  In application of equation 

(5), the background flow velocity was subtracted from the local velocity vector prior to 

computing the kinetic energy because only the excess kinetic energy is relevant for propulsive 

efficiency.  

 

Propulsive Efficiency  

 Paralarvae tend to swim predominantly upward (vertical in the water column) during 

mantle contraction and sink during refilling (Fig. 17). Since we are interested in work done by 

the propulsive system, and not gravity, the effect of gravity on the net motion was factored out 

by considering only motion during jet ejection. To compare jet propulsive efficiency for 

paralarvae with that of juveniles and adults, which swim more horizontally, propulsive efficiency 

was computed for only the exhalant phase of the jet cycle using the equation:  

Ƞ𝜌(𝑗𝑒𝑡) =
𝐹𝑗̃𝑥

𝐹𝑗̃𝑥 + 𝐸
      (6) 
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Figure 17. The exhalant and refill phase of A) the vertically oriented escape jet trajectory of a 

paralarvae and B) the exhalant and refill phase of the horizontally oriented trajectory of juveniles 

and adults. Only the exhalant phase was considered for propulsive efficiency comparisons across 

ontogeny.  
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where 𝐹𝑗̃ = jet thrust time averaged over the mantle contraction (N), x = displacement during 

mantle contraction (m), and 𝐸 = total excess kinetic energy of the jet (J). Time averaged jet 

thrust was determined by dividing the impulse (Ns) component in the direction of displacement 

(variable for paralarvae; horizontal against free-stream for juveniles/adults) by the mantle 

contraction period (s), i.e., the mantle contraction period is T in equation 4.  

 

RESULTS 

Escape Jetting through Ontogeny 

 A total of 59 escape jets were considered for this study, including 29 paralarval jets, 12 

juvenile jets, and 18 adult jet sequences. Only sequences in which the animal was away from the  

free-water surface or working section walls were analyzed. All of the data presented are for tail-

first escape jets. In paralarvae, the mean mantle contraction period was 0.07±0.02 s, which was  

only 21% of the mean total jet period of 0.32±0.4 s; in juveniles, the mean mantle contraction 

period was 0.24±0.28 s, which was 35% of the mean total jet period of 0.68±0.21 s; and in 

adults, the mean mantle contraction period was 0.27±0.02 s, which was 36% of the mean total jet 

period of 0.73±0.14 s. Significant differences were found between kinematic variables 

throughout ontogeny (MANOVA: F8,82 = 28.34, p>0.001,Wilk’s Δ = 0.71, ƞ
2
=0.112). The mean 

average squid swimming velocity was significantly different among the size classes (F2,59=46.27, 

p<0.001), with the paralarvae having a higher relative average velocity (33.51±13.79 DML s
-1

; 

range=10.47-67.04 DML s
-1

)
 
than both the juveniles (7.82±2.88 DML s

-1
; range=2.48-10.88 

DML s
-1

; p<0.001) and adults (4.24±1.84 DML s
-1

; range= 1.80-8.39 DML s
-1

; p<0.001).  The 

mean peak swimming velocity was also significantly different across the size classes 

(F2,59=27.20, p<0.001), where paralarvae showed higher relative peak swimming velocities 
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(52.80±28.25 DML s
-1

; range= 12.11–120.28 DML s
-1

) than juveniles (7.98±3.04 DML s
-1

; 

range=4.81–12.00 DML s
-1

; p<0.001) and adults 4.56±2.84 DML s
-1

; range=1.70-11.18 DML s
-

1
; p<0.001). Additionally, significant differences were found in peak acceleration among the 

three size classes (F2,59=15.36, p<0.001). Paralarvae had significantly higher peak acceleration 

(874.49±692.04 DML s
-2

; range= 125.06-2936.28 DML s
-2

), than juveniles (58.27±18.09 DML s
-

2
; range= 33.34-78.91 DML s

-2
; p=0.002) and adults (35.26±26.77 DML s

-2
; range= 13.36-98.96 

DML s
-2

; p<0.001). The funnel angle (relative to the horizon) at the beginning of the jet was 

significantly different between ontogenetic groups (F2,59=146.79, p<0.001), with paralarvae 

having a higher funnel angle (76.34±13.64°) than juveniles (14.86±2.72°) and adults 

(20.84±8.09°).  

