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Responding to Some Challenges Posed by the Re-identification of 
Anonymized Personal Data 
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Frances S. Grodzinsky 
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Abstract 
 
In this paper, we examine a cluster of ethical controversies generated by the re-
identification of anonymized personal data in the context of big data analytics, with 
particular attention to the implications for personal privacy. Our paper is organized into 
two main parts. Part One examines some ethical problems involving re-identification of 
personally identifiable information (PII) in large data sets. Part Two begins with a brief 
description of Moor and Weckert’s Dynamic Ethics (DE) and Nissenbaum’s Contextual 
Integrity (CI) Frameworks. We then investigate whether these frameworks, used 
together, can provide us with a more robust scheme for analyzing privacy concerns that 
arise in the re-identification process (as well as within the larger context of big data 
analytics). This paper does not specifically address re-identification-related privacy 
concerns that arise in the context of the European Union’s General Data Protection 
Regulation (GDPR). Instead, we examine those issues in a separate work. 
  
Keywords:   Re-identification, Privacy, Anonymized personal data, Big Data Analytics, 
Contextual Integrity, Dynamic Ethics 
 
 
In this paper, we examine a cluster of ethical controversies generated by the re-
identification of anonymized personal data in the context of big data analytics, with 
particular attention to the implications for personal privacy. By “re-identification,” we 
mean the process of “using anonymized data to find individuals in public datasets” 
(Rijmenam 2016). This process is often contrasted with “de-identification,” which has 
been defined as a process for “treating sensitive personal data regarding individuals in 
such a way that the individuals cannot be identified” 
(https://www.cippguide.org/2010/09/21/de-identification-re-identification/). Typically, the 
de-identification of personal data involves the removal of certain specified (personal) 
identifiers — name, social security number, etc. One significant controversy involving 
re-identification (and big data analytics) is:  
 

Privacy rules that apply to personally identifiable information (PII) do not apply to 
(de-identified) anonymized personal data, some of which can now be fairly easily 
re-identified.  

 

https://datafloq.com/read/author/mark-van-rijmenam/21
https://www.cippguide.org/2010/09/21/de-identification-re-identification/


Since many people already are, or will soon be, affected by big data and its implications 
for the re-identification of their PII, we believe that a clear, explicit, and transparent 
privacy framework is needed. And because the field of big data (for a definition of big 
data, see Grodzinsky 2017) is also evolving in connection with other “emerging 
technologies,” we believe that a robust privacy framework might also help us to address 
related issues that arise in those contexts as well. We argue that such a framework is 
possible if we use two frameworks, Moor and Weckert’s Dynamic Ethics (DE) and 
Nissenbaum’s Contextual Integrity (CI) in tandem, to better enable us to develop clearer 
and more robust policies that will protect users from the kinds of current privacy 
violations at risk via the re-identification of their previously anonymized personal data 
using big data analytics. 

Our paper is organized into two main parts. Part One examines some ethical 
problems involving re-identification of personally identifiable information (PII) in large 
data sets. Part Two begins with a brief description of Moor and Weckert’s DE and 
Nissenbaum’s CI Frameworks. We then investigate whether these frameworks, used 
together, can provide us with a more robust scheme for analyzing privacy concerns that 
arise in the re-identification process (as well as within the larger context of big data 
analytics).  
 
 
PART I:  
Re-identification and De-identification in the Context of Big Data   
 
Both “re-identification” and “de-identification” have challenged privacy in the context of 
big data. Big data is also evolving in connection with other “emerging technologies,” 
such as ambient intelligence (AmI)/pervasive computing; therefore, a robust privacy 
framework might also help us to address related issues that arise in those contexts as 
well. Another challenge arises in the use of “scrubbed data” and netadata. 
 
 
Re-identification of “Scrubbed” Data   
 
Scrubbing data involves removing its identifying data.  Lubarsky (2017) points out that in 
the case of PII, such as one’s name, medical condition, social security number, etc., we 
have some legal protections regarding both its sale and disclosure. But he goes on to 
note that once data containing PII is “scrubbed,” it can then be considered “anonymized 
data.” Lubarsky also points out that scrubbed data is now commonly re-identified simply 
by “combining two or more sets of data to find the same user in both.” 

