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ABSTRACT 

A COMPARISON OF MICROSTRUCTURE AND UNIAXIAL COMPRESSIVE RESPONSE 

OF ICE-TEMPLATED POROUS ALUMINA SCAFFOLDS FABRICATED FROM TWO 

DIFFERENT PARTICLE SIZES 

Nikhil D. Dhavale 

Old Dominion University, 2016 

Director: Dr. Dipankar Ghosh 

 

Development of bio-inspired highly porous (>50 vol.%) cellular ceramics is crucial to meet the 

demand of high-performance lightweight and damage-tolerant materials for a number of cutting-

edge applications including impact energy absorption, biomedical implants, and energy storage. A 

key design feature that is observed in many natural materials (e.g., nacre, bamboo, wood, etc.) is 

the presence of hierarchical microstructure that results in an excellent synergy of various material 

properties, which are otherwise considered as mutually exclusive in current paradigm of materials 

design. To this end, development of multilayered, interconnected and anisotropic cellular ceramics 

could benefit the aforementioned applications. However, mimicking natural design principles to 

develop robust cellular materials is of paramount challenge because most of the available 

processing techniques are limited to the fabrication of simple materials microstructures. In 

contrast, freeze casting is one emerging technique that has shown great promise to develop nature-

inspired hierarchical cellular ceramics. While a large number of recent studies focused on the 

development of process-structure correlations of freeze-cast ceramics, understanding of the 

structure-property relationships has been extremely limited. Therefore, this thesis develops a 

custom-made unidirectional freeze casting device to investigate the effects of the variation of the 

particle size (0.3 μm vs. 0.9 μm) on the microstructure and uniaxial compressive response of ice-



 
 

 
 

templated sintered alumina scaffolds as a function of solids loading and freezing front velocity 

(FFV). For comparable solids loading and FFV, particle size effects on the microstructure of the 

scaffolds are observed to be significant. Moreover, transition of the pore morphology with the 

increasing solids loading and FFV is observed to be more drastic for the scaffolds processed from 

the 0.9 μm particles compared to the 0.3 μm particles. Similarly, particle size variations also 

significantly influenced the relative density and porosity of the scaffolds. However, in spite of the 

observed differences of the microstructure, relative density and porosity, uniaxial compressive 

stress-strain measurements revealed marginal particle size effects on the compressive strength. 

The apparent marginal particle size effects on the compressive strength are rationalized based on 

the relative variation of the relative density, pore aspect ratio, and interlamellae bridge density in 

between the sintered alumina scaffolds processed from 0.3 μm and 0.9 μm particle sizes. This 

study also suggests that particle size variation within a range of submicrometer to few micrometers 

(typical particle size range used in ceramic processing) can be uniquely employed to systematically 

modify the microstructure of the ice-templated sintered ceramic scaffolds, without significantly 

altering their uniaxial compressive response; which can be useful to optimize the structure-

property relationships of the ice-templated scaffolds for the structural, biomedical and functional 

applications.  
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 NOMENCLATURE 

 

ABBREVIATIONS 

FFV Freezing Front Velocity 

SA      Sub-micrometer size Alumina powder particles (0.9 μm) 

NA      Nanometer size Alumina powder particles (0.3 μm) 

Al2O3      Alumina (Aluminum Oxide) powder 

α-Al2O3   α-phase (crystalline polymorphic phase) of Alumina  

SEM     Scanning Electron Microscope 

L-N2     Liquid Nitrogen 

 

ROMAN SYMBOLS 

Tg     Glass transition temperature 

t     Lamella thickness 

𝑎𝑎     Major axis of the pore 

𝑏𝑏     Minor axis of the pore 

𝑝𝑝𝑡𝑡     Total porosity of the cellular solid 

𝑣𝑣𝑐𝑐     Critical freezing front velocity 

𝑎𝑎Ο     Average intermolecular distance 

𝑑𝑑     Thickness of the film 

𝑅𝑅     Radius of the particle 

𝑧𝑧     Exponential constant 
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GREEK SYMBOLS 

𝜌𝜌𝑟𝑟     Relative density of the cellular solid 

𝜌𝜌∗     Apparent density of the cellular solid 

𝜌𝜌𝑠𝑠     Density of the constituent material 

μ     Interlamellae spacing/wavelength 

𝜒𝜒𝑝𝑝     Pore aspect ratio 

𝜌𝜌𝑏𝑏     Lamellae bridge density 

Δ𝜎𝜎     Mean free energy of the particle 

𝜂𝜂     Viscosity of the suspension 

𝜌𝜌𝑏𝑏(𝑆𝑆𝑆𝑆)     Average lamellae bridge density of submicron Al2O3 scaffolds 

𝜌𝜌𝑏𝑏(𝑁𝑁𝑆𝑆)     Average lamellae bridge density of nano Al2O3 scaffolds 
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CHAPTER 1 

INTRODUCTION 

There is a significant demand for novel cellular ceramics (porosity >50 vol.%) with improved 

mechanical properties for armor systems, aircraft structures, automobiles bumpers, biomedical 

implants, and energy storage. It is also desirable that such novel porous architectures can be 

fashioned into bulk complex shapes and are easy to scale-up with low manufacturing cost. In spite 

of several well-established techniques available to fabricate cellular ceramics, resulting porous 

architectures exhibit limitations to meet the demand of the aforementioned applications. Natural 

materials such as bone, wood, and seashells supported technological developments at the early 

stages of humanity, but were eventually replaced by the engineering materials. However, we are 

still fascinated by the elegant hierarchical design architectures observed in natural solids leading 

to unprecedented properties and yet to incorporate natural design principles in the current practice 

of materials engineering to design robust materials and devices. This has generated much of the 

current interest in biostructure-enhanced material design and manufacturing. However, mimicking 

the structural features of the natural solids that vary with the length-scale is not a trivial 

undertaking.  

A striking microstructural feature of many natural cellular materials is the presence of a 

multilayered, interconnected, and anisotropic pore morphology. Experimental and numerical 

investigations on natural cellular solids suggest that such anisotropic pore architecture could be 

beneficial to improve the mechanical and functional properties of engineering cellular solids. To 

this end, freeze casting (also known as ice-templating) has emerged as one promising technique 

that is capable of producing hierarchical multilayered structures containing oriented pores similar 
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to that observed in the natural solids. It is also a cost effective and environment friendly powder 

processing technique. To explore the potential of the freeze casting technique, numerous 

investigations have been conducted so far that focused primarily on the processing of various 

ceramic materials and understanding the inherent physics of the process to ultimately establish the 

processing-microstructure relationships. It is of note that the majority of the deemed applications 

of freeze-cast cellular ceramics require to operate the materials under load-bearing conditions. 

Therefore, it is essential to develop deeper understanding of the influence of the processing and 

materials variable on the mechanical response of freeze-cast ceramics. However, development of 

the process-structure-property (mechanical in particular) relationships has been extremely limited. 

It is also of note that currently there is no commercial set-up available that can be directly 

employed to fabricate freeze-cast cellular ceramics. 

Therefore, purpose of this thesis is twofold: (i) to develop a custom-made freeze casting set up that 

allows the fabrication of cellular ceramics under an applied unidirectional temperature gradient 

(i.e., unidirectional freezing conditions) and (ii) to compare the microstructure and uniaxial 

compressive response of ice-templated alumina ceramics processed from two different particle 

sizes to shed some light into the structure-property (mechanical) relationships. The structure of 

this thesis is as follows. In Chapter 2, a brief summary of the commonly utilized cellular ceramics 

fabrication techniques is provided followed by the discussion on the fundamental principles of the 

freeze casting technique. Chapter 3 describes the development of the custom-made unidirectional 

freeze casting set up and the processing steps that are involved in the fabrication of ice-templated 

cellular ceramics. Finally, Chapter 4 discusses the results of an experimental investigation that 

compares the microstructure and uniaxial compressive response of ice-templated alumina ceramics 

as a function of the solids loading of aqueous suspensions and freezing front velocity. This thesis 
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concludes with the suggestions for the future work that will provide further insights into the 

process-structure-property relationships of freeze-cast cellular ceramics.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1    CELLULAR SOLIDS, PROPERTIES AND APPLICATIONS 

Dense materials processed by powder metallurgical routes usually contain defects in the form of 

pores or voids. Porosity, in general, is not desirable in engineering solids because of the detrimental 

effects on the mechanical and functional properties in the end applications [1]. However, most of 

the engineering solids such as metals, ceramics, and polymers contain small percentages of 

processing-induced porosity which is inevitable. Interestingly, there are numerous natural solids 

such as bones, cork, wood, leaves, sponges, and coral where the constituent materials are arranged 

in a fashion that lead to the formation of a two or three dimensional arrangement of pores creating 

highly porous architectures. The superior structural and biological functionalities of such natural 

porous solids are attributed to a combination of both, the constituent material(s) and the porous 

structure. As the nature continues to inspire the development of the modern materials and 

structures, engineered cellular solids emerged as a special class of materials with unique structures 

that contain a specific arrangement of the micro/macroscopic pores and a porosity level of 30 

vol.% or higher [2, 3].  

Both natural and engineered cellular solids find extensive use as in lightweight structures, load-

bearing components, thermal insulations, filters, packaging materials, solid-state battery 

electrodes, solid oxide fuel cells, and impact energy absorbing structures. The low density of 

cellular solids aids in designing lightweight but mechanically tolerant structures such as sandwich 

panels that are widely used in automobile, aerospace and military applications. The low thermal 

conductivity of cellular solids facilitates the fabrication of reliable, efficient, and economical 
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thermal insulations that can only be matched in performance by expensive vacuum-based 

insulations. Cellular solids typically undergo progressive failure at a relatively constant stress and 

exhibit large compressive strain before complete densification, making them ideal structures for 

high energy-absorbing applications under impact loading conditions [3]. Due to high damping 

capacity, cellular solids are utilized in electron microscope laboratories, theaters and auditoriums 

for protection from surrounding noise and vibrations. Cellular solids are also useful in minimizing 

the attenuation of electromagnetic waves for instance in radio transmitters. There are also 

numerous domestic and industrial applications of cellular solids for filtration of water, hazardous 

chemicals, molten metals, etc. [3]. 

Structurally engineered cellular solids can be broadly categorized into honeycombs and foams. 

Typical porous honeycomb structure consists of two-dimensional array of hexagons/polygons that 

are elongated along the third dimension, similar to that observed for the hexagonal cells of the bee-

hive. Therefore, the honeycomb cellular architecture is characterized by the long and parallel 

pores, which are separated by the cell walls (Fig. 2.1a) [3]. On the other hand, foams are cellular 

solids containing polyhedral shaped cells that are packed in three dimensions to occupy the entire 

available space. Foams can be fabricated as both open-cell (Fig. 2.1b) and closed-cell structures 

(a) Honeycomb (b) Open-cell foam (c) Closed -cell foam 

Figure 2.1: Representative microstructures of (a) honeycomb [4], (b) open-cell foam [5] and (c) 
closed-cell foam [6]. 
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(Fig. 2.1c). If the constituent material of the foam is contained only in the cell edges, then the foam 

is said to be an open-cell foam [3]. If the edges and the faces are both solid, so that each cell is 

isolated from its adjacent cells, the foam is said to be a closed-cell foam. Typically, cellular solids 

are considered as structures and most of the available materials can be processed into cellular 

solids possessing a porous architecture.  