 Escape jets consisted of vortical regions of variable length. Two different hydrodynamic 

patterns were observed: (1) escape jet I, where the jet structures consisted of spherical vortex 

rings with an Lω/Dω<3, and (2) escape jet II, which consisted of elongated trails of concentrated 

vorticity and an Lω/Dω>3 (Table 2). An  Lω/Dω cutoff of three was used as jets with an Lω/Dω<3 

formed a spherical vortex, while an Lω/Dω>3 typically had a trailing jet (Bartol et al., 2009b).   

These hydrodynamic patterns where observed in paralarvae (Fig. 18), juveniles and adults (Fig. 

19). In juveniles and adults, some trailing jets (escape jet II) showed a long core of vorticity with 

no clearly discernible vortex ring structures, while others included several linked vortices, often 

with a leading edge ring structure. Escape jet II for paralarvae consisted primarily of long 

vorticity cores with no obvious leading edge vortex ring separation. No differences were found 

between the mean swimming velocity or acceleration between the two jet types throughout 

ontogeny (all p>0.05). For both types of jets, the peak in velocity was preceded by hyperinflation 

of the mantle and a forceful mantle contraction. Although not significant at p=0.05, escape jet I 
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exhibited a trend in shorter funnel aperture periods (0.06s) than escape jet II (0.13s)(t-test: 

t5=2.60, p=0.08) in juveniles and adults (Fig. 20). Funnel aperture in paralarvae could not be 

measured due to low resolution, though the same pattern would likely be found. Throughout 

almost all of the juvenile and adult sequences, one fin flap occurred during the early stages of 

mantle contraction followed by a wrapping of the fins around the mantle for the remainder of the 

jet cycle. This pattern was repeated for each jet cycle. The thrust contribution from this fin flap 

was low compared to the more powerful jet. Although greater spatial resolution is necessary to 

fully resolve fin flows, the fin flow fields observed in this study for paralarvae were negligible 

relative to jet flows since they did not produce visible velocity fields. 

 

Propulsive Efficiency through Ontogeny  

 The same three size classes (paralarvae, juvenile and adult) were considered for 

calculations of propulsive efficiency. Significant differences in propulsive efficiency were found 

among the three size classes (ANOVA: F2,59=3.94, p=0.025). Tukey post-hoc tests revealed that 

paralarvae had higher propulsive efficiency (94.55±0.05%) than the adults (87.71±0.13%; 

p=0.03); however, neither paralarvae (p=0.98) nor adults (p=0.12) were found to have different 

propulsive efficiency than the juveniles (93.75±0.02%). In paralarvae, only 8 individuals 

produced escape jet I while 16 individuals produced escape jet II. No differences in propulsive 

efficiency were found between the two jet modes for paralarvae (t-test: t28=0.89, p=0.40). Within 

the juveniles, equal numbers of individuals produced the two jet modes, with 6 juveniles 

producing escape jet I and 6 producing escape jet II.  For the adults, however, only two 

individuals produced escape jet I while 17 produced escape jet II.  Of the two hydrodynamic 

patterns in juveniles and adults, the short spherical vortex mode (escape jet I) had a higher  
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Table 2.  Descriptive measurements of escape jet I and escape jet II in paralarvae, juveniles and 

adults 

 

 

 

 

 

 

 

 

 

 

 

 

  
Escape Jet I 

  
    Escape Jet II 
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 (DML s
-1
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Propulsive 

Efficiency 

(%) 

L
ω
/D

ω
 

Mean 

Swimming 

Velocity 

(DML s
-1

) 

Propulsive  

Efficiency 

(%) 

  

Paralarvae 

  

2.3±0.5 

  

  

31.9±9.9 

 

94.7±10.7 

  

6.8±4.2 

  

34.1±15.1 

 

94.4±11.3  

  

Juveniles 

  

1.4±0.2 

  

  

9.3±3.3 

 

94.1±12.2 

  

5.7±0.9 

  

8.3±3.2 

 

93.33±31.9 

  

Adults 

  

2.1±0.1 

  

 

4.8±1.6 

 

88.3±13.0 

  

6.5±2.0 

  

4.2±1.6 

 

86.32±32.6 
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Figure 18. The two hydrodynamic jet modes observed in paralarvae Doryteuthis pealeii. A 

velocity vector field of escape jet I (A) (swimming velocity= 40.42 DML s
-1

) with its 

corresponding vorticity contour field (B) (Lω/Dω= 2.77), and a velocity vector field of escape jet 

II (C) (swimming velocity= 30.11 DML s
-1

) with its corresponding vorticity contour field 

(Lω/Dω= 16.91).  The paralarvae in these images are 1.8 mm DML. Velocity and vorticity fields 

are based on the original data prior to deconvolution.  
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Figure 19. The two hydrodynamic jet modes observed in juvenile and adult Lolliguncula brevis. 