Lubarsky suggests that we can view personal data as residing on what he refers 
to as a “spectrum of identifiability,” and he uses the metaphor of a staircase to illustrate 
this point. At the top of this hierarchy is personal data that can directly identify the 
individual (for example, one’s name, telephone number, social security number, and so 
forth). The “second step” in this ladder is where we find the kind of indirect identification 
which includes data that is “unambiguously linked to an individual.” (Lubarsky points out 
that 63% of the population can be uniquely identified by the combining three pieces of 
data: gender, date of birth, and zip code). Whereas the third step in Lubarsky’s 



“staircase” includes data can be “ambiguously” connected to multiple people—
restaurant preferences, movies, etc.—the fourth step includes data that cannot be 
linked to any specific person (e.g., aggregated census data). 

Lubarsky also describes a collection of approaches/tools/algorithms that can be 
used in the process of “scrubbing,” or removing, the “identifying information” from data. 
To scrub a data set of this kind of information, Lubarsky notes that four main categories 
or techniques can be used: “(1) removing data; (2) replacing data with pseudonyms; (3) 
adding statistical ‘noise’; and (4) aggregation.” Whereas (1) and (2) are used mainly for 
direct identifiers, (3) and (4) are used for indirect identifiers.” We will not elaborate on 
these techniques for “scrubbing data, since our main objective is in analyzing ethical 
aspects of anonymized data once it has become re-identified. 
 
 
Some Recent Challenges Involving the Use of Metadata in Re-
Identifying Individuals 
 
Until recently, it had been assumed by many researchers working in the area of de-
identifying personal data that “metadata” was not important, or at least was far less 
important than other kinds of data, with regard to concerns that critics had raised about 
re-identification issues. For example, Perez et al. (2018) note that metadata is still 
categorized as “non-sensitive,” even though it is the kind of data most produced by us in 
our “daily interactions and communications in the digital world.” In a case study 
involving Twitter users, Perez et al. set out to “quantify the uniqueness of the 
association between metadata and user identity” and also to understand better the 
effectiveness or ineffectiveness of potential “obfuscation strategies.” Perez et al. went 
on to note that via a “supervised learning algorithm,” they were able to “identify any user 
in a group of 10,000 people, with approximately 97.6% accuracy”.  

Now, however, metadata is beginning to be seen as an increasingly important 
source as well. As Devlon (2018) points out, “geolocation metadata” acquired over time 
via apps in fitness wearables or smartphones “can produce unique, repeatable data 
patterns that can be directly associated with individuals.” And Solon (2018) points to 
some examples in which “metadata, rather than or in addition to actual content, has 
been at the heart of the re-identification process.” Solon also notes that metadata fits 
into a category that she describes as “context-setting information,” and she further 
points out that the amount of context-setting information currently being collected and 
stored will likely increase dramatically, as we continue our transition to autonomous 
vehicles and a cashless economy. While some might find this astonishing, Paul Ohm, 
who has raised concerns about what he calls “the surprising failure of anonymization,” 
has noted that “for almost every person on earth there is at least one fact about them 
stored in a computer database that an adversary could use” against that person (cited in 
Devlon 2018). 
 
 
Some Controversial Cases Involving Re-identification  
 



Two now classic cases—the Weld and Netflix cases—provided some earlier illustrations 
of how the re-identification of personal data could have serious implications for personal 
privacy. (We examine these and other cases in more detail in Part II, where we apply 
our framework that incorporates key elements of DE and CI.) The first case involves the 
re-identifying of (former Massachusetts governor) William Weld, based on the 
comparison of seemingly “random” pieces of data. Latayna Sweeney (supervising a 
graduate student at MIT) was able to re-identify Weld from three anonymized datasets. 
Sweeney (2006) described how she used a public dataset released by the 
Massachusetts Group Insurance Commission (aimed at improving healthcare and 
controlling costs in Massachusetts), a voter list, and some other pieces of data in 
successfully re-identifying Weld (https://epic.org/privacy/reidentification/). (See also 
https://www.cippguide.org/2010/09/21/de-identification-re-identification/).  