As a result, cellular solids have been fabricated from various metals, ceramics, polymers, and 

composites. For example, clay (alumino silicates), alumina (Al2O3), silicon carbide (SiC), partially 

stabilized zirconia (ZrO2), titania (TiO2), silica (SiO2), and glass are commonly employed 

materials that are utilized for the fabrication of open-cell and closed-cell ceramic foams [7-11]. 

Properties of foams and honeycombs are influenced by three factors: (i) relative density (𝜌𝜌𝑟𝑟 =

𝜌𝜌∗ 𝜌𝜌𝑠𝑠⁄ ), where 𝜌𝜌∗ and 𝜌𝜌𝑠𝑠 are the apparent density of the cellular solid and constituent material, 

respectively, (ii) properties of the solid of the cellular solid is made, and (iii) the topology 

(connectivity) and shape of the cells [3, 12]. Variation of the 𝜌𝜌𝑟𝑟, constituent material, pore 

morphology and connectivity strongly affect the properties of cellular solids. Total porosity (𝑝𝑝𝑡𝑡) 

of cellular solids is estimated as 𝑝𝑝𝑡𝑡 = (1 − 𝜌𝜌𝑟𝑟) ∗ 100. Since the load-bearing capacity of cellular 

solids is crucial for majority of the applications, their mechanical response of cellular solids has 

been investigated extensively. Figure 2.2 shows the representative uniaxial compressive stress-

strain curves of cellular solids as well as the critical parameters such as the stiffness (slope of the 

linear part of the stress-strain curve), peak stress, plateau stress, densification strain, and total 

energy absorption (area under the stress-strain curve up to densification strain), which are 

extremely important to understand the load-bearing characteristics of porous structures. For each 

stress-strain curve, three distinct zones can be observed that are characteristics of cellular solids 

[3, 13-16]: (i) an elastic region where stress increases almost linearly with strain, (ii) a plateau 
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region where deformation proceeds almost at a constant stress level (plateau stress) up to a large 

strain value, and (iii) a densification stage where further compression results in a steep rise of stress 

with strain. As the material is loaded, stress reaches a peak value (peak stress) and a slight drop in 

the stress is observed that is almost maintained in the plateau region (plateau stress). In cellular 

solids, peak stress is one key property indicative of the resistance to the initiation of inelasticity 

and corresponds to a stress level where failure begins in the structure. The plateau region is 

associated with a continued crushing and collapse of the cellular structure, and this process is 

primarily attributed to the energy-absorbing ability of the cellular solids. Stiffness, peak stress, 

plateau stress, and densification strain are strongly influenced by 𝜌𝜌𝑟𝑟. In general, stiffness, peak 

stress, and plateau stress increase with increasing 𝜌𝜌𝑟𝑟 whereas the densification strain shows an 

inverse relationship with 𝜌𝜌𝑟𝑟 (Fig. 2.2). Such variations with 𝜌𝜌𝑟𝑟 also significantly affect the energy 

absorption capacity of cellular solids.  

Figure 2.2: A Schematic of uniaxial compressive stress – strain curves of cellular solids with 
different relative densities. 
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While the choice of material system for a specific application is often less critical, developing 

cellular solids with the desired microstructure and properties is extremely challenging. This is 

because for a given material system and porosity, properties are significantly influenced by the 

type of porosity (open-cell vs. closed-cell), pore connectivity, pore size and morphology, cell wall 

structure, and pore anisotropy. For example, closed-cell foams typically exhibit better mechanical 

and thermal properties relative to open-cell foams. Similarly, anisotropic cellular solids exhibit 

improved properties in comparison to isotropic porous solids. Therefore, the fabrication of cellular 

solids is a complex topic and there is no single processing technique that can address all the 

microstructure variables which control their properties and performance. As a result, numerous 

processing techniques have evolved to develop a wide variety of cellular solids with different 

micro-/macrostructures and thus properties. A brief description of various techniques employed 

for the fabrication of cellular solids is provided further. However, the discussion here is limited to 

only few techniques that are commonly employed to fabricate cellular ceramics.   

 

2.2 FABRICATION OF POROUS CERAMICS  

Initially, cellular ceramics have been processed by partial sintering of loosely packed ceramic 

powder compacts, which mainly leads to the formation of open-cell porous materials. However, 

such process yields porous ceramics with low porosity (less than 60 vol. %) and microstructure 

control remains very limited. Eventually, several techniques have been developed that can 

fabricate cellular ceramics with controlled microstructures and greater level of porosity, thus 

making it possible to develop tailored porous ceramics that can meet the demand of a specific 

application [17-20]. In general, cellular ceramics fabrication techniques can be classified into six 

categories: (i) replica method, (ii) direct foaming, (iii) sacrificial phase technique, (iv) paste 



9 
 

 
 

extrusion, (v) amorphous bubble bonding (ABB), and (vi) rapid prototyping. In the following, a 

brief description of the above six techniques is provided.  

2.2.1 Replica Method 

In the replica method (also called polymeric sponge technique), an open-cell polymeric 

foam/sponge is immersed within a ceramic suspension to apply a ceramic coating on the surfaces 

of the foam [19]. This is followed by a pyrolysis process (heat treatment) to burn off the polymer 

component, which leaves behind a ceramic skeleton and is next sintered to develop a porous 

ceramic structure that is a replica of the starting polymeric foam [21]. Figure 2.3 shows a schematic 

of the replica method illustrating the steps involved in the fabrication of ceramic foams [19]. A 

typical ceramic foam microstructure obtained through the replica method is shown in Fig. 2.4 [22].   

A general requirement is that the ceramic suspension should have a low enough viscosity so that 

it can penetrate well into the porous structure of the polymeric foam and a uniform coating can be 

achieved which should be able to replicate the surface details of the foam. In general, ceramic 

  

Figure 2.3: A schematic of the replica method illustrating all the steps involved in the fabrication 
of a ceramic foam [19]. 
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foams, derived through the replica method, have a high permeability due to open-cell morphology 

with large pore size (ranging from 200 μm to 3 mm) and high porosity, which however, limit the 

mechanical performance of the foams [19, 21, 23]. Overall, due to simplicity and limited number 

of steps involved in the processing as well as availability of polymeric foams/sponges with well-

controlled micro/macro-structures, the replica method is widely utilized to develop various 

commercial cellular ceramic products such as the Al2O3 and SiC filters employed for the 

wastewater treatment.  

2.2.2 Direct Foaming  

In the direct foaming technique, a ceramic suspension is first foamed by introducing gas bubbles 

into the suspension. Next, the suspension is polymerized to retain the porous architecture induced 

through the gas bubbles, followed by demolding, drying, and sintering in order to develop a porous 

ceramic structure. Finally, the sintered foams are glazed to improve the mechanical properties of 

Figure 2.4: Microstructure of Al2O3 open-cell foam fabricated using the replica method [22]. 
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the porous ceramics. Figure 2.5 schematically shows the various steps of the direct foaming 

technique. In general, this technique can produce highly porous green bodies that are relatively 

stronger and can withstand the force during machining [19]. Porosity of the resultant foams 

depends directly on the amount of the gas supplied into the suspension during the foaming process, 

whereas the pore size is dictated by the stability of the wet foam. Two different methods are 

employed for the stabilization of the wet foam. One utilizes biomolecules such as proteins, lipids, 

and surfactants, which are adsorbed on the surfaces of the gas bubbles thereby decreasing the 

interfacial energy between gas and media, thus preventing the coalescence of the gas bubbles. 

However, the stabilization through surfactants lasts only for several minutes whereas proteins 

stabilization can last for several hours. The other effective method to stabilize the wet foam is to 

utilize ceramic particles with a modified surface chemistry to enhance the ability of the particles 

to adsorb the long-chain amphiphilic molecules on the surface. Such process has been observed to 

stabilize the foamed ceramic suspensions for several days [2]. Figure 2.6 shows typical 

microstructures of ceramic foams developed using the direct foaming technique [22-24]. The direct 

foaming technique provides a relatively fast and environmental-friendly way to produce cellular 

  

 

 

Figure 2.5: A schematic representation of the direct foaming technique [19]. 
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ceramics with a wide range of porosity. Due to defects-free cell struts, cellular ceramics fabricated 

by the direct foaming technique tend to be relatively stronger in comparison to the foams fabricated 

by the replica method [19]. 

 2.2.3 Sacrificial Phase Technique 

Figure 2.6: Representative microstructures of (a) closed-cell and (b) open-cell ceramic foam 
fabricated employing the direct foaming technique [22–24]. 
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Figure 2.7: A schematic representation of the sacrificial phase technique [19]. 
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 The sacrificial phase technique for the fabrication of porous ceramics involves the preparation of 

a two-phase composite consisting of a continuous matrix of ceramic and a sacrificial particulate 

phase [19]. To obtain a two-phase composite mixture the sacrificial phase is first homogeneously 

mixed with the ceramic powder or its precursor(s). Homogeneous dispersion of the sacrificial 

phase within the matrix is a critical step to develop a uniform porous structure. The sacrificial 

phase is next removed from the mixture by pyrolysis, sublimation or evaporation, followed by 

sintering to obtain the final porous ceramic structure. The final porous structure is thus a negative 

replica of the initial sacrificial phase, as opposed to a positive cellular structure that is achieved in 

the replica method [20]. A schematic of the overall process is depicted in Fig. 2.7, and Fig. 2.8 

shows the typical porous microstructures develop using the sacrificial phase technique [25-28]. 

The following routes are employed to develop the two-phase preform that after pyrolysis (or 

sublimation/evaporation) and sintering leads to the final porous structure: (i) dry mixing of the 

component phases followed by pressing [29], (ii) forming a two-phase colloidal suspension 

followed by slip, tape or direct casing [30], and (iii) impregnation of a previously consolidated 

Figure 2.8: Microstructures of macroporous ceramics produced using the sacrificial template 
method: (a) a TiO2 foam [25] and (b) an ordered macroporous SiO2 foam [26]. 

  



14 
 

 
 

preform of the sacrificial material with a pre-ceramic phase or a ceramic suspension [31]. A wide 

variety of materials such as the starch, wax, water, oil, gelatin, cellulose, sucrose, nylon, PVC, PS, 

PMMA, PVB, and naphthalene are utilized as the pore forming agents [19]. By proper selection 

of the sacrificial phase, it is possible to vary the pore size from 1-700 μm and total porosity from 

20-90 vol. %. Since the final porous structure is a negative replica of the sacrificial phase, defects 

in the ceramic walls can be avoided resulting in improvement of the mechanical strength of the 

porous ceramics [19].  

2.2.4 Paste Extrusion  

Paste extrusion is a conventional technique generally employed to manufacture honeycombs 

mainly used for catalysts and filters. In this technique, a paste of ceramic powder, binders, and a 

lubricating agent is prepared using high-shear mixing. An extrusion ram forces the paste through 

a die and results in an extruded product of a desired shape, which can be further molded into 

Die 
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(a) (b) Direct extrusion 
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Figure 2.9: (a) A schematic of the extrusion process and (b) a honeycomb structure produced 
using the process [2].  
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required shape and length. A schematic of the paste extrusion process in shown in Fig. 2.9a. Next, 

the extruded green bodies go through a typical ceramic processing route of drying, binder burn-

out, and sintering to produce the final macro porous ceramics [2]. The main advantage of this 

technique is that, the honeycomb porous structures can be extruded with unidirectional channels 

of desired cross-sectional shapes such as square, circular, and triangular [32]. Figure 2.9b shows a 

honeycomb structure produced using the paste extrusion process.  

