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ABSTRACT

NONLINEAR DYNAMICS OF VORTICES IN DIFFERENT TYPES OF
GRAIN BOUNDARIES

Ahmad K. Sheikhzada
Old Dominion University, 2017
Director: Dr. Alex Gurevich

As a major component of linear particle accelerators, superconducting radio-frequency

(SRF) resonator cavities are required to operate with lowest energy dissipation and high-

est accelerating gradient. SRF cavities are made of polycrystalline materials in which grain

boundaries can limit maximum RF currents and produce additional power dissipation sources

due to local penetration of Josephson vortices. The essential physics of vortex penetration

and mechanisms of dissipation of vortices driven by strong RF currents along networks of

grain boundaries and their contribution to the residual surface resistance have not been well

understood. To evaluate how GBs can limit the performance of SRF materials, particu-

larly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics

of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power

due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries

was calculated as functions of the RF field and frequency. The result of this calculation

manifested a quadratic dependence of power to field amplitude at strong RF currents, an

illustration of resistive behavior of grain boundaries. Our calculations also showed that the

surface resistance is a complicated function of field controlled by penetration and annihila-

tion of vortices and antivortices in strong RF fields which ultimately saturates to normal

resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices

in grain boundaries can produce a new instability causing generation of expanding vortex-

antivortex pair which ultimately drives the entire GB in a resistive state. This effect is

more pronounced in polycrystalline thin film and multilayer coating structures in which it

can cause significant increase in power dissipation and results in hysteresis effects in I-V

characteristics, particularly at low temperatures.
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CHAPTER 1

INTRODUCTION

High energy accelerator machines use superconducting radio-frequency (SRF) cavities

due to their extremely low losses (high quality factors) as well as the ability to produce

high accelerating gradients. Hence, the two most important figure of merits, namely high

acclerating field Eacc and high quality factor Q decide the best performing SRF cavities.

Over the course of fifty years, SRF technology has tremendously evolved, fabricating pro-

totype Nb cavities able to achieve high gradients Eacc ≈ 50MV/m with significant quality

factors Q ≈ 1010 − 1011 performing almost at the theoretical limit of peak surface magnetic

fields H ' 200mT, still at economically efficient low temperatures[6, 7, 8, 9]. The remark-

able results were possible by understanding and eliminating many important factors such as

field emission and multipacting that used to negatively impact the performance of early Nb

cavities. However, similar to other technological advancements, the state-of-the-art level of

performance in Nb cavities still suffers from traditional and newly emerged degrading factors

such as structural defects, trapped magnetic flux, surface impurities, etc., whose contribu-

tions were completely ignored at early stages[8, 10]. Some of these performance-limiting

effects can be even more pronounced in promising SRF materials like Nb3Sn[11, 12] and pro-

posed multilayer coating structures in next generation high performance SRF cavities[13].

SRF technologies and operations take place at extremely low temperatures with significant

cryogenic and material costs that cause every bit of losses uneconomical . Moreover, the

use of SRF cavities in next generation linear colliders such as ILC (International Linear

Collider) with the goal of achieving energies of the range of TeV, repeats the necessity to

push the current limits of SRF cavity performance. Therefore, an immediate need is widely

recognized among the SRF community to advance our understanding of the physics behind

the degrading factors and mechanisms that control the surface and bulk properties of SRF

cavities[14].

1.1 GRAIN BOUNDARIES IN SRF MATERIALS

Structural defects can impose serious restrictions on performance of SRF cavities ei-

ther through initiating a thermal breakdown or by increasing the surface resistance, hence
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decreasing the quality factor. Grain boundaries in polycrystalline materials are com-

mon planar defects which subdivide the material into single misoriented crystallites with

current-impeding properties which results in serious performance-limiting effects, particu-

larly in high-Tc cuprates and pnictides where current breaks into single isolated loops inside

grains[11]. In polycrystalline superconducting materials, grain boundaries locally depress the

superconductivity, hence facilitate penetration of Josephson vortices due to reduced onset

field of penetration along the boundary sites[5]. Early vortex penetration can significantly

harm the performance of SRF cavities in which the magnitude of screening currents at the

inner surface of cavity reach almost the depairing current density[6]. In case of SRF Nb cav-

ities the result of investigations on grain boundaries effects have been inconclusive. There

have been experiments[15, 16, 17] which attribute the residual surface resistance of small

grain Nb cavities to the effect of grain boundaries while some studies[18, 19, 20] show in-

significant dependence of residual resistivity to the size of the grains. The latter can be

supported by the fact that some of the best performing Nb cavities are fabricated from small

grain Nb ingots[21, 22]. The uncertainty in the effect of grain boundaries in Nb may orig-

inate from the fact that Nb is a material in which the size of the cooper pair (ξ = 40nm)

is rather large compared to the interatomic scales of grain boundaries. However, experi-

mental measurements performed on SRF quality high-angle, single and bi-crystal Nb grain

boundaries exhibit degraded superconducting properties[23, 24]. Moreover, segregation of

impurities around grain boundaries in Nb can degrade their current transport properties

turning a grain boundary into a weak superconducting region[11]. Grain boundaries in other

SRF materials like Nb3Sn are known to effective pinning centers[11, 12] for vortices which

implies their weakened superconducting essence. Therefore, both types of weak and strong

link grain boundaries in Nb3Sn can be essential degrading factors through trapping and

penetration of Josephson vortices.

1.2 MOTIVATION

Although certain theoretical attempts have been made to address the effect of grain

boundaries in SRF materials[17, 25, 26], the lack of understanding of the physics of Joseph-

son vortex penetration and their mechanisms of dissipation inside the grain boundaries, has

certainly been an important source of confusion. In addition, the absence of specific calcu-

lations to estimate the amount of power dissipation due to vortex flow in grain boundaries

leaves the importance of their contribution to residual surface resistance an open question.
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Moreover, specific geometrical shapes of the cavities, the direction of the applied rf electro-

magnetic field as well as the type of grain boundaries present, require particular models and

calculations to be made in order to evaluate the extent of grain boundary dissipative effects.

Therefore, to address these issues we performed extensive numerical simulation of nonlinear

dynamics of Josephson vortex penetration in both types of weak-link and strong-link grain

boundaries with different geometries in both bulk and thin film applications. The results

are certainly applicable to a wide range of problems from flux flow oscillators to supercon-

ducting quantum circuits, quantum computing and THz radiation sources where Josephson

junctions are essential components.

1.3 ORGANIZATION OF DISSERTATION

The rest of this work is organized as follows: Chapter 2 gives an outline of the basic

concepts of superconductivity and Josephson effect. It also discusses some of the details

of the Josephson vortex dynamics in different conventional long Josephson junctions. In

chapter 3, I present the original result of my simulations of nonlinear dynamics of Josephson

vortices in weak-link grain boundaries under dc and ac electromagnetic fields and calculate

the power dissipation as functions of field amplitude and frequency. It also shows the result

of calculations of onset field for penetration of vortices as function of frequency. Chapter

4 starts off with a discussion of emergence of nonlocality in the electromagnetic response

of strong-linked grain boundaries following by the result of simulation of single Josephson

vortex dynamics in different nonlocal geometries and prediction of new instability in vortex

dynamics due to Cherenkov radiation. The dissertation continues with a presentation of

result of numerical simulation of the electromagnetic response of polycrystalline thin film

grain boundaries in both parallel and perpendicular directions to the wide surface of film.

Finally, I discuss the results of my work and derive conclusions in chapter 6.
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CHAPTER 2

FUNDAMENTALS OF SUPERCONDUCTIVITY AND

JOSEPHSON EFFECT

The ability to liquefy Helium for the first time in 1908 by Kamerlingh Onnes gave him

the opportunity to measure the electrical properties of metals at extremely low tempera-

tures. Three years later in 1911 he was able to discover superconductivity in solid mercury

wire by measuring zero electrical resistance at transition temperature Tc = 4.2 K. This is

conventionally known as the first hallmark of superconductivity where a superconducting

material shows exactly zero electrical resistance below some transition temperature Tc and

becomes a perfect conductor.

The second hallmark of superconductivity was announced during the work of Meissner

and Oschenfield in 1933 where they showed that below Tc a superconductor expels magnetic

flux from its interior (Meissner effect). In Meissner effect dc magnetic flux will be screened

from the superconductor bulk by superconducting screening currents flowing in a thin surface

layer of thickness λ (London penetration depth), illustrating that a superconductor is not

only a perfect conductor but also a perfect diamagnet. However, perfect diamagnetism can

only happen up to a certain critical field Hc above which the magnetic field penetrates fully

into the superconductor and the superconductivity will be destroyed. In other words at

critical magnetic field Hc, the flowing supercurrent reaches its maximum density Jd above

which the supercurrent carriers (Cooper pairs) will break up and the superconductor will

return to its normal state. This is a more fundamental property of superconductors stating

that a superconductor can only carry dc supercurrents with zero resistance up to a critical

current density Jc known as a material property and was first established in the work of

Silsbee[27].

The Mesisner effect in superconductors can well be described by London theory[28] using a

two fluid model in which a superconductor is considered to have normal and superconducting

charge carriers, one taking over the other in a normal and superconducting state, respectively.

2.1 THEORIES OF SUPERCONDUCTIVITY
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2.1.1 MICROSCOPIC BCS THEORY

More than four decades after the discovery of superconductivity, J. Bardeen, L. Cooper

and J. R. Schrieffer (BCS)[29] proposed the first successful microscopic theory that explained

superconductivity as a quantum mechanical phenomena. In this outstanding work it was

shown that every two electrons near the Fermi surface with equal and opposite momentum

and spin can indulge in a weak attractive bonding by exchanging phonons (lattice oscilla-

tions) which results in formation of Cooper pairs. The zero net momentum and spin of each

pair makes Cooper pairs to be bosons and form a bosonic condensate described by a single

quantum mechanical wave function ψ(r) = (ns/2)1/2eiϕ(r) where ns is the density of Cooper

pairs all having the same phase ϕ. It is this phase coherence of all Cooper pairs that gives

rise to marvelous properties of a quantum mechanical phenomena like superconductivity.

The idea of phase coherence length ξ was first proposed by Pippard and then used by BCS

theory to describe the spatial extent over which Cooper pairs overlap and a change in their

wave function occurs.

A key feature of the BCS theory was the prediction of appearance of an energy gap ∆(T )

between the ground state of Cooper pairs and their next excited state. It was shown that a

minimum energy of Eg = 2∆(T ) is required to break up a pair and form two quasi-particle

excitations. The theory relates the energy gap at T = 0 to the critical temperature by[5]

∆(0) = 1.76kBTc (1)

suggesting that only electrons within the energy range of kBTc take part in superconductivity.

At nonzero temperatures some of the Cooper pairs can break and form quasiparticles in the

form of both electron-like and hole-like excitations. At temperatures close to Tc the density

of Cooper pairs decreases significantly such that the gap energy ∆(T ) → 0 at transition

temperature Tc.

2.1.2 LONDON PHENOMENOLOGICAL THEORY

As mentioned before, the electrodynamics of the two basic properties of superconduc-

tors, namely, perfect conductivity and perfect diamagnetism were well presented by London

brothers who proposed two equations governing the microscopic electric and magnetic fields

∂Js
∂t

=
nse

2

m
E (2)

∇× Js = −nse
2

m
B (3)
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based on a two fluid model where ns is the density of superconducting electrons with e and

m as the charge and mass of electron, respectively[5]. The first equation describes perfect

conductivity where electrons accelerate continuously due to electric field since no resistance

is present. The second London equation in (3), in combination with Maxwell’s equation

∇×B = µ0J results in

∇2B =
1

λ2
B (4)

where λ = m/µ0nse
2 is London penetration depth[5]. Equation (4) implies that the flux

density in superconductor is not only constant as in a perfect conductor but also drops

exponentially to zero in the bulk over the screening length of λ, describing Meissner effect.

2.1.3 GINZBURG-LANDAU THEORY AND TYPES OF SUPERCONDUC-

TORS

A major approach to classification of superconducting materials has been based on how

a superconductor would respond to an external magnetic field. This can be obtained

as a byproduct of the more general phenomenological theory of Ginzburg-Landau (G-L)

where superconductivity is considered a second order thermodynamical phase transition

phenomena[30]. G-L theory introduces a pseudo-wavefunction ψ as an order parameter

which describes the local density of superconducting electrons given by[5]

2ns = |ψ(x)|2 (5)

as well as a characteristic length known as GL coherence length ξ(T ) which characterizes

the distance over which the ψ(x) changes.

In a physical boundary between a superconductor and normal conductor the density of

superconducting carriers (Cooper pairs) increase from zero at the boundary to a constant

value inside the superconductor within the coherence distance ξ. This means that the free

energy per unit area is raised by µ0H
2
c ξ/2. On the other hand in the presence of magnetic

field He the magnetic flux is allowed over the length λ into superconductor lowering the

energy per unit area by −µ0H
2
eλ/2. The net boundary energy per unit area is then[6]

µ0(ξH2
c − λH2

e )/2. (6)

A more accurate treatment of G-L equations indicates that the G-L parameter κ defined as

κ =
λ

ξ
(7)

distinguishes a positive net energy when κ < 1/
√

2 as opposed to negative energy when

κ > 1/
√

2.
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Type-I Superconductors

In a type-I superconductor the positive surface energy barrier (κ < 1/
√

2) inside the

superconductor indicates that the magnetic field is screened perfectly up to Hc from the

interior. At larger magnetic field the phase coherence of Cooper pairs will be destroyed and

the superconductor will return back to normal state (Fig.1).

Type-II Superconductors

A type-II superconductor (κ > 1/
√

2) screens out the external magnetic field up to lower

critical field Hc1. At fields H > Hc1 the net surface energy becomes negative indicating that

it is energitically favorable to have as much superconducting/normal-conducting boundaries

as possible inside the bulk of superconductor. However, flux penetration does not happen

up until the current density flowing along the surface reaches the critical value at which

the Meissner state becomes unstable at the superheating field, Hs. Flux penetration takes

place in the form of supercurrent loops (Abrikosov vortices[31]) each carrying a quantum of

flux Φ0 = h/2e = 2.07 × 10−15 Wb, with normal cores of size ξ screened from the rest of

superconductor bulk over length λ. Flux penetration continues on until at a larger upper

critical field Hc2 the normal cores of vortices overlap and the superconducting sample will

turn normal (Fig. 1).

Vortices are small magnetic flux tubes which unless pinned by some inhomogeneity, can

move under a transport supercurrent J due to so called Lorentz force J × Φ0 and leave

behind a resistive electric field that can cause energy dissipation. Abrikosov also showed

that repulsion between vortices with same magnetic polarity will give rise to a triangular

vortex lattice with flux density proportional to H/Hc1.

High-Tc Superconductors

The discovery of materials with high transition temperatures by Bednorz and Müller[32]

in 1986 opened a complete new era in the history of superconductivity. These materials

have mainly layered structures dominated by copper oxide planes which are known to be

responsible for superconductivity. So far, a superconducting transition temperature as high

as 163 K has been reported in the Hg-based HgBa2Ca2Cu3O8 compound at a high external

pressure. This is a great achievement in terms of cryogenic applications since these materials

can be cooled down well below their transition temperature with liquid nitrogen which is

readily accessible and more cost efficient material than liquid helium. However, certain
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FIG. 1: Magnetic behavior of type-I and type-II superconductors. In type-I superconductors,
all magnetic flux enters at thermodynamical critical field while in type-II materials flux
penetration starts at lower critical field (read “superheating field”) in form of flux quantums
and destroys the superconducting state completely at an upper critical field.

structural properties of High-Tc materials make them hard to fabricate which has greatly

reduced their immediate applications. Operation at high temperatures, low electron density

and high anisotropy cause them to be more prone to thermal fluctuations which enhances the

possibility of losing the zero electrical resistance state. Although it is more or less clear that

the superconductivity is caused by pairing of electrons but the nature of pairing has been

in great controversy, therefore, the field is still suffering from absence of a comprehensive

microscopic theory explaining the nature of superconductivity[5].

2.2 SURFACE IMPEDANCE OF SUPERCONDUCTORS

When an electromagnetic plane-wave is incident normally on the surface of a conductor,

it induces surface currents within the skin depth of the conductor which shield the electric

and magnetic fields from the bulk of the metal. In analogy with dc resistance, the surface

impedance zs is defined by the ratio of electric field at the surface to the total current flowing

in the conductor. From Maxwell’s equations this is equivalent to the ratio of surface electric

and magnetic fields, therefore, zs is given by

Zs =
E

H
=

√
iµ0ω

σ
= Rs + iXs (8)

where ω is the angular frequency of the plane wave, σ = σ0/(1−iωτ) is complex conductivity

of the conductor, σ0 is the dc conductivity and τ is electrons scattering time. The real part

Rs gives the ac surface resistance and the imaginary part Xs gives the surface reactance.
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Nonzero reactance means that the surface electric field is not in phase with the total current

due to the rate of change of magnetic flux in the conductor. If ωτ � 1, the surface resistance

of a conductor is obtained by

Rs =

√
µ0ω

2σ0

. (9)

In two fluid model the total current flowing in a superconductor is composed of a super-

current component carried by superconducting electrons with density ns (ns → 0 as T → Tc)

and a normal current component with carrier density nn (nn → 0 as T → 0). Consequently,

in analogy with normal conductors, the total conductivity is the sum of the normal and su-

perconducting parts, σ = σn + σs. Substituting for ac supercurrent Js0e
iωt into first London

equation, we have

Js = −iσsE (10)

where σs = nse
2/mω. The pure imaginary relation between current and field implies a

lossless ac supercurrent as expected. Now the total two fluid current becomes

J = (σn − iσs)E (11)

which in analogy with the treatment of normal conductors, the surface impedance of super-

conductor is given by

Zs =

√
iµ0ω

σn − iσs
. (12)

In order to derive a simpler expression we consider that at low temperatures T � Tc where

nn � ns and also for microwave frequencies where τ � 1/ω, the value of σn is much less than

σs. Therefore, one can show that for usual definition of surface impedance Zs = Rs + iXs

the real and imaginary parts is given by[33]

Rs =
µ2

0

2
σnω

2λ3 (13)

Xs = µ0ωλ. (14)

The surface resistance in superconductor is proportional to ω2 in contrast to normal conduc-

tor where Rs ∝ ω1/2. In superconductors, this surface resistance come from the imperfect

shielding of normal electrons from the alternating electromagnetic fields due to the inertia

of cooper pairs. As a result a nonzero time varying electric field at the surface of super-

conductor can accelerate and decelerate normal electrons, leading to power dissipation and

surface resistance. Moreover, as BCS predicts that σn ∝ e−∆/kBT , it shows that Rs → 0 at

T = 0. However, experiments indicate that a temperature-independent residual resistance
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Ri is present even at T = 0 and there is a dependency of surface resistance to rf current am-

plitude which cannot be explained within the current microscopic theories. A semi-empirical

relation for T < Tc/2 based on numerous experiments has been derived for surface resistance

given by

Rs =
A

T
ω2 exp

(
−∆(T )

kBT

)
+Ri (15)

where A is mostly material dependent[34], the first term is known as RBCS(T ) and second

term describes the residual surface resistance.

2.3 RESIDUAL RESISTIVITY IN SRF CAVITIES

A major application of superconducting materials is in Superconducting Radio-Frequency

(SRF) cavities (Fig. 2) in accelerators where strong electromagnetic fields are used to ac-

celerate a beam of charged particles to highest energies possible. This was only applicable

due to extremely low rf losses in cavities superconducting walls. The power dissiapted is

quantified by the quality factor Q, inversely proportional to surface resistance Rs. In low

temperature applications as in SRF cavities the operating temperature is normally chosen

as low as economically efficient. In this range of temperatures, the temperature dependent

component of surface resistance, RBCS(T ) is exponentially decaying with the decrease of

temperature and is small enough so that the contribution of residual resistance is significant

and becomes a major source of power dissipation. For instance, for a 1.5 GHz cavity oper-

ating at 2 K, the BCS resistance is ∼20 nΩ, while for a well prepared niobium the residual

resistivity can reach 10-20 nΩ[6].

The physics behind the residual resistance Ri is not well understood however, many

extrinsic mechanisms have been pointed out. Surface contamination with lossy impuri-

ties such as oxides and metallic hydrides can cause major decrease of the quality factor

(Q-disease)[6, 7]. Trapped magnetic flux in the form of vortices, either due to ambient mag-

netic field or due to thermo-electric currents during cavity cool down, can couple to the rf

electromagnetic fields and oscillate rapidly causing major power dissipation[6, 8, 10]. The

existence of grain boundaries in polycrystalline materials such as niobium and Nb3Sn used

in fabrication of SRF cavities can increase the flux dissipation both by providing effective

pinning centers for trapped vortices as well as facilitating penetration of new vortices due to

their current-blocking properties[15, 16, 25, 35]. The existence of subgap energy states has

also considered as an intrinsic mechanism which results in residual resistance[36, 37]. Since

screening currents are only flowing over a thin layer of cavity inner surface, it is important
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FIG. 2: The typical structure of a single-cell cavity resonating in TM010 mode where the
electric field is parallel to the beam and maximum on the axis while the magnetic field is
perpendicular to beam particle and is maximum at the equator.

to control the properties of this narrow layer in order to minimize the residual resistance of

the cavity. The main goal of this work is to understand and evaluate the mechanisms and

amount of dissipation caused by contribution of grain boundaries in polycrystalline materials

using numerical approximation techniques to simulate the dynamics of dissipative vortices.

2.4 GRAIN BOUNDARIES AS JOSEPHSON JUNCTIONS

Grain Boundaries (GBs) are very common planar defects which arise naturally when a

crystalline material forms as consequence of there being many nuclei that can initiate the

process of crystal formation. GBs occur at the impinging interfaces between growing grains

and they are usually classified according to the displacement and the rotation of the abutting

crystals. For example, a 7◦ [001]-tilt boundary shown in Fig. 3a, connects two single crystals

rotated with respect to each other by 7 ◦ around the [001] direction which is common to

both crystals and lies in the grain boundary plane. The misorientation is accommodated by

formation of a series of edge dislocations along the low-angle grain boundaries. The distance

D between the dislocations is given by Frank’s formula

D =
|
−→
b |

2 sin(α/2)
(16)
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where |
−→
b | is the magnitude of the Burgers vector

−→
b and α is the misorientation angle as

sketched in Fig. 3b. A Burger vector is defined as the difference between the contours

connecting corresponding lattice points in disturbed and undisturbed crystal around the

dislocation. The formation of dislocations in grain boundaries is a consequence of topology

and occur in common way for different materials, however, the microstructure is material

dependent and strongly differs between ceramics and metals. As the misorientation angle

increases, the dislocations are spaced closer together until they merge into a closed interface

layer. Such high angle grain boundaries has more complicated structures for which the

equation above no longer applies[2, 11].

(a) (b) 

FIG. 3: (a) electron microscopy of dislocation cores in a 7◦ [001]-tilt grain boundary YBCO
(taken from Ref.[1]) (b) Sketched diagram of a grain boundary formed along a continuous
chain of dislocations in crystal lattice.

Grain boundaries are structural defects which by definition means that they affect most

of the properties of the material. In superconductors a GB suppresses superconductivity

locally, but the extent of suppression strongly depends on both the GB structure as well as

the superconducting material. The length scale of the structural disorder, Thomas-Fermi

screening length and the superconducting coherence length are the main parameters that

can determine the superconducting properties of a GB[11].

In high-Tc superconductors, GBs even at low misorientation angles are weak supercon-

ducting links that impede the current flow giving rise to the electromagnetic granularity

which is one of the serious obstacles for applications of the cuprates and the iron-based

superconductors[11]. In planar GBs the critical current density across the GB, Jc,gb(α) falls

off exponentially when the misorientation angle α exceeds a critical angle αc, where αc can
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be as little as 3-5◦ for planar GBs of YBCO. The sinusoidal current-phase relation, magnetic

field dependence of the critical current across the GB, appearance of Shapiro steps when

the GB is irradiated and several other properties of typical Josephson junctions have been

observed in different experiments verifying the weak-link behavior of GBs, specially in high-

Tc superconductors[2]. Figure 4 shows the current-voltage characteristic of a 24◦ [001]-tilt

boundary of YBCO at various temperatures[2].

