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Silver nanoparticle films were deposited by sputtering at room temperature and were annealed while

monitoring by real time spectroscopic ellipsometry (SE). The nanoparticle dielectric functions

(0.75 eV–6.5 eV) obtained by SE were modeled using Lorentz and generalized oscillators for the

nanoparticle plasmon polariton (NPP) and interband transitions, respectively. The nanoparticle

melting point could be identified from variations in the oscillator parameters during annealing, and

this identification was further confirmed after cooling through significant, irreversible changes in

these parameters relative to the as-deposited film. The variation in melting point with physical

thickness, and thus average nanoparticle diameter, as measured by SE enables calculation of the

surface energy density. VC 2012 American Institute of Physics. [doi:10.1063/1.3681367]

In situ control of the structural, thermal, electrical, and

optical properties of metallic nanoparticles via surface engi-

neering is motivated by their many applications.1 The varied

applications of silver in nanoparticle form include low tem-

perature interconnects, nanoantennas, sensors for biological

materials, and back contact reflectors in thin film solar cells.

In situ control is enabled through thin film processing, as

well as through thermal annealing of the resulting nanopar-

ticle films, in conjunction with non-invasive in situ measure-

ment techniques. For example, deposition or annealing at

elevated temperatures shapes nanoantennas and incorporates

surface structure into back reflectors for optical enhancement

in photovoltaics.1 In research described in the present article,

Ag films—incorporating isolated nanoparticles and having a

range of thickness—were deposited at room temperature and

then annealed at temperatures up to 773 K while analyzing in
situ by real time spectroscopic ellipsometry (SE).

The Ag nanoparticle films were deposited by dc magne-

tron sputtering at 288 K onto Si (100) wafers with 500 nm

thermal oxides.1 The deposition times were varied from 0.5

to 3 min, which led to films of increasing thicknesses charac-

terized by an array of isolated nanoparticles of average size

increasing from 2 nm to 10 nm, respectively.1,2 To determine

the dielectric functions of these films, a rotating-

compensator multichannel ellipsometer was used having a

photon energy range of 0.75–6.50 eV. Pairs of (w, D) spectra

were collected with a 65� incidence angle and a 3 s acquisi-

tion time. These spectra were modeled assuming one or two

substrate-supported layers, applying the effective medium

theory and dielectric function analytical form given previ-

ously.1 Ex situ measurements including atomic force micros-

copy (AFM), x-ray diffraction (XRD), scanning electron

microscopy (SEM), and secondary ion mass spectrometry

(SIMS) were used to complement as well as corroborate the

real time SE results. Temperature measurements of the Ag

thin films were obtained in accordance with a previously

described technique.2

For generality in fitting (w, D) data by least-squares

regression, the starting structural model consists of two

layers, a coalesced or “bulk” layer and a surface roughness

layer, with thicknesses db and ds, respectively, incorporated

as free parameters. The following analytical form for the

dielectric function of the nanoparticles was used:1

e ðEÞ ¼ e1 þ
A2

L

E2
L � E2 � iCLE

þ GðEÞ; (1)

where

GðEÞ ¼ AGðCG=2Þ�l
�

ei/½EG � E� iðCG=2Þ�l

þ e�i/½EG þ Eþ iðCG=2Þ�l
�
: (2)

The first term in Eq. (1) describes an offset; the second term

describes a Lorentz oscillator for the nanoparticle plasmon

polariton (NPP) with amplitude AL, resonance energy EL,

and broadening CL; the third term describes the interband

transition with amplitude AG, band gap energy EG, broaden-

ing CG, phase /, and exponent l.