2.2.5 Amorphous Bubble Bonding (ABB)  

A relatively less explored but unique cellular solid fabrication technique is where hollow spheres 

can be bonded together by applying heat to a cellular network of precursor hollow spheres [33,34], 

as shown in Fig. 2.10. Recently, amorphous bubble bonding (ABB) technique has been utilized to 

develop silicate glass-based cellular solids that involves heating hollow spheres of aluminosilicate 

glass (glass bubbles, diameters ranging from 10 to 100 μm) above the glass transition temperature 

(Tg), where the glass bubbles thermally bond to form a cellular structure through viscous flow and 

Figure 2.10: A schematic of foam fabrication using amorphous bubble bonding (ABB) 
technique [35]. 
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deformation [35]. This technique can be employed to material systems such as bulk metallic 

glasses (BMGs), polymers, ceramics and glasses having sufficient thermal stability above Tg. 

Typically, ABB results in a predominantly closed-cell pore morphology, which is governed by the 

properties of the glass bubbles and the processing parameters. Figure 2.11 shows the SEM 

micrograph of the hollow K46 glass microspheres and microstructure of the glass foam produced 

using the ABB technique [36]. 

2.2.6 Rapid Prototyping Technique 

Rapid Prototyping (RP) technique, also known as solid free-form fabrication is employed to 

produce a scaled or full-sized prototype from complex datasets, in which, three-dimensional (3D) 

objects are assembled by point, line or planar addition of the material [37]. Molds or dies which 

usually carry the ceramic suspension are not required in this processing route. [37]. A number of 

RP techniques are currently commercially available including stereolithography (SLA) [38], 

selective laser sintering (SLS) [39], laminated object manufacturing (LOM) [40-41], fused 

  

 

Figure 2.11: (a) SEM micrograph of the hollow K46 glass microspheres and (b) microstructure of 
the glass foam produced using the ABB technique [36]. 
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deposition modeling (FDM) [42], solid ground curing (SGC), and ink jet printing [43, 44, 37]. In 

all the RP techniques, 3D architectures are built directly by layer by layer deposition of materials 

[44]. Fig. 2.12(a) shows a schematic representation of processing steps involved in rapid 

prototyping and Fig. 2.12(b) depicts an ESEM micrograph of sample produced by rapid 

prototyping, revealing smooth horizontal and textured vertical surfaces as well as semi-spherical 

surface pores. Porous ceramics with both the cellular and periodic structures can be fabricated with 

a relatively higher level of accuracy in comparison to the other fabrication techniques. Compared 

to all other techniques discussed for fabrication of porous ceramics, a distinct advantage of this is 

the ability to create highly complex porous architectures with well controlled pore morphology. 

However, the manufacturing cost associated with the RP techniques are considerably higher 

relative to the other techniques [2]. 

All the above techniques are utilized to fabricate cellular ceramics for various applications. 

Recently, another technique freeze casting (also called ice-templating) has received significant 

Negative CAD file 
RP machine 

Polymer mold Slurry casting Heat treatment   Final 
product 

Sintering 

Figure 2.12 (a) Schematic representation of the steps involved in rapid prototyping for fabrication 
of porous ceramic parts [45] and (b) SEM micrograph of a typical scaffold processed by RP 

technique (length of the white bar is approximately 3.6 mm) [46]. 
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attention because of the ability to develop bio-inspired novel porous ceramics, which can be post-

processed to dense hybrid materials. This technique exploits the anisotropic growth characteristics 

of solvent crystals and phase segregation of particulate suspensions under unidirectional freezing 

conditions to develop hierarchical porous solids. Although various solvents have been attempted, 

water remains as the predominantly employed freezing vehicle because of the availability and 

similarity of the resultant structure with the natural solids that are of major interests to design bio-

inspired materials. A key feature of the freeze-cast porous solids is the presence of tunable 

anisotropic pore morphology with low tortuosity that is highly suitable for structural, biomedical, 

and energy storage applications. Moreover, within a wide range of porosity freeze-cast porous 

ceramics exhibit significantly greater compressive strength in comparison to isotropic porous 

ceramics processed using the other techniques. Over the past decade, a large number of 

investigations focused on understanding the fundamentals of the freeze casting technique and 

significant progress is made on the development of processing-microstructure relationships. In 

comparison, structure-property (both mechanical and functional) relationships are yet to be well 

established. To this end, this thesis develops a custom-made device for unidirectional freeze 

casting of particulate suspensions to enable the investigation of the microstructure evolution and 

uniaxial compressive response of ice-templated sintered Al2O3 scaffolds processed from two 

different particle sizes as a function of the suspension concentration and freezing front velocity 

(FFV). The following, is a journey into the fundamentals of the dynamic interactions of an 

advancing freezing front with the particles present in a suspension under unidirectional freezing 

conditions, which builds the foundation of the principles exploited in the freeze casting technique 

to fabricate anisotropic porous solids. However, the following discussion is limited to only the 

unidirectional freezing of aqueous suspensions.  
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2.3 UNIDIRECTIONAL FREEZING OF AQUEOUS PARTICULATE SUSPENSIONS 

During freezing of aqueous particulate suspensions under the influence of an applied unidirectional 

temperature gradient, solidification results from a phase segregation process in which the solvent 

crystalizes and the particles are ejected by the growing solvent (ice for aqueous systems) crystals 

[47-57]. In general, the morphological transition of the aqueous suspension during the 

unidirectional solidification is strongly influenced by the ice growth velocity [48]. Figure 2.13 
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Figure 2.13: Morphological developments during unidirectional freezing of aqueous particulate 
suspensions depending on the freezing front velocity (FFV): (a) at very low FFV a planar ice 
front develops and the particles are pushed ahead of the advancing ice front, (b) at moderate 

FFVs splitting of the planar ice front leads to a lamellar morphology of alternating layers of ice 
crystals and consolidated particles, and (c) at high FFVs particles are engulfed within the ice 

crystals causing a loss of ordered structure [50]. 
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depicts three different scenarios of the interaction of the growing crystals with the particles in the 

suspension under the unidirectional freezing conditions [49]. For a very slow ice growth (≤ 1 

μm/s), a planar ice front develops that pushes the particles ahead (Fig. 2.13a) and as a result, a 

dense material structure is obtained. As the ice growth velocity increases, the interaction of the ice 

crystals with the particles becomes substantial. As a result, the planar ice front becomes non-planar 

(columnar) and the particles are ejected by the advancing ice front and accumulate in between the 

growing ice crystals (Fig. 2.13b). As this process continues, a lamellar morphology evolves within 

the unidirectionally solidified suspension that consists of the alternating layers of the ice and 

ceramic particles. With the further increase of the ice growth velocity particles start to get 

entrapped within the ice crystals due to rapid solidification and eventually beyond a critical FFV 

particles are completely entrapped (engulfed) within the ice crystals. This leads to a complete loss 

of the lamellar morphology and the frozen suspension attains a cellular morphology [50]. 

Therefore, to ensure the development of lamellar porous morphology, ice-templating of aqueous 

ceramic suspensions is typically conducted within the FFV range few μm/s to tens of μm/s. After 

the completion of freeze casting of aqueous particulate suspension, the solidified suspension is 

thereafter subjected to sublimation process such that the ice crystals can be removed without 

melting, which results a porous ceramic that is usually sintered at high temperature to partially 

densify and strengthen the porous structure. It is of note that solidification of the particulate 

suspensions is the most critical step in the freeze casting process, because the final pore 

morphology and pore size of the porous ceramics are primarily governed by this stage. 

Formation of the lamellar morphology in the freeze-cast porous ceramics that are processed from 

aqueous suspensions is primarily attributed to the anisotropic growth characteristics of ice crystals 

[51]. Figures 2.14a and 2.14b show the crystal structure of ice and the growth characteristics of 
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the ice crystals, respectively, which relate to the lamellar morphology that evolves during the ice-

templating [51]. Ice has a hexagonal crystal structure and due to the anisotropic crystal structure, 

ice growth characteristics are different along the crystallographic axes. As illustrated in Fig. 2.14b, 

ice front velocity parallel to the c-axis is about 102 to 103 times lower in comparison to that 

perpendicular to the c-direction. Therefore, during freezing once the ice crystals form, ice platelets 

with a very large anisotropy then develop due to very fast ice growth along the a-axes in 

comparison to c-axis. Under an applied unidirectional thermal gradient, the freezing process is 

easier for the crystals whose c-axes are perpendicular to the temperature gradient, resulting in the 

growth of the ice crystals along a-direction that is oriented along the applied temperature gradient.  

Therefore, ice crystals with horizontal c-axes will grow at the expense of the others and continue 

to grow upward, resulting in an architecture that is composed of long vertical lamellar crystals 

with horizontal c-axes. In the final structures, the direction perpendicular to the lamellae 

corresponds thus to the original c-axis of ice crystals (Fig. 2.14c) [51]. 
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Figure 2.14: (a) Crystal structure of ice and (b) anisotropy of crystal growth kinetics, leading to 
lamellar ice crystals. The anisotropy of the growth kinetics is reflected in the final porous 
structures (c) obtained after sublimation and sintering. The direction perpendicular to the 

ceramic platelets corresponds to the limited growth direction of ice crystals [51]. 
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Figure 2.15 shows critical steps of freeze casting (ice-templating) [52]. First, appropriate quantities 

of ceramic powders, dispersant, organic binder, and water are mixed to prepare suspensions. A 

dispersant is used to stabilize a suspension and minimize settling of the powder particles. A binder 

provides strength to the ceramic bodies prior sintering to ensure safe handling of green bodies. 

Suspensions are then solidified under unidirectional freezing conditions. Typically, ceramic 

suspension is poured into a cylindrical mold and bottom surface of the mold is gradually cooled 

from room temperature to a temperature well below the freezing temperature of the solvent (0°C 

for water). For aqueous suspensions, as the bottom surface temperature goes below 0°C, ice 
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Figure 2.15: Processing steps of freeze casting (ice-templating): (a) aqueous ceramic suspension 
preparation, (b) unidirectional freezing, (c) sublimation, and (d) sintering. [51] 
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crystals nucleate at the contact points of the cold surface and suspension, and will grow in the 

direction of the applied temperature gradient (bottom to top of the mold). As the ice crystals start 

growing vertically, particles in the suspension are ejected from the advancing solidification front 

and concentrate in between the growing ice layers (Fig. 2.15b). As the process continues, a lamellar 

microstructure containing alternate layers of ice and ceramic particles develop that is oriented in 

the direction parallel to the movement of the freezing front. After completion of the solidification 

process, ice crystals are sublimated at low temperature and reduced pressure, which results in a 

porous structure containing ceramic layers and oriented pores (Fig. 2.15c). After sintering, ceramic 

layers densify and the overall porous structure gains strength, but the porosity and pore 

morphology created by the ice crystals during the ice-templating are retained (Fig. 2.15d).  
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CHAPTER 3 

A CUSTOM-MADE UNIDIRECTIONAL FREEZE CASTING DEVICE 

Freeze casting typically involves solidification of a particulate suspension under an influence of a 

unidirectional temperature gradient that facilitates anisotropic growth of solvent crystals. 