FIG. 4: Current-voltage characteristic of a 2.3-µm-wide bridge straddling a 24◦ [001]-titl
grain boundary in a 120-nm thick YBCO film. Figure is taken from Ref.[2].

SRF cavities are used to provide the maximum accelerating gradient, however, this de-

pends on the maximum surface fields the cavity can sustain. Nevertheless, as mentioned

before, the theoretical limit for the maximum surface magnetic field is called “superheating

field”, Hs, above which the surface barrier for penetration of Abrikosov vortices into the

cavity disappears. Once vortices penetrate, they can flow and oscillate rapidly under the

effect of screening currents resulting in an increase of surface resistance by several orders

of magnitude which consequentially can cause thermal breakdown of the cavity. GBs in

these polycrystalline SRF materials are also weak superconducting regions which can locally

reduce the surface magnetic barrier due to their lower critical current density Jc,gb, so that

vortices can penetrate at lower magnetic fields Hc,gb < Hs. In this case the dissipation occurs
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in a network of GBs on the surface of material which can significantly contribute to residual

resistance or cause thermal instability at range of fields Hc,gb < H < Hs.

Generally in metallic superconducting materials like Nb and Nb3Sn, two types of GBs

can be considered: Low-angle GBs where the superconductivity is slightly suppressed, but

the current transport can occur without significant decline of current density, hence a low-

angle GB is also known as strong-linked or high-Jc GB. Low-angle GBs allow strong pinning

of vortices so that the current transport can occur without significant decline of current

density. This property in metallic superconductors makes strong-linked GBs even favorable

for current transport purposes as the higher the density of GBs, the higher is the critical

current density. However, the second type of GBs occur when the misorientation angle

is large and the GB turns into a weak-link superconducting region with current-blocking

effects (low-Jc GB). Weak-link grain boundaries in polycrystalline superconducting materials

is known to provide easy channels for Josephson vortices to penetrate and oscillate under

strong applications of current and magnetic field[38, 39]. Figures 5 and 6 show the typical

structure of grain boundaries on surfaces of Nb and Nb3Sn films, respectively.

In high performance SRF cavities where the magnitude of rf screening currents at the

inner surface of resonating cavity reaches almost the depairing current density Jd ∼ Hc/λ,

both types of GBs can be serious performance limiting factors. As later will be shown even

slight reduction in current density across the GBs would facilitate penetration of Josephson

and mixed Abrikosov-Josephson vortices which can produce significant losses due to various

dissipative mechanisms and contribute to the residual surface resistance, as will be discussed

later.

2.5 JOSEPHSON EFFECT

Early experimental demonstration of tunneling in superconducting/normal-conducting

contacts by Giaever inspired Josephson[40, 41] to theoretically predict that Cooper pairs

can tunnel through a thin insulating layer sandwiched between two superconducting bulks,

giving rise to existence of a tunneling supercurrent even at zero voltage. Later shown to be

correct for any weak link between two superconducting regions the term Josephson junction

was coined for all such systems[42, 43]. Josephson prediction was soon verified experimentally

by Anderson and Rowell[44].

In a rather simple treatment of a typical Josephson junction shown in Fig. 7, Feynman[45]

was able to rederive Josephson equations by solving the Shrodinger equation written for a

system of two wavefunctions using an additive coupling term between them. Provided that
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FIG. 5: (a) EBSD map showing the grain boudary structure for Nb/Cu film and (b) SEM
micrograph of the grain boudary structure in Nb film. Images taken from Ref.[3].

the gap between the two electrodes is small it can be shown that a flow of supercurrent given

by[42]

Is = Ic sin(∆ϕ) (17)

can exist due to the phase difference ∆ϕ = ϕR − ϕL between the two superconductors.

This relation states the dc Josephson effect. Ic is called the junction critical current density

and is the maximum supercurrent that can flow without resistance in the junction. Ic is

a characteristic property of junction which depends on junction geometry (thickness of the

non-superconducting link, etc.) as well as temperature. In an attempt to calculate the

temperature dependence of Ic, Ambegaokar and Baratoff[46] showed that the term RnIc (Rn

is normal resistance of junction) is independent of junction geometry and only depends on

material and temperature given by[5]

RnIc =
π∆(T )

2e
tanh(

∆(T )

2kBT
). (18)

In his second equation Josephson predicted that if a dc voltage is maintained across the

superconducting electrodes of junction, the phase difference evolves with time according to

d(∆ϕ)

dt
=

2π

Φ0

V. (19)
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FIG. 6: Left: SEM image of the Nb3Sn surface. Right: Image of a cross section of Nb3Sn
coating on Nb substrate. Images from Ref.[4].

which results in an alternating current with frequency V/Φ0 across the junction where 1/Φ0 =

483.6 MHz/µV[42]. The effect was initially verified experimentally by Yanson et al.[47] and

Giaever[48] and is called the ac Josephson effect which is currently used worldwide as the

most accurate way to define voltage standards. By integrating the electrical work
∫
IsV dt

using (17) and (19), we will obtain the coupling free energy of the junction to be[5]

F = const.− EJ cos ∆ϕ, EJ =
Φ0Ic
2π

(20)

which clearly indicates that the energy is minimum where the two phases are equal, ∆ϕ = 0.

2.5.1 TYPES OF JOSEPHSON JUNCTIONS

It was soon discovered that the Josephson effects which were initially predicted based on

quantum mechanical tunneling of superelectrons through a thin layer of insulating barrier,

are more general and occur whenever a weak link is connecting two strong superconducting

electrodes. As shown in Fig. 8 the weak link can simply be a thin insulating layer as predicted

originally (S-I-S), a normal metal for which superconductivity diffuses into normal contact

through proximity effect (S-N-S) or it can be the same superconducting material which is

cut and become like a constriction or point contact (S-c-S). A more detailed treatment of

different superconducting weak links is provided in the work of K. Likharev[49].
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FIG. 7: A Josephson junction constructed by a thin layer of insulator (I) sandwiched be-
tween two superconducting electrodes (S). Overlap of each electrode’s superconducing wave
function results in small supercurrent tunneling through the insulating barrier. A phase
difference is maintained by applying the external voltage (V).

2.5.2 GAUGE-INVARIANT PHASE DYNAMICS OF SMALL JUNCTIONS

A quick look at the Josephson current-phase relation in (17) unfolds that the well-defined

physical quantity Is cannot be uniquely determined by ∆ϕ which is not a gauge-invariant

quantity. To treat the problem we can replace ∆ϕ by the gauge-invariant phase difference

θ, defined by

θ = ∆ϕ− (2π/Φ0)

∫
A · dl (21)

where A is the vector potential, changing (17) to Is = Ic sin θ[5]. Of course, so long as no

magnetic field is present we can use θ and ∆ϕ interchangeably.

RCSJ Model

In absence of magnetic field a physical junction can be modeled by an ideal junction

(shown by cross sign in Fig. 9) shunted by a resistance R and capacitance C. For voltages

below the gap (V < Vg = 2∆/e) the resistance R is of the order of normal resistance Rn and

is responsible for the energy dissipation due to flow of normal quasiparticles in finite voltage
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FIG. 8: Different types of Josephson junction can be constructed changing the weak-link
barrier. Figure shows weak-links provided by an insulator (SIS), normal metal (SNS) or a
constriction (ScS).

regime. At very low temperatures the normal resistance Rn rises exponentially as Rne
∆/kT

due to freeze-out of quasi-particles at low temperatures. The capacitance C is taken as the

geometric shunting capacitance between the two superconducting electrodes in the junction.

Within the RCSJ model, the total current passing through the circuit sketched in Fig.

9 is the combination of supercurrent Ic sin θ, normal current V/R and displacement cur-

rent CdV/dt due to time-varying electric field between the superconducting electrodes. By

elimination of V using (19) in favor of θ, we obtain a second order nonlinear differential

equation[5, 42, 43]

I = Ic sin θ +
Φ0

2πR

dθ

dt
+
CΦ0

2π

d2θ

dt2
. (22)

which in dimensionless form becomes

d2θ

dτ
+ η

dθ

dτ
+ sin θ = β (23)

where β = I/Ic is dimensionless bias current density and differentiation was done with

respect to dimensionless time τ = ωJt, with

ωJ =

(
2πIc
CΦ0

)1/2

(24)

being called the Josephson plasma frequency of the junction, and the damping factor η is

defined as

η = (ωJRC)−1. (25)

In the above equation of (23), η = β
−1/2
c is the only device-dependent parameter, where βc

was initially introduced as damping parameter by Stewart and McCumber[50, 51].
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FIG. 9: A real small Josephson junction can be modeled as an equivalent RCSJ circuit where
an ideal junction is shunted by a capacitor and resistor.

Tilted-Washboard Model

Different mechanical analogs have been put forth to qualitatively describe the dynamics

of the junction and give insight to the problem before delving into numerical studies. Looking

back to (22), it describes the equation of motion of a particle with mass (Φ0/2π)2C moving

along the direction of θ in an effective potential given by[5]

U(θ) = −EJ cos θ −
(

Φ0I

2π

)
θ (26)

while dragged by a viscous force of (Φ0/2π)2(1/R)dθ/dt. As sketched in Fig. 10, the shape of

this potential is a tilted cosine with slope proportional to bias current I, resembling a tilted

washboard hence the name. To have a physical intuition we consider a mass particle moving

in a gravitational field along the track of (26). So long as I < Ic the particle will eventually

be stabilized at the bottom of a local minima which indicates that a static solution is allowed

and the voltage across remains zero. Furthermore, at I = Ic the local minima of tilted cosine

become horizontal in a continually downward slope, therefore no stable equilibrium solution

will exist for I > Ic and the particle would enter a running state where the voltage is no

longer zero. Detailed dynamics of the particle which depends on bias current, damping in

the junction as well as thermal fluctuations will be considered later.

2.5.3 I−V CHARACTERISTICS AT T = 0



20

FIG. 10: A tilted washboard potential can analogously model the motion of guage-invariant
Josephson phase as a damped particle. The sinusoidal potential is tilted due to application
of bias curretnt.

As pointed out in previous section, a static solution of θ = sin−1 β is allowed for (23),

provided that β < 1. For values of β > 1, all solutions are time-dependent and they

determine the dc I − V curve for the junction. Here we discuss the solutions of (23) in

absence of thermal fluctuations (T = 0) and in different damping regimes:

Overdamped Junction

In a highly damped junction where C is small (i.e. η � 1), the first term in (23) can be

neglected and the remaining equation is solved analytically which results in a time-averaged

dc voltage given by[5]

V = IcR (β2 − 1)1/2. (27)

As shown in Fig. 11a, the curve asymptotically converges to Ohm’s law V = IR for I � Ic.

The dc voltage is time average of a series of pulses with maximum amplitude of IcR wherein

each pulse the phase advances by 2π periodically. This regime in tilted-washboard model

corresponds to a low mass particle moving under a viscous drag force which dominates the

inertial effects.
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Underdamped Junction

When capacitance is large enough so that η < 1, the junction behavior becomes hysteretic.

As plotted in Fig. 11b, once current exceeds Ic, a finite voltage appears jumpwise across

the junction where the phase increases non-stop with the rate of 2πV/Φ0. Reducing the

current back, the voltage does not fall to zero even at currents well below the Ic. In analogy

with the washboard model, this corresponds to the case where the inertia of the particle is

large enough that carries it up the barriers and the damping is not high enough to stop it

momentarily. At T = 0 and state of no damping, retrapping will not happen until the bias

current becomes zero again.
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(a) (b) 

FIG. 11: Current-voltage characteristics of an overdamped (a) and underdamped (b) junci-
ton. The hysteretic effects in underdamped junctions result in jumpwise transitions in I−V
curves.

2.5.4 THERMAL FLUCTUATION EFFECTS

The I-V characteristic of a junction can be strongly modified when T > 0, in other words,

thermally activated processes strongly affect the dynamics of the junction. Following the

relation in (18), for T � Tc the ratio

2EJ
kBT

= 1.76(
RQ

Rn

)(
Tc
T

) (28)

exists where the quantum resistance RQ = h/4e2 = 6, 453Ω[5]. The ratio tells that the

thermal fluctuation effects are unimportant in both cases of low temperatures (T � Tc) or

when Rn � RQ, because the barrier energy is much larger than the typical energy of thermal

fluctuations, kBT .
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Underdamped Junctions

In an underdamped junction, thermally activated escapes from one minima over the

barrier to the next can happen with the probability of ωJe
−∆U(I)/kBT per unit time where

∆U(I) is the current-dependent barrier height shown in Fig. 10 and is given approximately

by

∆U(I) ≈ 2EJ(1− I/Ic)3/2 (29)

which tends to zero as I → Ic, as expected[5]. Therefore, in an upward sweep of bias current

this probability increases until at some “switching current” Isw below Ic the particle escapes

from its minima and since negligible damping, it accelerates down the potential reaching

a terminal velocity and never retraps in another minima again. This state corresponds

to an immature switching of the junction to non-zero voltage state which happens on a

distribution of currents below the critical current Ic. Furthermore, thermal fluctuations

surprisingly increase the retrapping current once the bias current is swept downward from a

non-zero voltage state. Since both escpaing and retrapping are stochastic phenomena, they

happen over a distribution of currents as shown in Fig. 12b.

Overdamped Junctions

Thermal fluctuations also modify the I-V characteristic of a highly damped junction

through thermally activated phase slips which cause a finite nonlinear resistance to appear

even below Ic. In these phenomena the phase point “diffuses” over the barriers in a con-

tinuous manner because high damping brings back the phase point into equilibrium before

diffusing into another minima again. This process is strikingly different from escaping which

happens in a lightly damped junction where the phase never retraps in another minima

once it escapes the barrier. Figure 12a shows how I-V curve changes with the increase of

temperature.

2.5.5 SHAPIRO STEPS

The ac Josephson effect can be further realized by adding an alternating voltage source of

V1 cosω1t to the already applied dc voltage V0. In an experimental observation, Shapiro[52]

spotted stepping structure in the dc I−V curve where each step in the supercurrent response

takes place at voltages Vn = (nΦ0/2π)ω1. For a junction biased by voltage V = V0+V1 cosω1t,

it can be shown that the phase difference across the junction becomes

θ(t) = θ0 + ω0t+ (2πV1/Φ0ω1) sinω1t (30)
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FIG. 12: Thermal fluctuations result in smearing of the I−V curve in overdamped junction
(a), while it reduces the hysteresis in an underdamped junction (b). Here u = ~Ic/ekBT .

where θ0 is constant of integration and ω0 = 2πV0/Φ0. Using (17), standard mathematical

expressions and Bessel functions Jn(x), we will have[5]

Is = Ic
∑

(−1)nJn(2πV1/Φ0ω1) sin(θ0 + ω0t− nω1t) (31)

which contributes dc components to supercurrent whenever ω0 = nω1 (Fig. 13). The width

of each dc current is a function of Bessel function properties. If junction is biased with ac

current, a similar effect happens but the solution is more complicated and must be treated

numerically.

2.5.6 MAGNETIC FIELD EFFECTS

To consider the effect of magnetic field on phase dynamics of junction, we start by G-

L second equation for current density in each superconducting electrodes of the junction

sketched in Fig. 14. The gauge-invariant phase difference in each electrode can be written

as

∇θ =
2π

Φ0

(
µ0λ

2Js + A
)

(32)

where A is the vector potential related to applied magnetic field by ∇ × A = µ0H[5, 42].

Integration of (32) along the contours of CR and CL deep into superconductors where Js = 0

and neglecting the difference of magnetic field across the thickness of the junction yields

θ(x+ dx)− θ(x) =
2π

Φ0

∮
A · dl (33)
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FIG. 13: Shapiro current-voltage steps in I−V curves of overdamped (a) and underdamped
(b) junctions.

where assuming that magnetic field is almost uniform along the spatial interval of dx, the

line integral in (33) is the magnetic flux enclosed by the contours and can be replaced by∮
A · dl = µ0H(2λ+ dj)dx (34)

where dj is the thickness of the junction. Therefore, the spatial variation of phase along the

junction can be given by[5, 42]

dθ

dx
=

2πµ0

Φ0

(2λ+ dj)H. (35)

Small Junctions, Negligible Screening

In a small junction where tunneling currents are small and their self-field is negligible,

the magnetic filed can penetrate into junction without variation. Integration of (35) and

using (17) to find the tunneling current, we obtain[5, 42]

θ(x) =
2πµ0d

Φ0

Hx+ θ0 (36)

J(x) = Jc sin(
2πµ0d

Φ0

Hx+ θ0) (37)

where d = 2λ+dj. Here (36) shows a linear spatial variation of phase with slope proportional

to field and therefore (37) exhibits a periodic distribution of current inside the junction. It can
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FIG. 14: Diagram of an extended junction (yellow). Spatial variations of phase difference
along the juntion due to applied magnetic field can be calculated using the contours CL and
CR. The light colored region shows the extent of magneitc field penetration.

be shown that the maximum supercurrent across the small junction reduces with magnetic

field given by[5, 42]

Ic(H)/Ic(0) =

∣∣∣∣sin(πΦ/Φ0)

(πΦ/Φ0)

∣∣∣∣ (38)

which represents a Fraunhofer pattern as illustrated in Fig. 15. Here Φ is the amount of

flux present inside the junction. The relation (38) becomes more complicated if the critical

current is non-uniform or the junction area is not rectangular.

2.6 PHYSICS OF LONG JOSEPHSON JUNCTIONS (LJJ)

In a large junction however (Fig. 16), when Josephson tunneling currents are strong

enough so their self-field is no longer negligible; a magnetic field is screened out of the

junction over the Josephson penetration depth λJ = (Φ0/2πµ0dJc)
1/2, from the edges of

the junction[5, 42, 43]. This means that in a large junction the distribution of tunneling

currents along the junction is non-uniform and confined mostly around the edges, even at

zero magnetic filed. A large junction similar to a type-II superconductor screens out magnetic

field up to some critical field above which the field penetrates inside the junction in form of

solitonic vortices which will be shown later.

Since magnetic field is no longer constant we use Maxwell equation for the field inside
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FIG. 15: Dependence of the junction maximum supercurrent on enclosed flux. Fraunhofer
and Airy diffraction patterns for rectangular and circular junctions, respectively. Figure is
taken from Ref.[5].

the junction dH/dx = J along with (17) and (35) to write

d2θ

dx2
=

1

λ2
J

sin θ, λJ =

(
Φ0

2πµ0dJc

)1/2

. (39)

Equation (39) is called the static sine-Gordon equation[5, 42, 43] and has the same form

as one for the pendulum, so insight to the solutions can be gained by analogy. For small

oscillations of phase, θ � 1, phase is decreasing exponentially in the form θ ∼ e±x/λJ

from the edges, describing the case for the complete magnetic field screening. If the field

is strong enough so the current at the edges of the junction would reach Jc, magnetic field

would penetrate into junction in form of Josephson vortices. In pendulum analogy the onset

of Josephson vortex penetration corresponds to the situation when pendulum is energetic

enough to go over the top. The strongest magnetic field that is screened from the interior of

the junction and above which vortices can penetrate is given by[5, 42, 43]

H1 = 2λJJc ' Hc

(
Jc
κJd

)1/2

(40)

and plays the role of a superheating field at which the edge energy barrier for the penetration

of Josephson vortices disappears. However, for the field region Hc1J < H < H1 where

Hc1J = (2/π)H1, the solution is only metastable and the screening is no longer exponential

near the edge but becomes so in the interior. Therefore Hc1J is the maximum field above
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which the screening solutions are thermodynamically unstable. The nature of Josephson

vortices is the subject of next chapter and will be discussed in more detail.

When one of the dimensions of a Josephson junction is much larger than the others, it

is called a Long Josephson Junction (LJJ). In particular, L � λJ � W where L and W

are the length and width of the junction respectively, as sketched in Fig. 16a and λJ is the

Josephson penetration length over which the field is screened inside the junction. As noted

before, in a large junction with screening, the phase difference θ(x, t) also varies over λJ .

The assumption of W � λJ is made in order to investigate the electrodynamics of LJJ only

in one dimension. A LJJ can be fabricated in different geometries depending on the subject

of interest. Some of the more common types of LJJs have been shown in Fig. 16.
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FIG. 16: Different long Josephson junction geometries.

2.7 ELECTRODYNAMICS OF LJJ

Several models and methods[42, 43] can be used in order to describe the behavior of a

single LJJ. While the main equation is the same, different terms might be added or removed

associated with the specific features of the problem. Here we resort to the probably more

simpler method which considers the main features of a single LJJ behavior.

Consider the long junction pictured in Fig. 16a which consists of identical supercon-

ductors containing a nonsuperconducting barrier with thickness dj, permittivity ε0εr and



28

resistivity ρ. In presence of magnetic field applied in y direction, flux can penetrate into

superconducting electrodes over the length λ while the electric field is negligible everywhere

except in the barrier. To set up the equations for variation of electric field E(x, t) and

magnetic field H(x, t) inside the junction, we start off by Maxwell equation for Ampere’s

law
∂

∂x
H(x, t) = Jz(x, t) + ε0εr

∂

∂t
E(x, t) (41)

where the junction area is taken in x−y plane and the tunneling currents flow in z direction.

The total current can be written similar to RCSJ model

Jz(x, t) = Jc sin θ(x, t) +
1

ρdj
E(x, t) + Jext (42)

as combination of Josephson, quasiparticle and transport currents. Using the relation be-

tween magnetic field and phase difference in (35), one can express (41) as wave equation for

θ[42, 43]:
1

ω2
J

∂2

∂t2
θ(x, t) +

1

ωc

∂

∂t
θ(x, t) =

1

λ2
J

∂2

∂x2
θ(x, t)− sin θ(x, t) + β (43)

where we introduced ωJ = (2πJc/Φ0C)1/2 as Josephson plasma frequency, ωc = 2πRjJc/Φ0

as characteristic frequency, Rj = ρdj as quasiparticle specific resistance per unit area and

specific capacitance C = ε0εr/dj per unit area of junction. In dimensionless form, equation

(43) takes the form of[43]

θ̈ + ηθ̇ = θ′′ − sin θ + β (44)

where the overdot and prime denote partial derivatives with respect to the dimensionless time

ωJt and coordinate x/λJ while η = 1/ωJRjC is known as damping factor, as defined before.

This equation is known as perturbed sine-Gordon equation and has been one of the most

widely used equations to describe topological defects in charge and spin density waves[53],

commensurate-incommensurate transitions[54, 55], magnetic domain walls[56], dislocations

in crystals[57, 58], kinks on DNA molecules[59, 60] and finally Josephson junctions.

2.8 SOLUTIONS OF SINE-GORDON (SG) EQUATION

In general equation (44) does not have a known analytical solution and must be solved

numerically. Nevertheless, this equation in conjunction with proper boundary conditions

specified by the problem geometry can describe the electrodynamics of a homogeneous LJJ

with good enough accuracy and a wide range of physical quantities can be obtained from

the dynamic phase solutions.
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Exact treatment of boundary conditions is very problem dependent, however there are

some general rules that have to be considered. In linear junctions magnetic field can be

applied both uniformly through the transport current β term or non-uniformly using the

phase-field relation in (35) applied to the junction ends. In annular junctions the boundary

conditions are so that the single-valuedness of the wave function is justified throughout the

junction (phase is periodic with respect to the length of the junction).

In an infinitely long linear junction there exists analytic solutions to the unperturbed

sine-Gordon equation

θ̈ = θ′′ − sin θ (45)

which can be classified in three main types[42].