The controversial case involving Netflix had exposed some of the names of the 
500,000 people who participated in an online contest sponsored by Netflix in 2006. In 
2010 Arvind Narayanan (along with his team) was able to re-identify several individuals 
in the Netflix dataset of de-identified people (especially those who made more than nine 
entries). This incident resulted in Netflix being sued for privacy violation (under the 
Video Privacy Protection Act), and it also led to Netflix cancelling its second (planned) 
contest (Rijmenam 2016). 

In a more recent case, Culnane et al. (2017) describe some ways in which 
patients in a “de-identified open health data set” in Australia were able to be 
successfully re-identified. The authors note that in August 2016, the Australian 
government, in compliance with its policy of open government data, had the federal 
Department of Health publish (online) the de-identified longitudinal medical billing 
records. The records in this data set included data pertaining to approximately 10% of 
Australian population, which amounted to roughly to 2.9 million people. In September 
2016, Culnane et al. were able to decrypt the “IDs of suppliers” (doctors, midwives, and 
so forth) in that published report, and they informed the Department of Health about 
what they had been able to do. The Department then removed the dataset with the 
online billing records from online access. However, the authors also showed the 
government how easily patients could be re-identified without using decryption. For 
example, they noted that they were also able to link the “unencrypted parts of the record 
with known information about the individual.” Culnane et al. were careful to point out 
that their primary aim had been to “inform” the data-sharing policy that had recently 
been put in place in Australia, by offering the government a “scientific demonstration of 
the ease of re-identification of the kind of data involved.”   

In order to encourage website developers to better their users’ experience, third 
party companies use “session replay scripts” whose purpose is to record a user’s 
actions while visiting a website or using an application on a mobile device in order to 
collect information used in data analytics. (Grodzinsky et al. 2018). One problem that 
has arisen is that the extent of gathered data is intrusive, going well beyond the stated 
objectives, and happening without user knowledge or consent. Unless manually 
redacted by the application developer (a clause in a third party company policy) to 
insure user privacy, the third party company could re-identify users who believed that 
their private information was protected.  This has been particularly problematic in cases 
involving medical information, such as prescription data. 

https://epic.org/privacy/reidentification/
https://www.cippguide.org/2010/09/21/de-identification-re-identification/


These cases illustrate the challenge, mentioned in the introduction to our paper, 
for protecting personal privacy in the context of recent and current de-identification 
schemes involving PII. So it would seem that much stronger, and more explicit, privacy 
protections (for data subjects) need to be built into the process of collecting and 
labeling, as well as mining and analyzing, the kinds of personal data that will eventually 
be anonymized through the de-identification process.  
 
 
PART II:  
Towards a Comprehensive Ethical Framework to Guide Future 
Research in Big Data Analytics 
 
We next briefly describe and apply a model advanced by Moor (2005) and Moor and 
Weckert (2004), which the authors call the “dynamic ethics”  approach and we refer to 
by the acronym DE. In proposing this model, Moor (2005, p. 118) argues that we can 
“improve our ethical approach” to emerging technologies by “recognizing that ethics is 
an “ongoing and dynamic enterprise,” which “continually requires reassessment of the 
situation.”  

Moor notes that while there is a temptation to approach ethical aspects of 
emerging technologies by doing the ethical analysis first, we can foresee only so far into 
the future. But he also believes that “we need to do more to be more proactive and less 
reactive in doing ethics” (Moor, p. 118). However, this does not imply that we should 
adopt what Moor and Weckert describe as an “ethics-first” approach. The authors note 
that in the past, two kinds of (polar opposite) strategies have typically been used to 
address ethical issues affecting recent and emerging technologies: ethics–last and 
ethics–first frameworks. Historically, the ethics–last approach has been the “standard” 
model; typically, a new technology was introduced and then we thought about the 
ethical issues affecting it — so, from an ethical perspective, we had to play “catch up” 
with the new technology.  

The ethics–first approach, on the contrary, is a more recent model; arguably, it 
was first used in the Human Genome Project (HGP) in the late 1980s and 1990s.The 
ELSI (ethical, legal, and social issues) framework was perhaps the first and arguably 
best known example of this kind of approach. Many saw the ELSI framework as 
desirable because it was a “proactive” model. 