A 2D velocity vector field (A) (swimming velocity= 2.87 DML s
-1

), velocity magnitude 

isosurface (B) and vorticity magnitude isosurface (C) of escape jet I (Lω/Dω=1.93)(DML =4.10 

cm). A 2D velocity vector field (D) (swimming velocity= 7.95 DML s
-1

), velocity magnitude 

isosurface (E), and vorticity magnitude isosurface (F) of escape jet II (Lω/Dω=5.97)(DML= 5.30 

cm).  
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Figure 20. Swimming velocity, mantle diameter, funnel diameter, and fin displacement 

throughout the escape response for two examples of a pulsed vortex ring escape jet (escape jet 

I)(A) and a long escape jet (escape jet II)(B). Brief squid L. brevis ranging in size from 4.20 cm 

DML to 6.40 cm DML are depicted.  Mantle contraction period is highlighted.  
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Figure 21. Propulsive efficiency plotted as function of mean velocity and peak velocity. 
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propulsive efficiency (94.84±8.05%) than jets with a large elongated vorticity core (escape jet II) 

(89.52±1.92%) (t-test: t29=2.80, p=0.009). Propulsive efficiency increased as mean swimming 

speed increased (logarithmic regression: R
2
= 0.12, p=0.01). However, propulsive  

efficiency did not necessarily increase as the peak velocity increased (R
2
= 0.027, P=0.25; Fig. 

21). 

 

DISCUSSION 

 The results of this study demonstrate that squid from all life history stages display 

locomotive flexibility when performing an escape jet. Throughout ontogeny, two distinct 

hydrodynamic patterns were produced (escape jet I and escape jet II).  Although all life stages 

are capable of producing a similar range of flow patterns, there are important differences in 

propulsive efficiency and kinematics throughout ontogeny. The observed differences among 

paralarvae, juveniles and adults likely derive from morphological and ecological differences, as 

well as physical constraints associated with their Re environment. Paralarvae are largely 

planktonic, as opposed to juveniles and adults that are nektonic, and spend most of their time 

maintaining position in the water column or migrating vertically. Although paralarvae can reach 

impressive speeds, as documented in this study (peak velocity= 52.80±28.25 DML s
-1

), they 

generally do not reach these speeds while swimming horizontally (Bartol et al., 2008). Instead, 

paralarvae are predominantly vertical swimmers, positively phototaxic and depend heavily on 

currents for horizontal displacement (Boletzky, 2003; Robin et al., 2014). This vertical 

swimming preference was reflected in the present study, whereby paralarvae used higher angle 

escape jets than juveniles and adults.  Morphologically, the thick mantle muscle filaments that 

provide power for contractions are 1.5x shorter in paralarvae compared with juveniles and adults. 
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These shorter thick filaments allow paralarvae to contract their mantles at higher rates, including 

during escape jetting (Thompson and Kier, 2006). This is consistent with our finding that D. 

pealeii paralarvae have shorter contraction periods (0.07±0.02 s) than juvenile and adult L.brevis 

(0.27±0.02 s). Throughout ontogeny, the number and orientation of the mantle connective tissues 

fibers also change. These are important for limiting mantle deformation and storing elastic 

energy during jetting (Bone et al., 1981; Gosline et al., 1983; Macgillivray et al., 1999; Ward and 

Wainwright, 1972). Paralarvae swim in an intermediate Re fluid regime where both viscous and 

inertial forces are important (Bartol et al., 2009a). The mantle properties of paralarvae facilitate 

higher frequency mantle contraction, which is beneficial since coasting is inhibited in an 

intermediate Re regime, requiring constant jetting to translate. However, as juveniles and adults 

swim at higher Re, high rates of mantle contraction are less critical because gliding is more 

attainable as inertial forces increase. 