• Plasma oscillations. These are small amplitude plain waves in the form of

θae
i(kx−ωkt)(|θa| � 1) that can propagate along the junction. The dispersion relation

between frequency ωk and wave vector k is given by

ωk(k) = ωJ

√
1 + λ2

Jk
2 (46)

from which we can determine the phase velocity of an electromagnetic wave in a LJJ

as

vph =
ωk
k

= cs

√
1 +

1

k2λ2
J

(47)

while the group velocity is given by

vg = cs
λJk√

1 + λ2
Jk

2
. (48)

where cs = ωJλJ = (dj/εrd)1/2c is known as Swihart velocity[61], typically a few

percent of light velocity. As plotted in Fig. 17, it clearly shows that vg ≤ cs ≤ vph.

• Solitons. The most famous solution of (45) is given by

θ(x, t) = 4 tan−1

(
exp

[
±x− (v/cs)t− x0√

1− (v/cs)2

])
(49)

which describes a moving kink (soliton) that changes θ from 0 to 2π from −∞ to +∞
for the (+) sign or vice versa, an antikink (antisoliton) for the (−) sign. This solution

describes a Josephson vortex which consists of localized current within the distance

2λJ which changes direction at the center of moving vortex x0 +(v/cs)t. Equation (45)

is Lorentz-invariant where cs plays the role of the light velocity. Therefore, solitons
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FIG. 17: Phase and group velocity curves of electromagnetic waves propagation obtained
from dispersion relation of a long Josephson junction described by (45).

will act like relativistic particles which are subjected to Lorentz contraction, hence the

size of a soliton moving with constant velocity v will shrink to (1 − v2/c2
s)

1/2λJ from

its static size λJ . Figure 18 shows profiles of Josephson vortex solutions in phase, field

and current representations both in static and dynamic states. In spite of contraction,

a Josephson vortex always carries a quantum of magnetic flux, hence also called fluxon.

• Breathers. Similar to Abrikosov vortices, Josephson fluxons with different polarities

will attract each other, hence the possibility of forming a bound state which oscillates

around the common center of mass. Breather type solutions are unstable with respect

to damping, therefore the amplitude of oscillations will soon decay and their energy

would be dissipated through resistive channels.

2.9 PERTURBATIONAL ANALYSIS

In the presence of a transport current, a Josephson fluxon will move under the action of

Lorentz force. Due to Faraday law this motion generates an electric field which couples to

the normal current and causes dissipation of energy. In equilibrium state where the amount

of energy injection due to transport current is equal to dissipation caused by quasiparticle

resistance, the velocity of a fluxon can be obtained using a perturbational analysis[62] in
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terms of transport current and viscous drag coefficient. A Hamiltonian can be written for

the unperturbed SG in (45) as following[62]

H =

∫ ∞
−∞

[
θ̇2

2
+
θ′2

2
+ 1− cos θ

]
dx (50)

from which the normalized energy of a single fluxon in (49) is given by

E =
8√

1− (v/cs)2
. (51)

Treating the dissipative and transport terms in (44) as perturbations which act only upon

the center of mass of fluxon, we obtain

v = ± cs√
1 +

(
4η
πβ

)2
(52)

for the velocity of a fluxon in stationary state where the acting forces balance out[62].

2.10 DYNAMICS OF SINGLE FINITE LENGTH LJJ

Flux dynamics in LJJs is strongly affected by the junction geometry. The most exten-

sively studied geometries are shown in Fig. 16. While the main governing equation is the

same, there is a qualitative difference between linear junctions ( the first three ) with the

annular junction. A major complication in the dynamics of linear (rectangular) finite length

LJJs arises due to interaction of fluxons with the boundary conditions.

2.10.1 ANNUALR JUNCTIONS

For an annular junction in absence of magnetic field, assuming a uniform bias current is

applied, the governing equation is (44) with the boundary condition which simply reflects

the spatial periodicity of the junction:

θ(x, t) = θ(x+ L, t)± 2nπ (53)

where n is an integer associated to the net number of fluxons present in the junction. In

presence of magnetic field the right hand side of (44) is modified by the term K ∂
∂x

(B · r)
where B is the normalized magnetic field, r is a unit radial vector and K is a coupling

constant[63]. Although more complicated in terms of fabrication and control, the annu-

lar geometry facilitates the possibility of studying flux dynamics in absence of boundary

reflection effects.
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2.10.2 LINEAR JUNCTIONS

The main difference in the electrodynamics of linear junctions shown in Fig. 16 comes

from the manner that a bias current is applied. In the overlap geometry a uniform bias

current is entered as the β term in (44) while the application of bias current in the inline

junction is non-uniform and happens through the boundary conditions. General boundary

conditions in presence of magnetic field for linear junctions can be written as

θ′(0, t) = θ′(L, t) = h (54)

where h = H/λJJc is the normalized magnetic field applied in the y direction and can be

also time-dependent. The normalization is such that in absence of bias current, h = 2 is the

static threshold for magnetic flux to penetrate into junction as a Josephson vortex.

In absence of magnetic field and presence of a bias transport current 0 < β < 1, the

solution for (44) with open-circuit boundary conditions at both ends of junction, θ′(0, t) =

θ′(L, t) = 0, and small damping factor η � 1, is a spatially uniform constant phase θ =

sin−1(β). If bias current exceeds the critical value, the solution becomes a time-varying still

spatially uniform phase represented by the non-zero voltage curve in I-V characteristic of a

typical LJJ. Reducing the bias current progressively back will slow down the phase evolution

until at some point before a transition happens to zero-voltage state, the solution becomes

dynamically unstable that it is possible for one or more fluxons to appear spontaneously

inside the junction. Under the action of transport current the fluxon will move toward one

of the edges and if energetic enough will get reflected back as anti-fluxon, changing the phase

at the edges by 4π each time a reflection happens. The resonating motion of a fluxon between

the edges would result in a voltage step in I-V curve known as zero field steps[64]. Depending

on the number of fluxons that resonate inside the junction the asymptotic voltage appear

at regular intervals of Vmax = n(Φ0cs/L) in which the step index n indicates the number of

fluxons involved.

In presence of small magnetic field H � H1, applied at the two edges of the junction,

the current would enhance in one edge and reduce at the other. At right combination of

parameters, the asymmetry would cause the traveling fluxons to get reflected with enhanced

energy at the energy-adding edge and die at the energy-subtracting edge which gives rise

to some of the energy reflecting back into junction in the form of small amplitude radiation

which in turn travels toward the other edge and if the energy is sufficient enough will give

birth to another fluxon. This is a new dynamic steady state which causes a 2π phase change

and results in voltage steps in I-V curve known as Fiske steps[65] which occur at one-half
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that of the first zero field steps, Vmax = n(Φ0cs/2L). Higher order Fiske steps also occur

with more complicated dynamical structure.

When applied magnetic field exceeds the threshold of penetration at one of the edges,

fluxons can penetrate and accelerate due to bias current toward the other edge where they

might reflect back or exit the junction. Right combination of parameters would result in

a dynamic steady state in which fluxons get injected continuously at one edge and exit

through the other in a unidirectional motion causing another set of voltage steps in I-V

curve known as flux-flow steps. The average voltage depend on the number of fluxons as well

as their average speed of flow as can be approximated by V = µ0(2λ+ dj)Hv in case of bulk

electrodes where H is the applied magnetic field and v is the average velocity of the chain of

flowing fluxons. This steady state is the basic operation mechanism of flux flow oscillators

used in superconducting electronics[66, 67].

2.11 SUMMARY

The complex nonlinear dynamics of Josephson vortices in LJJs as well as the similarity of

the behavior of GBs in SRF materials as both weak-link and strong-link Josephson junctions

motivated us to pursue this topic further in specific geometries related to SRF cavities. As

will be stated later in detail, the conventional theory of LJJs is not sufficient to describe the

strong-link nature of GBs in materials like Nb, therefore further investigations are required

to tackle these problems. In the following chapters, we will present the original result of our

simulation of the dynamics of vortices in weak-link and strong-link GBs by solving relevant

governing equations.
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CHAPTER 3

SIMULATION OF NONLINEAR DYNAMICS OF JOSEPHSON

VORTICES IN WEAK-LINK GRAIN BOUNDARIES

In this chapter we address a nonlinear electromagnetic response of a single LJJ across a

film screen in a parallel field. We solved the sine-Gordon equation numerically to calculate

the dynamics of penetration, annihilation and exit of Josephson vortices and antivortices

oscillating under the dc and ac field.

Dynamics of Josephson vortices in long Josephson junctions (LJJs) under dc and ac mag-

netic fields has been the subject of much interest [5, 42, 43, 62, 64, 67, 68]. For instance, the

barrier and overlap LJJs have been studied extensively for applications in superconducting

electronics [42, 43], particularly flux flow oscillators [69, 70, 71, 72]. The electrodynamics

of LJJ has attracted a renewed attention after the discovery of high-Tc superconducting

cuprates and iron based superconductors in which the grain boundaries between misoriented

crystallites behave as long Josephson junctions which subdivide the materials into weakly

coupled superconducting regions [2, 11]. The latter gives rise to the electromagnetic gran-

ularity [73] which is one of the serious obstacles for applications of the cuprate and the

iron-based superconductors [74].

Another situation in which the weak-linked grain boundaries becomes essential occurs

in superconducting resonator cavities [6] in which the amplitudes of the radio-frequency

(' 0.1 − 5 GHz) screening currents flowing at the inner surface of the cavity can approach

the depairing current density Jd. In this case the grain boundaries even in such conventional

materials as Nb can behave as LJJs [15, 16, 17, 25, 35], even though they do not manifest

themselves as weak links in dc magnetization or transport properties at much lower dc

currents J � Jd. It has been suggested that the Josephson vortices penetrating through

grain boundaries can account for the linear decrease of the quality factors Q(H) in Nb

resonator cavities [17, 25, 26]. Understanding the electrodynamics of Josephson vortices

in weak-linked grain boundaries requires addressing the following issues: 1. The minimum

amplitude of the ac field Hp(ω) the Josephson vortices start penetrating the LJJ and the

relation between Hp and the dc critical field. 2. The field dependence of the power P (H)

dissipated in the LJJ at H > Hp and its contribution to the nonlinear surface resistance
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Rs(H). 3. The effect of a finite length of the LJJ on Hp and P (H) which would account for

a finite grain size in polycrystalline materials of a finite film thickness in a screen.

3.1 ELECTRODYNAMICS

We consider a LJJ perpendicular to a flat screen of width L as shown in Fig. 19. The

uniform magnetic field H(t) is applied along the y-axis parallel to one side of the screen at

x = 0. At the other side of the screen we assume the boundary condition H(L, t) = 0. The

LJJ is described by the partial differential equation in (43) (except that here β = 0) and

the local field distribution along the LJJ B(x, t) = (Φ0/4πλ)θ′(x, t) defines the boundary

conditions at x = 0 and x = L:

θ′(0, t) =
2πµ0d

Φ0

H(t), θ′(L, t) = 0. (55)

λ λ

dj

S Sbarrier

Ι

L

H

H = 0

x

y

z

FIG. 19: Geometry of a long Josephson junction in a film which screens the uniform magnetic
field H applied in the region x < 0.

As an illustration, we estimate ωJ and ωc for Nb at different ratios of Jc/Jd where

Jd = Φ0/3
√

3πµ0λ
2ξ is the bulk depairing current density, and ξ is the coherence length.

Taking λ ≈ ξ ≈ 40 nm, the typical excess grain boundary resistance Rj = 2 × 10−13 Ωm2

for Nb [75], and C = ε0εr/dj where εr ' 3 is the static dielectric constant of filled electron

bands and dj ' 1 nm is the atomic width of the grain boundary, we obtain Jd ' 150

MA/cm2, and RjJd ' 0.3V. Then ωc ' 1015(Jc/Jd) Hz, and ωJ ' 4 · 1014(Jc/Jd)
1/2 Hz. The

McCumber parameter βc = (ωc/ωJ)2 ' 6Jc/Jd defines the effect of dissipation for a steady-

state propagation of Josephson vortices; the case of βc � 1 corresponds to the overdamped

limit in which dissipative ohmic currents dominate over the displacement currents described

by the inertial term ∝ ∂2θ/∂t2 in (43). The Josephson weak link is by definition an interface
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with Jc � Jd so, for the above numbers, the grain boundaries would be in the overdamped

limit. However, Jc across grain boundaries in Nb can be very high and close to Jdξ/λ in

which case 43 is no longer valid and the equation for θ(x, t) becomes nonlocal particularly

in materials with large G-L parameter κ [76, 77, 78]. In this section we only consider the

local Josephson limit described by 43 both for βc > 1 and βc < 1.

As will be shown below, penetration and annihilation of Josephson vortices can result

in significant instant power dissipation P (t) =
∫ L

0
V (x, t)J(x, t)dx per unit height of the

junction along the y-axis, where V = (Φ0/2π)∂θ/∂t is the voltage, and J(x, t) is a sum of

the Josephson, ohmic and displacement current densities:

P (t) =
Φ0Jc
2π

∫ L

0

dx

[
sin θ +

1

ωc

∂θ

∂t
+

1

ω2
J

∂2θ

∂t2

]
∂θ

∂t
. (56)

In a periodic ac field with frequency ω the contributions of Josephson and displacement

currents vanish after averaging over the ac period T = 2π/ω. As a result, the average power

is caused only by the ohmic currents:

P =
Φ0Jc

2πωcT

∫ t0+T

t0

dt

∫ L

0

(
∂θ

∂t

)2

dx. (57)

In dimensionless form the governing equation becomes

θ̈ + ηθ̇ = θ′′ − sin θ (58)

where the boundary conditions and instant power takes the form

θ′(0, t) = h, θ′(l, 0) = 0 (59)

P/P0 =

∫ l

0

dx[sin θ + ηθ̇ + θ̈]θ̇ (60)

where l = L/λJ , h = (2πµ0dλJ/Φ0)H(t) and P0 = csΦ0Jc/2π.

3.2 DC FIELD

We first consider the overdamped limit in which the term ∝ θ̈ can be neglected and (58)

turns into a nonlinear diffusion equation,

θ̇ = θ′′ − sin θ (61)

where the overdot is renormalized in units of ωc. Solutions of (61) are shown in Fig. 20 for

L = 20λJ and different magnetic fields Hdc. Figure 20a shows the metastable Meissner state
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at Hc1J < Hdc < H1, in which the magnetic flux is screened at the edge over the length ∼ λJ .

Figure 20b shows the case of Hdc = H1 at which the first vortex nucleates at the edge and

accelerates until the velocity becomes limited by the friction force of ohmic currents. Figure

20c shows the flux flow state at higher field Hdc = 5H1 at which vortices periodically enter,

travel all the way to the other end at x = L where they disappear. This dynamic state is

characteristic of a thin film screen [13] in which the LJJ provides a path for constant flux

pumping from the region of applied field to the inner region of H = 0, unlike a stationary

chain of Josephson vortices in a uniform field which is the same at both edges of the junction

[42, 43].
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FIG. 20: Profiles of the local magnetic field B(x) in a LJJ at L = 20λJ solution of (61) and
different values of Hdc.

If we solve (58) in full without neglecting the inertial term, as solutions shown in Fig. 21

indicate, the junction will be in overdamped regime and the assumption of (61) is justified

even for values of η ∼ 1.

Figure 22 shows the evolution of the local field B(x, t) along the LJJ and the instant

power P (t) at Hdc = 2H1 and η = 1.4. One can see that each penetration and annihilation

of vortices at the edges produces peaks in P (t). The highest peak in P (t) occurs during

penetration of the first vortex at x = 0 after the field was turned on and the vortex is
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FIG. 21: Profiles of the local magnetic field B(x) in a LJJ at L = 20λJ , η = 1.4 and different
values of Hdc.

accelerated strongly by the Lorentz force of screening current. After penetration of several

vortices, the Lorentz force which pushes the next vortex in the junction is reduced by the

counterflow of vortices already in the LJJ, so the peaks in P (t) caused by penetrating vortices

are reduced. As the vortex exits the junction at x = L, it is accelerated again due to

attraction to its antivortex image [62], producing peaks in P (t).

The effects of displacement currents on dynamics of Josephson vortices will show up first

by solving (58) for moderate damping at η = 0.3. The results shown in Fig. 23 are calculated

at Hdc = 2H1 and indicate that in this case vortices gain some inertia and upon reaching the

edges dissipate most of their energy, but a small part of it would get reflected in the form of

decaying electromagnetic waves back to the junction.

For weaker damping (η < 0.1), vortices move with a nearly uniform velocity until they get

reflected from the edge of the junction without losing much of their energy but reversing their

polarity and velocity[64]. As shown in Fig. 24, for η = 0.01 and Hdc = 1.2H1, vortices move

almost with their initial velocity but upon reaching the edge of the junction at x = L, they

get reflected as anti-vortices. The reflected anti-vortices pass through incoming vortices[68]

causing only small amount of dissipation. The multiple reflections of vortices from the edges
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FIG. 22: Evolution of the local magnetic field B(x, t) along the LJJ, and the instant power
P (t) calculated for Hdc = 2H1. Results of solution of (58) in the overdamped limit at η = 1.4

along with continuous pumping of the electromagnetic waves can result in a chaotic behavior

of θ(x, t) which we do not address in this work.

Shown in Fig. 25 is the averaged power P̄ generated by moving Josephson vortices

calculated from (58) at η = 0.2. At high fields [Hdc > (3 − 4)H1], the dependence P̄ (Hdc)

becomes nearly quadratic in Hdc but at lower fields, there are step-like features in P̄ (Hdc)

associated with penetration of Josephson vortices. From the power dissipation relation P =

I2Rf where I = Hdc is the total current flowing along the screen, we calculate the field

dependence of the flux flow resistance Rf (Hdc) plotted in inset of Fig. 25. Here Rf (Hdc)

vanishes at Hdc = H1 and increases with Hdc, approaching the total LJJ resistance R0 =

Rj/L at Hdc > 4H1.

3.3 SINGLE-MODE AC FIELD

In this section we consider a LJJ under a single-mode ac magnetic field, H = Hac sinωt.
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FIG. 23: Evolution of the local magnetic field B(x, t) along the LJJ, and the instant power
P (t) calculated for Hdc = 2H1. Results of solution of 58 for a moderately dissipative case of
η = 0.3. Standing electromagnetic waves generated by moving vortices in the LJJ manifest
themselves in “ripple” on B(x, t) and in a more complex behavior of P (t) than for the
overdamped limit.

In this case it is more convenient to rescale the time in the units of the characteristic frequency

t→ ωct, so that the dimensionless sine-Gordon equation takes the form

βθ̈ + θ̇ = θ′′ − sin θ, (62)

where β = (ωc/ωJ)2. The boundary conditions become

θ′(0, t) = hac sinαt, θ′(l, t) = 0, (63)

where α = ω/ωc and hac = (2πµ0dλJ/Φ0)Hac. The instant power is then

P/P0 =

∫ l

0

dx
[
sin θ + θ̇ + βθ̈

]
θ̇, (64)

where P0 = Φ0JcλJωc/2π.
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FIG. 24: Evolution of the local magnetic field B(x, t) calculated for a weakly dissipative case
of η = 0.01 at Hdc = 1.2H1. Vortices undergo multiple reflections from the edges with the
reversal of their polarity and velocity.

As was shown above, the plasma frequency for the grain boundaries in Nb is typically

in the infrared region (ωJ ∼ 1012 − 1014 Hz) so for many microwave and rf applications

(ω ∼ 0.1 − 10 GHz), the parameter β � 1/α(i.e. ωωc � ω2
J) is negligible and (62) reduces

to (61). However, to have a rough estimation of how much each effect would contribute to

power dissipation we can represent the unit of dissipated power P0 as:

P0 = λRjJ
2
c

√
Jd/κJc (65)

which depends on characteristic properties of grain boundaries such as specific resistance Rj

and critical current density Jc. For Nb with λ = 40nm and κ = 1 using Rj = 2 · 10−13Ωm2

from previous calculation, we obtain P0(Nb) = 0.018(Jc/Jd)
3/2(Watt/µm). Finally, for a

grain boundary of Jc = 0.1Jd and height ∼ 0.1µm, the amount of unit power dissipated is

' 57µWatt. The size of the GB considered in this simulation is 20λJ which using the above

parameters for a GB in Nb translates to a size about 2.5µm which is reasonable. Same type
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FIG. 25: Averaged power P̄ /P0 as a function of reduced dc magnetic field Hdc/H1 calculated
for η = 0.2. Inset shows the flux flow resistance as a function of Hdc/H1 where R0 = Rj/L
is the total quasiparticle resistance of the junction.

of calculations for Nb3Sn with λ = 100nm and κ = 20 leads to even larger dissipation as Rj

in Nb3Sn is several orders of magnitude larger than that of a Nb grain boundary.

Our numerical simulations of (61) associated with boundary conditions in (63) have shown

that it has a solution θ(x, t) with the periodicity of the applied ac field. Shown in Fig. 26

are the profiles of magnetic field just before and after penetration of a vortex calculated for

α = 0.01. These snapshots of B(x, t) at different times and Hac ≈ H1 suggest that a vortex

(or antivortex during the negative field cycle) get trapped at the edge of the junction, just

because vortices under oscillating ac field have limited time to enter the junction. As a result,

the threshold field Hp(ω) of vortex penetration becomes larger than H1 and increases with the

frequency, so that there is enough time during the part of the period when Hac| sinωt| > H1

for the vortex to penetrate by the distance ∼ λJ . Calculations of P̄ given below show that
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the rf power dissipated in the LJJ increases sharply at Hac > Hp.
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FIG. 26: Snapshots of magnetic field profiles B(x) calculated for α = 0.01 at different
times: (a) just before the first vortex penetrates; (b) just after the penetration of the first
vortex/anti-vortex occurred. Arrows show whether the applied field H(t) is increasing or
decreasing.

Unlike the unidirectional flow of vortices under dc field considered in section 3.2, the flux

dynamics under ac field includes penetration of Josephson vortices during the positive ac

cycle followed by penetration of antivortices during the negative cycle and their subsequent

annihilation. Shown in Figs. 27-28 are representative examples of the evolution of the local

magnetic field B(x, t), and the corresponding instant power P (t) plotted for a full ac cycle

calculated from (62) at Hac = 2H1. In the particular case of overdamped flux dynamics

shown in Fig. 27, about eight vortices penetrate the LJJ during the positive ac cycle, giving

rise to small peaks in P (t). Of these vortices, the first three annihilate upon collisions with

residual anti-vortices generated during the previous negative half cycle, while the fourth one

goes all the way along the junction and exits at the other end. The last four vortices do not

reach the end of the junction and turn around as H(t) changes sign; the very last vortex

exits before antivortices appear, but three other vortices annihilate on their way back with

incoming anti-vortices generated during the negative ac cycle. The same process repeats for

antivortices during the negative cycle. Notice that annihilation of vortices and antivortices

inside the junction results in peaks in P (t) that are significantly higher than the peaks in
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P (t) during penetration or exit of vortices at the edges.

FIG. 27: Evolution of the local magnetic field B(x, t) and the instant dissipated power
calculated from (62) for Hac = 2H1. Overdamped limit at α = 0.01. Arrows show the points
of annihilation of vortices and antivortices.

Fig. 28 shows the effect of displacement currents on the flux dynamics in a moderately

overdamped limit at β � 1/α. We found that if αβ . 0.1, the response of the junction to

the ac field remains periodic and similar to the solutions at β → 0, except for generation

of electromagnetic waves by accelerating/decelerating vortices upon interaction with bound-

aries and other vortices. As shown in Fig. 28, the number of vortices does not change as

compared to Fig. 27, but because they now have some inertia, two vortices are able to reach

the edge and leave behind weak electromagnetic radiation which manifests itself in “ripples”

on B(x, t) and a more irregular behavior of P (t).

In the case of αβ ∼ 1 shown in Fig. 29 vortices quickly enter the junction during the

positive ac cycle and move with a nearly uniform velocity until they hit the other edge.