But Moor and Weckert have argued that the ELSI framework is not ideal for use 
in emerging technologies, since, for example, it could halt future developments in an 
emerging technology, requiring that we place a moratorium on research in that 
technology. The authors also believe that having a moratorium would not necessarily 
result in an improvement regarding the ethical outlook for that technology.  

Moor and Weckert also reject an ethics-last approach, which they believe would 
cause us revert back to “business as usual” and also potentially create a situation in 
which it is too late to make the necessary ethics adjustments. Instead, the authors 
suggest that their alternative “dynamic” strategy can be contrasted with a “static” view of 
ethics. Moor (2005, p. 118) argues that we also need to “establish better collaboration 
among ethicists, social scientists, social scientists and technologists” (i.e., a multi-
disciplinary approach), in addition to developing “more sophisticated ethical analyses.” 



For example, Moor points out that “ethicists need to be informed about the nature of the 
technology and to press for an empirical basis for what is and what is not a likely 
consequence of its development and use.” He also worries that many conventional or 
traditional ethical theories are in themselves “often simplistic and do not give much 
guidance to particular situations.” 

A suggested above, DE is intended to work for emerging technologies (including, 
for our purposes, big data analytics in general, and the associated  problem of re-
identification of personal data in particular). So an analysis of ethical problems in this 
area will need to “be done continually” — i.e., as the field of big data analytics continues 
to develop, and as its potential social and ethical consequences become better 
understood. Using DE, we also need to:  
 

A. differentiate between the factual/descriptive and normative components of 
issues affecting big data;  

B. frame and (continually) revise policies, particularly our privacy and consent 
policies, affecting the collection, use, subsequent use, mining, and analysis of 
personal data in the context of big data analytics, as necessary — i.e., as:  

a. the factual data changes, or  
b. information about the potential social impacts becomes clearer. 

  
Around the same time that Moor and Weckert were developing DE, Helen Nissenbaum 
was developing and refining her privacy theory of Contextual Integrity (CI). However, it 
was not until 2010, with the publication of her book Privacy in Context that she 
developed a “decision heuristic” for privacy which we believe also aligns nicely with DE. 

Nissenbaum's CI privacy framework requires that the processes used in 
gathering and disseminating information (a) are “appropriate to a particular context” and 
(b) comply with norms that govern the flow of personal information in a given context 
(2004, p. 137). She refers to these two types of informational norms in the following 
way: (a) norms of appropriateness, and (b) norms of distribution. Whereas norms of 
appropriateness determine whether a given type of personal information is either 
appropriate or inappropriate to divulge within a particular context, norms of distribution 
restrict or limit the flow of information within and across contexts. When either norm has 
been “breached,” a violation of privacy occurs; conversely, the contextual integrity of the 
flow of personal information is maintained when both kinds of norms are “respected.” 

Nissenbaum's theory demonstrates why we must always attend to the context in 
which information flows, and not to the nature of the information itself, in determining 
whether normative protection is needed. Nissenbaum’s framework—or “decision 
heuristic” –includes a series of specific guidelines that can be applied to her “contextual 
integrity” model in specific cases. One objective of her heuristic is to help us understand 
the “source or sources of trouble in new and emerging technologies,” while another is to 
help us to evaluate the “system or practice in question” (2010, p. 181).  Nissenbaum’s 
decision heuristic includes nine steps: 
 

1. Describe the new practice in terms of information flows. 
2. Identify the prevailing context… and identify potential impacts from contexts 

nested in it… 



3. Identify information subjects, senders, recipients. 
4. Identify transmission principles 
5. Locate applicable entrenched informational norms and identify significant points 

of departure. 
6. Prima facie assessment…A breach of information norms yields a prima facie 

judgment that contextual integrity has been violated because presumption favors 
the entrenched practice. 