The dominant nanoparticle nature of the deposited films

was evidenced by the need for the Lorentz oscillator in the

dielectric function model. The oscillator resonance energy

EL is observed to redshift with increasing thickness and thus

particle size, consistent with increasing dipole-dipole inter-

actions between particles.3 Because no Drude component

was needed to fit the dielectric functions and because db

remained below a single monolayer in a two-layer analysis,

it could be verified that all depositions were terminated prior

to coalescence, with the resulting films consisting of isolated
nanoparticles. This was further corroborated by ex situ SEM

and AFM images obtained immediately after selected depo-

sitions, as depicted in Fig. 2.

a)Author to whom correspondence should be addressed. Electronic mail:

smarsill@odu.edu.

0003-6951/2012/100(5)/051107/4/$30.00 VC 2012 American Institute of Physics100, 051107-1
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After characterization of the as-deposited nanoparticle

film, its SE data were acquired in situ and in real time during

annealing from 288 K to 773 K and then during cooling to

288 K. The continuous temperature (T) evolution of the inter-

band broadening parameter CG, deduced by SE, is shown in

Fig. 1 for a nanoparticle film with db¼ 0 nm, ds¼ 8.42 nm.

An increase in T can lead to an increase in CG simply due to

the increased electron-phonon interactions at higher T.4 This

effect is described by the broken lines in Fig. 1, most accu-

rately determined in the later stages of cooling when struc-

tural changes due to annealing are minimized.

The most obvious feature in Fig. 1, however, is the ab-

rupt change in the evolution of CG at T� 595 K. This is

attributed to the melting transition associated with the largest

particles of the film which define its physical thickness ds.
5

During annealing, the broadening that occurs above the bro-

ken line dependences in Fig. 1 must be due to structural

changes in the nanoparticle film. For 400<T< 595 K, dur-

ing annealing the excess broadening may be due to melting

of the smallest particles which occur at reduced T. For

500<T< 595 K, during cooling the excess broadening may

have a similar origin—liquid particles that recrystallize over

a range of T due to the distribution of particle sizes. Broaden-

ing may also occur upon heating and cooling due to strain-

induced lattice deformation.5

The parameters for representative dielectric functions

are reported Table I for nanoparticles in a film with an as-

deposited thickness of ds¼ 6.48 nm (i) at 288 K in the as de-

posited state, (ii) at 773 K during annealing, and (iii) at

288 K after annealing. The MSE data given in Table I are in

accordance with other references.6 Quantitative comparisons

of these parameters yield several insights.

Upon heating to 773 K, significant increases occur not

only in CG (0.18 to 1.11 eV), as indicated in Fig. 1, but also

in CL, the broadening parameter of the NPP resonance (0.83

to 3.57 eV).7,8 This consistent behavior in both interband and

NPP transitions is attributed to a loss of long range order due

to melting which occurs at 595 K and leads to an electron

mean free path k on the order of the atomic spacing. Apply-

ing an estimate of k¼ �hvF/CL for the free electrons of the

NPP band, where vF� 1.4� 108 cm/s is the bulk Fermi ve-

locity and � is Planck’s constant, values of CL of 0.83 and

3.57 eV correspond to k values of 1 nm, approximately one-

third the particle radius, and 0.25 nm, approximately the

atomic spacing, respectively. Cooling to room temperature

leads to only a partial recovery of the broadening parameters

(interband: 1.11 to 0.82 eV; NPP: 3.57 to 2.17 eV). Recrys-

tallization to a more defective crystalline or a disordered

nanocrystalline structure relative to the as-deposited struc-

ture is responsible for this behavior,5 a surprising observa-

tion that will be discussed in further detail below.

In addition in Table I, a significant decrease in AL, the

NPP amplitude, is noted (from 15.5 to 0.5 eV). This behavior

is attributed primarily to the broadening of the interband

transition which gives rise to a larger e2 value at the NPP

energy and hence a suppression of the resonance. An unac-

counted for increase in void fraction fv in the film may also

occur during heating due to nanoparticle coarsening, which

leads to an increase in ds, at constant effective thickness

(defined as deff¼ fv ds or the volume of particles per area).