There they get reflected from the edge as anti-vortices which then collide with newly entered

anti-vortices, giving rise to local spikes of high magnetic field inside the junction before

passing through each other and making their trip toward the other edge. In this regime,
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FIG. 28: Evolution of the local magnetic field B(x, t) and the instant dissipated power
calculated from (62) for Hac = 2H1. Moderately overdamped limit at α = 0.01 and β = 10.
The flux dynamics is similar to Fig. 27 except the additional “ripples” on B(x, t) due to
electromagnetic waves generated because of the effect of vortex inertia.

vortex dynamics is getting more chaotic as depicted in Fig. 29a; after several reflections,

vortices eventually lose their energy due to ohmic losses and exit. Figure 29b illustrates a

more chaotic behavior at αβ > 1; here vortices undergo more reflections and less dissipation,

forming a dynamic pattern in which twice in every ac period, half of the junction is filled

with vortices and half with anti-vortices.

3.3.1 DISSIPATED POWER

We now calculate the mean dissipated power P̄ in the overdamped limit (αβ � 1), by

averaging (57) over the ac period:

P/P0 =
α

2π

∫ 2π/α

0

dt

∫ l

0

θ̇2dx, (66)

where P0 = Φ0JcλJωc/2π. Plotted in Fig. 30a is P̄ as a function of ac field amplitude



47

FIG. 29: Evolution of the local magnetic field B(x, t) at Hac = 2H1, and α = 0.01 for
different values of β: (a) β = 100; (b): β = 1000. In both cases the ripples on B(x, t) is
due to standing electromagnetic waves generated by accelerating/decelerating vortices. In a
weakly dissipative case shown in (b), vortex/anti-vortex bundles form during each half cycle.
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for different values of the dimensionless frequency α = ω/ωc in the overdamped limit. One

can clearly see steps in P̄ (Hac) due to the change of the mean number of vortices in the

junction as Hac increases. For smaller frequencies α, the steps are sharper and decrease

in amplitude as Hac increases. As α increases, the sharp steps become broader until they

disappear completely and P̄ (Hac) quickly becomes quadratic in Hac.

It is instructive to express P̄ /s = RsI
2
a/2 in terms of the surface resistance Rs for a stack

of parallel LJJ spaced by s along the z-axis, where Ia = Hac is the amplitude of the ac current

flowing through the LJJ. The field dependence of Rs(Hac) = 2P̄ (Hac)/sH
2
ac inferred from

the above results for P̄ (Hac), is shown in Fig. 30(b). Several features of Rs(Hac) should be

mentioned. First, Rs(Hac) increases sharply above a threshold field Hp(ω) which we associate

with the field onset of penetration of Josephson vortices in the junction. At small frequencies,

α = ω/ωc � 1, the dependence Rs(Hac) has a significant steplike feature component in which

each step results from the change of the mean number of vortices in the LJJ by one as Hac

increases. At higher frequencies, the steps Rs(Hac) become less pronounced and disappear

at α > 1. For Hac � H1 the resistance approaches a constant value which, for an infinite

LJJ, is just the surface resistance R0 = (µ0Rjωd/2)1/2/s under the normal skin effect [38].

However, in our case of the LJJ of finite length (L = 20λJ), the asymptotic value of Rs(Hac)

is smaller than R0 obtained above. The value used in calculation and shown on Fig.30b

corresponds to R0 = 2Rj/λJ . Results similar to those shown in Fig. 30b were previously

obtained by McDonald and Clem [38] and by Zhai et al. [39]. The frequency dependence of

P̄ (Hac, ω) at Hac = 4H1 shown in Fig. 31, is close to the square root behavior. The latter

is not surprising given that at Hac = 4H1, the Josephson vortices in the LJJ overlap and

Rs(Hac) shown in Fig. 30b approaches the surface impedance of a normal conductor.

3.3.2 FREQUENCY DEPENDENCE OF PENETRATION FIELD

The field onset of sharp increase of the dissipated power P̄ (Hac) at which the first fluxon

penetrates the junction increases with the frequency of the applied field, as it is evident

from Fig. 30a. The calculated frequency dependence of Hp(ω) in the overdamped regime is

shown in Fig. 32. Here the function Hp(ω) first increases linearly with ω at ω � ωc and

then exhibits a faster increase with a downward curvature above α ∼ 0.1. At ω � ωc, the

penetration field can be approximated by

Hp(ω) ' H1(1 + 1.4ω/ωc), ω � ωc (67)

These results show that Hp is close to the dc superheating field of the junction if ω � ωc.
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3.4 ASYMMETRIC AC FIELD

In the section 3.3 we considered a single mode ac field for which the net Lorentz force

averaged over the ac period vanishes. Here we consider two situations in which the net force

does not vanish, resulting in a preferential drift velocity of vortices. The first case is a dc

magnetic field superimposed onto a single-mode ac field, and the second one is a two-mode

ac field with different frequencies. In both cases the ac dynamics of vortices can be tuned

by either changing the dc field Hdc or the phase shift between the two harmonics.

3.4.1 AC DRIVEN JUNCTION BIASED WITH A DC FIELD

Dc magnetic field superimposed onto the ac field can result in interesting effects in

LJJ which have many applications for high-Tc thin film junctions[70, 79] and flux flow

oscillators[70, 71]. As an illustration, Fig. 33 shows the results of calculations in the over-

damped limit for α = 0.01, Hac = 2H1 and different dc field values. The main difference

from the results of the section 3.3 is that the positive dc field breaks the symmetry between

vortices and antivortices, facilitating penetration of vortices and inhibiting penetration of

antivortices (and vice versa for negative Hdc). This behavior is clearly seen in Fig. 33. In

the limit of Hdc � Hac, the ac field becomes inessential, and flux dynamics approaches the

unidirectional flux flow considered in section 3.2.

Similar to the previous sections, we define the dynamic resistance Rs using the power

balance P̄ = Rs〈I2〉, where the net current I = Hdc +Hac sin t now contains both dc and ac

contributions. Averaging over the ac period gives 〈H2
tot〉 = H2

dc +H2
ac/2, so that

Rs = P/(H2
dc +H2

ac/2) (68)

Shown in Fig. 34 are the curves Rs(Hac)/R0 calculated for α = 0.1 and different values of

Hdc. One can see that the dc field reduces the field threshold of vortex penetration Hp(Hdc)

which is now controlled by the maximum instantaneous field value Hdc + Hac. Thus, we

have Hp(Hdc) = H1 − Hdc if Hdc < H1 and ω � ωc. The resistance at Hdc > H1 and

Hac � Hdc reduces to the resistance Rf for the unidirectional flux flow shown in Fig. 25.

We do not consider here a moderately dissipative case αβ ∼ 1 for which the resistance Rs

in superimposed dc and ac fields can become negative [80].

3.4.2 BI-HARMONIC FIELD AND THE AC RATCHET EFFECT

It is well-known that a particle driven by an external force in a periodic potential without
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FIG. 34: Rs dependence on Hac for a long, finite junction when α = 0.1 in presence of
different values of dc field. When Hac → Hdc the ac resistance approaches the asymptotic
value of R0.

reflection symmetry can move with a mean drift velocity vd due to the dc ratchet effect. This

situation can occur in a LJJ as well if the Josephson vortex is driven by superimposed dc

and ac currents [80] or by a periodic ac force containing more than one harmonics so that vd

depends on the phase shift ϑ between two harmonics with different frequencies [81, 82, 83].

The dc and ac ratchet effects, and the related issues of the Brownian motors [84, 85] have

been investigated in biological systems [85], particle separation [85, 86], and vortex motion

rectification in superconductors [87, 88, 89, 90].

To see how the dynamic ratchet effect can manifest itself in the LJJ geometry shown in

Fig. 19, we consider a Josephson vortex driven by a uniform bi-harmonic current density

J(t) = J1 cosωt+ J2 cos(2ωt+ ϑ), where ϑ is a constant phase shift. We start with a simple

model in which the vortex is treated as a particle subject to the ac Lorentz force, so that

the velocity of the vortex v(t) is described by the dynamic equation,

Mv̇ + (1 + v2/v2
0)ςv = Φ0J(t), (69)

where M is the effective vortex mass, ς is the viscous drag coefficient [42, 43], and the term

v2/v2
0 describes the first nonlinear correction to the vortex viscosity [43, 62, 68]. We seek the

solution of (69) in the form:

v(t) = vd + v1 cos(ωt+ ϕ1) + v2 cos(2ωt+ 2ϕ2) + vi(t), (70)

where vd is a dc drift velocity, and vi(t) is a periodic function which contains higher order
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harmonics. If v(t)� v0, the nonlinear term in (69) is small, so that vd can be calculated in

a perturbation theory [85] by averaging (69) over the ac period:

vd = −〈v
3〉
v2

0

= −3v2
1v2

4v2
0

cos 2(ϕ2 − ϕ1). (71)

Here 〈v3〉 was calculated from (70) neglecting the higher order harmonics vi(t). In the

low-frequency overdamped limit ω � ς/M , the mass term in (69) can be neglected and the

linearized equations v(t) = Φ0J(t)/ς for the first and the second harmonics yield v1 = Φ0J1/ς

and v2 = Φ0J2/ς. Then (71) reduces to:

vd = −3Φ3
0J

2
1J2

4v2
0ς

3
cos θ. (72)

This relation shows that the drift velocity can be changed by varying the phase shift ϑ to

make the vortex move either to the left or to the right. The case of two superimposed modes

thus appears qualitatively similar to the case of superimposed dc and ac fields considered

above because penetration of vortices can be either facilitated or inhibited by varying the

phase shift ϑ [81, 82, 83]. The case of bi-harmonic rf field can model grain boundaries in

superconducting resonator cavities in which several resonance electromagnetic modes can be

generated [6].

We now solve the overdamped sine-Gordon equation for a bi-harmonic field, H(t) =

Ha1 sinωt+Ha2 sin(mωt+ ϑ) and the boundary conditions,

θ′(0, t) = h1 sin t+ h2 sin(mt+ ϑ), θ′(l, t) = 0, (73)

where {h1, h2} = (2πµ0dλJ/Φ0) {Ha1, Ha2} and m is integer.

In the overdamped limit the solutions for θ(x, t) have the same periodicity as H(t). For

even m, the ratio of the mean numbers of fluxons and antifluxons can be tuned by varying

ϑ, which was observed in Ref. [88, 89]. For instance, as Fig. 35a shows, increasing ϑ from 0

to 2π/3 inhibits penetration of vortices and facilitates penetration of anti-vortices into the

junction. For odd values of m, the field satisfies the condition H(t + T/2) = −H(t) so the

change of ϑ does not result in the vortex/antivortex imbalance, although flux dynamics is

affected by ϑ. As an example, Fig. 35b shows that varying ϑ from 0 to 2π/3 affects the

dynamics of B(x, t) symmetrically for both fluxons and anti-fluxons.

Fig. 36 shows how the dissipated power can be tuned by varying Ha2 and ϑ for the fixed

amplitude of the first harmonic, Ha1. For m = 2, the power P̄ generally increases with Ha2

but the change of ϑ from 0 to π/2 results in humps and dips on the curve of P̄ (Ha2) at
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FIG. 35: Evolution of B(x, t) for a 2π period of the bi-harmonic magnetic field. (a): m = 2,
Ha2/Ha1 = 0.66 and α = 0.01. Changing ϑ from 0 to 2π/3 decreases the number of vortices
and increases the number of anti-vortices in the junction. (b): m = 3, Ha2/Ha1 = 0.66
and α = 0.01. Varying ϑ affects flux dynamics but does not result in the vortex/antivortex
imbalance.
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Ha2 ≈ H1/2 and Ha2 ≈ 1.8H1. For m = 3, the dips in P̄ (Ha2) are less pronounced but still

apparent at Ha2 ≈ 0.8H1 and ϑ = π/2. In both cases changing ϑ from 0 to π/2 can reduce

P̄ (Ha2) in certain regions of Ha2 while increasing P̄ (Ha2) in others.

The dependencies of P̄ (ϑ) for m = 2 and m = 3, at a fixed field amplitude (H2
a1 +

H2
a2)1/2 = 3H1 and different values of Ha2 are shown in Fig. 37a and b. Here P̄ (ϑ) can vary

rapidly with ϑ, although the maximum change of P̄ (ϑ) does not exceed 10%. Interestingly,

the most pronounced reduction of P̄ (ϑ) in the suitable ranges of ϑ occurs if the amplitude

of the second harmonics is small as compared to Ha1.

3.5 SUMMARY AND DISCUSSION

It has been shown that the electromagnetic response of a long but finite Josephson junc-

tions in ac magnetic fields can be quite complicated due to penetration, oscillation and

annihilation of Josephson vortices. The nonlinear dynamics of Josephson vortices results in

essential dependencies of the averaged dissipated power P̄ and the dynamic resistance R on

the field amplitude. Here P̄ (H) and R(H) can have steps and peaks due to the change of the

number of trapped vortices in the junction as H increases. The calculated field dependence

of the surface resistance R(H) is far from linear, inconsistent with the model assumptions

of previous works [17, 25]. It is important to point out that P̄ (H) is obtained by averaging

the instant power P (t,H) over the ac period during which P (t) has strong spikes due to

annihilation of vortices and antivortices in the junction, the magnitude of these power spikes

can be much higher than the smooth background contribution to P (t). In high-Jc Josephson

junctions these power spikes may trigger thermo-magnetic instabilities in the rf field [91].

The penetration of Josephson vortices occurs above the threshold field Hp(ω) at which

the dissipated power increases significantly. If the local Jc at the edge of the junction is

not reduced by materials defects, the dynamic penetration field Hp(ω) remains close to the

dc Josephson superheating field of the Meissner state H1 = Φ0/2πµ0λλJ if ω/ωc � 1. The

characteristic frequency ωc in (43) is proportional to the product JcRj, so the frequency

dependence of Hp(ω) is most pronounced for low-Jc and low resistance junctions. The

estimates given above show that for the grain boundaries in Nb, the frequency-dependent

correction in Hp(ω) is small for ω < ∆/~, where ∆ is the superconducting gap.

As was mentioned in the beginning of this chapter, a LJJ of finite length can model

the electromagnetic response of grain boundaries in polycrystalline superconductors. The

grain boundaries in Nb3Sn, iron-based superconductors or high-Tc cuprates do behave as

Josephson weak links [2, 11], so one can expect that the nonlinear effects addressed here,
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can manifest themselves in the surface impedance at rather low fields H ' H1 < Hc1. Such

effects can also be essential for the rf performance of polycrystalline multilayer screens which

were suggested to enhance the breakdown field of Nb resonator cavities [13]. By contrast, the

grain boundaries in Nb resonator cavities appear to be strongly coupled and do not behave

as the conventional Josephson junctions up to very high magnetic fields at which densities

of screening current become of the order of the depairing current density. As a result, the

field onset of penetration of mixed Abrikosov-Josephson vortices [76, 77, 78] is close to the

lower critical field of intra-grain vortices Hc1 ' 170 mT. The dynamics of these strong-link

GBs is the subject of the next two chapters and the governing equations drastically differ

from sine-Gordon equation in (43).
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CHAPTER 4

VORTEX DYNAMICS IN STRONGLY-COUPLED GRAIN

BOUNDARIES AND CHERENKOV INSTABILITY

Sine-Gordon equation in (39) was obtained based on the assumption that the magnetic

field B(x, t) produced by vortex currents in the junction and the phase difference θ(x, t)

both vary slowly over the same length scale L � λ. In other words, the magnetic field in

a point x inside the junction is determined by the value of the ∂
∂x
θ(x, t) at the same point

using (35). However, there are numerous conditions where this fundamental assumption is

violated, hence a more rigorous treatment of the electrodynamics of Josephson junctions

is required. In the following we will outline some of the possible scenarios where the local

relation between phase and field breaks down and (35) is no longer applicable.

4.1 MECHANISMS OF NONLOCALITY

A direct result of the Lorentz-invariant sine-Gordon equation is the contraction of a mov-

ing Josephson vortex in underdamped junctions. Therefore, at high velocities the contraction

is such that the size of the vortex becomes comparable to penetration depth, L(v) ∼ λ, hence

a nonlocal version of sine-Gordon equation is required.

On the other hand, in sufficiently narrow junctions where W ≤ λ, the stray magnetic

fields outside the junction generate additional surface currents which have to be taken into

account. In this case, the characteristic space scale for the field B(x, t) is determined by the

Pearl length[92]

λP =
2λ2

W
(74)

which can be much larger than the London penetration depth λ. In the static case L is of

the order of λJ , the Josephson length. Therefore, if the condition λP ≥ λJ holds, the stray

magnetic field becomes important and results in a nonlocal equation.

An intrinsic emergence of nonlocality happens when the energy of magnetic field inside the

superconducting electrodes of the junction becomes considerable such that the penetration

depth is of the order of, or larger than the spatial scale of variations of the phase difference

i.e. λ ≥ λJ . For instance, the copper-oxide high-Tc superconductors contain coherent planar
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defects such as twins, stacking faults, low-angle grain boundaries which do not cause strong

crystalline lattice distortions, but can lead to local reduction of superconducting gap ∆ due

to small value of ξ. These defects can be treated as intrinsic Josephson junctions with high

values of Jc, hence small values of Josephson penetration depth λJ . In terms of the critical

current density, the nonlocality emerges when Jl < Jc < Jd where Jd is the depairing current

density and Jl = Jd/κ is given by the condition λJ(Jl) = λ. This condition applies to a wide

range of currents in extreme type-II superconductors where κ� 1. An analogous situation

may occur in conventional low-Tc superconductors as well, for example, in optimized high-Jc

Nb-Ti alloys, where the strong pinning is caused by a dense network of thin α-Ti ribbons, or in

Nb3Sn where the pinning is due to grain boundaries. In high performance SRF applications

where the highest achievable magnetic field is desired, strong-linked GBs are required in

order to delay the penetration of vortices to higher magnetic fields. The nonlocal range

of currents in Nb3Sn as a promising SRF material describes the important field range of

Hc/κ < H < Hc where κ ≈ 20 and Hc ≈ 540 mT.

4.2 ELECTRODYNAMICS OF NONLOCAL JUNCTIONS

In either cases of the above, the equation which generalizes (44) to θ(x, t) and B(x, t)

varying over any lengths larger than the superconducting coherence length ξ, namely, lJ and

λ� ξ, is given by[76, 77, 78, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104]

θ̈ + ηθ̇ = lJ

∫ ∞
−∞

G(x, u)θ′′(u, t)du− sin θ + β (75)

where lJ = λ2
J/λ, x and u are in normal units and the nonlocality kernel G(x, u) depends on

the sample geometry and is often of the convolution form, i.e.

G(x, u) = G(x− u). (76)

It is worth mentioning that the local description in (44) arises in the limit case of G(x, u) =

λδ(x− u) where δ(x) is the Dirac delta function.

The nonlocal models can be divided into two basic groups; first, those treating the internal

nonlocality in bulk junctions[76, 96, 101]. For instance, in the simplest case of planar junction

in a bulk superconductor the kernel function is given by[76]

G(x− u) = π−1K0

(
|x− u|
λ

)
(77)

where K0(x) is the zeroth order modified Bessel function which has a logarithmic singularity

at x = 0 and decays exponentially at large distances, |x| > λ. The second group are those
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dealing with nonlocal effects due to external stray fields resulting from the geometry of the

junction and its electrodes[93, 95, 97, 99, 100]. For an edge junction in a thin film of thickness

W � λ, we have

G(x− u) =
1

2

[
H0

(
|x− u|
λP

)
− Y0

(
|x− u|
λP

)]
(78)

where λP = 2λ2/W and H0(x) and Y0(x) are Struve and Bessel functions, respectively, with

same logarithmic singularity at x = 0.

4.2.1 MIXED ABRIKOSOV-JOSEPHSON VORTEX

In the limit of strong nonlocality (bulk: λJ � λ, thin film: λJ � λP ), the expansion

of the kernel G(x, u) in (77) and (78) for small arguments reveals that only the universal

logarithmic part of G(x, u)

G0(|x− u|) =
1

π
ln

(
1

|x− u|

)
(79)

is essential while the non-singular geometry dependent part can be disregarded. Replacing

G(x, u) with this logarithmic kernel and performing integration by parts, (75) reduces to

θ̈ + ηθ̇ =
lJ
π

∫ ∞
−∞

du

u− x
∂θ

∂u
− sin θ + β (80)

which describes a mixed Abrikosov-Josephson (AJ) vortex with Josephson core of length

lJ = λ2
J/λ ≈ ξJd/Jc along the junction[94]. Such AJ vortices in which the order parameter

in the core is not suppressed have been revealed by transport measurements on low-angle

grain boundaries in cuprates [105, 106, 107], annular Josephson junctions [108, 109, 110, 111],

magnetization of thin films [112], and STM imaging of step edge junctions in Pb and In

monolayers on Si substrates [113, 114, 115]. Equation (80) in the overdamped limit of η � 1

has an exact solution

θ(x, t) = π + sin β + 2 tan−1

(
x− vt
L

)
(81)

that describes a driven AJ vortex core with weak suppression of ∆(x) and the length and

velocity given by

L =
lJ√

1− β2
, v = −βlJ

τ
(82)

where τ = η/ωJ and the vortex expands as β increases[94].

4.3 PINNING OF J AND AJ VORTICES
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It has been shown that the most effective core pinning of vortices is by normal precipitates

where the maximum pinning force in the case of optimal size of pinning centers is f ∼
γ(Φ0/4πλ)2/L which is inversely proportional to the size of the vortex (γ being the fraction

of volume occupied by pinning centers)[76]. Therefore, an Abrikosov vortex due to its small

normal core size of ∼ ξ is strongly pinned while a Josephson vortex with size λJ � ξ is very

weakly pinned in defects. Considering that the size of the AJ vortex is a crossover between

the Abrikosov and Josephson L > ξ, it can qualitatively be inferred that AJ vortices are

weakly pinned by defects compared to Abrikosov vortices and can easily be depinned by

currents even less than the intra-grain critical current.

4.4 CHERENKOV RADIATION OF MOVING VORTEX

Unlike (44), the general (75) at η = 0 is not Lorentz-invariant, so a uniformly moving

vortex can radiate Cherenkov waves δθ(x, t) ∝ exp(ikx−iωkt) with the phase velocities ωk/k

smaller than v [96, 104]. Setting θ(x, t) = θ∞ + δθ(x, t) where sin θ∞ = β, and linearizing

(75) with respect to small disturbances δθ(x, t) for a uniform dc current and η = 0, yields the

dispersion relation ω2
k = [cos θ∞ + lJk

2G(k)]ω2
J . Thus, the condition of Cherenkov radiation

kv > ωk is given by:

kv > ωJ

[√
1− β2 + lJk

2G(k)
]1/2

, (83)

where G(k) is the Fourier image of G(x). Here G(k) decreases as 1/k at k > Λ−1 (Λ being the

magnetic penetration depth) so (83) is satisfied if k > kc, where the maximum wavelength

 Lc = 2π/kc increases with v. For a bulk junction, we have G(k) = λ/
√

1 + λ2k2, so the

threshold kc at which (83) becomes equality can be evaluated in the limit of λ/λJ � 1 by

expanding (1 + λ2k2
c )
−1/2 ≈ 1 − λ2k2

c/2 and solving the resulting bi-quadratic equation for

kc:

k2
cλ

2 = 1− v2

c2
s

+

[(
1− v2

c2
s

)2

+
2λ2

λ2
J

√
1− β2

]1/2

. (84)

The maximum Cherenkov wavelength  Lc = 2π/kc thus increases as β and v increase, ap-

proaching

 Lc →
23/4π

√
λλJ

(1− β2)1/8
, v → cs (85)

hence k2
cλ

2 � 1, which justifies the above expansion of G(k) in small kc at λ/λJ � 1. For

instance, at the vortex instability threshold β = βs ≈ 0.67 calculated for λJ/λ = 10 in a

bulk junction (section 4.5.1) , (85) gives  Lc ≈ 19λ = 1.9λJ [116].
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4.5 VORTEX DYNAMICS IN DIFFERENT NONLOCAL

GEOMETRIES

In general solutions of (75) for different geometries can only be obtained numerically. In

the following we will present the result of simulation of this equation for a traveling vortex

moving with constant velocity in different geometries of infinitely long bulk, thin film edge

and overlap junctions shown in Fig. 38.