Therefore, freeze casting technique requires a device that can enable unidirectional freezing of 

particulate suspensions under well-controlled cooling conditions. Although the technique is simple 

in principle, there is no commercial set up available yet that can be readily employed to process 

materials under unidirectional freezing conditions. Therefore, one major goal of this thesis is to 

develop a custom-made device that allows to fabricate cellular ceramics under an applied 

unidirectional freezing conditions. It is to note that the setup is not only employed for the research 

undertakings of this thesis, but is also central to several other research activities in the Laboratory 

of Extreme and Energy Materials (LEEM) at Old Dominion University. Figure 3.1 shows 

schematics of few freeze casting devices that have been utilized by other research groups for 

unidirectional [2] and bidirectional freeze casting [58]. Use of the bidirectional freeze casting set 

Figure 3.1: Schematics of freeze casting set up for (a-b) unidirectional [2] and (c) bidirectional 
freezing [58] of particulate suspensions. 
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up, however, is extremely limited and mainly used to obtain extremely fast freezing front velocity 

(>100 μm/s) [58]. Although these devices appear to be different, all of them employ the same 

unidirectional freezing principle discussed in Chapter 2. In the following, first the freeze casting 

set up developed in this thesis is presented and next all the processing steps employed to fabricate 

freeze-cast cellular ceramics are described.     

     

3.1   EXPERIMENTAL SET UP FOR UNIDIRECTIONAL FREEZE CASTING  

Figure 3.2 shows a schematic of the unidirectional freeze casting device designed and developed 

in this thesis. Although this custom-made device is similar to that shown in Fig. 3.1a, several 

modifications were made for better maneuver of the system. However, there was no intent to make 

any comparison with the setup shown in Fig. 3.1a. In the following, first a brief description of the 

setup is provided followed by a detail discussion of the step-by-step operating procedure employed 

during freeze casting. The main components of this custom-made device are a liquid Nitrogen (L-

N2) Dewar, a thin steel plate (cold finger, thickness ~0.5 mm), and a cryogenic temperature 

measurement system that records temperature changes in the cold finger during freeze casting. L-

N2 is employed as the freezing media to achieve temperature of suspensions as low as -100°C. 

Additionally, a mechanism was devised that allows the measurement of the L-N2 level within the 

Dewar, and adjust the gap in between the L-N2 top surface and the cold finger. A Teflon mold 

containing ceramic suspension is placed on the cold finger, and the assembly is inserted within the 

Dewar and placed at a specified height above the L-N2 surface. Since the temperature of the cold 

finger and bottom of the suspension in contact with the cold finger reduces rapidly in comparison 

to the top of the suspension, the suspension within the mold is subjected to a unidirectional 

temperature gradient where the temperature increases from bottom to top. For an aqueous 
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particulate suspension, solidification starts as the temperature of the suspension reaches below the 

freezing temperature of water (0 °C) [51]. Ice crystals nucleate at the bottom of the suspension and 

grow upwards (vertically) under the influence of the applied unidirectional temperature gradient. 

The thickness of the cold finger, the L-N2 quantity, and the gap in between the cold finger and the 

L-N2 top surface (i.e., in between the L-N2 top surface and bottom of the suspension) are the critical 

parameters that control the solidification kinetics of a particulate suspension during freeze casting. 

As discussed in Chapter 2, morphological evolution during unidirectional solidification and phase 

segregation of an aqueous ceramic suspension depends on the ice growth velocity, which is 

controlled by the unidirectional temperature gradient applied to the suspension. Therefore, control 

over the temperature changes of the cold finger is essential to achieve the desired range of ice 
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Figure 3.2: A schematic of unidirectional freeze cast set-up developed in this thesis. 
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growth velocities to ensure the formation of porous morphology during freeze casting. Once the 

solidification is complete, the frozen sample is removed from the mold and is ready for freeze-

drying (discussed later). In the following paragraphs, a detailed description of the all the 

components of the device is provided.           

The Dewar used in the experiment is a thermally insulated, cylindrical vacuum flask with a 

capacity of 3 L. This flask is designed to hold L-N2 without minimum volume loss over a long 

period of time that is suitable for freeze casting experiments. As shown schematically in Fig. 3.2, 

the L-N2 Dewar is placed on a thick aluminum base plate on which all the components of the 

device are attached. Leveling screws with rubber discs are attached to the base plate to ensure that 

the plate is parallel to the ground and avoid vibrations during an experiment. Adjustable stoppers 

are placed on the top surface of the base plate to fix the Dewar at the center of the plate. A metal 

plate is attached to one side of the base plate to mount the temperature measurement device and a 

threaded rod is attached vertically to the base plate to attach various components of the entire set 

up. A long metal sleeve concentric with the threaded rod rests on a circular nut, which is attached 

to the rod. As the nut rotates, the long metal sleeve can move vertically along the threaded rod. 

There are two L-shaped hollow arms that are attached to the set up. One end of one of the L-shaped 

arms (called L-N2 level indicator) is fixed to a large metal disk, which is attached directly to the 

long metal sleeve towards the upper end, and a small metal plate is fixed at the other end of the 

arm. On the L-N2 level indicator, a funnel is also attached at the top that is used for pouring L-N2 

into the Dewar. The other L-shaped arm holding the cold-finger at one end is attached to a short 

metal sleeve through the other end, where the short sleeve is concentric with the long metal sleeve. 

A digital micrometer is also connected to short metal sleeve, where the movement of the spindle 

of the micrometer controls the vertical movement of the short sleeve along the long sleeve. Both 
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sides of the cold-finger (i.e., thin steel plate) are metallographically polished and circular shape 

(diameter ~90 mm) of the plate helps to maintain a uniform temperature distribution over the cold-

finger. As illustrated in Fig. 3.2 the cold-finger is not directly attached to the L-shaped metal arm, 

Figure 3.3: Images of the actual components of the custom-made freeze casting device: (a) liquid 
N2 Dewar, (b) base plate, fixture for data logger, leveling screws, and adjustable stoppers, (c) L-
shaped arms for the L-N2 level indicator and cold finger, threaded rod and circular nut, (d) digital 

micrometer, short metal sleeve, and large metal disc, (e) data logger, (f) cold finger. 
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rather is connected through a Teflon connector to minimize the heat transfer to the cold-finger    

from the metal arm. The angle in between the cold-finger and metal arm is 90°, which keeps the 

cold-finger parallel to the L-N2 surface inside the Dewar. It is also of note that prior to start of an 

experiment, both the metal plate on the L-N2 level indicator and cold-finger reside at the same 

height from the base plate. The low temperature measurement system consists of a 4-channel 

thermocouple data logger and a T-type thermocouple (Omega Engineering Inc., Stamford, CT), 

where the thermocouple is attached on the top surface of the cold finger. A T type thermocouple 

is chosen because it is suitable for extremely low temperature applications (e.g., cryogenics and 

ultra-low freezers) and has an excellent repeatability within the temperature range of -200°C to 

350°C with an accuracy of +/- 1°C and sensitivity of about 43 µV/°C [information: Omega 

Engineering Inc.]. Actual images of all the components of the freeze casting set up described above 

are shown in Figure 3.3. 

 

3.2   OPERATING PROCEDURE OF FREEZE CASTING SET UP 

In this section, a step-by-step operating procedure of the freeze casting device is described, which 

is also schematically depicted in Fig. 3.4. As mentioned previously, amount of L-N2 in the Dewar 

is one critical parameter to control the freezing kinetics. After conducting preliminary studies (not 

discussed here) and to ensure that both the cold finger and Teflon mold containing ceramic 

suspension are retained within the cooling zone inside the Dewar during freeze casting, it was 

decided to utilize 1.75 L of L-N2 for each experiment. To begin a freeze casting experiment, the 

first step is thus to ensure that the desired volume of L-N2 (1.75 L) is contained within the Dewar. 

For this purpose, the L-N2 level indicator is inserted inside the Dewar (Fig. 3.4a), which can move 

vertically on the threaded rod to adjust the position for different volume of L-N2 in the Dewar. 
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Afterwards, L-N2 is poured into the Dewar through the funnel until top surface of the liquid touches 

the metal plate of the level indicator (Fig. 3.4b). This indicates that desired volume of L-N2 (1.75 

L) is present within the Dewar. The level indicator is then moved out of the Dewar. The next step 

is to adjust the gap in between the cold finger and top surface of L-N2, which is performed using 

Figure 3.4: Schematic representation of the step-by-step operational procedure of the unidirectional 
freeze casting set up. (a) pouring of L-N2 in to the Dewar, (b) adjustment of gap between L-N2 and 

cold finger by digital micrometer, (c) transfer of ceramic slurry in to Teflon mold, (d) start of 
freeze casting experiment. 
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the digital micrometer. As the spindle moves out of the micrometer, the L-shaped arm containing 

the cold-finger moves upward and digital reading on the micrometer indicates the magnitude of 

the vertical displacement. Using the micrometer, the cold-finger is displaced upward until a desired 

gap in between the cold-finger and L-N2 is achieved (Fig. 3.4b). As mentioned previously, by 

adjusting the gap in between the cold-finger and L-N2, unidirectional temperature gradient and 

thus the freezing front velocity are controlled. In the next step (Fig. 3.4c), a Teflon tube (ID 19 

mm, wall thickness 3.2 mm, height 72 mm) is placed on the cold-finger, which is utilized as a 

mold to contain ceramic suspension during the freeze casting. Both the ends of the Teflon tube are 

polished to make them flat and parallel. For each experiment, a small amount of grease is applied 

on the bottom surface of the mold to glue the mold on the cold-finger. This is done to ensure that 

there is no leakage of suspension from the bottom of the mold. However, care is taken to avoid 

any spread of the grease on the cold-finger inside the mold so that there is no grease in between 

the plate and suspension. Care is also taken while transferring the suspension to the mold so that 

no air bubbles get trapped within the suspension, which can cause defects in the processed 

materials. At this stage, the Teflon mold is radially insulated using a high-density polymeric foam 

to avoid any thermal gradient from the sides so that the suspension within the mold is subjected to 

only unidirectional temperature gradient during freeze casting experiment (Fig. 3.4c). Similarly, 

the upper part of the inner wall of the Dewar is also insulated to minimize radial thermal gradient 

to the mold (Fig. 3.4d). Once the mold is filled with the desired volume of ceramic suspension, the 

entire assembly is inserted inside the Dewar and temperature of the cold-finger decreases rapidly 

from room temperature (Fig. 34.d). This step initiates the unidirectional freezing of the ceramic 

suspension. The length of the freezing process varies within a range of 30-70 min depending on 

the ice growth velocity. Higher the gap in between the cold-finger and L-N2, the lower is the 
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freezing front velocity and longer will be freezing time. Having provided the operating procedure 

of the freeze casting device, the following sections briefly discuss the adjustment and estimation 

of freezing front velocities, ceramic suspension preparation, and freeze drying and sintering of 

freeze-cast samples.  

 

3.3   CONTROL AND ESTIMATION OF FREEZING FRONT VELOCITIES (FFVS) 

During unidirectional freeze casting of an aqueous ceramic suspension, ice crystals nucleate and 

grow from the bottom to the top of the suspension, i.e., in the direction of the applied temperature 

gradient. Ice-templated scaffolds transition from a dense layer to an isotropic cellular structure to 

eventually a lamellar morphology oriented in the direction of the applied thermal gradient that 

prevails for rest of the length of a sample [50, 58, 60]. This is because ice crystals initially grow 

very rapidly but a steady-state growth velocity is eventually reached. However, it is difficult to 

maintain a constant ice growth velocity or freezing front velocity (FFV) over long distances (cm) 

and a structural gradient is thus common to observe within the lamellar region [50, 51, 58, 60]. In 

this thesis, an average FFV was estimated for each freeze casting experiment using the time-

temperature data obtained from the T-type thermocouple attached on the cold-finger. During a 

freeze casting experiment, initially the cold-finger is at room temperature but the temperature 

decreases rapidly as the cold-finger is placed close to L-N2. It is assumed that ice nucleation at the 

bottom of the suspension occurs as soon as the temperature of the cold-finger reaches 0 °C and the 

corresponding time is considered as the start time of the freezing process. The top of the suspension 

is visually inspected frequently during the experiment for completion of solidification and the time 

when the top is solidified is considered as the end time of the freezing process. Average FFV is 

estimated by dividing the frozen sample height (measured after removal of the sample from the 
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mold) with the time required to complete the solidification (i.e., the time difference in between the 

end time and start time of the freezing process).        