 

Jet and fin kinematics 

 The paralarvae in this study showed significantly higher average escape jet velocities 

(33.51±13.79 DML s
-1

) than juveniles (7.82±2.88 DML s
-1

) and adults (4.24±1.84 DML s
-1

) 

when these jet velocities were normalized by dorsal mantle length. The same pattern was seen in 

peak velocity among the three size classes, where paralarvae reached 5x the peak velocity of 

juveniles and adults. Paralarvae also exhibited significantly greater peak acceleration than 

juveniles and adults.  These results are consistent with the findings of Packard (1969), who found 

that Loligo vulgaris paralarvae exhibit maximum linear accelerations of 817 DML s
-2

 while 

juveniles reached accelerations of 316 DML s
-2

, and adults only reached 162 DML s
-2

. The 

ability of paralarvae to reach such high velocity and acceleration is a great advantage given the 
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high rate of predation at this early life history stage (Boyle and Rodhouse, 2008). The average 

and peak velocities of the juveniles and adults reported here are lower than those reported in 

other kinematic studies of L. brevis, where flow imaging was not involved (see Chapter 4).  

These differences reflect some of the challenges of collecting DDPTV data, whereby the squid 

are imaged in more confined experimental tanks.   

 Juveniles and adult L. brevis are capable of a wide diversity of fin motions ranging from 

undulations to flapping (Bartol et al., 2001a; Hoar et al., 1994a; Anderson and Demont, 2010; 

Bartol et al., 2008; Stewart et al., 2010; Bartol et al., in prep).  Based on DPIV measurements of 

the fin wake, Stewart et al. (2010) found that the fins of L. brevis function as stabilizers while 

generating lift at low speeds and then shift to propulsors as speed increases during tail-first 

swimming. During arms-first swimming, the fins primarily provide lift, playing a lesser role in 

creating thrust (Stewart et al., 2010).  Based on 3D velocimetry measurements, Bartol et al. 

(2016) also found that the fins of L. brevis sometimes act as stabilizers, producing negative thrust 

(drag), while consistently providing lift at low/intermediate speeds (<2.0 DML s
-1

) to counteract 

negative buoyancy.  Both studies revealed that fin flows are complex during arms-first and tail-

first swimming, with Bartol et al (2016) providing 3D vorticity data of interconnected jet and fin 

vortex flows.  During escape jets, paralarvae, juveniles and adults typically only flapped their 

fins once prior to mantle contraction in the present study, and subsequently wrapped them 

around the mantle for the duration of the jet.  Thrust production associated with these 

synchronized flaps was low relative to the jet, particularly for paralarvae where the fin flows 

were barely perceivable. This synchronized flapping pattern has been reported in other studies 

(Bartol et al., 2001b; Hoar et al., 1994; O’Dor, 1988). The lack of complex fin activity and 

appreciable thrust production during escape jets may be attributed to the constraints of the fin 
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musculature and its inability to produce high forces at the high shortening velocities required for 

an escape jet (Kier, 1989; O’Dor and Webber, 1991).  Nonetheless, when the goal is to escape a 

predator for survival, every component of thrust, even limited thrust from the fins, adds to total 

thrust and ultimately to escape.  The consistent timing of the fin flap at the beginning of mantle 

contraction is interesting as it suggests that the efficacy of the fin flap is maximized during this 

narrow temporal window. It is also possible that, due to muscle constraints, the fins have limited 

force they can apply and it is best to use this force at the beginning of the escape jet, when the 

squid is moving slowly, to have the largest impact. This topic merits further exploration. 

 

Propulsive efficiency 

 The measurements of propulsive efficiency derived from bulk properties of the jet wake 

in this study indicate that paralarvae exhibit higher propulsive efficiency during jet ejection than 

adult squid for escape jets. The efficiency advantage of paralarvae is a product of several factors. 

In the present study, paralarvae produced a jet that is more aligned with the direction of motion 

(mean paralarvae jet angle relative to direction of motion= 13.7°; mean juvenile/adult jet angle 

relative to direction of motion= 18.7°).  These results are consistent with Bartol et al. (2008, 

2009a, 2009b), who considered propulsive efficiency throughout ontogeny for steady swimming 

and found similar angle differences.  As mentioned above, paralarvae also have larger funnel 

apertures (Boletzky, 1974; Packard, 1969; Thompson and Kier, 2002), faster contraction 

frequencies (8.6 mantle circumference lengths per second in paralarvae, versus 3.6 mantle 

circumference lengths per second in adults)(Thompson and Kier, 2001) and hold proportionally 

greater volumes of water in their mantle cavities (Gilly et al., 1991; Preuss et al., 1997b; 

Thompson and Kier, 2001), which allow paralarvae to expel large volumes of water at relatively 
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low speeds but at high frequencies, all of which can improve propulsive efficiency (Bartol et al., 

2009a).  