4.5.1 BULK JUNCTION

For a bulk junction shown in Fig. 38(a), (75) becomes [76]

θ̈ + ηθ̇ =
λJ
πλ

∫ ∞
−∞

K0

(
λJ |x− u|

λ

)
∂2θ

∂u2
du− sin θ + β, (86)

where spatial coordinates x and u are normalized in units of λJ . For conventional Josephson

weak links with λJ � λ, the solution θ(x, t) varies slowly over the sharply-peaked K0[λJ(x−
u)/λ] which thus can be replaced with πλδ(x−u)/λJ , so that (86) reduces to the sine-Gordon

equation in (44). We solved (86) for two cases: a relatively low-Jc Josephson junction with

λJ/λ = 10 which is usually described by the sine-Gordon equation in (44), and a nonlocal

high-Jc junction with λ/λJ =
√

10.

Shown in Figs. 39 and 40 are the numerical results for a planar bulk junction at η = 0.05

and the large ratio λJ/λ = 10. Here the nonloal equation in (86) reveals the effects which

are not captured by (44), particularly a trailing tail of Cherenkov radiation behind a vortex

moving with a constant velocity [96]. As plotted, with the increase in driving current the

vortex velocity increases, hence the amplitude and the wavelength of radiation increase.

Our simulaiton shows that with further increase in current, the vortex becomes unstable

at β > βs, the instability is triggered at the highest maximum of Cherenkov wave where

θm reaches a critical value θc ≈ 8.65 − 8.84, depending on η and λ/λJ . Here θc is confined

within the interval 5π/2 < θc < 3π in which a uniform state of a Josephson junction is

unstable [42, 43]. As the velocity increases, the domain where 5π/2 < θ(x−vt) < 3π behind

the moving vortex widens and eventually becomes unstable as its length exceeds a critical

value. This suggests a qualitative picture of the vortex instability caused by the appearance

of a trailing critical nucleus being in the unstable π-junction state [42, 43] caused by strong

Cherenkov radiation. The latter appears entirely due to the Josephson nonlocality described

by (86), which has no steady-state vortex solutions at J > Js where Js can be well below Jc

at which the whole junction switches into a resistive state[116].

The dynamic solutions of (86) at β > βs change strikingly. Our simulations have shown
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FIG. 38: Geometries of long Josephson junctions for which calculations were performed. (a)
bulk junction, (b) thin film edge junction, (c) thin film overlap junction. The yellow line
shows the Josephson contact, and gray depicts regions of circulating screening currents in
the direction perpendicular to the contact. Current streamlines in a vortex are shown by
red.
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tally for clarity in the moving frames) calculated for a bulk junction by solving (86) with
η = 0.05, λJ/λ = 10 and for different values of β. At βs = 0.6676 the peak amplitude
of Cherenkov wave reaches θc = 8.76 and starts growing and evolving into an expanding
vortex-antivortex pair.
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FIG. 40: Snapshots of θ(x) at β = βs = 0.6676 in a bulk junction of η = 0.05 and λJ/λ =
10 which show first three dissociations of the unstable vortex into vortex-antivortex pairs
accompanied by Cherenkov radiation. Movies showing the initial stage of vortex instability
and formation of the phase pile after multiple generations of vortex-antivortex pairs are
available in Ref. [140]. Notice that θ(∞)−θ(−∞) = 2π remains fixed by the phase difference
in the initial vortex.



67

that the instability originates at the highest maximum θ = θm of the trailing Cherenkov

wave which starts growing and eventually turning into an expanding vortex-antivortex pair,

as shown in Fig. 40. As the size of this pair grows, it generates enough Cherenkov radiation

to produce two more vortex-antivortex pairs which in turn produce new pairs. Continuous

generation of vortex-antivortex pairs results in an expanding dissipative domain in which

vortices accumulate at the left side, antivortices accumulate at the right side, while disso-

ciated vortices and antivortices pass through each other in the middle. As a result, θ(x, t)

evolves into a growing “phase pile” with the maximum θm(t) increasing approximately linear

with time and the edges propagating with a speed which can be both smaller and larger than

cs, the phase difference θ(∞) − θ(−∞) = 2π between the edges remains fixed. Figure 41

shows the 3D image of the initial stage of dynamic separation of vortices and antivortices.

Here the local magnetic field B(x, t) oscillates strongly at the moving domain edges but

becomes rather smooth away from them, as shown in Fig. 42. In the most part of the

phase pile overlapping vortices are indistinguishable, yet the net flux Φ = Φ0 of this evolving

multiquanta magnetic dipole remains quantized.

FIG. 41: A 3D image of the evolution of phase pile triggered by an unstable vortex. The
dynamic phase distribution θ(x, t) was calculated from (86) for a bulk junction at β = 0.6676,
λJ/λ = 10 and η = 0.05. Here the maximum phase θm(t) increases approximately linear with
time while the edge vortices move with constant velocities close to cs. Individual vortices
and antivortices clearly visible at the edges of the expanding phase pile overlap strongly
toward its central part.
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FIG. 42: A snapshot of the normalized magnetic field B(x, t)/B1. Here B(x, t) was calculated
from (86) for a bulk junction at η = 0.05, β = 0.6676, λJ/λ = 10 and B1 = Φ0/2πλλJ .
Inset shows the corresponding phase distribution, θ(x, t). One can clearly see a complex
structure of the left leading edge comprised of a vortex overlapping with a vortex-antivortex
pair. Away from the edges vortices overlap so strongly that the Cherenkov radiation gets
suppressed almost to zero, and the smooth distribution of B(x, t) in the growing resistive
domain can be regarded as a giant multiquanta vortex-antivortex dipole.

In the more nonlocal regime of λ/λJ =
√

10, the result of simulation in Fig. 43a shows

θ(x−vt) in a vortex for different current densities at η = 0.1. Similar to θ(x) shown in Fig. 39

of the previous case, a uniformly moving vortex in a nonlocal junction produces a trailing tail

of Cherenkov electromagnetic waves, the amplitude and wavelength of these waves increase

with the driving current. The vortex becomes unstable at a threshold current βs = 0.61

as the peak amplitude of Cherenkov waves reaches θc and the first vortex-antivortex pair

appears. The subsequent evolution of expanding phase pile is similar to that is described

in the first case: vortices accumulate at the left edge, antivortices accumulate at the right

edge, and the remaining dissociated vortices and antivortices go through each other in the

middle, as shown in Fig. 43b. After generation of multiple vortex-antivortex pairs, the speed

of propagation of the phase pile edges increases as compared to the initial unstable vortex:

from about 0.38cs to about 0.9cs for η = 0.1 and λ/λJ =
√

10. A 3D image of this process
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is shown in Fig. 44 as well. Notice that the phase difference θ(∞) − θ(−∞) = 2π between

the edges of the growing phase pile also remains fixed.

Magnetic field distribution B(x) in the expanding phase pile shown in Fig. 45 has large

Cherenkov radiation peaks at the leading edges but becomes rather smooth in the middle,

similar to that of Fig. 42.

Shown in Fig. 46 are the steady-state vortex velocities v(β) calculated for the bulk

junction using the result of simulations of (86) in above cases as well as (44) . The instability

corresponds to the endpoints of the v(β) curves which have two distinct parts. At small β . η

the velocity v(β) increases sharply with a slope limited by a weak quasiparticle viscous drag.

At larger β & η the increase of v(β) with β slows down, as the vortex velocities are mostly

limited by radiation friction [96] and depend weakly on the form of dissipative terms in (75).

For a low-Jc junction with λJ/λ = 10, the effect of Cherenkov radiation on v(β) is weak,

but for a high-Jc bulk junction with λ/λJ =
√

10 and η � 1, radiation friction dominates at

practically all β, significantly reducing both v(β) and βs. The calculated v(β) curve shown

in Fig. 46 illustrates the effect of radiation friction which limits the velocity of the vortex in

the most part of the stability region 0 < β < βs, except for small β < η where v is limited

by the conventional ohmic viscous drag.

4.5.2 THIN FILM EDGE JUNCTION

For an edge Josephson junction in a thin film of thickness W � λ (see Fig. 38(b)), the

effects of electromagnetic nonlocality are greatly enhanced by the long-range stray magnetic

fields screened over the large Pearl length λP = 2λ2/W � λ. In the thin film limit λP � λ,

the equation in (75) using the kernel G(x) given by (78) becomes

θ̈ + ηθ̇ =
lJ
2

∫ ∞
−∞

[
H0

(
|x− u|
λP

)
− Y0

(
|x− u|
λP

)]
∂2θ

∂u2
du− sin θ + β, (87)

where H0(x) and Y0(x) are the zero order Struve and Bessel functions, as mentioned pre-

viously. The behavior of the vortex solution is controlled by the ratio of two characteristic

lengths lJ = λ2
J/λ and λP . Yet, the limit of λ/λP → 0 does not reduce to the sine-Gordon

equation in (44) at any ratio of lJ/λP because G(x) decreases as 1/x at x > λP , and the

integral
∫∞

0
G(x)dx with G(x) defined by (78) diverges logarithmically. The crossover of (87)

to the sine-Gordon local Josephson electrodynamics for very low-Jc edge junctions requires

taking into account the effects of finite film thickness [97] which we do not consider here.

Our simulation of (87) with η = 0.1 and lJ/λP = 1/2 revealed the dynamics of vortex

instability and the subsequent generation of vortex-antivortex pairs at β > βs similar to that
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FIG. 43: Phase profiles before and after instability calculated for a bulk junction with η = 0.1
and λ/λJ =

√
10. (a) profiles of θ(x − vt) in a uniformly moving stable vortex at different

values of β up to β = 0.605. (b) At βs = 0.61 the highest maximum of Cherenkov waves
reaches a critical value of θc = 8.79 and starts growing and developing an expanding vortex-
antivortex pair. Depicted are the snapshots of the first three splittings of the unstable vortex
into vortex-antivortex pairs at β = βs.
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FIG. 44: A 3D image of vortex instability and the initial stage of the phase pile formation
calculated at β = βs = 0.61 for a high-Jc bulk junction with λ/λJ =

√
10 and η = 0.1. Here

θ(x, t) in the vortex at β = βs was computed by solving the full dynamic equation in (86)
with the initial distribution equal to the stable single-vortex solution θ(x − vt) calculated
at β = βs − 0.01. As a result, the vortex then accelerates slightly and becomes unstable,
triggering the growth of the phase pile. After multiple generations of vortex-antivortex pairs,
vortices at the leading edges reach velocities of 90% of cs.

in a bulk junction. For instance, Fig. 47 shows the dynamics of splitting of the Josephson

vortex and its evolution into expanding phase pile at βs = 0.63. The velocity-current v(β)

curve for a vortex in this edge junction geometry is shown in Fig. 48.

The simulation movies of driven steady-state vortices with trailing tails of Cherenkov ra-

diation, the initial stage of instability development, and the dynamics of phase pile formation

are shown in Ref.[116]. For lJ = λP/2 and η = 0.025, the onset of instability corresponds to

βs = 0.475 and θc = 8.84. In the extreme nonlocal limit of lJ/λP → 0 corresponding to the

logarithmic kernel (79) of section 4.2.1, we obtained βs = 0.55 and θc = 8.83 at η = 0.05,

and βs = 0.905 and θc = 8.65 at η = 0.5. Interestingly, the dynamics of instability in an

edge junction changes, depending on the damping parameter η. For larger η = 0.5, the

only significant trailing Cherenkov hump in θ(x− vt) becomes unstable and starts growing.

However, it turns out that in the weak damping limit (0.025 < η < 0.05), the second trailing

peak in a weakly decaying Cherenkov wave has a higher amplitude than the first one. In
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FIG. 45: A snapshot of the magnetic field B(x) in a phase pile calculated for a bulk high-Jc
junction at β = βs = 0.61, η = 0.1, λ/λJ =

√
10, and B1 = Φ0/2πλλJ . The large peaks

in B(x) at the leading edges result from emerging vortex-antivortex pairs generating strong
Cherenkov waves, the amplitude of which diminishes greatly in the bulk of the dissipative
domain where vortices overlap strongly. Inset shows a snapshot of the corresponding phase
profile. The growing phase pile with θ(x) � 1 causes small ripples in B(x) due to rapidly
oscillating Josephson currents ∝ sin θ(x) clearly visible in the zoomed structure of the leading
edge.

this case the instability is triggered by the second Cherenkov peak which starts growing

and pushing up the neighboring peaks on both sides, causing them to merge and form an

expanding vortex-antivortex pair, as shown in simulation videos in Ref[116]. The results of

the v(β) curves calculated in the extreme nonlocal limit for different damping parameters

is plotted in Fig. 49. The maximum velocity vs = v(Js) at which the steady-state mov-

ing vortex remains stable, can be written in the scaling form vs = csλJf(η)/λ, where f(η)

decreases from ' 2.5 at η = 0.5 to ' 1 at η = 10−3. The Josephson vortex in thin film

edge junctions can reach the velocities exceeding the nominal Swihart velocity cs = ωJλJ at

J ' Js if λJ > λ but lJ < λP , that is, W < 2λ3/λ2
J . Dynamics of θ(x, t) in the nonlocal

limit at J > Js is similar to that is shown in Fig. 44, except that the edges of phase pile

can propagate with “superluminal” velocities v ' vs > cs if λJ > λ. Once vortex-antivortex

pairs start replicating, the speed of leading vortices at the edges gradually increases from
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FIG. 46: Velocities of a stable singe vortex v(β) as functions of current calculated for different
junction geometries. The instability occurs at the endpoints (shown by arrows) of the v(β)
curves. The graph shows v(β) for a bulk junction calculated from (86) at η = 0.1 in the
seemingly conventional weak-link limit, λJ/λ = 10 (for comparison, the blue curve shows
v(β) calculated from (44) at η = 0.1). The magenta and green curves show v(β) calculated
for a bulk nonlocal junction with λ/λJ =

√
10 for values of η = 0.1 and η = 0.01, respectively.
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FIG. 47: A 3D image of vortex instability and the initial stage of the phase pile formation
calculated at β = βs = 0.63 for a thin film edge junction with η = 0.1 and lJ = λP/2. Here
θ(x, t) in the vortex at β = βs was computed by solving the full dynamic equation in (87)
with the initial distribution equal to the stable single-vortex solution θ(x − vt) calculated
at β = βs − 0.01. As a result, the vortex then accelerates slightly and becomes unstable,
triggering the growth of the phase pile. After multiple generations of vortex-antivortex pairs,
vortices at the leading edges reach velocities of 1.12lJωJ .
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FIG. 48: Vortex velocity v(β) as a function of driving current β = J/Jc calculated at η = 0.1
for different geometries: nonlocal bulk junction with λ/λJ =

√
10 (blue), thin film edge

junction with lJ = λP/2 (red) and thin film overlap junction with lJ = W (green). For small
currents (β < 0.05), the velocity v(β) in all cases is mostly limited by the ohmic viscose drag
while the Cherenkov radiation friction force takes over at larger β.
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FIG. 49: The graph shows results for a thin film edge junction in the extreme nonlocal limit
described by (80). Notice that both the v(β) curves and the critical values βs at η = 0.1 and
η = 0.01 for the thin film junction are close to those for the nonlocal bulk junction shown
in Fig. 46. This is because for a nonlocal bulk junction, θ′′(u) in (75) has a sharp peak of
width ∼ (λJ/λ)2λ = 0.1λ so G[λJ(x− u)/λ] = π−1K0[λJ |x− u|/λ] can be approximated by
its expansion at small argument, K0(λJx/λ)→ ln(2λ/λJ |x|)− 0.577, which reduces to (79).
Here any constant factor under the log does not affect θ(x, t) since θ′(−∞) = θ′(∞) = 0.

vs to a limiting value v∞, for instance, from vs ≈ 0.72lJωJ to v∞ ≈ 1.12lJωJ for an edge

junction with lJ = λP/2 and η = 0.1. The graph clearly shows a gradual transition in the

behavior of curves toward the exactly solvable case of (80) in overdamped regime for which

the I-V characteristics have been previously calculated by Gurevich[94].

4.5.3 THIN FILM OVERLAP JUNCTION

We also considered overlap junctions in films of thickness W < λ shown in Fig. 38(c).

In this case the kernel G(x) in (75) is given by [102]

G(x) = π−1 ln coth
( π

4W
|x|
)

(88)

and the full dynamic equation becomes,

θ̈ + ηθ̇ =
lJ
π

∫ ∞
−∞

ln coth
( π

4W
|x− u|

) ∂2θ

∂u2
du− sin θ + β. (89)

The kernel G(x) defined by (88) behaves qualitatively similar to the bulk kernel in (86),

but decreases exponentially over the length 2W/π smaller than λ. As a result, the nonlocal
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FIG. 50: A 3D image of vortex instability and the initial stage of formation of phase pile
at β = βs = 0.63 in an overlap junction at η = 0.1 and lJ = W . Here θ(x, t) in the
vortex at β = βs was computed by solving the full dynamic equation in (89) with the initial
distribution equal to the stable single-vortex solution θ(x− vt) calculated at β = βs − 0.01.
As a result, the vortex then accelerates slightly and becomes unstable, triggering the growth
of the phase pile. After generation of many vortex-antivortex pairs, the leading edges of the
phase pile reach the velocity close to 0.94lJωJ .

effects in the overlap junction are diminished as compared to a bulk junction and are much

suppressed as compared to a thin film edge junction. Yet even in this seemingly conventional

case described by the sine-Gordon equation with λJ ' (Φ0/8µ0WJc)
1/2, the nonlocal effects

in overlap junctions can manifest themselves at large vortex velocities, producing Cherenkov

radiation and the vortex splitting instability similar to the cases discussed above. For in-

stance, Fig. 50 shows the instability of the single vortex and the initial stage of the phase

pile evolution calculated for an overlap junction with η = 0.1 and lJ = W . Shown in Fig.

48 is the calculated v(β) curve which illustrates the effect of the Cherenkov radiation force

on the velocity of the vortex.

The simulation movies of driven steady-state vortices with trailing tails of Cherenkov

radiation and the dynamics of phase pile formation are shown in associated simulation videos

in Ref.[116].
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4.6 INSTABILITY ANALYSIS

Now we turn to the instability of a traveling vortex solution θ0(x − vt) disturbed by a

small perturbation δθ(x, t) = g(x− vt)eγt. Substituting θ = θ0 + δθ into (75) and linearizing

it with respect to δθ � 1, we obtain the following eigenvalue equation for the increment γ,

(γ2 + ηγ)g − 2vγg′ = Π̂{g} − g cos θ0(ζ), g(±∞) = 0, (90)

where the prime denotes differentiation with respect to ζ = x − vt, and Π̂ is the following

integro-differential operator

Π̂{g} = lJ

∫ ∞
−∞

G

(
|ζ − ζ1|

Λ

)
g′′(ζ1)dζ1 + ηvg′(ζ)− v2g′′(ζ). (91)

The vortex solution θ0(ζ) is unstable if there is at least one eigenvalue with Re(γ) > 0, so

the disturbance δθ = g(ζ)eγt grows exponentially.

Given the complexity of the traveling vortex solutions θ0(ζ) shown in Fig. 39, the eigen-

value problem defined by (90)-(91) can only be solved numerically. Our simulations of the

nonlinear integral equation in (75) have shown that the instability originates at the highest

maximum θ = θm of the trailing Cherenkov wave as θm exceeds a critical value θc which

ranges between 8.65 and 8.84, depending on the values of η and λJ/λ, as shown above for

different junction geometries. Here θc lies in the region of 5π/2 < θ < 3π where a uniform

state of the Josephson junction (k → 0) is unstable and cos θ∞ < 0 in (83). At the instability

threshold β = βs, the first highest peak of amplitude θm(t) starts growing and merging with

the neighboring peak in θ(x, t), forming an expanding vortex-antivortex pair, as shown in

the detailed simulation movies presented in Ref.[116]. Equations (84)-(85) show that the

nonlocality of (75) results in Cherenkov radiation behind a uniformly moving Josephson vor-

tex even in a weakly-coupled junction λ� λJ which is usually described by the sine-Gordon

equation in (44). Thus, the approximation of (75) with (44) can miss essential effects in the

dynamics of Josephson vortices.

4.7 GENERATION OF QUASIPARTICLES BY A MOVING

VORTEX

The effects reported here are most pronounced in underdamped SIS junctions be-

tween s-wave superconductors at low temperatures for which the viscous drag coefficient

η ∝ exp(−∆/T ) due to thermally-activated quasiparticles [42] is small. Weak dissipa-

tive drag η < 1 implies that the maximum Josephson voltage V = ~v/eL produced by

a vortex of length L moving with the velocity v does not generate quasi-particles, that
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is eV < ∆. Consider first a bulk junction with λ < λJ where L = λJ
√

1− v2/c2
s

and λJ = (Φ0/4πµ0λJc)
1/2 ' ξ(κJd/Jc)

1/2 [42]. Here κ = λ/ξ is the GL parameter,

Jd = Φ0/3
3/2πµ0λ

2ξ is the depairing current density, and cs = c(dj/2εrλ)1/2 is the Swi-

hart velocity in a Josephson contact with the thickness dj and the dielectric constant ε0εr.

The condition of eV < ∆ can be written in the form

ξ0

ξ

(
djJc
κεrλJd

)1/2

≤ vF
c

(
1− v2

c2
s

)1/2

. (92)

Here the superconducting gap ∆ was expressed in terms of the clean-limit coherence length,

ξ0 = ~vF/π∆, where vF is the Fermi velocity. As an example, we take a clean Nb3Sn with

ξ = ξ0 and κ = 20 for which λJ = 10λ used in our simulations corresponds to Jd/Jc '
102κ = 2 · 103. For these numbers and εr = 10 and dj/λ = 10−2, the left-hand side of (92) is

' 10−4. For the ratio vF/c ' 10−3 [117] and the velocity of splitting v/cs ≈ 0.98 taken from

Fig. 43, the right-hand side of (92) is about 2 · 10−4, that is, the condition (92) is satisfied.

Now we turn to the nonlocal limit lJ < Λ and evaluate the maximum voltage in the AJ

vortex V = ~vθ′m/2elJ , where lJ = λ2
J/λ = (33/2Jd/4Jc)ξ, and θ′m is the maximum value of

the derivative θ′[(x − vt)/lJ ] in the moving vortex. The condition, eV < ∆ then takes the

form
v

vF
<

33/2ξJd
2πθ′mξ0Jc

. (93)

As follows from the numerical results shown in Fig. 39, the value of θ′m ≈ 2.5 at the

critical splitting velocity v = vm ' lJωJ is not much larger than θ′m = 2 for a static

vortex. Treating the edge Josephson junction of width dj � L in the middle of a thin

film of width L and thickness W < dj as a coplanar strip line on an infinite dielectric

substrate, we define formally cs = (2eJc/~C)1/2λJ , where the capacitance per unit edge area

is C ' ε0(1 + εr) ln(4L/dj)/πW [118, 119]. Hence,

vm ' c

[
WJd

κλJc(1 + εr) ln(4L/dj)

]1/2

. (94)

Let us evaluate vm for a monolayer edge junction [113, 114] on a Si substrate with the

dielectric constant εr = 10. For W/κλ = 10−3, dj = 10−3L, and Jc = 10−2Jd, (94) yields,

vm ∼ 3 · 10−2c. Combining (93) and (94) gives the condition that a moving AJ vortex does

not generate quasiparticles at all velocities v < vm,

Jc
Jd

< 0.03
(vF
c

)2 λ2ξ

ξ2
0W

(1 + εr) ln
4L

dj
. (95)

Taking here vF = 1.82 · 106 m/s for Pb [120], Wξ2
0/ξλ

2 = 10−3, dj = 10−3L, and εr = 10, we

obtain that (95) is satisfied if Jc < 0.1Jd. Thus, the strong electromagnetic nonlocality of
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thin film edge junctions extends the region of the parameters where a moving vortex does not

generate quasiparticles, which increases η and suppresses Cherenkov radiation. Moreover,

the condition of eV < ∆ can be extended to even higher Jc if an edge thin film Josephson

junction on a dielectric substrate of thickness h is placed on a grounded metallic plate. In

this case the effective capacitance of the stripline can be significantly increased [119], which

reduces cs so that the condition of eV < ∆ can be satisfied even at Jc ' Jd.

