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ALGEBRAIC TUNNELLING

Gaurab Sedhain
Institute for Theoretical Physics, Leipzig University, Brüderstrasse 16, 04103 Leipzig, Germany

Mentor: Thomas Steingasser
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract
We study the quantum phenomenon of tunnelling in the framework of algebraic quantum the-

ory, motivated by the tunnelling aspects of false vacuum decay. We see that resolvent C*-algebra,
proposed relatively recently by Buchholz and Grundling rather thanWeyl algebra provides an appro-
priate framework for treating the dynamics of non-free quantum mechanical system as an algebraic
automorphism. At the end, we propose to investigate false vacuum decay in algebraic quantum field
theoretic setting in terms of the two-point correlation function which gives us the tunneling proba-
bility, with the corresponding C*-algebraic construction.

1 INTRODUCTION

Let us consider a scalar relativistic quantum field theory given by the Lagrangian density

L = ∂µϕ∂
µϕ− U(ϕ), (1.1)

where U(ϕ) as a potential function of ϕ consists of local minima ϕA and ϕB , with U(ϕA) > U(ϕB) (see
Callan and Coleman (1977); Coleman (1977) and references cited there for initial steps taken into the
study of such theory and Steingasser (2022) for recent investigation with interesting implications). The
quantum state of the field at ϕA is unstable and one expects the field to decay to the state corresponding
to ϕB , via the tunnelling process. This is what we refer to as the false vacuum decay, where false vacuum
refers to the meta-stable quantum state at ϕA. In this brief report, we would like to take first step towards
formulating such processes in the algebraic framework postulated in Haag (2012); Haag and Kastler
(1964) for relativistic QFT, preceded by the work of Segal (1947) for quantum mechanics. To do so,
we consider a simple quantum mechanical picture of tunnelling in system with non-trivial potential in
Hamiltonian.

Let us give a brief overview of the report. We start by investigating the tunnelling phenomenon at
the level of quantum mechanics in section [2]. We see that the tunnelling dynamics for particles can
be seen as an automorphism of the so called resolvent C*-algebra defined in Buchholz and Grundling
(2008) rather than the Weyl algebra. This in essence shows us that the construction of appropriate C*-
algebra is a non-trivial problem already at the level of quantum mechanics. Thus, for algebraic field
theoretic analysis of such phenomenon some care is needed in construction of the appropriate algebra
and corresponding states (expectation functional). We conclude the report with some further points of
investigation and possible constructive ideas in section [3].

2 TUNNELLING DYNAMICS IN ALGEBRA

We want to construct algebra for the quantum mechanical system exhibiting phenomenon of tunnelling.
We refer to Bratteli and Robinson (2012); Petz (1990) for mathematical definitions and detailed dis-
cussion of concepts invoked in the following discussion. We follow Dybalski (2017) closely for the
following presentation .
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2.1 Weyl C*-algebras and its limitation

Let us consider abstract Weyl operators {W (z), z ∈ Cn}, and take z = u + iv, w = x + iy. Consider
operatorsA = i(uP+vQ) andB = i(xP+yQ)whereQ,P satisfy the canonical commutation relation
(set h̄ = 1)

[Q,P ] = i 1, [Q,Q] = 0, [P, P ] = 0. (2.1)

Commutator of operators A and B gives [A,B] = i(uy − vx). On the other hand, imaginary part of
canonical product is =〈z, w〉 = uy − vx, where 〈z, w〉 =

∑
k z̄kwk is the canonical scalar product on

Cn. Defining exponentiation of these operators as W (z) := eA, W (w) := eB we get using the BCH
formula,

W (z)W (w) = eAeB = eA+B+ 1
2
[A,B] = e

1
2
[A,B]eA+B = e

i
2
ℑ⟨z,w⟩W (z + w). (2.2)

A bilinear form σ : X × X → R on a real linear space X is said to be symplectic form if
σ(z, w) = −σ(w, z) ∀z, w ∈ X , and non-degenerate if σ(z, w) = 0, ∀w ∈ X =⇒ z = 0.
The pair (X,σ) is referred to as the symplectic space. Generally, if H is a complex Hilbert space then
σ(z, w) = =〈z, w〉 is a non-degenerate symplectic form on the real linear space H. A unital *-algebra
is a quadruple (A,×, ∗, 1) of vector space A, composition map A×A → A following distributive laws,
involution operation ∗ such that ∀A ∈ A there exists A∗ ∈ A, A∗∗ = A and ∀A,B ∈ A there holds
(AB)∗ = B∗A∗, (zA + wB)∗ = z̄A + w̄B and an unique identity element 1. If in addition, we equip
∗-algebra with norm ||.|| such that it is complete with respect to the norm induced topology and follows
C*-norm condition ||A∗∗|| = A, we get unital abstract C*-algebra denoted by A.

