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A grid refinement analysis with 𝛽+ = 1 and 𝛽+ = 10000 at final time 𝑇 = 1

Kumudu Gamage(kgamage@odu.edu) and Yan Peng (ypeng@odu.edu)
Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA

Introduction

Crank-Nicolson scheme and direct Immersed Interface Method (IIM) 
for  solving parabolic interface problems

Parabolic interface problems have many applications in physics and biology, such as

hyperthermia treatment of cancer, underground water flow, and food engineering.

Goal: Obtain a numerical methodology for solving 2D parabolic interface problems,

which results in second-order accuracy in both space and time for both solutions and the

solution’s gradient.

We studied the following interface problem:

𝑢𝑡 = (𝛽𝑢𝑥) 𝑥+(𝛽𝑢𝑦) 𝑦−𝑓 𝑥, 𝑦, 𝑡 , 𝑥, 𝑦 ∈ Ω\Γ

𝑢 = 𝑤 : , 𝑡 , 𝛽𝑢𝒏 = 𝑣 : , 𝑡 ,

with specified boundary and initial conditions.

A spatially and temporally second order method for 
solving parabolic interface problems

For simplicity, we consider the interface problems with piecewise constant coefficients.

For any grid point (𝑥𝑖 , 𝑦𝑗), we can write the Crank-Nicolson scheme as,
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and correction term at an irregular grid point (See Fig.1.)

is given by,

(𝐶𝑖,𝑗
𝑥 ) 𝑛=

𝑚

9

𝛼𝑚𝑈𝑖+𝑖𝑚,𝑗+𝑗𝑚
𝑛 + 𝛼𝑐

𝑥 .

where, 𝛼𝑚 and 𝛼𝑐
𝑥 depend on the position of 𝑥𝑖 , 𝑦𝑗 and 𝛽. Moreover, 𝛼𝑚 is time-

independent while 𝛼𝑐
𝑥 is time-dependent.

Now, the linear system of the Crank-Nicolson scheme can be written as,

𝐴𝑈𝑛+1 = 𝐵𝑈𝑛+F,

where, 𝑈𝑛 is the numerical solution. 𝐴 and 𝐵 are the coefficient matrix, and F is a vector

constructed from the source term, boundary conditions and correction terms.

Note: 𝐴 and 𝐵 are only needed to be found at once. For piecewise constant 𝛽, 𝐴 and 𝐵 are

nine-point banded matrices for irregular grid points and five-diagonal for regular points.

Consider the following equation with the interface Γ: 𝑥2 + 𝑦2 = 0.25 on the domain

Ω = −1,1 × [−1,1],

𝑢𝑡 = (𝛽𝑢𝑥) 𝑥+(𝛽𝑢𝑦) 𝑦−𝑓 𝑥, 𝑦, 𝑡 ,

The source term 𝑓 is defined as,

𝑓 𝑥, 𝑦, 𝑡 = ൝
0 𝑖𝑓 𝑥, 𝑦 ∈ Ω−

𝑒−𝑡 𝑥2 − 𝑦2 𝑖𝑓 (𝑥, 𝑦) ∈ Ω+

Jump conditions are given by,

𝑢 = 𝑒−𝑡 𝑥2 − 𝑦2 , 𝛽𝑢𝒏 = 4𝛽+ 𝑒−𝑡 𝑥2 − 𝑦2 .

Boundary conditions are obtained from the exact solution of,

𝑢 𝑥, 𝑦, 𝑡 = ൝
0 𝑖𝑓 𝑥, 𝑦 ∈ Ω−

𝑒−𝑡 𝑥2 − 𝑦2 𝑖𝑓 (𝑥, 𝑦) ∈ Ω+

Grid refinement analysis

Temporal discretization with 𝛽+ = 1 and 𝛽+ = 10000 at 𝑇 = 2

Fig.1. Illustration of regular, irregular, and control points in the domain Ω with the 

interface Γ

Numerical Examples Temporal discretization analysis

Summary and discussion 

We present an algorithm for solving two-dimensional parabolic interface

problems. Here we use the Crank-Nicolson scheme together with direct IIM to

solve parabolic interface problems. The resulting method is second-order

accurate in both space and time for both solution and gradients.

(a) Plot of numerical solution, (b) error  with  𝛽+ = 1 and 𝛽+ = 1000

Numerical solution and error distribution 
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