The conditions (92)-(95) imply no significant suppression of ∆(x) in the AJ vortex core.

To see how well this requirement is satisfied, we evaluate the variation of ∆(x) using the

GL theory in which ∆2(x) = [1 − ξ2Q2(x)]∆2
0, where ∆0 is the equilibrium gap, and Q =

∇ϕ+ 2πA/Φ0 is the gauge-invariant phase gradient produced by circulating vortex currents

outside the SIS junction. In the first approximation, we take here Qx = lJsign(y)/(x2 + l2J)

and Qy = −x/(x2 + l2J) in the AJ vortex at x� Λ [76] and obtain

∆(x) '
[
1− ξ2

2(x2 + l2J)

]
∆0. (96)

The maximum gap reduction, [∆0 −∆(0)]/∆0 = ξ2/2l2J = 8J2
c /27J2

d , at x = 0 drops below

1% if Jc < 0.2Jd.

4.8 POWER GENERATED BY A MOVING JOSEPHSON VORTEX

We evaluate the power P = W
∫∞
−∞ V

2(ζ)dζ/R dissipated by the moving vortex in a thin

film junction, where V = ~θ̇/2e = −v~θ′(ζ)/2e is the Josephson voltage, and ζ = x − vt.
In the nonlocal limit at η < 1 our numerical simulations have shown that θ(ζ) can be

satisfactory described by θ(ζ) = π + 2 tan−1(ζ/lJ) for the AJ vortex [76]. Then

P =
~2v2W

4e2R

∫ ∞
−∞

θ′2(ζ)dζ ' v2Φ2
0W

2πlJR
, (97)

where lJ = λ2
J/λ. At the maximum velocity vs ' lJωJ at which the uniformly moving vortex

becomes unstable, the power Ps = P (vs) becomes

Ps '
Φ2

0W

4πµ0λ2RC
, (98)

where we used that (ωJλJ)2 = 1/2µ0λC. Notice that Ps is independent of Jc. For estimates

of Ps, it is convenient to express R in terms of the dimensionless dissipation parameter

η = 1/RCωJ used in our numerical simulations of θ(x, t). Then (98) takes the form

Ps ' ηε0WωJ . (99)
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Here ε0 = Φ2
0/4πµ0λ

2 is the characteristic energy of the Abrikosov vortex per unit length.

Given that C ' ε0(1 + εr) ln(4L/dj)/πW [118, 119], as was mentioned above, (99) suggests

that the power Ps decreases quadratically as the film thickness W decreases, and becomes

negligible in edge thin film SIS junctions at low temperatures as the quasiparticle resistance

R(T ) grows exponentially as T decreases. For an edge junction in a Nb film with W = 1 nm,

λ = 40 nm, ε0 ∼ 104 K/nm, and ωJ = 100 GHz much smaller than ∆/~ ' 2.4 THz [8], (98)

yields P ∼ 0.16 nW at η = 10−2. Local overheating δT = PYK caused by vortex dissipation

is further reduced in thin film junctions for which the energy transfer to the substrate due

to ballistic phonons is much more effective than diffusive phonon heat transport in thick

samples, where YK is the Kapitza interface thermal resistance [121]. Such weak overheating

caused by a moving vortex cannot result in thermal bistability and hysteric switching due

to hotspot formation [121].

4.9 SUMMARY AND DISCUSSION

We observed the phase pile dynamic state for different junction geometries and η ranging

from 10−3 to 0.5. Proliferation of vortex-antivortex pairs triggered by a moving Josephson

vortex can be essential for the physics and applications of superconducting structures like

grain boundaries and Josephson junctions where the formation of expanding phase pile pat-

terns can switch the entire junction into a normal state at currents well below the Josephson

critical current, J > Js ' (0.4 − 0.7)Jc. Such dynamic vortex instability can result in hys-

teretic jumps on the V-I curves which appear similar to those produced by heating effects

[43, 122], yet this instability is affected by neither cooling conditions nor the nonequilibrium

kinetics of quasiparticles. Indeed, heating is most pronounced in overdamped junctions with

η > 1 in which Cherenkov radiation is suppressed. By contrast, the Cherenkov instability is

characteristic of the weakly-dissipative underdamped limit η � 1, although Fig. 49 shows

that this instability in thin film edge junctions can persist up to η = 0.5. Therefore, the

crucial initial stage of the phase pile formation at η � 1 is unaffected by heating which

may become more essential at the final stages of the transition of the entire junction into

the normal state. At η ∼ 1 the Cherenkov instability may be masked by heating effects,

particularly in bulk junctions for which heat transfer to the coolant is less efficient than in

thin films.

It should be emphasized that the instability reported here does not require special junc-

tions with Jc ∼ Jd. In fact, even for the seemingly conventional bulk junction with λJ = 10λ

shown in Fig. 46, the instability at Js ' 0.846Jc implies Jc ∼ 0.01Jd/κ, which translates
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into Jc ∼ 10−4Jd for bulk NbN junctions. Moreover, in wide thin film edge junctions the

nonlocality becomes important at even much lower Jc, as is evident from Fig. 49. Therefore,

the effects reported here can occur in conventional underdamped junctions with Jc � Jd,

particularly wide thin film or monolayer edge junctions. Interaction of Josephson vortices

with pinned Abrikosov vortices in electrodes can result in additional mechanisms of split-

ting instability of Josephson vortices. For instance, radiation by Josephson vortices can be

greatly enhanced as they move in a periodic magnetic potential of Abrikosov vortices along

weak link grain boundaries [105, 123], whereas Abrikosov vortices trapped perpendicular to

the Josephson junction can result in generation of Josephson vortex-antivortex pairs in the

presence of the applied electric current [124].

Quantized vortex lines are quintessential topological defects [125, 126] which determine

the behavior of superconductors and superfluids. Vortices in superconductors are char-

acterized by an integer winding number n in the phase ϕ of the complex order parame-

ter ψ = ∆ exp(iϕ), singularity of ∇ϕ in a vortex core, and the quantized magnetic flux,

Φ = nΦ0. Because destruction of a topological defect requires overcoming a huge energy

barrier proportional to the length or the area of a system, vortices can only disappear by

annihilating with antivortices with the opposite sign of n or exiting through the sample

surface, or forming shrinking loops. This brings about the question: does this fundamental,

topologically-protected stability of vortices remain preserved for a vortex driven by a strong

force and, more generally, what happens to a global long-range order if a moving topo-

logical defect becomes unstable? To address this issue, we showed that a rapidly moving

vortex can become unstable, causing a cascade of expanding vortex-antivortex pairs, which

eventually destroy the global long-range order. This effect may impose limitations on the

performance of Josephson memory [127, 128, 129], superconducting sources of THz radiation

[122], or polycrystalline superconducting resonator cavities for particle accelerators [8], and

have broader implications for other systems with long-range order.

Our results can be essential for other topological defects such as crystal dislocations

or magnetic domain walls described by the generic nonlocal equation in (75) in which the

integral term results from a common procedure of reduction of coupled evolution equations

for several relevant fields to a single equation. For Josephson junctions, such coupled fields

are θ and B, but for domain walls in ferromagnets, the nonlocality can result from long-

range magnetic dipolar interactions [130]. For dislocations, the nonlocality and Cherenkov

radiation of sound waves in (75) come from the discreteness of the crystal lattice [58] and

long-range strain fields [57], although the dynamic terms in the Peierls equation [131, 132] are
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more complex than those in (75). Dynamic instabilities of dislocations have been observed

in the lattice Frenkel-Kontorova models [58] in which sonic radiation can also result from

periodic acceleration and deceleration of a dislocation moving in a crystal Peierls-Nabarro

potential [57]. The latter effect becomes more pronounced as the dislocation core shrinks

at higher velocities and becomes pinned more effectively by the lattice. By contrast, the

instability reported here results entirely from Cherenkov radiation, the condition (83) can be

satisfied for any system in which G(k) in (83) decreases with k. This instability can thus have

broader implications: for instance, the phase pile dynamics of Josephson vortices appears

similar to a microcrack propagation caused by a continuous pileup of subsonic dislocations

with antiparallel Burger vectors at the opposite tips of a growing crack described by (75)

and (79) [57].

Our results give a new insight into breakdown of a global long-range order which has been

usually associated with either thermally-activated proliferation of topological defects (like

in the Berezinskii-Kosterletz-Thouless transition) or static arrays of quenched topological

defects pinned by the materials disorder [126]. Here we point out a different mechanism

in which a long-range order is destroyed as a single topological defect driven by a strong

external force becomes unstable and triggers a cascade of expanding pairs of topological

defects of opposite polarity.
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CHAPTER 5

VORTEX DYNAMICS IN FINITE LENGTH

POLYCRYSTALLINE THIN FILM GRAIN BOUNDARIES

Our previous results obtained for an infinitely long junction bring about the following

issues related to the dynamics of vortices in junctions of finite length which are most relevant

to experiments: 1. What happens to AJ vortices driven by strong currents in a finite junction

where in addition to the Cherenkov radiation, a vortex also radiates as it accelerates and

decelerates due to its attraction to the edges of the junction? 2. How can the finite length

of the junction affect the spontaneous generation of v-av pairs produced by the radiation

field of moving vortices? 3. How can the finite size effects change the structure of a static

or moving AJ vortices, and whether they could cause a transition from a vortex to a phase

slip state in which θ(t) becomes uniform along the junction? 4. What are the effects of

Josephson nonlocality on the behavior of vortices driven by ac currents in finite junctions,

as compared to the dynamics of Josephson vortices described by the sine-Gordon equation

[38, 39, 79, 133]? In this chapter, we are going to address these issues with the goal of

presenting results of analytical and numerical investigations of the effect of finite junction

length on the nonlinear dynamic of AJ vortices in the case of strong Josephson nonlocality.

In particular, we investigate the electromagnetic response of a finite junction in a thin film

in both perpendicular and parallel geometries under the dc and ac currents.

5.1 ELECTRODYNAMICS OF FINITE JUNCTION IN NONLOCAL

LIMIT

Consider a junction of length d in a film where a vortex is either perpendicular or parallel

to the broad surface of the film, as shown in Fig. 51. Here Fig. 51 a is relevant to

a polycrystalline superconducting screen in which the Josephson junction models a grain

boundary perpendicular to the film, whereas Fig. 51 b represents an edge junction. To

derive the equation for θ(x, t), we start with the superconducting current density:

Jx =
1

µ0λ2

(
Φ0

2π

∂ϕ

∂x
− Ax

)
, (100)

Jy =
1

µ0λ2

(
Φ0

2π

∂ϕ

∂y
− Ay

)
, (101)
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(a) (b) 
FIG. 51: Geometries of a Josephson junction in a thin film with the vortex (a) parallel and
(b) perpendicular to the broad face of the film.

where A is the vector potential and ϕ is the phase of the order parameter. The current

continuity condition ∂xJx + ∂yJy = 0 can be satisfied by expressing Jx = ∂yg and Jy =

−∂xg in terms of a stream function g(x, y, t). From (100), it follows that any nonuniform

phase difference θ(x) = ϕ(x,+0) − ϕ(x,−0) on the junction results in a discontinuity of

Jx(x,+0) − Jx(x,−0) = (Φ0/2πµ0λ
2)∂xθ(x), and a jump of the normal derivative in the

stream function at y = 0:

∂g(x, y)

∂y

∣∣∣
y=+0

− ∂g(x, y)

∂y

∣∣∣
y=−0

=
Φ0

2πµ0λ2

∂θ

∂x
. (102)

Excluding ϕ from (100) and (101) yields

∇2g − H

µ0λ2
=

Φ0

2πµ0λ2

∂θ

∂x
δ(y), (103)

where δ(y) provides the boundary condition (102), and H = ∇z ×A is the z component of

the magnetic field. For a parallel vortex in a thin film shown in Fig. 51 a, we have g = H

and (103) yields the London equation for H(x, y). For a perpendicular vortex in an edge

junction, H(x, y) in (103) is expressed in terms of g(x, y) using the Biot-Savart law, which

turns (103) into an integro-differential equation. The nonuniform equation in (103) can be

solved using the Green function which is nothing but the solution of the London equation for

either a parallel Abrikosov (A) vortex [134] or a perpendicular Pearl vortex [92] for the cases
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shown in Figs. 51 a and b, respectively. A general solution for g(x, y) is rather cumbersome,

so we consider simpler cases of a thin film with d < λ and a bridge with d < λP for which

self-field effects and the London screening are inessential. Then A and H in (100), (101) and

(103) can be neglected, bias current density J is uniform across the film, and (103) reduces

to the Poisson equation for both geometries shown in Fig. 51:

∇2g =
Φ0

2πµ0λ2

∂θ

∂x
δ(y). (104)

Setting x = 0 in the middle of the film, we obtain the following solution for g(x, y) [134]

which satisfies the boundary condition of Jx(±d/2, 0) = ∂yg(±d/2, y) = 0 at the junction

edges:

g(x, y) = −Jx− Φ0

8π2µ0λ2

∫ d/2

−d/2
ln

cosh πy
d

+ cos π
d
(x+ u)

cosh πy
d
− cos π

d
(x− u)

∂θ

∂u
du. (105)

Using (105), the current density Jy(x) = −∂xg(x, 0) through the junction is calculated.

Equating Jy(x, 0) to the sum of Josephson, resistive, and displacement current densities,

and integrating by parts as shown in Appendix A, we obtain the following equation for

θ(x, t):

θ̈ + ηθ̇ + sin θ − β = ε

∫ 1/2

−1/2

ln

∣∣∣∣ 2

sinπx− sinπu

∣∣∣∣ θ′′(u)du (106)

ε =
lJ
πd

=
Φ0

4π2µ0λ2dJc
, (107)

where x and u are expressed in units of d, and the prime denotes differentiation with respect

to the dimensionless coordinate x along the junction. If the geometry-dependent screening

effects caused by the vector-potential A in (100) and (101) are negligible, θ(x, t) is described

by (106) for both cases shown in Fig. 51. We will use (106) for the calculations of vortices

in Josephson junctions, and the average ohmic power P̄ dissipated per unit height of the

junction:

P̄ =
ηP0

T

∫ T

0

dt

∫ 1/2

−1/2

θ̇2(x, t)dx, (108)

where P0 = Φ0JcωJd/2π. Equations (44) and (106) take into account only ohmic losses

but disregard radiation from a thin film junction into free space. The radiation losses are

negligible due to a big mismatch of impedances of a superconductor and vacuum [135, 136],

except for the extreme case of underdamped junctions with η � 1. In this chapter we

calculate dynamics of vortices in overdamped and moderately underdamped junctions with
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η > 0.2 for which the effect of radiation to free space on the power P̄ and θ(x, t) in (106) is

negligible.

To have a rough idea of the amount of power dissipated in a typical junction/GB, we

can estimate the parameter P0 for a junction of height 0.1µm using the GB characteristics

mentioned in section3.3. The calculation results in P0 ∼ 61nWatt and V0 = Φ0ωJ/2π ∼
40mV.

5.2 DC CURRENT

In this section we address dynamics of vortices described by the full equation in (106)

for a dc bias current. We consider three situations: 1. Vortices penetrate from the edge of

the junction where J(x) exceeds Jc due to a small gradient in J(x) along the junction. 2.

Vortices appear inside the junction in a region where Jc(x) is locally reduced. 3. Vortices

appear due to coexistence of current gradient and a defect in the junction. Most of the

simulations of vortices presented below were done for ε = lJ/πd = 2.10−3, that is, for the

junctions much longer than the static AJ core size lJ . As will be shown later, for larger

values of ε the size of the vortex becomes comparable to the length of the junction and a

transition to phase slip will occur much sooner at lower currents.

We start with a static vortex for which (106) at β = 0 was solved numerically with the

initial distribution of θ(x, 0) = 4 tan−1 exp(−x/ε) centered in the middle of the junction.

To stabilize the vortex against attraction to the edges, a weak “pinning” potential modeled

by Jc(x) = [1 − δ exp(−x2/ζ2)]Jc was incorporated. Simulations of (106) in which sin θ is

replaced with [1 − δ exp(−x2/ζ2)] sin θ and δ = ζ = 0.02 show that the initial distribution

θ(x, 0) evolves into stationary phase profiles presented in Fig. 52 for different values of ε.

As follows from Fig. 52 the vortex expands as ε increases. Eventually, the vortex spreads

over the entire junction at ε > 0.05, and the static vortex-to-phase slip transition occurs at

εc = 1/π2 ≈ 0.1[137].

Unlike vortices in a long junction which are 2π phase kinks with ∆θ = θ(∞)− θ(−∞) =

2π, the AJ vortices in a short junction are partial phase kinks with ∆θ < 2π. The latter

reflects the fact that the AJ vortex in short junctions carries a reduced magnetic flux φ < φ0,

as is characteristic of vortices in thin films [134]. Indeed, the fluxoid quantization [5, 42, 43]

requires that:

∆θ +
4πµ0λ

2

Φ0

∮
J · ds = 2π, (109)

where the integral is taken along an infinite contour which encompasses the film surface.

Because the vortex shown in Fig. 52 causes nonzero J(x, y) along the film edges at x = −1/2



87

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x/d

0

1

2

3

4

5

6

θ
(x

)

0.002
0.005
0.01
0.02
0.03
0.04
0.05

ǫ  =

FIG. 52: θ(x) in a static vortex calculated from (106) for different values of ε as described
in the text.

and x = 1/2, (109) yields ∆θ < 2π. A phase shift produced by a real A vortex on a junction

in a thin film strip was observed in Ref. [138] and calculated in Ref. [139].

5.2.1 JUNCTION WITH WEAK SCREENING

Consider penetration of vortices in the junction, assuming that β(x) = (1 − kx)β0 in

(106) has a small gradient with k � 1. The slight inhomogeneity in J(x) with k = d/Λ, (Λ

being the magnetic penetration depth for each geometry) can result from self-field effects of

transport current or a dc field applied to one side of a thin film screen with a perpendicular

Josephson junction shown in Fig. 51. It turns out that the dynamic behavior of vortices

in overdamped (η & 1) and undedramped (η . 1) junctions is markedly different. For an

overdamped junction, simulations of (106) with β(x) = (1−kx)β0 show that, once J exceeds

Jc/(1 + k), vortices start penetrating one by one through the left edge of the junction and

exiting from the other end (Fig. 53). As the current increases, the flight time of vortices

through the junction decreases and the size of a vortex increases, as shown in Fig. 54. The

expansion of moving J and AJ vortices as β0 increases is characteristic of the overdamped

limit [43, 76, 94], as illustrated by (81) and (82). Based on the expansion of vortices with

current, we can therefore expect a dynamic transition of the moving vortex into a phase slip
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as the current increases, even if the static vortex can exist in a large junction.

Our numerical simulations of (106) with η & 1 have shown that a gradual transition of

a moving vortex into a phase slip does happen as β0 increases and the vortex spreads over

the entire junction. In this case θ(x, t) becomes flat and increases nearly linearly with t. For

β0 � 1, the phase slip state θ(x, t) is described by

θ(x, t) = θ0(t) + δθ(x, t), (110)

where θ0(t) satisfies the equation for a point contact:

θ̈0 + ηθ̇0 + sin θ0 = β0. (111)

For β0 � 1 and η � 1, an approximate solution of (111) is:

θ0(t) =
β0t

η
+

η2

β2
0 + η4

[
sin

β0t

η
+

η

β0

cos
β0t

η

]
. (112)

The small correction δθ(x, t) results from the integral and the nonlinear terms in (106).

Figure 55 shows that δθ(x, t) oscillates around a stationary profile θs(x) which comes from

the weak inhomogeneity of β(x) = (1− kx)β0 (see Appendix A):

θs(x) = −4kβ0

π4ε

∞∑
n=o

(−1)n sinπ(2n+ 1)x

(2n+ 1)3
(113)

To see how the gradual transition from the vortex to the phase slip state can manifest

itself in the V − I characteristics, we calculated the averaged instantaneous voltage on the

junction:

V (t) =
Φ0ωJ

2π

∫ 1/2

−1/2

θ̇(x, t)dx =
∑
ω

Vω exp(iωt). (114)

Here V (t) has multiple Fourier harmonics caused by superposition of Josephson oscillations

and motion of vortices. The behavior of AJ vortices in a long junction can be inferred

from the dc component of voltage V̄ (β0) shown in Fig. 56. At η = 2 the calculated V − I
curve follows V = IcR

√
β2

0 − 1 for the overdamped point junction [42] for all β0 except for

a vicinity of β0 ≈ 1 where the phase slip transition occurs. At η . 1 the V − I curves

acquire stepwise features and become hysteretic. Here the jumps in the ascending branches

of V̄ (β0) result from penetration of several vortices which then turn into a phase slip state

at larger β0 indicated by the dashed arrows. The descending branches of V̄ (β0) exhibit

staircase structures where steps correspond to different numbers of vortices indicated by

vertical arrows.
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FIG. 53: Penetration of single vortices in an overdamped junction with η = 2 and β0 = 1.05
calculated for k = 0.02 and ε = 2 · 10−3.
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FIG. 54: Snapshots of moving vortices in the middle of the junction calculated from (106)
for different currents at η = 2, k = 0.02 and ε = 2 · 10−3.
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β0 = 7. The red curve shows θs(x) described by (113).

The behavior of V̄ (β0) on the ascending branch is illustrated by Figs. 53 -54 and 57-59

which show representative θ(x, t) calculated for different values of η and β0. In an over-

damped junction (η & 2) vortices periodically appear at the left edge, move along the

junction and disappear at the right edge. As β0 increases vortices move faster and become

longer, which eventually results in the transition to the phase slip state described above (see

Fig. 53). In this case strong ohmic dissipation suppresses both the Cherenkov radiation

caused by the nonlocal effects and bremsstrahlung resulting from acceleration and decelera-

tion of a vortex as it moves along the junction. This behavior of vortices starts changing at

η ≈ 1 as the radiation wake behind a moving vortex shown in Fig. 57 becomes apparent. In

this case vortices which reach the edge of the junction get reflected as vortices of opposite

polarity (antivortices). As a result, vortices penetrating from the left edge of the junction

collide with antivortices reflected from its right edge; at η . 1 these vortices and antivortices

do not annihilate but go through each other, similar to underdamped Josephson vortices

described by the sine-Gordon equation [42]. As current further increases, the number of

vortices and antivortices in the junction increases which corresponds to the steps shown in

Fig. 56. Eventually counter-moving vortices and antivortices form a dynamic pattern shown

in Fig. 58. This state can be regarded as a nonlinear wave on the background phase θ0(t)

which increases with time, so that the snapshots of the dynamic structure shown in Fig. 58

shift up and periodically replicate themselves. As current increases, the overlap of vortices
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FIG. 57: A wake radiated behind the moving vortex at η = 1 and β0 = 0.995. Here the
vortex gets fully reflected from the edge as antivortex.

and antivortices reduces the amplitudes of the phase waves as shown in Fig. 58b. With

further increase in current, this structure which manifests itself in the behavior of V̄ (β0) at

1 < β0 < 1.15, turns into a phase slip state as shown in Fig. 56.

At η = 0.9 the first signs of vortex splitting instability caused by the Cherenkov wake

behind the vortex penetrating from the left edge appear. As the vortex approaches the

right edge it accelerates due to attraction to the edge so that the wake amplitude increases

and exceeds a critical value above which a v-av pair forms. The junction eventually goes

into a dynamic steady-state after two more v-av pairs are generated at the edges. Further

increase in current causes penetration and production of more vortices similar to Fig. 58.