Definition 2.1. The Weyl algebra over a symplectic space (X,σ) denoted byW(X,σ), is defined to be
a unital ∗-algebra generated by abstract symbols {W (z) | z ∈ X = Cn} modulo the relations

W (z)W (w) = e
i
2
σ(z,w)W (z + w), W (−z)−W (z)∗ = 0. (2.3)

Furthermore, properties of identity W (0) = 1, unitarity W (z)∗W (z) = 1, and linear combinations:∑
z αzW (z)

∑
w βwW (w) =

∑
z,w αzβw e

i
2
σ(z,w)W (z + w) are satisfied for the Weyl algebra.

The Weyl algebraW(X,σ) admits a unique C*-norm, so that its norm completion yields Weyl C*-
algebra denoted here by A(X,σ). However, in the situation we consider here of non-trivial potential,
Weyl algebra proves to be limited in its application. The difficulty is crystallized in the following theo-
rem:

Theorem 2.2 (Fannes and Verbeure (1974)). Consider Hamiltonian of the formH = P 2

2m+V (Q), where
V (Q) ∈ L1(R) ∪ L∞(R). Let the time translation be implemented by unitary operator U(t) = eitH

whose action on the Weyl algebra ought to be automorphic in nature. However, automorphism of Weyl
algebra under time-translation implies triviality of potential, i.e. U(t)π(A)U(t)−1 ∈ π(W), ∀A ∈
W, ∀t ∈ R =⇒ V = 0.

Thus, the situation of quantum mechanical tunnelling cannot be realized as the automorphism of
Weyl algbera. Interestingly for us, we have an alternative in the form of relatively recent proposal by
Buchholz and Grundling (2008). In this approach, one rather considers element of the form

R(λ, z) =
1

iλ1− uP − vQ
(2.4)

where λ ∈ R \ 0 and subsequently the C*-algebra generated by these elements and relations between
them. Let us recall that resolvent of A ∈ A is (λ1 − A)−1 for λ ∈ C. Here, we expect that the
process of quantum tunneliing can treated as a C*-system (R, {αt}), with dynamics being implemented
as automorphism αt : R → R over resolvent C*-algebra R, ∀t ∈ R. Let us see how R can be
constructed in the following sub-section closely adapted from Buchholz and Grundling (2008), where
further details and proof of the statements can be found which are not reproduced here for the sake of
brevity.
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2.2 Construction of resolvent algebra

Definition 2.3. For the symplectic space (X,σ), we may define the pre-resolvent algebra R0 to be the
unital ∗-algebra generated by the elements {R(λ, z) | λ ∈ R\0, z ∈ X}modulo the relations exhibiting
linearity of the map (u, v) 7→ uP + vQ, algebraic properties of the resolvent of self-adjoint operator,
and canonical commutation relation respectively:

1. R(λ, 0) = 1
iλ1 ,

2. vR(vλ, vz) = R(λ, z),

3. R(λ, z)R(µ,w) = R(λ+µ, z+w) {R(λ, z)+R(µ,w)+i σ(z, w)R(λ, z)2 R(µ,w)}, λ+µ 6= 0,

4. R(λ, z)∗ = R(−λ, z),

5. R(λ, z)−R(µ,w) = i (µ− λ) R(λ, z) R(µ,w),

6. [R(λ, z), R(µ,w)] = i σ(z, w) R(λ, z) R(µ,w)2 R(λ, z)

where, λ, µ, ν ∈ R \ 0 and z, w ∈ X .

For a symplectic space (X,σ) we have the associated pre-resolvent algebra R0(X,σ). Consider
positive linear functionals ω : A → C, i.e. satisfying ω(zA + yB) = zω(A) + yω(B) and ω(A∗A) ≥
0 ∀z, y ∈ C, ∀A,B ∈ A. We can construct the Gelfand Naimark Segal (GNS) representation of ω which
is cyclic *-representation into the space of boundedHilbert space operators, πω : R0 → B(H). However,
note that ω is not yet what we call an algebraic state. Although we can perform the GNS construction, we
get non-degenerate representations from such non-state positive linear functionals, which is not a set. We
further need to define a set S which consists of positive linear functionals which also satisfies ω(1) = 1,
i.e. set of algebraic states. To establish connection of algebraic state with more generally utilized notion
of state, let us consider a density matrix belonging to the class of bounded operators acting on a Hilbert
space ρ ∈ B(H). Then, if we define for all A ∈ A, ω(A) := Tr(ρA) it can be seen that all the
properties for ω to be an algebraic state is fulfilled. GNS construction with states ω ∈ S yields bounded
representations constituting a set in its totality. In fact, we will see next that representations induced by
set of algebraic states are uniformly bounded.

Let us consider representation π0 : R0 → B(H). Then, it can be shown that norm of resolvent
element in representation space is bounded with ||π0(R(λ, z))|| ≤ λ−1. This means that for any repre-
sentation π of R0(X,σ) we have a positive bound cr ≥ 0 from above, i.e. π(r) ≤ cr ∀r ∈ R0(X,σ).
This leaves a room to create direct sum over infinite number of representations while maintaining the
boundedness. This is used to create universal representation.