The propulsive efficiencies reported in this study are in reasonable agreement to those 

reported in previous studies. Bartol et al. (2009a) found that paralarval D. pealeii have mean 

propulsive efficiencies of approximately 75% for speeds of 0.7–3.1 cm s
-1 

(Bartol et al., 2009a). 

The paralarval escape jets recorded here were higher (94.55%), but this is likely due to the 

consideration of higher swimming speeds (1.88-12.07 cm s
-1

), as propulsive efficiency tends to 

increase with speed in squid (Bartol et al., 2009b, 2015).  Indeed Bartol et al. (2009a) found that 

paralarvae have deconvolved propulsive efficiencies as high as 87.5% for speeds of ~2.5 cm s
-1

.  

Using models and whole-cycle efficiency calculations, Staaf et al., (2014) reported efficiencies 

for ommastrephid paralarvae of ~20%.  However, these results are difficult to compare directly 

to our results because they do not derive from direct bulk wake measurements of the wake and 

include a refill period penalty.  

As was the case here for escape jetting, Bartol et al (2008) and Bartol et al. (2009a) found 

that paralarvae have higher propulsive efficiency than juveniles and adults during steady 

swimming.  For steady swimming, mean propulsive jet efficiency of juveniles and adult L. brevis 

is ~64% based on DPIV measurements (Bartol et al., 2009b). In newer 3D analyses that 

incorporate both jet and fin contributions to steady swimming in L. brevis, overall propulsive 

efficiency was 65.5% (Bartol et al., 2016). In jellyfish (Sarsia tubulosa), swimming efficiency 

throughout ontogeny ranges from 56-75% (Katija et al., 2015). Our juvenile and adult escape jet 

mean propulsive efficiencies of 87.71% and 93.75%, respectively, are higher than the 

efficiencies above.  However, when similar high-speed propulsive efficiencies are considered the 

values are in good agreement, with values as high as 91-96% being reported in Bartol et al. 
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(2009b, 2016). While not based on direct measures of the jet impulse and kinetic energy, 

propulsive efficiencies up to 93% were reported in adult D. pealeii when swimming at speeds 

>1.6 DML s
-1 

(Anderson and Grosenbaugh, 2005), which is similar to our highest recorded adult 

efficiency of 97%.  

The use of different jet modes with dissimilar propulsive efficiencies in the present 

escape jet study is consistent with previous studies performed on steady swimming squid. In 

these prior studies, Jet mode I, where a well-defined spherical vortex is produced, has higher 

propulsive efficiency than jet mode II, where a leading edge ring component detaches from a 

long trailing jet (Bartol et al., 2008, 2009b). More recent 3D analysis considering both jet and fin 

contributions also revealed that jet wakes with clear isolated vortex rings have higher mean 

propulsive efficiencies (78.6%) than jet wakes with elongated regions of jet vorticity (67.9%) 

(Bartol et al., 2016).  Our results show that longer jets (escape jet II) have lower efficiency than 

shorter pulses (escape jet I) during escape jet swimming as well. Overall, the observed high 

propulsive efficiencies of high velocity squid escape jets challenges previous studies that report 

that jets are inherently inefficient (Alexander, 1968; Lighthill, 1975; Vogel, 2003). 

Estimating propulsive efficiency in squids throughout ontogeny is challenging given the 

different Re regimes and behaviors involved. As mentioned above, paralarvae swim 

predominantly along a vertical axis, and therefore paralarval displacement over a full jet cycle 

(mantle contraction and refill) is strongly dependent on the refill duration and sinking rate. To 

remove the impact of gravity on propulsive efficiency in paralarvae, we considered only the 

exhalant phase of the jet across our ontogenetic comparisons. Although juveniles and adults 

swim along a more horizontal axis where losing ground and gravity effects are not as significant, 

it was important to consider propulsive efficiencies for only the propulsive phase for these life 
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stages as well, so that fair comparisons could be made.  Because the refill period involves no 

thrust component, it is feasible that our propulsive efficiencies are slightly overestimated.  Even 

if this is true, however, the relative differences among the life stages are still accurate, as the 

same propulsive efficiency metric was used for all comparisons. 