7. Evaluation I: Consider moral and political factors affected by the practice in 
question… 

8. Evaluation II: Ask how the system or practices directly impinge on values, goals 
and ends of the context... 

9. On the basis of these findings, contextual integrity recommends in favor of or 
against systems or practices under study....  (2010, p. 182) 

 
By comparing DE to this decision heuristic, we believe that we can make a strong case 
that the two should be used in tandem.  It is interesting to note that both are “dynamic” 
in the sense that they demand the constant reassessment of ‘entrenched norms’ and 
‘significant points of departure’.  Whereas DE focuses more on the macro-level, 
Nissenbaum (Steps 1-4) hones in on the specifics of systems under study that could, 
hypothetically, be those identified by DE (part A). Part B of DE, corresponds to Steps 5-
9 of the Nissenbaum heuristic. DE might seem less effective in analyzing ethical 
aspects of emerging technologies where no clear and explicit policies yet exist. Also, 
that model does not specifically mention privacy per se (or at least not in a direct 
sense). But as we will see below, DE also aligns closely with key aspects of Moor’s 
privacy theory which is compatible with CI. 

Although both CI and DE use the metaphor of “context,” CI does so more 
explicitly. However, it is important to note that DE is also compatible with, and in some 
ways expands upon, Moor’s privacy theory, which, like Nissenbaum’s, is context based. 
For example, Moor focuses on the notion of a “situation” (or zone or context), since an 
“individual or group” can enjoy privacy only in a “situation”—i.e., in a situation “with 
regard to others if and only if that individual or group is normatively protected 
from…information access by others” (Moor 1997). His theory, later described as the 
RALC (Restricted Access/Limited Control) theory of privacy (Tavani 2007) because it 
combines aspects of the traditional “control” and “restricted access” theories, also 
differentiates (a) the concept of privacy from both (b) the justification of privacy and (c) 
the management of privacy. As such, it has three important components (see Tavani 
and Moor [2001] for a detailed explanation of how these three component parts work 
together).  

In RALC, normative privacy is differentiated from descriptive or natural privacy, 
depending on the kind of situation (or context) involved One has normative privacy in a 
situation where one is protected by explicit norms, policies, or laws that have been 
established to protect individuals (or groups) in that situation. One can “lose privacy” in 
a descriptive sense in a naturally privacy situation. But one’s privacy is not only lost but 
also violated in a normatively private situation, by virtue of explicit norms that are 
breached in that situation or context. Nissenbaum’s CI model, on the contrary, focuses 
exclusively on what would count as normatively private situation/context in RALC.  



RALC also includes two important (privacy) principles, each of which dovetails 
nicely with DE: The Publicity Principle and The Adjustments Principle. According to the 
former principle, Moor (1997) states: “Rules and conditions governing private situations 
should be clear and known to the persons affected by them.” As Moor notes, our privacy 
is better protected “if we know where the zones of privacy are and under what 
conditions and to whom information will be given.” But Moor also notes that sometimes 
exceptional circumstances can arise and a privacy policy may need to be adjusted. So 
in his Adjustment Principle, Moor points out: “If special circumstances justify a change in 
the parameters of a private situation, then alterations should become an explicit and 
public part of the rules and conditions governing the private situation.” As noted above, 
we believe that both principles work well with DE and CI, especially in identifying and 
reinforcing the spirit of transparency needed for adequate privacy policies in particular, 
and (broader) ethical policies in general. 

In the following section, we will show how both DE (in connection with some key 
aspects of RALC) and CI can be applied to controversies affecting re-identification in 
the larger context of big data analytics. It seems to us that current practices of re-
identification are more of a “breach” of one or more norms, to use Nissenbaum’s 
metaphor, rather than an instance either of a “norm of appropriateness” or a “norm of 
distribution” in CI. But, when invoking Moor’s Adjustment Principle, we also believe that 
view could evolve over time, e.g., depending on some future research practices for big 
data and the kinds of policies that currently surrounding them. 
 
 
Applying our Combined DE and CI Model to Classic and Recent Cases 
of Re-identification 
 
Our comprehensive framework includes the following four steps: 

1. Differentiate between the factual/descriptive and normative components of the 
new or emerging technology under consideration  

a. by identifying contexts, information flows, information subjects, senders 
and recipients 

b. Locating applicable entrenched informational norms and identifying 
significant points of departure. 

2. Assess if norms of appropriateness and/or distribution have been violated. 
3. Revise the policies affecting that technology as necessary, especially as the 

factual data or components change or as information about the potential social 
impacts becomes clearer. 