The universal representationπu : R0 → B(Hu) is given by the relation,πu(A) :=
⊕

{πω(A) forω ∈
S}. We can define a enveloping C*-norm on R0 by ||A||u := ||πu(A)|| = supω∈S ||πω(A)|| =
supω∈S ω(A∗A)1/2.Let us denote kernel with respect to the C*-norm byKer ||.||u := {A ∈ R0; ||A||u =
0}. Finally, we are in the position to define the resolvent C*-algebra.

Definition 2.4. The resolvent algebra R(X,σ) is defined to be the C*-algebra generated by universal
representation ofR0,R0 \ Ker ||.||u completed with respect to the enveloping norm ||.||u.

A representation (H, π) of R is said to be regular if there exists self-adjoint operators Pi, Qi such
that

π(R(λ, z)) = (iλ1− uP − vQ)−1. (2.5)

An example of this is the Schrödinger representation which can be constructed as follows: consider
Schödinger representation (HS , πS) of Weyl algebra W . Because it is regular there exists Pi, Qj as
self-adjoint operators on HS = L2(Rn). Thus, we can define πS(R(λ, z)) = (iλ1− uP − vQ)−1.
In addition, it is also irreducible. As is stated in (Dybalski, 2017, Prop. 1.41), any irreducible regular
representation of R is infact unitarily equivalent to the Schrödinger representation, due to Stone-von
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Neumann uniqueness theorem. For our understanding of the potential well, we may thus pass onto
irreducible Schrödinger representation of R(X,σ). The unitary equivalence of various representations
ofWeyl CCR (see Summers (1998) for further discussion on this point) translates into unitary equivalence
of representations of the resolvent algebra. We have following proposition which sums up the discussion
nicely:

Proposition 2.5 (Buchholz and Grundling (2008)). For continuous potential V ∈ C0(R) on real line,
the associated self-adjoint Hamiltonian H = P 2 + V (Q) induces dynamics on R(X,σ). H generates
unitary group via U(t) = eiHt, ∀t ∈ R such that

U(t)π0(R(X,σ))U(t)−1 ∈ π0(R(X,σ)), (2.6)

i.e. we can define automorphic action by the following expression

αt(R) := π−1
0 (U(t)π0(R)U(t)−1), R ∈ R(X,σ). (2.7)

It is clear from the above proposition that the framework of resolvent C*-algebra is suitable for
algebraic treatment of quantum tunnelling. Subsequently, we can pass to the usual Schrödinger repre-
sentation for system with non-trivial potential, and solve for reflection and transmission coefficients as
done in quantum mechanics textbooks. A more general conclusion we would like to draw here is that
the quantum mechanical dynamics can be incorporated into algebraic framework using the notion of re-
solvent C*-algebra, with some exceptions, for e.g. system with Hamiltonian H = P 2 −Q2 (Buchholz
& Grundling, 2008, Prop. 6.3).

3 DISCUSSION

We would like to stress on the fact that the program of analysing false vacuum decay in algebraic frame-
work, has not in any sense been completed here. There are several conceptual and technical difficulties
of mathematical nature to be resolved on the way to full-fledged algebraic field theoretical analysis. Let
us briefly indicate some of them with some speculative comments.

We notice that in the field theoretic description of Hawking radiation as tunneling phenomenon in
Moretti and Pinamonti (2011), tunneling probability is given in terms of the two-point correlation func-
tion. We can adapt this idea directly into the context of false vacuum decay. However, authors of
this paper consider ∗-algebra rather than C*-algebra. We would like to construct C*-algebra for scalar
quantum field theory yielded by the Lagrangian density L = 1/2 ∂µϕ ∂µϕ − U(ϕ) so that upon their
representation, we could do our analysis at the level of von Neumann algebras. Here, mathematical
machinery of Tomita-Takesaki modular theory and several other notions like the type III property, the
Reeh-Schlieder property could be utilized towards deeper understanding of the false vacuum decay; see
Fewster and Rejzner (2019); Haag (2012) for discussion on these concepts. However, construction of
the suitable C*-algebra is no trivial matter, as we witnessed already at the level of quantum mechanics in
the discussion of resolvent C*-algebra. In this regard, we think that the approach advocated in Buchholz
and Fredenhagen (2020) serves as the correct procedure for our purposes. As pointed out in these pa-
pers, the subtle problem of constructing states for the algebra of interacting quantum field theories arises.
However, states describing Bose-Einstein condensates were constructed in Brunetti, Fredenhagen, and
Pinamonti (2020) using the methods developed in Drago, Hack, and Pinamonti (2016); Fredenhagen
and Lindner (2014). Fortunately for us, phenomenon false vacuum decay is mimicked by Bose-Einstein
condensates as pointed out in Jenkins et al. (2023) and references cited therein. We think this is a pos-
itive news for us and we speculate that construction of states can be achieved for the false vacuum in a
similar fashion. This would lead towards complete treatment of false vacuum decay in the framework
of C*-algebras. An advantage of such treatment would be the ease of generalization in algebraic frame-
work from theMinkowski spacetime to a more generic curved spacetime, and subsequent studies of false
vacuum decay in cosmological models.
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