 

Ecological implications 

 Throughout all life history stages, squids are prey targets for many marine predators, 

including fish, marine mammals, sea birds, and even other cephalopods, making them an integral 

component of marine food webs  (Clarke, 1996; Mather, 2010; Piatkowski et al., 2001; Wood et 

al., 2008). Therefore, it is vital that they have an effective response to predation. Our findings 

show that squids can select at least two escape responses, i.e., escape jet I or escape jet II, both 

of which have high propulsive efficiency. When faced with an oncoming predator, the escape 

response often consists of several sequential escape jets to move away from the predator. Thus, 

there is a benefit to having high efficiency for each escape jet within a long chain of responses, 

as it reduces overall energy expenditure. Considering that squid are prey targets for so many 

species, it is likely that they not only perform sequential escape jets for each interaction but also 

have lots of daily interactions, making a highly efficient response essential for survival. 

Although this study focused on individual escape jets, a next logical step would be to evaluate 

escape jets over multiple cycles to determine how many successive escape jets are routinely 

employed. 

 Paralarvae, juveniles and adult squid showed two distinctive types of escape jets: (1) a 

short spherical vortex pulse (escape jet I) and (2) a longer pulse with an extended region of 

concentrated vorticity (escape jet II). The fact that these two patterns were observed throughout 
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ontogeny indicates that squid have a two phase approach to the escape response, whereby they 

can use the highly efficient escape jet I when a predatory attack is not assured, and the less 

efficient but presumably more powerful escape jet II when an attack is more certain. If this were 

the case, one might expect swimming speeds and accelerations to be higher for escape jet II than 

escape jet I, as the goal of escape jet II is to flee quickly.  Curiously, this was not observed, 

indicating that escape mode selection is complex with multiple factors in play.  Indeed, the 

selected escape jet mode may be related, in part, to inking. Squid are capable of producing a 

variety of large and small ink shapes based on the mantle contraction and opening time of the 

funnel aperture (Bush and Robison, 2007; Hanlon and Messenger, 1996). When faced with an 

approaching predator, the most common ink shape utilized by L. brevis is a large pseudomorph 

(see Chapter 4). Since ink is produced in the mantle cavity and ejected out of the funnel when the 

mantle contracts, the cephalopod inking response is inextricably linked to their jet propulsion 

system (Hanlon and Messenger, 1996). While not significantly different, there was a clear trend 

in funnel aperture opening times between the two approaches; funnel aperture opening time was 

0.13 s for escape jet II, and 0.6 s for escape jet I. These differences could potentially impact ink 

expulsion volume, with shorter and longer inking events being more associated with escape jet I 

and escape jet II, respectively.  Inking behavior was employed during both escape jet I and 

escape jet II in this study; however the shape, volume, and overall mass of the ink was not 

readily quantifiable with our flow quantification set-up. Clearly, more research is needed to 

explore how various inking shapes are related to the escape jets observed in this study.   

   

Concluding thoughts 
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In this study, we determined that squid have locomotive flexibility in escape responses, 

which was evident by the observation of escape jet I and escape jet II throughout ontogeny. 

Escape jet I is more efficient in juveniles and adults and may be the mode used when a threat is 

not eminent. Escape jet II is less efficient than escape jet I and may be used when a predatory 

attack is unavoidable (and perhaps even initiated), making a rapid escape integral for survival. 

Inking may be another important factor in escape jet selection.  While all life history stages 

produced escape jets that are highly efficient, paralarvae were more efficient than adult squid, 

which likely derives from differences in morphology, ecology, and Re regime. Our observed 

high propulsive efficiencies for escape swimming, when the goal it to avoid capture at all costs 

and not necessarily maximize propulsive efficiency, was unexpected.   However, when a squid is 

avoiding capture, the escape response usually consists of multiple sequential escape jets, and 

many daily interactions with predators are common for squid. Having high propulsive efficiency 

and the ability to swim quickly are key advantages for squid as they escape oncoming predators, 

which may have lower peak swimming speeds and propulsive efficiency during these 

predator/prey encounters. Throughout ontogeny, squid are prey targets for many marine 

predators, making predator avoidance an enormously important aspect of survival to 

reproductive age (Clarke, 1996; Piatkowski et al., 2001). Our results indicate that squid are 

extremely good at producing high velocity and highly efficient escape jets as soon as they hatch.  