4. Continue to evaluate the effectiveness of policies, practices and technical 
safeguards over time. 

 
We next apply our model to four cases, beginning with the Weld and Netflix cases. 
Doing so, we believe, suggests the following with regard to the application of our four 
steps:  

In the Weld and Netflix cases, we see that no adequate policies had been in 
place with regard to re-identifying individuals whose names were anonymized in the 
respective data sets In the Weld case, many people might have had an expectation that 



their PII would not be able to be re-identified in situations involving subsequent uses of 
their data.  But in the Netflix case, those participating in the (Netflix-sponsored) contest 
had been told that their names would remain anonymous. So, it would seem that people 
in this case had relied on an explicit agreement with Netflix that their PII would be 
protected from being re-identified in the future.  

But when the new “factual data” revealed what had indeed happened in both 
cases, it became clear that better, and more, explicit policies were needed to protect 
individuals.  Therefore, according to our model, we can infer: 

 
• Big data analysts who design the code intended to protect personal privacy with 
respect to PII would need to “reassess” the de-identification schemes that had 
been used in those kinds of data sets. (Steps 1 and 2) 
• It would also require government/health agencies/ organizations and 
corporations to re-assess their policies—framing new ones where needed, or 
revising existing   policies where appropriate—in ways that can better protect an 
individual’s PII from being so easily identified. (Step 3) 
• The entrenched norms are evident in the contract with Netflix, but a bit murkier 
in the Weld case where there were no adequate policies, and only some possible 
expectations on the part of the participants. (Step 1)  
• Nevertheless, the ability to re-identify individuals pointed out the potential to 
violate privacy in this context.(Step 2) 
• Through the assessment undertaken in Step 2, we see a clear indication that 
goals of the context to protect privacy (step 3) were violated and, therefore, there 
would be a need to reconsider the policies of this system (step 3) rather than 
accepting it as is.    

 
We next apply our model to the Australian Health Care (AHS) case, which involved the 
re-identification of individuals in the Australian government’s open health data set. This 
case is perhaps even more controversial than the Weld and Netflix cases because the 
data set used in AHS also potentially reveals the PHI (Public Health Information) of 
individuals whose names have been re-identified. In fact, it seems that the only explicit 
policy that Australian government had implemented was one of “transparency” in the 
dissemination of the kind of health-related information involved —i.e., the (de-identified) 
longitudinal medical billing records— to be made publicly available (and the additional 
requirement that they be published online) so that all Australians could have easy 
access to that information. But in the wake of what was revealed in the study by 
Culnane et al., it was clear to the Australian government that it had to re-think its policy 
regarding transparency of medical billing records, until the problems affecting re-
identification of individuals were resolved. The new factual data suggested that the 
government’s “open data” policy was inadequate and needed to be “reassessed in light 
of the ethical implications involving the privacy problems resulting from the original 
policy.  And this incident also suggests that any new or revised policies would also 
require continual  reassessment, given  the potential new ways in which people whose 
PII and PHI that resided in that kind of dataset might also be so easily be re-identified in 
the future.  



The “new factual data” resulting in the Australian case also showed that PII, and 
possibly PHI as well, could be easily re-identified, regardless of whether that 
anonymized data had been encrypted. So, merely using strong encryption techniques in 
health data sets would not in itself be sufficient for revising or framing an adequate 
policy. Consider that Culnane et al. had also pointed out that they were easily able to 
link unencrypted parts of the data in that set in successfully re-identifying individuals. 

Another worry involving the Australian case is that public health researchers 
depend on people volunteering to be research subjects in future health-related studies. 
But if potential research subjects cannot be better assured that their PHI can be 
protected, they may be less inclined to participate in the relevant research studies. This, 
in turn, could have negative consequences for advancements in health and medicine. 
So it is important to frame adequate policies.  