Microstructure of an ice-templated cellular ceramic is influenced significantly by the FFV, which 

depends on the rate of cooling of the cold-finger. As mentioned previously, in the freeze casting 

set up developed here, rate of cooling of the cold-finger and thus FFV were controlled by adjusting 

the gap in between the cold-finger and top surface of L-N2. Figure 3.5a shows the time-temperature 

plots measured from the cold-finger during freeze casting for four different gaps. It can be observed 

that for each gap, cold-finger first reaches a low temperature (about -20 °C) linearly within few 

minutes, which is followed by a decrease of the slope and for the rest of the duration of the 

experiment the plate temperature decreases approximately linearly. The maximum lowest 

temperature of the cold-finger reached during an experiment increases with the decreasing gap. 

(a) 

Figure 3.5: (a) Change of temperature of the cold-finger with time for four different gaps in 
between the cold-finger and top surface of L-N2 and (b) cold-finger gap vs. average FFV. 

(b) 
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Also, the greater the gap in between the cold-finger and L-N2 the longer is the time required for 

completion of the freeze casting. Figure 3.5b shows the plot of cold-finger to L-N2 surface gap vs. 

average FFV revealing an almost linear variation of the FFV with the gap. Within a gap of 3-25 

mm, average FFV values in the range of 15-30 μm/s were obtained.     

 As discussed above, it is assumed that ice nucleation and growth started at the bottom of the 

ceramic suspension as soon as the temperature on the top surface of cold-finger reaches 0 °C. 

However, ice nucleation and growth may consume a finite amount of time and as a result, the 

estimated FFV values might present an underestimate of the actual average FFV. Therefore, an 

alternate procedure was also employed here for the estimation of average FFV. For this purpose, 

two fine holes were drilled on the mold wall from outside (to insert a thermocouple at each hole) 

at 3 mm and 42 mm heights from the cold-finger. However, a fine layer of Teflon is maintained in 

Figure 3.6: Variations of the cold-finger temperature and mold wall temperature with time at two 
different heights from the cold-finger (3 mm and 40 mm) for a cold-finger to L-N2 gap of (a) 5 
mm and (b) 25 mm. (c) average FFVs measured from thermocouple attached on cold finger vs. 

thermocouple attached on mold wall. 

(a) (b) (c) 
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between the thermocouple and ceramic suspension so that the thermocouple does not come in 

contact with the suspension directly during freeze casting. Several experiments were conducted 

where time-temperature data were simultaneously collected from the cold-finger as well as from 

two different locations (3 mm and 40 mm) on the mold wall. The mold was filled with ceramic 

suspension up to a height of 45 mm from the cold-finger. Figures 3.6a and 3.6b show the measured 

time-temperature data corresponding to cold-finger (Plate TC) and mold wall (Mold wall TC1 for 

3 mm and Mold wall TC2 for 40 mm) for gaps of 5 mm and 25 mm, respectively. During an 

experiment, a thermocouple inserted into the mold wall will record 0 °C as the ice front passes 

through the height where the thermocouple is located [61]. Therefore, both the thermocouples 

inserted into the mod wall at 3 mm and 40 mm heights will record 0 °C but at different times. From 

this time difference and using the height difference (37 mm), average FFV was also estimated. 

Figure 3.6c shows a plot of the average FFV values estimated from the cold-finger vs. average 

FFV values estimated from thermocouples on the mold wall for various cold-finger gaps. It can be 

seen that the ratio of the average FFVs estimated from two different methods is almost 1, 

suggesting that both are equally applicable for the estimation of the average FFVs. Based on this 

observation, it was decided to utilize the time-temperature data measured from the cold-finger for 

the estimation of average FFV.   

   

3.4  PROCESSING OF CELLULAR CERAMICS USING THE CUSTOM-MADE FREEZE 

CASTING DEVICE 

In this section, all the processing steps that are involved in freeze casting are briefly discussed. 

Towards the end of this section, few representative scanning electron microscope (SEM) images 

of the sintered porous alumina (Al2O3) ceramics are presented to demonstrate the control over the 
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freeze-cast microstructure development. Figure 3.7 shows all the processing steps employed in 

this thesis for processing of porous ceramics using freeze casting. Since the time requirement of 

unidirectional solidification of a ceramic suspension in freeze casting process typically ranges 

from 30-60 min, preparation of a well-dispersed aqueous suspension is important. For this purpose, 

aqueous ceramic suspensions were prepared using a ball mill. First the required amount of ceramic 

powder, deionized water and milling media (zirconia, ZrO2, spheres of 5 mm diameter) were 

mixed in a Nalgene bottle. To stabilize the suspension, small amount of a dispersant (typically 0.5 

wt.% of the powder) was also added to the suspension. Next, the suspension was ball milled for 

24 hours. After completion of ball milling, a binder was added to the suspension (typically 5 wt.% 

of the powder) and mixed for another hour. Afterwards, the ZrO2 spheres were separated from the 

suspension followed by de-airing for 30 min.  

Figure 3.7: Processing steps involved in fabrication of porous ceramics using unidirectional 
freeze casting. 
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Next, the custom-made device developed here was employed for the unidirectional freeze casting. 

In the current work, gap in between the liquid N2 and cold-finger was varied systematically to 

achieve average FFV values in the range of 12-34 μm/s. After completion of the freeze casting, 

the frozen sample was removed from the mold and stored in a refrigerator temporarily. All the 

freeze-cast frozen samples were approximately 19 mm in diameter and 45 mm in height. 

Afterwards, the frozen samples were freeze-dried (Freeze Dryer 2.5L, Labconco, Kansas City, MI) 

for 96 hours at a low pressure (0.014 mbar) and temperature (-50°C). Next, the freeze-dried 

samples were sintered in a box furnace (KSL-1700X, MTI Corporation, Richmond, CA) using the 

following time-temperature schedule: (i) heated from the room temperature to 450°C at a rate of 

3°C/min and held for 4 hours for the binder burnout, (ii) heated from 450°C to 1550°C at a rate of 

Figure 3.8:  Schematic diagram of sintering regime for all green samples. 
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5°C/min and sintered for 4 hours, and (iii) finally cooled from the sintering temperature to the 

room temperature at a rate of 5°C/min (Fig. 3.8).  

A desktop SEM was employed to investigate the microstructures of the sintered materials. Figure 

3.9 shows a representative SEM micrograph (ice growth direction out of the page) of a sintered 

porous alumina (Al2O3) ceramic, which reveals relatively long-range order of ceramic lamellae 

walls and oriented pores. It can also be observed that there exist several lamellar regions that are 

randomly oriented with respect to each other as indicated by the thick yellow arrows. However, 

within each individual lamellar region ceramic walls are observed to be highly parallel. During 

unidirectional freeze casting of aqueous ceramic suspension, ice crystals nucleate randomly at the 

bottom of a suspension over the cold surface. While the unidirectional thermal gradient aligns the 

growing ice crystals in the direction of the alignment, there is, however, limited alignment that 

occurs along the radial direction. As a result, several randomly oriented colonies of ice crystals 

emerge that grow vertically under the influence of the applied temperature gradient and within 

Figure 3.9: SEM micrograph revealing multilayered porous structure of sintered Al2O3. 

100 μm 

Lamella walls 
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each colony basal planes of the ice crystals remain mutually parallel. Sublimation of the phase 

segregated and solidified suspension results in lamellar pore morphology with random oriented 

lamellar domains, as observed in Fig. 3.9. Figures 3.10a and 3.10b show the SEM micrographs 

revealing microstructures of freeze-cast sintered porous Al2O3 ceramics, which were processed at 

relatively high (29.4 μm/s) and relatively low (15.5 μm/s) FFVs (ice growth direction out of the 

page). While both the SEM micrographs show lamellar pore morphology, both the thickness of 

the lamellae walls and interlamellae spacing are observed to decrease with the increasing FFV.  

This occurs because with increasing FFV more number of ice crystals nucleate and as a result finer 

freeze-cast microstructure is obtained. These observations are consistent with the results reported 

by others. Overall, the microstructural investigations support that the custom-made device 

successfully developed porous ceramics with well-controlled microstructures.  

Figure 3.10: SEM micrographs revealing microstructures of freeze-cast sintered porous Al2O3 
ceramics, processed at (a) a relatively high (29.4 μm/s) and (b) a relatively low (15.5 μm/s) FFVs 

(ice growth direction out of the page). 

(a) (b) 
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CHAPTER 4 

A COMPARISON OF MICROSTRUCTURE AND UNIAXIAL 

COMPRESSIVE RESPONSE OF ICE-TEMPLATED ALUMINA 

SCAFFOLDS FABRICATED FROM TWO DIFFERENT PARTICLE SIZES 

Freeze casting (ice-templating) is an emerging processing technique to develop anisotropic 

ceramic scaffolds that are promising for bone-tissue engineering, solid-state battery electrodes, 

solid oxide fuel cells, impact energy-absorption, and other structural applications [47, 52, 58, 61-

68]. In this technique, an aqueous or non-aqueous particulate suspension is solidified under a 

unidirectional temperature gradient and subsequent sublimation of the frozen solid results in an 

anisotropic porous microstructure that is a replica of the frozen solvent structure. Afterwards, green 

bodies are sintered to partially densify and strengthen the scaffolds but without altering the overall 

pore architecture. Although various solvents are employed as a freezing vehicle, water results in a 

tunable lamellar pore morphology that can meet the demand of anisotropic scaffolds with low pore 

tortuosity. Most of the available studies on freeze casting are focused on understanding the inherent 

process-microstructure correlations and, therefore, the understanding of the structure-property 

(mechanical in particular) relationships has been limited. While the total porosity depends mainly 

on the solids loading of a suspension, [47, 52, 58, 61, 65, 69] freezing conditions can be varied to 

tune the microstructural entities such as the lamella thickness and interlamellae spacing, 

interlamella bridge density, pore size, aspect ratio and morphology, and lamella walls roughness; 

all of which can have profound influence on the mechanical performance of the ice-templated 

scaffolds [47, 52, 58, 61-65, 70-73]. Microstructure evolution of the freeze-cast scaffolds as a 

function of the solids loading, freezing rate, suspension viscosity, pH and type of soluble additives, 
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and their relation to compressive mechanical response has been addressed to some extent [52, 58, 

61, 63-65, 70-73]. However, very little attention is given to the effects of the variation of the 

particle size on the microstructure and mechanical response of ice-templated sintered scaffolds.    