The Cherenkov instability becomes more apparent at η = 0.8 for which the wake amplitude

exceeds the threshold when the vortex reaches the middle of the junction where a v-av

pair first appears. The newborn vortex and antivortex move apart, accelerate and produce

another v-av pair. These vortices with opposite polarities oscillate back and forth in the

junction and form a dynamic structure similar to that is shown in Fig. 58. At a slightly

higher current more v-av pairs are generated and the junction goes into the phase slip state.

Figure 59 shows the immediate instability of a left penetrating vortex at the threshold current



93

-0.5 0 0.5

x/d

240

244

248

252

θ
(x

)

(a)

-0.5 0 0.5

x/d

604

608

612

616

θ
(x

)

(b)

FIG. 58: Snapshots of dynamic patterns formed by counter-moving vortices and antivortices
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the gradient in β(x).
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of β0 = 0.995 calculated for η = 0.7.

At 0.3 < η < 1 dynamic multi-vortex structures on the ascending branch of V̄ (β0) exist

in a narrow range of currents (1 + k)−1 < β0 < βps (βps: phase slip current) which shrinks as

η decreases and vanishes at η ≈ 0.3. Vortices at η < 0.3 exist only during a transient period

during which the junction goes into a phase slip state after the current density at the edge

reaches the threshold of vortex penetration. For instance, our simulations of (106) at η = 0.2

indicates that, once a vortex enters the junction, it starts to become unstable and produce

v-av pairs right at the edge. The cascade of v-av pairs displays itself as a chain of penetrating

vortices from left edge which soon drives the junction into a resistive phase slip state. This

behavior is similar to the phase pile expansion shown in Fig. 40. Simulation videos of the

dynamics of the junctions in different regimes are available at Ref.[140]. The Cherenkov

instability of vortex right after it enters through the edge of the junction and the subsequent

transition to resistive state manifests itself in the big jump on the ascending branches of

V̄ (β0) shown in Fig. 56 for η = 0.3. However, the subsequent decrease of current results

in re-appearance of vortices from phase slip state, which manifests itself in the hysteresis in

the V − I curves and the staircase form of the descending branch of V̄ (β0). The evolution of

non-hysteretic V −I curves to hysteretic ones upon decreasing η in a long junction considered

here resembles the well-known transition from non-hysteretic to hysteretic V − I curves in

point junctions [42, 43], except that the returned descending branch of V̄ (β0) in Fig. 56 is

controlled by vortices emerged from the phase slip state.

Shown in Fig. 60 is the power P̄ (β0) dissipated by moving vortices calculated from (106)

and (108) for different η. The curves P̄ (β0) have jumps and hysteretic features at the onset

of vortex penetration which reflect those in Fig. 56. However, once β0 exceeds the phase

slip transition threshold, the dependence of P̄ on β0 nearly follows that of a point junction

and exhibits the ohmic quadratic behavior P̄ = P0β
2
0/η at large β0. The latter is similar

to P̄ (β0) for Josephson vortices in a long junction described by the sine-Gordon equation in

section 3.2.

Transitions between different dynamic vortex patterns can also manifest themselves in

the voltage Fourier spectrum in (114). We calculated the Fourier spectrum by solving (106)

with a uniform current β and η = 0.8, using the static solution for ε = 0.002 shown in

Fig.52 as the initial condition. It turned out that if β < 0.84, the vortex is pushed by the

current to the edge of the junction and exits. However at β > 0.85, the vortex becomes more

energetic and gets trapped in the junction as it starts bouncing back and forth between the

edges radiating Cherenkov and bremsstrahlung waves. Then the current was incrementally
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increased to β+∆β and (106) was solved using the calculated solution at the preceding β as

the initial condition. At some threshold current the amount of radiation is enough to make

the vortex unstable and produce pair of v-av where the junction finally becomes stabilized,

forming a periodically changing structures of vortices and antivortices glued by Cherenkov

radiation, similar to those shown in Fig. 58. In this way the dc voltage V̄ (β) shown in the

right panel of Fig. 61 was obtained. The so-calculated V̄ (β) has jumps corresponding to the

current-driven transitions between different number of vortices in the junction. Using the

solution θ(x, t) we calculated the amplitudes Vω of the Fourier harmonics

Vω =
V0

T

∣∣∣∣∣
∫ T

0

dte−iωt
∫ 1/2

−1/2

θ̇(x, t)dx

∣∣∣∣∣ ,
where T is the period of oscillations. The left panel of Fig. 61 shows the voltage Fourier

spectra at different currents corresponding to different number of vortices in the junction.

As the current increases and junction goes from a multi-vortex to the phase slip state, the

amplitudes of low-frequency Fourier components Vω with ω < ωJ gradually diminish and

finally disappear.

5.2.2 PENETRATION OF VORTICES AT THE EDGE DEFECT

Penetration of vortices in the junction can be facilitated not only by a weak gradient in

β(x), but also by a small defect at one of the edges. Such defects which are common in thin

film junctions can locally reduce the Josephson critical current density Jc(x). This situation

can be modeled by (106) in which

sin θ → [1− δ(x)] sin θ, (115)

δ(x) = δ0 exp

[
−(x+ 1/2)2

ζ2

]
. (116)

Here δ0 = δJc(−d/2)/Jc quantifies the magnitude of the local reduction of Jc(x) at the edge,

and ζ is the dimensionless length of the defect which can be of the order of the size of static

vortex. Simulations regarding the size of the defect reveal that for a fixed current reduction

of δ0, the size of the defect is inversely proportional to the amplitude of threshold current for

vortex penetration. In other words, at fixed reduction of δ0, a larger defect would facilitate

penetration of vortices at smaller currents.

The following results of simulations performed with ζ = 0.05 and δ0 = 0.2 assuming that

β is uniform show that vortices start to penetrate at β ' 0.9. At η > 1 vortex penetration

occur one by one, their size expands as current increases and the transition to the phase slip
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state occurs gradually at β � 1. At 0.7 < η < 1 vortices get reflected from the edges and

the radiation wake behind moving vortices becomes apparent. Further increase of β yields

dynamic structures similar to those shown in Fig. 58 and their subsequent transition to the

phase slip state. At η = 0.7 the radiation is strong enough to make a vortex unstable and

produce a pair of v-av at β = 0.95. For values of η < 0.4 a vortex depinned from the edge

defect by strong threshold current accelerates and produces enough radiation to generate a

v-av pair which then multiplies and drives the entire junction into the resistive phase slip

state. Obviously, if the defect is stronger, meaning that the current reduction at the defect

is large, vortices can penetrate and propagate in the junction at smaller threshold currents

without radiating enough to become unstable. Nevertheless, if current increases the vortex

becomes unstable and produces pairs. An example of such transient state is shown in Fig. 62

in which the first v-av pair appears as the initial vortex traveled more than half the length of

the junction. More simulations of dynamic vortex structures in the presence of edge defects

are available at Ref. [140]. The apparent similarity of the behavior of vortices for the cases of

point defect and current gradient suggests that, no matter how a vortex enters the junction,

the dynamics of vortices and the transition to the phase slip state are mostly controlled by

the values of η and β.

5.2.3 INTERACTION OF VORTICES WITH PINNING CENTERS IN THE

JUNCTION

Consider now a moving vortex interacting with a defect in the middle of the junction

in which case δ(x) in (115) and (116) is modeled by a Gaussian peak centered at x = 0.

Let a vortex enter from the left edge of the junction due to a weak current gradient β(x) =

(1−kx)β0 with k = 0.1, as was considered in section 5.2.1. We focus here on strong currents

β0 & 0.9 for which the defect is too weak to pin the vortex, yet the dynamics of vortices can

change substantially, depending on the values of δ0 and ζ. Shown in Fig. 63 are the results

of simulations for a weak defect with δ0 = 0.15 and ζ = 0.01 at η = 1. Here the vortex

enters from the left edge of the junction, accelerates and decelerates as it approaches and

passes the defect, and then accelerates again as it exits from the right edge. Dynamics of

the vortex can change markedly if η is reduced and the radiation effects become essential.

For instance, in the case of η = 0.7 shown in Fig. 64, the Cherenkov wake increases as the

vortex accelerates toward the defect, the wake amplitude exceeds the critical value at which

the vortex produces a v-av pair as it passes through the defect. At smaller η the vortex

penetrating from the edge starts generating v-av pairs before it reaches the defect, as was
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FIG. 62: A vortex depinned from the defect at the left edge of junction accelerates and
produces a vortex-antivortex pair at x ≈ 0.1 after the next vortex enters the junction.
Simulations were done for δ0 = 0.5, β = 0.8 and η = 0.3.

described before.

For a slightly stronger defect with δ0 = 0.2 while screening k = 0.1 is unchanged, v-av

pair can appear at the defect simultaneous to a vortex penetration from left. The subsequent

dynamics of this vortex state depends on the values of η and β0. For instance, at η = 1

and β0 = 0.98, the vortex penetrating from left annihilates with the antivortex produced

at the defect in the middle of the junction, while the remaining vortex exits from the right

edge, as shown in Fig. 65. However, for the same parameters at larger current β0 = 0.995,

vortex and antivortex go through each other. Defects with δ0 > 0.2 and ζ = 0.01 can trigger

generation of v-av pairs in the middle of the junction at a critical value β0 ≈ 1 before any

vortex enters from edges. In this case dynamics of vortices depends on η in the same way as

for the edge defect discussed in section 5.2.2. For a uniform current (k = 0), penetration of

vortices at the edge defect can be mapped onto generation of v-av pairs at the bulk defect

in the region 0 < x < 0.5, the two cases become equivalent if the length of the junction for

the edge defect is reduced by half, that is, the parameter ε is doubled.

5.3 AC CURRENT
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FIG. 63: A vortex accelerates as it approaches the defect in the center and decelerates once
it passes the defect in the case of ζ = 0.01, δ0 = 0.15, β0 = 0.98, and η = 1.

Here we address dynamics of vortices under ac current with a small gradient in β(x, t) =

β0(1 − kx) sinωt, where ω is the dimensionless frequency in units of ωJ . The frequency

of the current is chosen large enough so that it represents the alternating essence of the

electromagnetic field and is computationally efficient. However, in most applications ω � ωJ .

Therefore, results presented below were obtained by simulating (106) at ω = π/30. To

be more experimentally relevant, a solution obtained at current β0 − δβ is used as initial

condition for next calculation at β0 while δβ ∼ O(10−3).

Dynamics of θ(x, t) under ac current has several distinctive features as compared to the

dc current:

1. Since β(t) changes sign periodically, penetration of vortices from the left edge is followed

by penetration of antivortices. Vortices and antivortices produced during positive and

negative cycles of β(t) collide and either annihilate or produce bursts of radiation inside

the junction.

2. Vortices only penetrate during parts of the ac period when β(t) = β0 sinωt exceeds

the penetration threshold βc. Our results show that βc depends on both ω and η: for

instance, βc decreases from 1.22 at η = 2 to 1.01 at η = 0.2.

3. Acceleration and deceleration of vortices under ac current bring about one more source

of radiation which contributes to the generation of v-av pairs.
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FIG. 64: At η = 0.7 even a weak defect can accelerate the approaching vortex so that it
produces a critical radiation wake which generates a v-av pair. Figure shows the dynamics
of a vortex in the absence (left) and the presence (right) of a defect with δ0 = 0.05, ζ = 0.05
and β0 = 0.98.

4. Dynamics of vortices under ac current changes markedly if the amplitude of oscillations

of a vortex exceeds the length of the junction.

5. Resonance interaction of oscillating vortices with standing waves in the junction can

significantly affect the transition from vortices to phase slips and the generation of v-av

pairs. Analysis of these issues requires taking into account intertwined effects of η, ω,

β0, and d on the dynamics of θ(x, t).

6. Since the strong electromagnetic applied force is time-dependent, the steady state

solution obtained may vary depending on the initial conditions used.

Given the complexity of the dynamics of vortices driven by the ac current and the multitude

or different parameters involved, we only outline here a few essential cases (more details are

available in Ref. [140]).

Figure 66 shows θ(x, t) calculated at η = 2 at β0 = 1.237 and ω = π/30. In this case a

vortex enters the junction once β(t) exceeds βc but, as β(t) changes sign, the vortex turns

around and exits through the same edge of the junction during the negative ac cycle, after
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FIG. 65: Interaction of a vortex penetrating from left with a v-av pair produced simulta-
neously by a weak defect with δ0 = 0.2 and ζ = 0.01, k = 0.1 and η = 1 at the threshold
current β0 = 0.98. The vortex which entered from the left edge annihilates with the antivor-
tex produced at the defect while the remaining vortex exits from the right edge.

which the whole process repeats. Neither antivortices nor radiation behind the moving vortex

is visible here. However, at a slightly larger current β0 = 1.245 the vortex expands further

and becomes faster, so it can move all the way to the other end of the junction and exits before

β(t) changes sign. During the negative ac cycle the antivortex penetrates in the junction in

the same way and extinguishes the positive 2π phase shift left behind the preceding vortex,

as shown in Fig. 67. The transition from the oscillating to the ballistic vortex dynamics

manifests itself in the Fourier spectrum of voltage shown in Fig. 68. In the oscillatory

state the Fourier spectrum consists of equidistant peaks at ωn = nω, where ω = π/30

and n = 1, 2, 3, ..., while in the ballistic state the harmonics with even n disappear. This

transition also manifests itself in a negative jump in the dissipated power P̄ (β0) at β0 ≈ 1.245,

as shown in Fig. 69. Such N -shaped dependence of P̄ (β0) indicates a negative differential

resistance and a hysteretic switching of the junction between two ascending branches of

P̄ (β0) as the ac current amplitude is varied around β0 ≈ 1.245. Here β0 ≈ 1.245 appears to

be only slightly below the value of β0 above which the phase slip state emerges.

Behavior of vortices becomes more complex as η is decreased. For instance, at η = 1,

the curve P̄ (β0) shown in Fig. 69 acquires a staircase shape, each step resulting from

penetration of an additional vortex penetration. Close to the voltage onset at β0 = 1.102
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a vortex partially penetrates the junction during the positive cycle, then exits during the

negative cycle, after which an anti-vortex partially enters and exits as the current changes

sign again. This symmetry in v-av penetration breaks as current increases, so that a vortex

penetrates deep into the junction during the positive ac cycle and returns during the negative

ac cycle, prohibiting the antivortex from penetration, similar to the case shown in Fig. 66

for η = 2. The breakdown of symmetry brings about a small feature in V − I curve (hence

power curve) shown in magnified inset of Fig. 69 at η = 1. As current increases further the

oscillating dynamics of a vortex becomes ballistic, resulting in a N−shaped feature in P̄ (β0)

at β0 ≈ 1.118. At β0 > 1.118, the ballistic penetration of vortices and antivortices proceeds

in the way similar to that is shown in Fig. 67 until the appearance of the next step on

the P̄ (β0) curve which corresponds to penetration of an additional vortex. In this case the

current amplitude is large enough so that one vortex moves ballistically along the junction

followed by partial penetration of second vortex. As current changes to negative ac cycle,

this second vortex returns from the same edge which is followed by ballistic penetration

of an antivortex, extinguishing the 4π phase shift during the positive cycle (Fig. 70). As

the current increases further the transition from the oscillatory to ballistic dynamics of the

second vortex also manifests itself in a small N−shaped feature in P̄ (β0) at β0 ≈ 1.269 in

Fig. 69. It turns out that, except for the small N−shaped features due to the transitions

from oscillatory to ballistic dynamics of vortices, the curve P̄ (β0) calculated by solving Eq.

(106) for η = 1 is close to P̄ (β0) of a point Josephson junction.

Now we turn to smaller damping constants 0.3 < η < 0.7 for which dynamics of vortices

is essentially affected by their radiation field. For the case of η = 0.7 shown in Fig. 69,

the first jump on the ascending branch of P̄ (β0) at β0 = 1.068 results from penetration of

a vortex in the positive ac cycle and an antivortex in the negative ac cycle. However, as

shown in Fig. 71 at β = 1.085 the process of penetration and exit of vortices is drastically

different from local models. As an example shown in Fig. 71a calculated at β0 = 1.085, here

when current exceeds the threshold of penetration, a vortex enters the junction and stops

midway when current changes direction. As current goes through the negative cycle, the

vortex feels a strong Lorentz force due to which the radiation wake behind the accelerating

vortex exceeds the critical amplitude at which the vortex produces a v-av pair which however

does not have enough time to expand and generate a cascade of v-av pairs because the ac

current starts decreasing. The two vortices exit the junction right away while the antivortex

moves in the opposite direction and stops midway in the junction. This process repeats for

the antivortex during the positive ac cycle[140]. It is interesting to note that unlike local
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FIG. 66: Oscillatory dynamics of vortices in an overdamped junction with η = 2 at the
penetration threshold β0 = 1.237. The vortex enters the junction during the positive cycle
of β(t), stops midway when β(t) = 0, turns around and exits through the edge during the
negative cycle of β(t).

FIG. 67: Ballistic penetration of vortices and antivortices into an overdamped junction with
η = 2 at β0 = 1.245. Here vortices and antivortices traverse the junction and exit from
the other end. Notice that the moving vortex extends nearly over the entire junction and
produces no visible radiation.
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FIG. 68: Fourier spectrum of voltage at η = 2 calculated for oscillatory vortex dynamics at
β0 = 1.237 and ballistic vortex penetration at β0 = 1.245 represented in Figs. 66 and 67,
respectively. The peaks in Vω occur at the multiples of the ac frequency ωn = nω, where
ω = π/30 and n = 1, 2, 3, ... . Notice that voltage harmonics with even n disappear as the
vortex dynamics changes from oscillatory to ballistic.

models where vortices penetrate only through the edges of the junction (Fig. 71 b), here new

vortices will be produced inside the junction without penetrating through the edges. This

mechanism will continue on until at β = 1.092, the excessive radiation due to oscillation

of vortices that was of the form of a decaying hump at smaller currents, becomes strong

enough that produces a pair of v-av inside the junction, as displayed in Fig. 72. Here the

mechanism of pair production is different in the sense that the instability is nucleated away

from the moving vortex. This is where the second jump in the graph of dissipation occurs.

Figure 72 shows the intial stage when this radiaiotn hump turns into a pair of v-av, but the

periodic solution afterwards is shown in Fig. 73a. For currents up to β0 = 1.098 the pair of

vortices oscillate going throug each other while the edge vortex is replaced by antivortex in

the following negative cycle. However, as β0 increases further and exceeds 1.098, only one

vortex and one antivortex remain in the junction so that the power P̄ (β0) drops. As shown

in Fig.73b, in this regime in each current cycle one vortex and one antivortex penetrate the

junction from both edges. Penetration depth of each fluxon increases as current enhances

(Fig.73c) until at β0 = 1.149 the pair of v-av gets so close above that the solution becomes a

ballistic penetration of one voretx/antivortex at each cycle. At larger β0 there is a complex
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FIG. 70: Each large step in dissipation plots corresponds to an additional vortex penetration
during ac current cycles. Shown above is the second vortex partial penetration above a
ballistic motion of vortices calculated at η = 1 and β0 = 1.26.

superposition of ballistic and oscillating vortex states which eventually evolves into the phase

slip state as β0 increases [140]. On the descending branch of P̄ (β0) the phase slip state turns

into an oscillating penetration of one vortex and one antivortex from the opposite edges at

β0 < 1.132 until the penetration stops at β0 = 0.875.

At η = 0.4 the first big jump on the ascending branch of P̄ (β0) shown in Fig. 69 occurs

at β0 = 1.034 as a pair of two radiating vortices penetrate the junction during the positive

ac cycle, stop midway and return during the negative ac cycle (Fig. 74). Similar to the case

of η = 0.7, each of these two vortices produce a v-av pair, then all vortices exit and two

antivortices remain. In turn, these antivortices repeat the same process during the positive

ac cycle. As β0 increases vortices penetrate deeper into the junction until the motion of

the vortex pair becomes ballistic and P̄ (β0) drops at β0 = 1.068. At higher currents signs

of chaotic dynamics of oscillating vortices coexisting with ballistic vortices appear. In the

region of currents β0 ' 1.2 − 2 simulation of Eq. (106) becomes very time consuming as

it does not have an apparent time-periodic solution. Yet as ac current amplitude increases,

the phase slip state eventually takes over for which P̄ (β0) follows that of a point junction

and turns into a quadratic ohmic dependence at larger ac amplitudes. On the descending

branch of P̄ (β0), two oscillating vortices remain in the junction all the way to β0 = 0.89. At

lower currents a step in P̄ (β0) at β0 = 0.8 occurs as only one vortex remains in the junction
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during positive ac cycle followed by one antivortex during negative ac cycle, until neither of

them can exist in the junction at β0 < 0.57.

Our simulations of Eq. (106) at η < 0.3 have shown that the vortex starts producing

a cascade of v-av pairs right after it enters the junction. In this case the junction goes

into a resistive state which exhibits a stochastic phase slip state coexisting with a random

appearance of single vortices and antivortices even at high currents. For instance, Fig. 75,

which plots the magnitude of θ(±d/2, t) at any instant of time, illustrates the dominance of

phase slip behavior of junction for most of the time with random appearance of a vortex at

t ' 320. Apart from stochastic appearance of vortices, the phase slip perfectly resembles

the behavior of a point junciton in ac current. Similar results were observed for the case of

a point defect at the edge of the junction under ac current (more simulations can be found

in Ref. [140]).

5.4 SUMMARY AND DISCUSSION

In this chapter we addressed nonlinear dynamics of vortices driven by strong dc and ac

currents in long but finite Josephson junctions in which nonlocality of Josephson electrody-

namics is essential. Behavior of AJ vortices in such junctions turns out to be rather different

from either J or A vortices. Our numerical simulations and analytical results show that mov-

ing vortices in thin film junctions can exist only up to currents close to the critical current of

the junction. As the current increases, driven vortex structures evolve into a dynamic phase

slip state with a nearly flat phase profile θ(x, t) similar to that of a point junction. The

vortex-to-phase slip transition caused by the Josephson nonlocality occurs even in junctions

which are much longer than the size of a static vortex, but the mechanisms of this transition

is markedly different in overdamped and underdamped junctions. In overdamped junctions

the vortex-to-phase slip transition occurs because the length of the vortex increases strongly

as current increases, so that the vortex solutions disappear as the length of the vortex be-

comes of the order of the length of the junction. This conclusion follows from the exact

solution[137] for a driven AJ vortex at η � 1 and numerical simulations of (106).

In underdamped junctions the vortex-to-phase slip transition results from radiation of

vortices which produce strong Cherenkov wakes and bremsstrahlung caused by interaction

of vortices with the junction edges and other vortices. These effects trigger generation of

v-av pairs inside the junction which become more pronounced as the damping constant η

decreases. At η < 0.3 our simulations show that the vortex penetrating from the edge of the

junction produces a cascade of expanding v-av pairs driving the entire junction into the the
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FIG. 71: Mechanism of vortex penetration into the junction calculated at η = 0.7 for (a)
nonlocal model at β0 = 1.085 and (b) local at β0 = 1.01. Vortices are produced through pair
production inside the underdamped junction in thin film nonlocal model.
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FIG. 72: Generation of a v-av pair due to radiation of a penetrating vortex at η = 0.7 at
β0 = 1.092. The dynamics becomes periodic afterwards which is shown in Fig.73a.

phase slip state. In this case the V − I curves become hysteretic, vortices emerge from the

phase slip state as the current is decreased on the return branch of V (I). Under ac currents

dynamics of vortices appear stochastic at small η and intermediate currents β0 ∼ 1, while

the phase slip behavior is still dominant at ac amplitudes β0 � 1.