We infer the following with regard to our four steps: 
 
• No clear and explicit policy regarding de-identification process for anonymizing 
PII and PHI seems to have been in place.(Steps 1 and 2) 
• After a study, it was clear that the government’s “open data” policy was 
inadequate and needed to be “reassessed in light of the ethical implications 
involving the privacy problems resulting from the original policy. (Step 3) 
• If potential research subjects cannot be better assured that their PHI can be 
protected, they may be less inclined to participate in the relevant research 
studies.(Step 4) 

 
We believe that the case involving session replay scripts is also interesting, because the 
departure from what could be presumed “informational norms” was most likely not 
anticipated by either the developers or the users of these scripts. A study by Englehardt 
(2017) demonstrated the need to revisit the privacy policies, especially because of the 
complexity of this emerging technology.  In his study, Englehardt “… installed replay 
scripts from six of the most widely used services and found they all exposed visitors’ 
private moments to varying degrees.” (Englehardt 2017) “Scripts from FullStory, Hotjar, 
Yandex, and Smartlook were the most intrusive because, by default, they recorded all 
input typed into fields for names, e-mail addresses, phone numbers, addresses, Social 
Security numbers, and dates of birth” (Goodin, 2017). Rather than the information flowing 
only from a user to the application, it is also captured by third-party script vendors. (See 
Grodzinsky et al. for a detailed CI-related analysis of this issue). Although third- party 
vendors like FullStory (2016) had its own privacy policy, it placed the burden of protecting 
private information on the application developers in Full Story’s Acceptable Use policy.  
Thus, the burden to contain sensitive information was shifted to the website developer, 
who may or may not have been aware of this obligation and may or may not have been 
capable of implementing a technically-complicated, yet required redaction.  

As new factual information about the social impacts of these scripts became 
clearer, companies began dropping Full Story and other third party vendors.  Pharmacies, 
in particular were worried about possible HIPPA violations.  In the case of Walgreens, 
sensitive information about medical conditions and prescriptions along with user names 
were sent to FullStory via Walgreens’ website, because third party analytics could have 
access to earlier verification questions and mouse tracking. Walgreens’ privacy policy had 



assured customers that “Walgreen’s does not retain this data and cannot access or view 
your answers” (Englehardt 2017). Customers did not opt in to have their information 
leaked to Full Story, and they trusted the pharmacy to protect their privacy.   

Using our framework to evaluate session replay scripts prior to their 
implementation might have identified these privacy problems at the onset.  Going 
forward, because this technology is here to stay, DE would be helpful to assess shared 
responsibility for private data between application developers and third party vendors, 
and user opt-in policies. It could also be used to  

Finally, if we apply our model to the Session Replay Scripts, we infer that Steps 
1-3 are relevant: 

 
• Rather than the information flowing only from a user to the application, it is also 
captured by third-party script vendors without user consent. (Steps 1 and 2) 
• The departure from what could be presumed “informational norms” was most 
likely not anticipated by either the developers or the users of these scripts. (Step 
3) 
• Review and possibly revise existing policies as new implementations are 
implemented. (Steps 3 and 4)  
• Reassess privacy policies in systems using session replay scripts (See 
Grodzinsky et al 2018 for a detailed analysis). (Step 4) 

 
 
Conclusion   
 
As we have attempted to demonstrate in our analysis of the above cases, 
combining/integrating key aspects of the DE and CI frameworks to create a more 
comprehensive one and applying it to the problematic and often unanticipated problem of 
privacy in the re-identification of anonymized personal data can lead to a more 
comprehensive assessment.  Going forward, we also believe that applying these 
frameworks in tandem with system development might alleviate the necessity to 
continuously have to ‘put out fires’ in the future, on both a case-by-case and an ad-hoc 
basis. Our workable, comprehensive framework moves us in the direction of sounder 
policy development and the protection of PII and PHI. In doing research for the session 
replay case, we were pleased to note that the Future of Privacy Forum (Gray, 2018), has 
developed a checklist for “best practices” of privacy professionals around this emerging 
technology. In evaluating third-party vendors, it suggests: 
 

1. Evaluating and inquiring into script developers’ terms and privacy policies.  
2. Carefully selecting which pages on a site are appropriate for session replay scripts. 
3. Placing technical safeguards on the side of collection (client side) rather than use 

side (server). 
4. Continuing to evaluate the effectiveness of policies, practices and technical 

safeguards over time, by reviewing site implementation and report analytics. 
 
Although the Forum focuses on the specific case of session replay scripts, we can see 
how it also reinforces the position we have taken in this paper in combining DE and CI.  



We believe that using our framework brings us to a very similar conclusion with respect 
to privacy protection in the context of emerging technologies.   
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