Although squid undergo morphological, ecological and physiological transitions as they develop 

from planktonic paralarvae to larger nektonic adults, and while differences were found in 

kinematic patterns and propulsive efficiency through ontogeny, all life stages of squid are 

capable of a powerful and flexible escape jet response to maximize escape from predation. 
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CHAPTER 6 

CONCLUSIONS 

 

 Cephalopods have a number of unique defenses against predators including multiple 

sensory modalities, an array of anti-predator behavior, and a powerful jet for quick escape 

(Budelmann, 1996; Hanlon and Messenger, 1996). Squid also undergo major morphological and 

ecological changes throughout their lives (Boletzky, 1974), which alter how they detect and 

respond to an oncoming predator.  This dissertation provides new insights into the relative 

importance of the lateral line analogue and vision in predator detection for paralarval, juvenile, 

and adult squid (Chapters 2-3), the behavioral anti-predator strategies used by squid throughout 

ontogeny (Chapter 4), and the hydrodynamics of escape jetting employed by squid of different 

life stages (Chapter 5).  

The findings of Chapter 2 and 3 demonstrate for the first time that both vision and the 

lateral line analogue provide sensory information for initiation of an escape response and 

successful predator evasion in squid throughout ontogeny. Cephalopod vision has been viewed 

as the dominant sensory modality used in predator detection due to the well-developed complex 

nature of cephalopod eyes (Budelmann, 1994; Budelmann, 1996). However, the sensitivity of the 

lateral line (0.06 µm), means that squid are capable of detecting a moving 1 meter fish from a 

distance of about 30 meters away, even when vision is disabled (Budelmann, 1994).  The use of 

the lateral line analogue was evident in paralarval squid where in both light and dark conditions, 

the non-ablated groups showed a higher proportion of escape responses than the ablated groups. 

Interestingly, there was no difference in the initiation of an escape response of the paralarvae in 

the light non-ablated and dark non-ablated conditions, as would be expected if vision was used as 
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the dominant sense. Although differences were found in the initiation of an escape response, no 

differences were found in survival across treatment groups with the exception of the dark ablated 

condition, which was likely due to the higher mean velocity of the predator versus the paralarvae 

in the experimental trials. In juveniles/adults the light non-ablated group survived a higher 

number of interactions than the light ablated and dark treatment groups, highlighting the 

importance of both the lateral line analogue and vision. However, the observed higher proportion 

of interactions survived for the light non-ablated group relative to the dark ablated group, as well 

as the trend in higher proportion of interactions survived for the light non-ablated versus the dark 

non-ablated group demonstrate that vision is the more important modality for predator avoidance 

for life history stages older than paralarvae. Higher number of interactions survived in the light 

non-ablated than the light ablated group, however, suggests that the lateral line analogue also 

plays a key role in predator evasion even when vision can be utilized.  

Overall, juveniles/adults performed more escape responses than paralarvae, which led to 

a significantly higher rate of survival. This result may be due to the different anti-predator 

strategies of squid throughout ontogeny to compensate for an underdeveloped nervous system 

and planktonic nature (Chen et al., 1996). In juveniles/adults the mean velocity of the escape 

response was significantly higher in non-ablated versus ablated conditions. Additionally, the 

time for the squid to reach maximum velocity was almost half a second longer in the ablated 

versus non-ablated group. It is likely that, similar to the zebrafish, squid respond to the bow 

wave generated by an approaching predator which stimulates the lateral line analogue. 

Throughout all of the predator-prey interactions, the squid oriented themselves so the predator 

approached them anteriorly at angles between 0° and 90°, which is advantageous for both tail-

first escape jetting (preferred mode) and sensory perception, as the epidermal hairs are located at 
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the head and arms. Our findings indicate that the lateral line analogue plays a role in predator 

detection and initiation of an escape response at the earliest life stages, and continues to 

contribute to successful evasion by aiding visual cues in juvenile/adult squid. These results 

provide novel insight into the sensory modalities used by squid to evade predators from the 

earliest life stages and to maturity.  

The results of Chapter 4 reveal the unique differences in anti-predator behavioral 

strategies of squid as they undergo morphological and ecological transformations throughout 

ontogeny. Paralarval squid did not react to an oncoming predator with posturing or consistent 

inking responses. Instead, they produced an escape jet in only 35% of encounters while 

demonstrating routine stereotypical behaviors in 65% of encounters in the presence of a predator. 