The latter effect is likely to be reflected clearly in the reduc-

tion in AG, the interband amplitude upon annealing. Cooling

to room temperature again leads to only a partial recovery of

the NPP amplitude (0.5 to 0.9 eV), consistent with the sharp-

ening of the interband component and a reduction in e2 at the

NPP resonance. The interband amplitude continues to

decrease consistently which could result from nanoparticle

coarsening during cooling; however, a contribution may also

exist due to lattice deformation, as was suggested by XRD

with the lowering and broadening of the Ag (111) peak. The

reduction of the interband amplitude term also contributed to

the increased uncertainty of the interband broadening

(Fig. 1) by effectively reducing the signal-to-noise ratio for

this oscillator and thus also contributes to the increase in

MSE tabulated in Table I.

For EL, the NPP resonance energy, a blue shift upon

annealing from 2.68 to 3.21 eV indicates a decrease in

dipole-dipole interactions due to the weaker NPP resonance

and the larger spacing between particles3 as indicated in the

Fig. 2. The partial red shift upon cooling is consistent with

the accompanying increase in the resonance amplitude. For

EG, the interband energy onset, various competing effects

can occur. An increase in temperature leads to a decrease in

interband energy due to the electron-phonon interaction, by

�0.1 eV over the temperature range of 288 K to 595 K.4

Annealing can also induce lattice deformation and particle

size changes which can also change the band gap due to

strain and size effects.5 The reduction in EG at room temper-

ature by the heating-melting-cooling cycle may be attribut-

able to the increase in nanoparticle size as shown in Fig. 2.

A key focus of this research is characterization of the

melting point depression for the nanoparticles—in the case

of Fig. 1 from 1235 K to 595 K for a film with ds¼ 8.42 nm.4

This depression is due to the high surface to volume ratio

and the lower cohesive energy of surface atoms. The melting

point is thus a function of the nanoparticle shape, radius, or

any other structural parameters that can modify the surface

to volume ratio. The melting point temperature can be

described by the following equation:7

FIG. 1. (Color online) Interband broadening parameter as a function of tem-

perature for nanoparticles in a Ag film with ds¼ 8.42 nm. The vertical line is

guide to the eye for the transition point and the broken lines are variations

predicted on the basis of electron-phonon interactions alone. Inset: XRD

spectra of the Ag (111) peak before (upper curve) and after (lower curve)

the thermal cycle (vertical axis, intensity in arbitrary units; horizontal axis,

angle 2h in degrees).

051107-2 Little et al. Appl. Phys. Lett. 100, 051107 (2012)
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TmðdsÞ ¼ To �
2ToMrs

DHoqs

� 1
1=2ds

; (3)

where rs is the surface energy density and is used as a fitting

parameter; To is the bulk melting point (1235 K); M is the

molar mass of Ag (107.87 g/mol); DHo is the enthalpy of

melting (11.28 kJ/mol); qs is the mass density of Ag

(10.49 g/cm3); and ds is extracted from RTSE. In fact, ds is

assumed to be equal to the diameter of the largest particles in

the distribution and, thus, dominates the melting behavior. A

discussion of the effects of the particle density concerning

similar films was reported previously.3 In Fig. 3, the nano-

particle film melting point is shown, deduced from data simi-

lar to those of Fig. 1 and plotted as a function of 1=2ds, or the

estimated particle radius. Fitting the results in Fig. 3 using

Eq. (3) leads to a surface free energy density of rs¼ 0.9 J/m2,

which is in reasonable agreement with previously reported

values for both bulk Ag (1.0–1.5 J/m2)9 and substrate sup-

ported nanoparticles (1.1 J/m2)10 but much lower than values

reported for free nanoparticles (�6.4–7.4 J/m2).9 The MSE

values of individual fits were below 0.035, indicating a good

fit.6

Ex-situ analyses were also performed to better under-

stand the influence of the full annealing-melting-cooling

cycle on the structure of the Ag nanoparticles. Both SEM

and XRD results confirm the melting temperature of the

nanoparticles through the significant differences in average

size and crystallinity of particles before and after annealing

cycles that reach the melting point.