During unidirectional solidification of an aqueous particulate suspension, ice crystals nucleate and 

grow from the bottom to the top of the suspension, i.e., in the direction of the applied temperature 

gradient. Solid particles can either be trapped within the growing ice crystals or be rejected by the 

ice front and concentrate in between the ice lamellae. There exists a critical freezing front velocity 

above that particles will remain engulfed within the ice crystals and the critical velocity increases 

with a decreasing particle size [50, 52, 74]. Therefore, at a comparable freezing front velocity 

(FFV) smaller particles will have a greater tendency to be ejected by the advancing ice front in 

comparison to the relatively larger particles. As a result, smaller particles tend to promote the 

Figure 4.1: Influence of particle size on the microstructure development as function of 
solidification velocity [50]. 
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formation of a relatively more lamellar morphology relative to the larger particles. Waschkies et 

al. [50] experimentally developed a processing-pore morphology (lamellar vs. isotropic) map as a 

function of the particle size (Fig. 4.1), which shows that at a given FFV unsintered freeze-cast 

alumina (Al2O3) scaffolds can transition from a fully lamellar to a completely isotropic cellular 

morphology with the increasing particle size. In other words, their study suggests that the FFV 

corresponding to lamellar to isotropic pore morphology transition continues to shift to lower values 

with a gradual increase of the particle size.  

While the experimentally derived processing maps provide valuable insights into the particle size-

pore morphology relationships, very little can be understood on the particle size dependence of the 

mechanical response of the ice-templated sintered scaffolds. As the pore morphology of the 

scaffolds transitions from the lamellar to dendritic to isotropic structure with the increasing particle 

size, an increase of the interlamella bridge density and thus decrease of the pore size is expected 

to enhance the compressive strength. [61, 65] Therefore, for a given ceramic suspension 

composition and FFV, strength of the scaffolds can be expected to increase with the increasing 

particle size. On the other hand, particle size is known to influence the particle packing in between 

the ice lamellae where the packing efficiency can deteriorate with the increasing particle size [75]. 

This may lead to the generation of the microporosity within the lamellae walls, which can be 

detrimental to the strength of the scaffolds. Furthermore, sinterability of ceramic powders 

decreases with the increasing particle size [76]. Therefore, the total porosity of the ice-templated 

scaffolds may increase due to increase of the ceramic walls porosity with the increasing particle 

size, which, in turn, can deteriorate the strength of the scaffolds. To that end, this work fabricated 

ice-templated scaffolds from Al2O3 powders of two different particle sizes (0.3 µm and 0.9 µm) 

as a function of the solids loading and FFV, and investigated the effects of the particle size 
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variation on the microstructure of the sintered scaffolds and their uniaxial compressive response. 

Here, Al2O3 is chosen as a model material system but the results are equally applicable to other 

particulate systems also.  

 

4.1   EXPERIMENTAL      

4.1.1   Ceramic suspension preparation  

Ice-templated scaffolds were processed from the commercially available α-Al2O3 powders of two 

different particle sizes: (i) d50 - 0.3 µm (surface area 8 m2/g, APA-0.5, Sasol, Tuscan, AZ) and (ii) 

average particle size ~0.9 µm (surface area 2-4 m2/g, Alfa Aesar, Ward Hill, MA). Here, these two 

powders are referred to as the SA (submicron-Al2O3 powder for 0.9 µm particle size) and NA 

(nano-Al2O3 powder for 0.3 µm particle size). For each ceramic suspension, required amount of 

the Al2O3 powder and small amount (0.5 wt.% of the powder) of ammonium polymethacrylate 

anionic dispersant (Darvan C, R.T. Vanderbilt Co., Norwalk, CT) were mixed with deionized 

water, followed by ball milling for 24 hours using zirconia (ZrO2) spheres of 5 mm diameter. Next, 

an organic binder poly (2-ethyl-2-oxazoline) was added to the suspension (5 wt.% of the powder) 

and mixed for another hour. Afterwards, the ZrO2 spheres were separated from the suspension 

followed by de-airing for 30 min. For each type of powder, ceramic suspensions were prepared for 

three different solids loadings: 15, 25, and 35 vol.%.  

4.1.2   Freeze casting and sintering  

A custom-made device was employed for the unidirectional freeze casting of the Al2O3 

suspensions. In this set up, a cylindrical Teflon tube is placed on the top of a thin (0.5 mm 

thickness) steel plate and filled with Al2O3 suspension. The whole assembly is next inserted within 
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a liquid nitrogen (L-N2) Dewar, and the ice crystals start to grow at the bottom of the suspension 

and propagate upwards under an influence of the applied temperature gradient. The mold (Teflon 

tube) is radially insulated to avoid horizontal thermal gradient and ensure that the aqueous 

suspensions were frozen only under the vertical (i.e., unidirectional) thermal gradient. By adjusting 

the gap in between, the steel plate and the liquid N2 top surface, unidirectional temperature gradient 

and thus the FFV are controlled. A thermocouple attached on the top of the steel plate measures 

the temperature change during the freezing process. In the current work, the gap in between the 

liquid N2 and steel plate was varied systematically to achieve average FFV values in the range of 

12-34 µm/s where an average FFV was estimated by dividing the frozen sample height with the 

time required to complete the solidification [69]. After freeze casting, the frozen sample was 

removed from the mold and stored in a refrigerator temporarily. All the freeze-cast frozen samples 

were approximately 19 mm in diameter and 45 mm in height. Afterwards, the frozen samples were 

freeze-dried (Freeze Dryer 2.5L, Labconco, Kansas City, MI) for 96 hours at a low pressure (0.014 

mbar) and temperature (-50°C). Next, the freeze-dried samples were sintered in a box furnace 

(KSL-1700X, MTI Corporation, Richmond, CA) using the following time-temperature schedule: 

(i) heated from the room temperature to 450°C at a rate of 3°C/min and held for 4 hours for the 

binder burnout, (ii) heated from 450°C to 1550°C at a rate of 5°C/min and sintered for 4 hours, 

and (iii) finally cooled from the sintering temperature to the room temperature at a rate of 5°C/min. 

Sintered scaffolds processed from the suspensions with 15, 25 and 35 vol.% solids loadings will 

be referred to here as SA-15, SA-25 and SA-35 for the SA powder and NA-15, NA-25 and NA-

35 for the NA powder. 
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4.1.3 Microstructure characterization, density measurements, and uniaxial compression 

testing  

Ice-templated scaffolds fabricated under unidirectional freezing conditions transition from a dense 

layer to an isotropic cellular structure to eventually a lamellar morphology oriented in the direction 

of the applied thermal gradient that prevails for rest of the length of a sample [58, 65, 50]. Also, a 

structural gradient is common to observe within the lamellar region. In the current work, the 

microstructure of each Al2O3 scaffold was characterized from two different planes transverse to 

the freezing direction, [65] located at 5 mm (referred to as bottom plane) and 30 mm (referred to 

as top plane) heights, respectively, from the bottom of each sample (Fig. 4.2a). For each transverse 

plane, the followings were quantified: (i) lamella thickness (t) and interlamellae 

spacing/wavelength (μ), (ii) pore size, both the major axis (𝑎𝑎) and minor axis (𝑏𝑏), (iii) pore aspect 

ratio (𝜒𝜒𝑝𝑝 = 𝑎𝑎 𝑏𝑏⁄ ), and (iv) lamellae bridge density (𝜌𝜌𝑏𝑏, described later). For each microstructural 

feature, at least 100 measurements were performed. Uniaxial compression experiments were 

Figure 4.2: Schematic presentation of the locations of the (a) top and bottom planes, and (b) #1, 
#2 and #3 compression tests specimens. 
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conducted using a Tinius Olsen (model 10ST) mechanical testing machine equipped with a 5 kN 

load cell at a displacement rate of 0.5 mm/min. As shown in Fig. 4.2b, for each sintered Al2O3 

scaffold, three specimens (referred to as #1, #2 and #3) were extracted from three different heights 

along ice growth direction for the compression tests. The density of each sintered specimen (𝜌𝜌∗) 

was determined from the mass and dimension measurements, and the relative density (𝜌𝜌𝑟𝑟) was 

estimated from 𝜌𝜌∗ 𝜌𝜌𝑠𝑠⁄  where 𝜌𝜌𝑠𝑠 is the bulk density of dense Al2O3 ceramic (3.96 g/cm3). Uniaxial 

compressive measurements were conducted along the ice growth direction on the specimens of 

dimensions 8 mm × 8 mm × 4 mm; 8 mm × 8 mm being the loading surface.  

 

4.2   RESULTS AND DISCUSSION 

4.2.1   Microstructure, relative density, and porosity 

Figure 4.3 shows SEM micrographs of both the top and bottom planes of the sintered SA-15, SA-

25, SA-35, NA-15, NA-25, and NA-35 scaffolds. For each composition, representative 

microstructures are shown for the scaffolds processed at the relatively low (13-18 μm/s) and 

relatively high (24-32 μm/s) FFVs. Irrespective of the powder particle size and suspension 

concentration, pore morphology of the sintered scaffolds at the relatively low FFV regime (Figs. 

4.3a-f) is observed to be essentially lamellar with limited interlamellae bridging. However, for 

each composition a structural gradient is evident where the average lamella thickness, t, (i.e., 

ceramic walls thickness) and wavelength, μ, (both indicated in Fig. 4.3) increased from the bottom 

plane to the top plane. The observed increase of the microstructural features in the direction of the 

ice growth is a typical characteristic of the ice-templated scaffolds and is attributed to the difficulty 

of maintaining a constant ice growth velocity over long distance (cm) under the unidirectional 

freezing conditions [71]. Note that the distance in between the bottom and top planes is 2.5 cm 



47 
 

 
 

(Fig. 4.2b). A comparison among the top planes or bottom planes of the SA-scaffolds (Figs. 4.3a-

c) or NA-scaffolds (Figs. 4.3d-f) at the relatively low FFVs also reveals that both the t and μ 

increase with the increasing suspension concentration, which is attributed to the increase of the 

solids content in the scaffolds.   

Interesting microstructural differences can be noticed in between the NA-scaffolds and SA-

scaffolds at the relatively high FFV regime (24-32 µm/s). For both the SA-15 (Fig. 4.3g) and SA-

25 scaffolds (Fig. 4.3h) while the lamellar pattern can still be noticed, the extent of the 

interlamellae bridging increased significantly relative to the low FFV regime (Figs. 4.3a and 4.3b). 