One of the most striking ontogenetic differences was the presence of these unique stereotyped 

behaviors by paralarvae, but not other life history stages. Since the paralarvae often did not 

change their behavior as a predator was approaching, it is possible that they rely heavily on their 

repertoire of stereotyped behaviors and clear body patterning to elude potential predators in the 

water column until they develop better neural and motor control. In contrast, juvenile and adult 

squid exhibited frequent inking/escape jetting and postural responses to an oncoming predator, 

with the selection of anti-predator behavior being impacted by characteristics of the predator’s 

approach. During the slower predator approaches, the juvenile/adult squid were more likely to 

posture, while faster approaches triggered inking and escape jet responses.  In juveniles/adults, 

postural responses were favored when the predator was positioned at large distances from the 

squid while inking responses were selected when the predator was close to the squid. 

Additionally, postural displays were selected when the predator travelled only a short distance 

toward the squid, while ink responses were used when the predator travelled a significantly 
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greater distance toward the squid. In adults and juveniles, the banded body pattern was 

demonstrated far more than a dark body, clear body or dark arms with a clear body pattern. 

Furthermore, the proportion of total inking events varied with angular direction of the squid 

relative to the predator, with anterior and lateral approaches (46-90º) triggering more inking and 

escape events than approaches from other angles. These findings indicate that hydrodynamic 

cues received by the lateral line analogue (as discussed in Chapter 3) play a role in inking 

behavior. The variability in anti-predator behaviors in paralarvae through adults indicates that 

squid utilize suitable adaptations for their changing morphology and ecological niches to 

maximize survival throughout ontogeny.  

In Chapter 5, the hydrodynamic properties of escape jets produced by paralarvae, 

juveniles and adult squid are examined. Throughout ontogeny, squid generated two escape jet 

patterns: (1) escape jet I characterized by short rapid pulses resulting in vortex ring formation 

and (2) escape jet II characterized by long high volume jets, often with a leading edge vortex 

ring. The presence of two escape jet modes indicates that squid have greater complexity in their 

escape jet behavior than previously thought, i.e., escape jets are not simply produced in an all-or-

none fashion. Escape jet I is more efficient in juveniles and adults and may be the mode used 

when the threat is unclear. Escape jet II is less efficient than escape jet I and may be used when 

an attack is imminent and escape is of utmost importance. No differences were found in the 

propulsive efficiency of escape jet I and II at the paralarval stage, which may be a product of Re 

and morphology.  In addition to efficiency differences, jet mode selection may be a function of 

ink patterns, as escape jet II involves a longer duration of funnel aperture opening than escape jet 

I, allowing the squid to produce larger volume ink signatures.  Given that few inking responses 

were observed in the paralarval predator-prey trials in Chapter 4, it is possible that these modes 
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become increasingly important for ink pattern diversity as the squid becomes more 

neurologically advanced and less resources are being allocated towards growth (Russo et al., 

2003). While all life history stages produced escape jets that are highly efficient, paralarvae were 

more efficient than adult squid. This result is likely due to morphological differences in the life 

stages, where paralarvae have larger funnel apertures (Boletzky, 1974; Packard, 1969; Thompson 

and Kier, 2002), faster contraction frequencies (Thompson and Kier, 2001) and hold 

proportionally greater volumes of water in their mantle cavities (Gilly et al., 1991; Preuss et al., 

1997a; Thompson and Kier, 2001), which allow paralarvae to expel large volumes of water at 

relatively low speeds but at high frequencies, all of which can improve efficiency (Bartol et al., 

2009a).  The overall high efficiencies of the escape jets are surprising, given that energy 

conservation is not the goal of an escape response. However, when a squid is avoiding capture, 

the escape response usually consists of multiple sequential escape jets to reach a safe distance 

from the predator.  Moreover, squid have many daily encounters with predators given they are a 

highly sought after protein-rich food source.  Thus, having high efficiencies and high escape 

velocities is essential for their survival during encounters with seemingly relentless predators. 

The results of this chapter confirm that as squid develop from planktonic paralarvae to larger 

nektonic adults, they are capable of a powerful and flexible escape jet response to maximize 

escape from predation throughout ontogeny.   

Overall, the findings of these studies indicate that squid are extremely well adapted for 

predator avoidance. With multiple sensory modalities to detect an approaching predator, a 

variety of anti-predator behavioral responses, and a highly efficient and flexible escape jet, all 

life stages of squid have anti-predator strategies specific to their ecological, physiological and 

morphological stage to maximize survival.  
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