By SEM, nanoparticles particles appeared larger and

more uniform in size after an annealing cycle that exceeds

the SE-deduced melting point, as shown in Fig. 2. Analysis

by XRD, as depicted in the Fig. 1 inset, performed before

heating reveals a characteristic Ag (111) peak, which nearly

disappears after a full annealing-melting-cooling cycle,

revealing that the bulk-like crystalline component of the

nanoparticles has decreased. This result is likely to result

from the increase in the volume of grain boundaries and

other defective regions of the nanoparticles upon anneal-

ing—even to the extent that the nanoparticle material

appears to exhibit an amorphous component. This structural

change is consistent with significant broadening of the NPP

and interband features measured after cooling, as seen in the

analysis results of Table I. In fact, the increase in broadening

of the NPP for the thermally cycled particles over the as-

deposited particles can be attributed to decrease in mean free

path from �1 nm to 0.4 nm, the latter being much smaller

than the observed particle size. The physical reason for the

formation of defective particles after cooling from the liquid

is unclear; cooling rates are too slow (4 K/min) to quench in

such defects. One possibility is that such a structure is stabi-

lized by surface adsorbates that are incorporated as impur-

ities within the bulk nanoparticles upon melting. Secondary

ion mass spectrometry has not detected differences between

the contaminant levels before and after the annealing cycle;

however, it is likely that nanoparticle impurities would be

difficult to detect, given the presence of surface contamina-

tion in ex situ analyses.

In conclusion, sputter deposition of silver onto room

temperature SiO2 surfaces for increasing durations led to

films consisting of isolated nanoparticles with increasing av-

erage sizes. The thin films were measured by real time SE

during annealing and subsequent cooling, and the resulting

TABLE I. The oscillator parameters that define the dielectric functions of the Ag nanoparticles at different stages in the thermal cycle. The physical thickness

is 6.48 nm for the as-deposited film composed of isolated Ag nanoparticles.

NPP Interband

Stage/MSE AL CL (eV) EL (eV) AG CG (eV) EG (eV)

285 Ka/0.019 15.5 6 0.9 0.83 6 0.01 2.68 6 0.01 4.1 6 0.2 0.18 6 0.03 4.34 6 0.02

773 K/0.033 0.5 6 0.1 3.57 6 0.10 3.21 6 0.04 3.2 6 0.1 1.11 6 0.04 4.51 6 0.05

285 Kb/0.024 0.9 6 0.3 2.17 6 0.52 3.01 6 0.35 3.0 6 0.2 0.82 6 0.10 4.19 6 0.15

aRoom temperature before heating.
bRoom temperature after heating.

FIG. 3. (Color online) Melting point of silver nanoparticles plotted versus

the average particle radius, estimated as one-half the physical thickness. The

dashed line indicates the melting point of bulk silver. The solid line is the fit

of Eq. (3), yielding the surface energy density.

FIG. 2. SEM image (SEI mode) of a film as-deposited (left) and after the

thermal cycle (right).

051107-3 Little et al. Appl. Phys. Lett. 100, 051107 (2012)
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nanoparticle dielectric functions were modeled using para-

meterized oscillators. By observing the variations in the os-

cillator parameters upon annealing, at elevated temperature,

and during cooling, key information on the nanoparticle

structure and phase can be deduced. In particular, the broad-

ening parameters of the NPP and interband transitions pro-

vide insights into electronic scattering and defects within the

particles. A significant reduction in the free electron mean

free path in nanoparticles identifies melting point depression,

and partial recovery upon cooling indicates poorer crystallin-

ity in the thermally cycled particles relative to the

as-deposited particles. These conclusions based on non-

invasive real time analysis were further confirmed by direct

ex situ studies.
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