Figure 4.3: SEM micrographs of the top and bottom planes of the ice-templated Al2O3 scaffolds 
corresponding to relatively low and high freezing front velocities (FFVs). The length of the scale 

bar is 80 µm and ice growth direction is out of the page. 
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As a result the pore morphology rather appears dendritic [69]. For the SA-35 scaffold (Fig. 4.3i) 

the lamellar pore morphology is almost lost and the pores appear isotropic. Unlike the SA-

scaffolds, the NA-scaffolds exhibit less marked transition of the pore morphology with the 

increasing FFV (Figs. 4.3j-l). It can be observed that the interlamellae bridging increased 

considerably with the increasing solids loading and FFV, and the pore morphology of the NA-

scaffolds can be considered as dendritic at the high FFV regime. In Fig. 4.4, the high magnification 

SEM micrographs of the SA-35 and NA-35 scaffolds processed at the comparable high FFVs, 

clearly reveal that the pore morphology of the former is almost isotropic whereas it is dendritic for 

the later. Microstructural investigations thus suggest that the pore morphology of the SA-scaffolds 

gradually transitioned from a lamellar to an isotropic structure with the increasing FFV and solids 

loading whereas the pore morphology of the NA-scaffolds rather transitioned from lamellar to 

dendritic structure only. Therefore, it can be stated that within the investigated range of the FFV 

the ice-templated scaffolds processed from the smaller particle size NA powder preferred the 

Figure 4.4: High magnification SEM micrographs revealing (a) almost isotropic pore morphology 
of the SA-35 scaffold and (b) dendritic pore morphology of the NA-35 scaffold processed at 

relatively high FFVs. Ice growth direction is out of the page. 
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development of the lamellar pore morphology in comparison to the scaffolds processed from the 

larger particle size SA powder. Critical FFV (𝑣𝑣𝑐𝑐) above which the particles remain entrapped 

within the solvent crystals can be expressed as [52, 69], 

𝑣𝑣𝑐𝑐 = ∆𝜎𝜎𝜎𝜎
3𝜂𝜂𝜂𝜂

�𝑎𝑎Ο
𝜎𝜎
�
𝑧𝑧

       (1) 

where Δ𝜎𝜎 is the mean free energy of the particle, 𝑎𝑎Ο is the average intermolecular distance in the 

liquid film between the particle and the solid front, 𝑑𝑑 is the overall thickness of this film, 𝜂𝜂 is the 

slurry viscosity, 𝑅𝑅 is the particle radius, and 𝑧𝑧 is an exponent that can vary from 1 to 5. According 

to Equation (1) since the 𝑣𝑣𝑐𝑐 increases with a decreasing 𝑅𝑅, a decrease of the particle size can 

facilitate the particle rejection by a freezing front and leads to the formation of the lamellar pore 

Figure 4.5: Variation of the average relative density (𝜌𝜌𝑟𝑟) and total porosity (𝑝𝑝𝑡𝑡) of NA-scaffolds 
and SA-scaffolds with the initial suspension concentration. 
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morphology. Thus, for a given suspension concentration ice-templated scaffolds tend to become 

relatively more lamellar with the decrease of the particle size as is also observed in this study (Figs. 

4.3 and 4.4).         

Figure 4.5 shows a comparison of the relative density (𝜌𝜌𝑟𝑟) and total porosity (𝑝𝑝𝑡𝑡 = (1 − 𝜌𝜌𝑟𝑟) ∗

100) of the sintered scaffolds as a function of the suspension concentration. For each composition, 

𝜌𝜌𝑟𝑟 and 𝑝𝑝𝑡𝑡 values represent an average of all the sintered scaffolds processed over the FFV range 

investigated here. The average 𝜌𝜌𝑟𝑟 and 𝑝𝑝𝑡𝑡 values are also listed in Table 4.1. It is seen that the 

average 𝜌𝜌𝑟𝑟 and 𝑝𝑝𝑡𝑡 of the NA-15 is slightly higher and lower, respectively, relative to the SA-15. 

With the increasing suspension concentration, both the 𝜌𝜌𝑟𝑟 and 𝑝𝑝𝑡𝑡 increased and decreased, 

respectively. However, the NA-scaffolds exhibit a greater increase of the 𝜌𝜌𝑟𝑟 (i.e., a greater decrease 

Table 4.1: Variation of average relative density (𝜌𝜌𝑟𝑟) and total porosity (𝑝𝑝𝑡𝑡) with solids loading. 
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of the 𝑝𝑝𝑡𝑡) in comparison to that of the SA-scaffolds. As a result, the relative difference of the 𝜌𝜌𝑟𝑟 

(or 𝑝𝑝𝑡𝑡) in between the NA-scaffolds and SA-scaffolds increased with the increasing solids loading 

(Fig. 4.5, Table 4.1). The observed higher 𝜌𝜌𝑟𝑟 and lower 𝑝𝑝𝑡𝑡 of the sintered NA-scaffolds relative to 

the SA-scaffolds can be attributed to the smaller particle size of the NA powder relative to that of 

the SA powder. As mentioned previously, an increase of the surface area with a decreasing particle 

size enhances densification of ceramics during sintering [76]. Additionally, finer particles can pack 

more efficiently in between the growing ice lamellae during the unidirectional freezing process in 

comparison to the coarser particles [75]. Figures 4.6a and 4.6b reveal the lamellae cross-sections 

of the sintered NA-15 and SA-15 scaffolds, respectively. It can be observed that the lamellae of 

the NA-15 (Fig. 4.6a) are highly dense with almost no visible porosity whereas the lamellae of the 

SA-15 (Fig. 4.6b) contain considerable amount of microporosity. This further supports the better 

sinterability of the relatively finer NA powder in comparison to the relatively coarser SA powder. 

Therefore, it can be stated that better particle packing within the lamellae walls and higher 

sinterability of the NA particles in comparison to the SA particles resulted in the higher 𝜌𝜌𝑟𝑟 and 

Figure 4.6: Lamellae walls microstructures of the (a) NA-15 and (b) SA-15 scaffolds revealing 
the dense walls for the former and porous walls for the later. (c) long-range order of the dendrites 

on the lamella wall of the NA-25 scaffold. Ice growth direction is out of the page. 
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thus lower 𝑝𝑝𝑡𝑡 of the NA-scaffolds relative to that of the SA-scaffolds. Difference of the 𝜌𝜌𝑟𝑟 in 

between the NA-scaffolds and SA-scaffolds increased progressively with the increasing solid 

content, which is a characteristic of ceramic sintering.    

Figure 4.6 also reveals the dendritic features on one side of the lamellae walls for both the NA-15 

and SA-15 scaffolds that run in the direction of ice growth; a characteristic of the ice-templated 

structures due to the anisotropic growth features of the ice crystals [58]. However, the dendritic 

surface pattern on the lamellae walls is observed to be more distinct and well developed for the 

NA-15 relative to the SA-15. Also, each dendrite seems to maintain a relatively long-range order 

Table 4.2: Variation of average lamella thickness (𝑡𝑡) with solids loading and FFV. 
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on the lamella wall as indicated for the NA-25 scaffold in the direction of ice growth (Fig. 4.6c). 

Surface features observed on the lamellae walls are the direct replica of the surface morphology 

of the ice crystals. Due to the small size, the NA particles probably well replicated the anisotropic 

surface features of the ice crystals. As a result, the lamellae walls of the NA-scaffolds are observed 

to be significantly smoother and exhibit relatively long-range order of the dendrites in comparison 

to the SA-scaffolds. This can also be related to the particle size effects on the thermodynamic 

stability of the freezing front. Increase of the particle size causes greater supercooling effects, [74] 

leading to the instabilities of the freezing front [77]. Hence, the scaffolds processed from the larger 

particles (i.e., SA powder) can have more surface roughness compared to the scaffolds processed 

from the smaller particles (i.e., NA powder). Overall, the microstructural observations suggest that 

the particle size not only affects the pore morphology of the scaffolds but also the lamellae walls 

porosity and roughness.  

Tables 4.2-4.5 show the variation of the average lamella thickness (𝑡𝑡), wavelength (𝜇𝜇), major (𝑎𝑎) 

and minor (𝑏𝑏) axes of the pores, and pore aspect ratio (𝜒𝜒𝑝𝑝 = 𝑎𝑎 𝑏𝑏⁄ ), respectively, of the Al2O3 

scaffolds corresponding to relatively low and high FFVs. Although the above microstructural 

parameters were not measured at the intermediate FFVs, typically these features increase gradually 

with the solids loading for a comparable FFV and decrease with the increasing FFV for a given 

solids loading [69]. Additionally, these microstructural features increase in the direction of the ice 

growth and substantial increase can be observed for long samples (few centimeters).[65, 71] 

Similar general trends can also be observed from Tables 4.2-4.5 and is not thus addressed here 

further. An interesting observation at the relatively high FFVs is that while the average 𝑡𝑡 and 𝜇𝜇 of 

the NA-scaffolds increase with the solids loading, 𝑡𝑡 and 𝜇𝜇 increase from SA-15 to SA-25 but 

decrease from SA-25 to SA-35. Since the pore morphology of the SA-35 becomes almost isotropic 
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at the high FFV, significant amount of the ceramic is consumed in forming the isotropic cells 

resulting in a decrease of the 𝑡𝑡 and 𝜇𝜇. This is further supported by the measured 𝜒𝜒𝑝𝑝 that is observed 

to be close to 1 for the SA-35 scaffold at the high FFV. No clear trend is observed for the 𝜒𝜒𝑝𝑝 in 

between the SA-scaffolds and NA-scaffolds at the relatively low FFVs. On the other hand, for a 

given composition and at the relatively high FFV, 𝜒𝜒𝑝𝑝 of the SA-scaffold is observed to be 

considerably smaller in comparison to that of the NA-scaffold (Table 4.5). Overall, the 𝜒𝜒𝑝𝑝 

measurements also support the microstructural observations made from Figs. 4.3 and 4.4 that for 

a given composition and at a comparable FFV the NA-scaffold is relatively more lamellar relative 

to the SA-scaffolds. 

Table 4.3: Variation of average wavelength (𝜇𝜇) with solids loading and FFV. 
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Table 4.4: Variation of average pore major (𝑎𝑎) and minor (𝑏𝑏) axes with solids loading and FFV. 
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4.2.2   Effects of freezing front velocity on relative density 

Figure 4.7 presents the variation of the 𝜌𝜌𝑟𝑟 of the NA-scaffolds and SA-scaffolds with the FFV. For 

each composition and at an FFV, the average 𝜌𝜌𝑟𝑟 and standard deviation were calculated from the 

𝜌𝜌𝑟𝑟 values corresponding to the #1, #2 and #3 specimens. It can be observed that the 𝜌𝜌𝑟𝑟 of the 

scaffolds increases almost linearly with the FFV except for the NA-25 where the 𝜌𝜌𝑟𝑟 rather appears 

to decrease with the increasing FFV. For a given solids loading, the origin of the difference of the 

𝜌𝜌𝑟𝑟 in between the NA-scaffolds and SA-scaffolds is attributed to the finer particles size of the NA 

powder and is already discussed in the Section 3.1. Mass transport during the densification of the 

Table 4.5: Variation of pore aspect ratio (𝜒𝜒𝑝𝑝) with solids loading and FFV. 
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powder particles is enhanced by a decrease of the radius of curvature of the solid-vapor interface 

and, therefore, the pore radius of curvature strongly influences the density of the sintered scaffolds 

[69, 78]. As a result, for a given solids loading, sintered density increases with a decrease of the 

pore size. As discussed in the Section 3.1, for a given solids loading pore morphology of the 

sintered scaffolds changes with the increasing FFV due to the increase of the interlamellae bridge 

density (Fig. 4.3). Similarly, for a comparable FFV, the pore morphology also changes with the 

increasing solids loading (Fig. 4.3). Overall, with the increasing FFV and solids loading, pore 

morphology gradually transitions from lamellar to almost isotropic for the SA-scaffolds and 

lamellar to dendritic for the NA-scaffolds. As a result, both the average pore size (Table 4.4) and 

the aspect ratio (Table 4.5) decrease with the increasing FFV and solids loading. Since, the 

dendritic and isotropic pores have a smaller radius of curvature in comparison to the lamellar pores 

Figure 4.7: Variation of the average relative density (𝜌𝜌𝑟𝑟) of the NA-scaffolds and SA-scaffolds 
with the freezing front velocity (FFV). 
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that are large and flat, an increase of the sintered density will result as the pores become 

increasingly dendritic/isotropic. Figure 4.8 shows the variation of the 𝜌𝜌𝑟𝑟 of the #1, #2 and #3 

specimens (Figure  4.2b) of the NA-scaffolds and SA-scaffolds processed at the comparable FFVs. 