Our calculations of V − I characteristics and the power P (β0) dissipated by moving vor-

tices show that V (β0) and P (β0) can be complicated functions of the amplitude β0 of dc

or ac current, and have regions with negative differential resistance dV/dI and jump-wise

hysteretic transitions. This situation is particularly relevant to underdamped junctions and

grain boundaries at low temperatures in such materials like Nb3Sn, iron-based superconduc-

tors and cuprates in which grain boundaries behave as planar weak links [2, 11]. In this

case vortices moving along networks of grain boundaries of these policrystalline materials

can significantly contribute to the flux flow resistance and power dissipated under dc or ac

currents, resulting in new mechanisms of nonlinearity of electromagnetic response associ-

ated with the dynamics of AJ vortices. These effects are essential for the understanding of

the nonlinear residual surface resistance in polycrystalline resonator cavities and thin film

multilayer screens under strong RF electromagnetic field.

Proliferation of v-av pairs caused by moving vortices can be essential for the physics and
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FIG. 73: (a) Generation of a pair as due to excessive radiation produces the spike in Fig.69
for η = 0.7 and β0=1.092. With increase of current the amplitude of oscillations of pair
increases until at (b) β0 = 1.098 the vortex of the pair annihilates with left penetrating
antivortex and the junction stabilizes after this transient with one vortex and one antivortex
penetrating from edges. This drop in number of vortices also causes the power to drop. (c)
Further increase of current causes the vortex and antivortex to become so close such that
the solution turns into a ballistic penetration of vortex/antivortex at each current cycle.
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applications of weak link superconducting structures in which the dynamic vortex instabilities

can result in hysteretic jumps on the V − I curves which appear similar to those produced

by overheating [43]. However, the effects discussed here are affected by neither cooling

conditions nor the nonequilibrium kinetics of quasiparticles. Heating is most pronounced in

overdamped junctions in which radiation is suppressed, while the generation of v-av pairs

is characteristic of underdamped junctions. Yet the big jumps of the V − I curves caused

by penetration of vortex bundles into underdamped junctions can result in significant local

heating which, in turn, can trigger thermal instabilities.

As noted before, the effects addressed here do not require special junctions with Jc ∼ Jd:

the Cherenkov instability caused by weak nonlocal Josephson electrodynamics effects occurs

even in a planar weak link with λJ = 10λ as shown in Fig. 39, whereas in thin film edge

junctions the nonlocality becomes essential at much lower Jc. The result of this work may

also pertain to the transition of A vortices driven by strong currents into chains of weakly

coupled J vortices or phase slips in wide thin films [141, 142, 143, 144, 145, 146, 147]. In

this case vortices moving along a self-induced channel of reduced order parameter behave as

overdamped AJ vortices considered here. As the current increases the AJ vortices further

elongate along the flux channel and move faster, so we may expect a transition from the AJ

vortices to a phase slip state above a threshold current in a film strip, similar to that for a

Josephson junction of finite length.
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CHAPTER 6

CONCLUSIONS

This work provides the results of an extensive numerical simulation of the nonlinear

dynamics of Josephson and mixed Abrikosov-Josephson vortices along with a detailed un-

derstanding of the mechanisms of power dissipation in both weak-link and strong-link grain

boundaries in bulk and thin superconducting polycrystalline film screens under strong dc

and ac electromagnetic fields. In particular, we showed that the electromagnetic response

of a weak-link (low-Jc) grain boundary in polycrystalline materials like Nb3Sn, iron-based

or high-Tc superconductors can be quite complicated due to penetration, oscillation and

annihilation of Josephson vortices. These nonlinear dynamic effects result in a nonlinear

dependence of the average dissipated power and the dynamic surface resistance which can

have steps and peaks corresponding to the different number of trapped vortices in the junc-

tion as the field increases. It has been shown that at fields larger than the threshold of

vortex penetration the behavior of power becomes quadratic while the surface resistance

saturates to values of the order of normal resistance of junction. Numerical values have been

estimated for power spikes due to annihilation of vortices and antivortices inside the junc-

tion. In ac field applications, the threshold amplitude for penetration of vortices Hp(ω) was

shown to be a linear function of frequency with slope ∝ 1/ωc. The characteristic frequency

ωc is proportional to JcRj, so the frequency dependence is most pronounced in low-Jc, low

resistance grain boundaries and Hp(ω) remains close to that of dc Josephson superheating

field H1 if ω � ωc. Therefore, one can expect that in SRF materials like Nb3Sn and mul-

tilayer structures, the nonlinear effects addressed here can manifest themselves in surface

impedance at rather low fields H ' H1 ∼ Hc(Jc/κJd)
1/2 which can be much less than the

bulk superheating field at which the Meissner state becomes unstable.

Grain boundaries in Nb resonator cavities appear to be strongly-coupled due to the fact

that some of the best performing Nb cavities are fabricated from small grain polycrystalline

niobium sheets. Therefore, vortices do not penetrate up to very high magnetic fields at

which the screening current densities are of the order of depairing current density. Moreover,

the dynamic behavior of these strongly-coupled GBs cannot be described by conventional

models of Josephson junctions which are based on a local relation between field and phase.

Taking into account the nonlocal effects, a more general integro-differential equation needs
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to be solved numerically which reveals the dynamics of mixed Abrikosov-Josephson vortices.

Our simulation results of this integral equation predicts that a uniformly moving vortex in

an underdamped junction which radiates Cherenkov waves can become unstable at some

critical current which can be well below Jc. The instability occurs in the form of continuous

generation of vortex-antivortex pairs which eventually evolves as a phase-pile in the middle

of an infinitely long junction. The instability effects become even more essential once the

effects of the finite size of a GB is considered. The results of simulation for a finite size GB

in a thin film screen under dc and ac magnetic fields show that moving vortices in thin film

GBs can exist only up to currents close to the critical current of the GB. As current increase

moving vortices evolve into dynamic phase slips which turn the whole GB into resistive

state. However, the mechanisms of this transition markedly changes with properties of GBs

or temperature. At low temperatures this transition to resistive state is a result of collective

effects of two different radiation sources, namely, Cherenkov radiation and bremsstrahlung

caused by interaction of vortices with junction edges and other vortices. In this case the

V − I characteristics and the dissipated power curves P (J) can be complicated functions

of dc and ac current amplitude and have regions with negative differential resistance and

jump-wise hysteretic transitions, although power generally becomes a quadratic function of

current amplitude at J & 3Jc.

In superconducting materials with large G-L parameter κ, the nonlocal effects such as

instability can happen in a wide range of currents, Jd/κ < J < Jd. Moreover, simulations

showed that the nonlocal effects can be essential even in a planar weak-link GB with λJ = 10λ

(Jc ∼ 10−2Jd/κ) where the instability happens at ∼ 0.9Jc. However, the prominence of the

nonlocal effects in underdamped junctions (low temperatures) implies that instability is

neither affected by cooling conditions nor by kinematics of quasiparticles as both of these

issues are most pronounced in overdamped junctions in which radiation is suppressed.

While we believe this work provides an unprecedented detailed understanding of the

physics of penetration and dissipation of vortices in GBs, it still can greatly benefit from in-

vestigations which specifically address the microstructure of GBs in SRF materials. Although

rough numerical estimations have been provided when possible, the lack of information about

the characteristic properties of GBs in such materials of interest, limits our ability to make

precise predictions about the exact contribution of GBs to residual resistivity of any specific

material. The results of this work will be applicable to wide variety of other systems which

share similar dynamics of topological defects as vortices.
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APPENDIX A

DERIVATION OF NONLOCAL FINITE JUNCTION MAIN

EQUATION

Equation (105) gives g(x, 0) on the junction:

g(x, t) =

−Jx− cφ0

16π3λ2

∫ d/2

−d/2
ln

∣∣∣∣cos π
2d

(x+ u)

sin π
2d

(x− u)

∣∣∣∣ θ′(u, t)du. (117)

Using (117) we calculate Jy(x, 0) = −∂xg(x, 0) and integrate the result by parts:

Jy(x, 0) = J−

cφ0

32π2λ2d

∫ d/2

−d/2

[
cot

π

2d
(x− u) + tan

π

2d
(x+ u)

]
θ′(u)du

= J +
cφ0

16π3λ2

[
ln

∣∣∣∣sin πx/d− sin πu/d

2

∣∣∣∣ θ′(u)

]d/2
−d/2

+

cφ0

16π3λ2

∫ d/2

−d/2
ln

∣∣∣∣ 2

sin πx/d− sin πu/d

∣∣∣∣ θ′′(u, t)du. (118)

Here θ′(±d/2) = 0 because Jx(±d/2) = 0 at the ends of the junction. Equating Jy to the

sum of Josephson, resistive, and displacement current densities, we obtain:

θ̈ + ηθ̇ + sin θ − β =(
λ2
J

πλ

)∫ d/2

−d/2
ln

∣∣∣∣ 2

sin πx/d− sin πu/d

∣∣∣∣ θ′′(u)du, (119)

where β = J/Jc. Equation (119) in which x and u are expressed in units of d, and ε = λ2
J/πλd

reduces to (106) which was used in our simulations.

Now we turn to θ(x, t) after the transition from the vortex to a phase slip state in which

θ(x, t) = θ0(t) + θs(x), (120)

where θ0(t) satisfies the equation for a point JJ:

θ̈0 + ηθ̇0 + sin θ0 = β0. (121)
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The small stationary term θs(x) results from the slight inhomogeneity of β(x) = (1− kx)β0

due to weak screening. Substituting (120) into (119) we see that the term sin θ ' sin θ0(t) +

θs cos θ0(t) oscillates rapidly so θs(x) cos θ0(t) yields a small dynamic correction δθ(x, t) to

θ(x, t) which is negligible at large β and small k we are interested in. The static θs is then

determined by (119) written in the dimensionless form:

ε

∫ 1/2

−1/2

ln

∣∣∣∣ 2

sin πx− sin πu

∣∣∣∣ θ′′s (u)du = kxβ0. (122)

Instead of solving (122), it is more convenient to use (103) with H = 0 and write θs(x) in

the form which satisfies the boundary conditions θ′s(±1/2) = 0:

θs(x) =
∞∑
n=0

θn sin qnx, (123)

where qn = π(2n+ 1)/d. Solution of (103) is then

g(x, y) = − cφ0

16π2λ2

∞∑
n=0

θne
−qn|y| cos qnx. (124)

Next we use the condition kJx/d = −∂xg(x, 0), that is

Jk
x

d
= − cφ0

16π2λ2

∞∑
n=0

θnqn sin qnx. (125)

Multiplying both sides of (125) by sin qn′x and integrating from −d/2 to d/2 yields:

2Jk(−1)n

dq2
n

= −cφ0dqnθn
32π2λ2

. (126)

Hence, θn = −4β0k(−1)n/π4ε(2n+ 1)3, and

θs(x) = −4β0k

π4ε

∞∑
n=0

(−1)n

(2n+ 1)3
sin

πx

d
(2n+ 1), (127)

where ε = λ2
J/πλd and β0 = J/Jc.
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APPENDIX B

NUMERICAL METHODS

I developed efficient numerical codes to solve the main partial differential and integro-

differential equations addressed above. Besides the incredible agreement of results with

previous works and possible exact solutions, these equations were solved using different nu-

merical methods to ensure the validity and equality of the obtained results. The spatial terms

in above differential equations were treated using both method of lines (MOL) as a finite

difference method and fast Fourier transform (FFT) as a spectral method. In both cases

the differential equation is reduced to a system of coupled nonlinear ordinary differential

equations that can be stepped forward in time with any of the standard time-stepping tech-

niques. Here, I will explain briefly these two methods applied exclusively to main equations

discussed above.

• Method of Lines: In this technique the spatial term is discretized using finite differ-

ence method over a uniform spatial computational box[148]. For instance, the second

order spatial derivative θxx in (44) can be approximated as

θ′′ ≈ θi+1 − 2θi + θi−1

2∆x2

using commonly used second order, central approximation given from the Taylor series

over the uniformly distributed spatial grid points of xi ∈ (0, L) where i and ∆x denote

position and spacing along the grid, respectively. Substitution of this term in (44)

gives a system of approximating nonlinear ordinary differential equations,

θ̈i + ηθ̇i =
θi+1 − 2θi + θi−1

2∆x2
− sin θi + β

which can be integrated subject to given initial and boundary conditions using suitable

ODE integrators (Runge-Kutta, Adams-Bashforth, ...).

• Fast Fourier Transform (FFT): This is the best known example of a spectral

method used to solve differential equations. Fourier transform is essentially an eigen-

function expansion over all continuous wavenumbers k which on a finite domain

x ∈ (−L/2, L/2) with N = 2n points are given by k ∈ (2π/L)[−N/2,−N/2 −
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1, ..., 0, 1, ..., N/2 − 1] . The algorithm, for instance applied to nonlocal equation in

(75) begins by implementing a Fourier transform in x which results in the system of

differential equations

(
d2

dt2
+ η

d

dt
)F(θ) = −λ2

Jk
2F(G)F(θ)−F(sin θ) + βδ(k).

that can be stepped forward in time using any standard technique. Here the operator

“F ” denotes the spatial Fourier transform.

In both cases of the above the system of ODEs were solved by the multistep, variable

order Adams-Bashforth-Moulton method [149] which is a predictor-corrector integrator used

for problems with stringent error tolerances. The absolute and relative error tolerances were

kept below 10−6. The codes were run long enough to ensure that a steady state solution is

obtained. The programs were stable enough to be run at ∆x ∼ 0.1, although much finer

spacings were used for accuracy purposes.

The singularity of the integral kernel G(x) was handled in two different ways. If using

finite difference method, the divergence in x = 0 is avoided by shifting the singularity position

from x = 0 to x = eps where eps is the command for generating a machine precision number

of the order of O(10−15). The error introduced here in calculations is perfectly negligible

compared to other error mechanisms. In FFT method the singularity is treated exactly since

Fourier transform of G(x) in most cases is a smooth function in k, i.e. F(K0(x)) = π√
1+k2

.

The infinite integral in nonlocal equation in (75) was transformed over a finite domain

with length Lb. The length Lb of computational box x1 < x < x1 + Lb along the x−axis

(either co-moving with the vortex or expanding with the phase pile) was taken large enough

to assure no artifacts coming from possible reflected waves at x = x1 and x = x1 +Lb. We set

θ(x1, t)− sin−1 β < 10−6 and θ(x1 +Lb, t)−2π− sin−1 β < 10−6 and made sure that changing

Lb does not affect the results, where Lb was typically taken at least three times larger than

the spatial extent of θ(x, t), be it a single vortex or expanding phase pile. The steady state

phase distribution θ(x − vt) in a uniformly moving vortex at a given β was computed by

solving the full dynamic equation (75) using the single-vortex solution calculated at a smaller

preceding value of β as an initial condition. The code then runs until the velocity of the

vortex stabilizes to the accuracy better than 0.1%.

The integral kernel in (106) is not of convolution form, therefore this equation was solved

using finite difference method. The steady state phase distribution θ(x − vt) at a given β

was computed by solving the full dynamic equation in (106) using the solution obtained at

slightly lower current β−δβ as initial conditions. The code then runs until a periodic solution
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- if applicable - is attained. The authenticity of the results was examined successfully by

solving this equation using a slower, more simpler iterative method.
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• Sine-Gordon (MOL). A typical code written in MATHEMATICA used to solve the

full dynamical equation in (44) in ac magnetic field using method of line technique to

produce Fig. 28.

\ [Beta ] = 10 ; \ [ Alpha ] = 0 . 0 1 ; L = 20 ; T = 20∗Pi ; hac = 4 ;

s o l = NDSolve [ { \ [Beta ]∗D[ u [ t , x ] , { t } , { t } ] + D[ u [ t , x ] , { t } ]

==

D[ u [ t , x ] , {x} , {x } ] − Sin [ u [ t , x ] ] , u [ 0 , x ] == 0 ,

Derivative [ 1 , 0 ] [ u ] [ 0 , x ] == 0 , Derivative [ 0 , 1 ] [ u ] [ t , 0 ] ==

hac∗Sin [ \ [ Alpha ]∗ t ]∗Tanh [ t ] , Derivative [ 0 , 1 ] [ u ] [ t , L ] == 0} ,

u , {t , T − 2∗Pi , T} , {x , 0 , L} , MaxStepSize −> 0 . 01 ,

MaxSteps −> 1 0 ˆ 8 ] ;

Plot3D [ Evaluate [ First [D[ u [ t , x ] , {x } ] / . s o l ] / hac ] ,

{t , T − 2∗Pi , T} , {x , 0 , L} , PlotPoints −> 300 ,

PlotRange −> {{T − (2∗Pi + 1/2) , T} , {0 , L} , {−1.2 , 6}} ,

Ticks −> {Automatic , Automatic , {−1, 0 , 1}} , Mesh −> None,

ColorFunction −> Hue, ViewPoint −> {−0.75 , −2.25 , 0 . 75} ,

AspectRatio −> 1 , AxesStyle −> D i r e c t i v e [ Thickness

[ 0 . 0 0 6 ] , 1 2 ] ,

AxesLabel −> { Sty l e [ ” \ [Omega ] t ” ,

14 , Bold , FontFamily −> ” Cour ier ” ] ,

S ty l e [ ”x /\ !\ (\∗ SubscriptBox [ \ ( \ [ Lambda ] \ ) , \( J \ ) ] \ ) ” ,

14 , Bold , FontFamily −> ” Cour ier ” ] ,

Rotate [

S ty l e [ ”B(x , t ) /\ !\ (\∗ SubscriptBox [ \ (H\ ) , \( ac \ ) ] \ ) ” , 14 ,

Bold , FontFamily −> ” Cour ier ” ] , 90∗Degree ]} ,

Boxed −> False ]
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• Nonlocal sine-Gordon (MOL). Here we present a sample code written in MATLAB

to solve the nonlocal sine-Gordon equation for bulk junction in (86) with the ratio of

λJ/λ = 10 using method of lines technique.

% t h i s i s the main s c r i p t o f code

clc

clear a l l

eta = 0 . 0 1 ; %low d i s s i p a t i o n

l r a t i o = 10 ; %l r a t i o i s \ lambda J /\ lambda L

beta = 0 . 2 ;

e p s i l o n = 1 .0 e−12; %s h i f t o f s i n g u l a r i t y

% time domains

t0 = 0 ; t f = 100 ;

% s p a t i a l domains

x l = −80; xu = 50 ; dx = 0 . 0 1 ;

x = x l : dx : xu ; n = length ( x ) ;

dxq = dx /20 ;

xq = xl −1:dxq : xu+1;

d = round(1/ dxq ) ;

% i n t e g r a l k e r n e l

m = round(n / 2 ) ;

xqq = xq ((20∗m−19):2∗d+20∗m−19);

K = besselk (0 , l r a t i o ∗sqrt ( ( x (m)−xqq ).ˆ2+ e p s i l o n ˆ 2 ) ) ;

%% i n i t i a l c o n d i t i o n s

u0 ( 1 : n) = asin (gamma) + 4∗atan (exp( x ( 1 : n ) ) ) ;

u0 (n+1:2∗n) = 0 ;

%% Ode i n t e g r a t i o n

% o p t i o n s
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r e l t o l =1.0e−06; a b s t o l =1.0e−06;

opt ions=odeset ( ’ RelTol ’ , r e l t o l , ’ AbsTol ’ , a b s t o l ) ;

C = 8001 ;

[ t , u ] = ode113 (@( t , u ) nsg 1 ( t , u , dx , x , n , dxq , xq , d ,K , . . .

alpha ,gamma, l r a t i o ) , [ t0 t f ] , u0 , opt ions ) ;

[ ˜ ,L ] = max(u(end , n+1:2∗n ) ) ;

d i f f = C − L ;

u0 ( 1 : d i f f ) = u(end , 1 ) ;

u0 ( d i f f +1:n) = u(end , 1 : n−d i f f ) ;

u0 (n+1:n+d i f f ) = u(end , n+1);

u0 (n+d i f f +1:2∗n) = u(end , n+1:2∗n−d i f f ) ;

%% P l o t t i n g the r e s u l t

f igure ;

surf (x , t , u ( : , 1 : n ) )

shading ’ i n t e r p ’ , axis ’ t i g h t ’

xlabel ( ’ x ’ ) ; ylabel ( ’ t ’ ) ; zlabel ( ’u (x , t ) ’ ) ;

t i t l e ( ’ non loca l s ine−Gordon equat ion ’ ) ;

function ut = nsg 1 ( ˜ ,u , dx , x , n , dxq , xq , d ,K, alpha ,gamma, l r a t i o )

% Function nsg 1 computes the t d e r i v a t i v e v e c t o r

%f o r the n o n l o c a l s ine−Gordon equat ion

%% B.C.

u1 = smooth (u ( 1 : n ) , ’ l owess ’ ) ;

u2 = smooth (u(n+1:2∗n ) , ’ l owess ’ ) ;

uxx = 4∗del2 ( u1 , dx ) ;

uxx (1 ) = 0 ; uxx (n) = 0 ;

uxxin = interp1 (x , uxx , xq , ’ s p l i n e ’ ) ;

N = length ( uxxin ) ;
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uxxin ( 1 : d) = 0 ;

uxxin (N−d+1:N) = 0 ;

iT = zeros (1 , n ) ;

%% PDE

for i = 1 : n

uxxin2 = uxxin ((20∗ i −19):(2∗d+20∗ i −19)) ;

z = K.∗ uxxin2 ;

iT ( i ) =( l r a t i o /pi )∗ ( ( z (1)+ z (2∗d+1))/2+sum( z ( 2 : 2∗d ) ) )∗ dxq ;

end

ut = zeros (2∗n , 1 ) ;

ut ( 1 : n ) = u2 ( 1 : n ) ;

ut (n+1:2∗n) = iT ( 1 : n ) ’ − alpha .∗ ut ( 1 : n) − sin ( u1 ( 1 : n ) ) + gamma;
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• Nonlocal sine-Gordon (FFT). Here is a sample code written in MATLAB to solve

the same nonlocal dynamic equation in (86) using the FFT method.

%t h i s i s the main s c r i p t o f the code

clc

clear

eta = 0 . 2 ;

r = 1 ; % r = lambda/ lambda J

beta = 0 . 8 ;

%time domain

t0 = 0 ; t f = 100 ;

%s p a t i a l domain

L = 200 ; n = 1024 ;

x2 = linspace(−L/2 ,L/2 ,n+1); x = x2 ( 1 : n ) ;

%Fourier wavenumber v e c t o r

kx = (2∗pi/L ) ∗ [ 0 : n/2−1 −n /2 :−1 ] ;

%i n i t i a l c o n d i t i o n s

u0 ( 1 : n) = 4∗atan (exp(x−70)) ;

u0 (n+1:2∗n) = 0 ;

u0t ( 1 : n ) = dct ( u0 ( 1 : n ) ) ;

u0t (n+1:2∗n) = dct ( u0 (n+1:2∗n ) ) ;

%o p t i o n s

r e l t o l =1.0e−06; a b s t o l =1.0e−06;

opt ions=odeset ( ’ RelTol ’ , r e l t o l , ’ AbsTol ’ , a b s t o l ) ;

[ t , ut ] = ode45 ( ’ n s g f f t r h s ’ , [ t0 t f ] , u0t , [ ] , eta , r , beta , kx , n ) ;

%i n v r e s e Fourier o f s o l u t i o n
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for j =1: length ( t )

u( j , : ) = real ( i d c t ( ut ( j , 1 : n ) ) ) ;

plot (x , u ( j , 1 : n ) )

mov( j ) = getframe ( gcf ) ;

end

function u t s = n s g f f t r h s ( t , ut ,dummy, eta , r , beta , k , n )

%t h i s f u n c i t o n computes the r i g h hand s i d e o f transformed

%equat ion

sut = dct ( sin ( i d c t ( ut ( 1 : n)))−beta∗tanh ( t / 2 0 ) ) ;

ut1 = ut (n+1:2∗n ) ;

ut2 = −(k . ˆ 2 . / sqrt (1+r ˆ2∗k . ˆ 2 ) ) ’ . ∗ ut ( 1 : n)− eta ∗ut1− sut ;

u t s ( 1 : n ) = ut1 ;

u t s (n+1:2∗n) = ut2 ;

u t s = ut s ’ ;

end
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