For a given composition, 𝜌𝜌𝑟𝑟 decreases slightly from the #1 to #2 to #3 specimens and a similar 

trend is observed at all other FFVs also (not shown here). It can be noticed that over a large sample 

length of approximately 21 mm, variation of the 𝜌𝜌𝑟𝑟 is only about 0.02-0.04 (2-4% porosity) except 

for the NA-35 that exhibits a variation of the 𝜌𝜌𝑟𝑟 of about 0.07 (7% porosity). Figure 4.8 also 

suggests that the overall structural gradient remains comparable irrespective of the particle size. 

 

 

Figure 4.8: Variation of the relative density within the SA-scaffolds and NA-scaffolds along the 
direction of the ice growth. For each composition, average FFV value is also provided. 
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4.2.3   Uniaxial compressive fracture strength 

Having discussed the effects of the variation of the particle size on the microstructure and 𝜌𝜌𝑟𝑟, the  

Figure 4.9: Representative stress-strain curves of the (a) SA-15 scaffold, (b) NA-15 scaffold, (c) 
SA-35 scaffold, and (d) NA-35 scaffold corresponding to the relatively low and high FFVs. For 
each composition and FFV, compressive response of the #1 and #3 specimens are shown up to a 

strain level of 0.6, after which densification started. 
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results of the uniaxial compressive strength measurements are now discussed here. Figure 4.9 

shows the representative stress-strain curves of the SA-15 (Fig. 4.9a), NA-15 (Fig. 4.9b), SA-35 

(Fig. 4.9c), and NA-35 (Fig. 4.9d) scaffolds corresponding to the relatively low and high FFVs. 

For each composition and FFV, compressive response of the #1 and #3 specimens are shown up 

to a strain level of 0.6, after which densification started. For a given composition and FFV, 

compressive strength of the #1 specimen is always observed to be greater in comparison to that of 

the #3 specimen. Although not shown for clarity but the strength of the #2 specimen appears in 

between that of the #1 and #3. The decrease of the strength from #1 to #2 to #3 can be attributed 

to the decrease of the 𝜌𝜌𝑟𝑟 in the same sequence within a scaffold (Fig. 4.8). As mentioned earlier, 

the decrease of the 𝜌𝜌𝑟𝑟 from the bottom to the top of a scaffold is due to the gradual change of the 

pore morphology and/or pore size, where the pore size and aspect ratio increases along the ice 

growth direction (Fig. 4.3, Tables 4.4 and 4.5). Thus, the observed decrease of the compressive 

strength from #1 to #2 to #3 specimens of a scaffold can also be attributed to the increase of the 

pore size and aspect ratio along the ice growth direction. Additionally, for a given composition 

strength of the #1 (or #3) increases with the FFV. Recall from Figure 4.7 that for a given scaffold 

composition 𝜌𝜌𝑟𝑟 increases with the FFV due to the decrease of the pore size with the increasing 

FFV. Therefore, the observed increase of the strength of the #1 (or #3) with the FFV for a given 

composition is attributed to the combined effects of the increase of the 𝜌𝜌𝑟𝑟 and decrease of the pore 

size and aspect ratio with the increasing FFV.  

It can be further observed that the SA-15 (Fig. 4.9a) and NA-15 (Fig. 4.9b) scaffolds exhibit 

comparable compressive strength values (<10 MPa) except the #1 specimen of the NA-15 at high 

FFV that shows a significantly higher value (~31 MPa). In fact, for all the NA-15 scaffolds 

processed at the relatively high FFVs strength of the #1 specimens is observed to be significantly 
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higher in comparison to that of the #2 and #3 specimens. Increase of the strength with the 

increasing suspension concentration is attributed to decrease of the porosity (Fig. 4.5, Table 4.1). 

Additionally, some characteristic differences of the stress-response can be noticed in between the 

high porosity (SA-15 and NA-15) and low porosity scaffolds (SA-35 and NA-35). Stress-strain 

curves of the SA-15 and NA-15 scaffolds suggest the occurrence of the progressive failure under 

the compressive loading conditions as is evidenced by the gradual decrease of the stress with the 

increasing strain, a typical cellular-like response of the highly porous solids [3, 36, 65]. In contrast, 

the SA-35 and NA-35 scaffolds exhibit a sudden drop of the stress once the peak stress is achieved 

Figure 4.10: Variation of the compressive fracture strength of SA-scaffolds and NA-scaffolds 
with the FFV. 
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indicating a significant decrease of the load-bearing capacity that is a typical characteristic of the 

brittle-like failure.  

Figure 4.10 compares the variation of the average compressive strength of the Al2O3 scaffolds as 

a function of the FFV. For each composition and at a FFV, the average strength and standard 

deviation were calculated from the strength values of the #1, #2 and #3 specimens. Although 

significant scatter of the data is observed particularly for the scaffolds with the higher solids 

loadings, the average compressive strength for a given composition increases almost linearly with 

the FFV. Also, all the six scaffold compositions can be divided in to three groups in terms of the 

observed variation of the strength with the FFV: (i) SA-15 and NA-15, (ii) SA-25 and NA-25, and 

(iii) SA-35 and NA-35. Within each group, in general, both the SA-scaffold and NA-scaffold 

exhibit comparable strength values as a function of the FFV. While this observed trend could be 

expected for the SA-15 and NA-15 scaffolds since their 𝜌𝜌𝑟𝑟 values are marginally different (Figs. 

4.5 and 4.7, Table 4.1), the NA-25 and NA-35 scaffolds are expected to exhibit markedly greater 

compressive strength in comparison to the SA-25 and SA-35 scaffolds, respectively. This is 

because both the NA-25 and NA-35 scaffolds have significantly higher 𝜌𝜌𝑟𝑟 (thus lower 𝑝𝑝𝑡𝑡) in 

comparison to that of the SA-25 and SA-35 scaffolds, respectively (Figs. 4.5 and 4.7, Table 4.1). 

Overall, Fig. 4.10 reveals that the compressive strength of the ice-templated scaffolds is 

significantly influenced by the FFV and suspension concentration. Moreover, for a given 

suspension composition and at a comparable FFV, while the microstructure (Fig. 4.3) and 𝜌𝜌𝑟𝑟 (Fig. 

4.7) are significantly influenced by the particle size variation, effects of the particle size variation 

on the compressive strength appear to be marginal.      

To provide further insights into the compressive response of the scaffolds, in Fig. 4.11 the variation 

of the strength with the 𝜌𝜌𝑟𝑟 is shown. For each composition, the strength values of the #1, #2 and 
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#3 specimens of all the scaffolds processed within the investigated range of the FFVs are included. 

The observed variation of the 𝜌𝜌𝑟𝑟 for each composition originates from the variation of the 𝜌𝜌𝑟𝑟 with 

the FFV (Fig. 4.7). For the SA-15 and NA-15 scaffolds, while the compressive strength increases 

slightly with the 𝜌𝜌𝑟𝑟, strength values of both the scaffolds are observed to be low. Except the #1 

specimens of the NA-15 scaffolds processed at the high FFVs that exhibit compressive strength in 

the range of 15-30 MPa, overall strength of the SA-15 and NA-15 scaffolds is observed to be 

comparable and below 10 MPa. Since the 𝜌𝜌𝑟𝑟 of the SA-15 and NA-15 scaffolds are slightly 

different, it can be stated that the strength is mainly governed by the 𝜌𝜌𝑟𝑟. Interestingly, a different 

trend is observed at the higher solids loadings. The compressive strength of both the SA-25 and 

Figure 4.11: Variation of the compressive fracture strength of the SA-scaffolds and NA-scaffolds 
with the relative density (𝜌𝜌𝑟𝑟). 
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NA-25 scaffolds is observed to be comparable and within a range of 10 to 80 MPa. Figure 4.11 

thus suggests that in spite of having an approximately 8% difference of the average 𝜌𝜌𝑟𝑟 (Table 4.1) 

strength values of both the SA-25 and NA-25 scaffolds fall almost within the same range. In other 

words, for both the scaffolds comparable strength values can be found that correspond to the 

sintered specimens with a 𝜌𝜌𝑟𝑟 difference of about 8%. A similar trend is also exhibited by the SA-

35 and NA-35 scaffolds where the strength increased significantly with the 𝜌𝜌𝑟𝑟 and both the 

scaffolds exhibit comparable strength values but at a 𝜌𝜌𝑟𝑟 difference of about 10%. The observed 

increase of the strength with the 𝜌𝜌𝑟𝑟 for each scaffold composition is consistent with the known 

trend that strength of the cellular solids increases with the 𝜌𝜌𝑟𝑟. [3] However, the comparable 

strength of the SA-25 and NA-25 (or SA-35 and NA-35) scaffolds but at distinctly different 𝜌𝜌𝑟𝑟 

strongly suggests that the 𝜌𝜌𝑟𝑟 does not solely govern the compressive response. This is because 

while a higher 𝜌𝜌𝑟𝑟 of the NA-25 in comparison to the SA-25 (or NA-35 in comparison to SA-35) 

would increase the strength of the former than the later, it is possible that there are certain 

microstructural features that enhanced the strength of the SA-25 in comparison to the NA-25 (or 

of SA-35 in comparison to NA-35). As a result, both the SA-25 and NA-25 scaffolds (or SA-35 

and NA-35) exhibit comparable strength but at widely different  𝜌𝜌𝑟𝑟.   

Recall from Fig. 4.3 that for a given suspension concentration and at a comparable low or high 

FFV, the NA-scaffolds are observed to be relatively more lamellar (or less dendritic/isotropic) in 

comparison to the SA-scaffolds. For example, the pore morphology of the SA-35 changed from 

lamellar at relatively low FFV (Fig. 4.3c) to almost isotropic at relatively high FFV (Fig. 4.3i). 

However, within the comparable range of the FFV, pore morphology of the NA-35 rather 

transitioned from lamellar (Fig. 4.3f) to dendritic structure (Fig. 4.3l). As discussed previously, 

the observed microstructural differences in between the SA-scaffolds and NA-scaffolds within the 



65 
 

 
 

investigated range of the FFVs are attributed to the particle size effects on the particle 

rejection/entrapment by an advancing ice front. Here in addition to the 𝜌𝜌𝑟𝑟, the microstructural 

differences in between the SA-scaffolds and NA-scaffolds have a crucial influence on the observed 

compressive response. This is because for the freeze-cast ceramic scaffolds, in addition to the 𝜌𝜌𝑟𝑟, 

pore aspect ratio (𝜒𝜒𝑝𝑝) and interlamella bridge density (𝜌𝜌𝑏𝑏) influence the mechanical properties [61, 

65]. 𝜌𝜌𝑏𝑏 is defined as the number of ceramic bridges in between the adjacent lamellae per unit area 

[69]. It has been shown that as the pore morphology of the scaffolds transitions from a lamellar to 

dendritic/isotropic structure, both the pore size and 𝜒𝜒𝑝𝑝 decrease, which, in turn, increases the 

number of bridges in between the adjacent ceramic lamellae. The compressive load-bearing 

capacity of the scaffolds particularly in the direction of the ice growth is thus enhanced with the 

decreasing pore size and 𝜒𝜒𝑝𝑝, i.e., with the increasing 𝜌𝜌𝑏𝑏, and hence the compressive fracture 

strength. Based on the above discussion, the variations of the key strength governing factors such 

as the 𝜌𝜌𝑟𝑟, 𝜒𝜒𝑝𝑝, and 𝜌𝜌𝑏𝑏 in between the SA-scaffolds and NA-scaffolds are utilized to rationalize the 

observed relationships of the compressive strength vs. FFV (Fig. 4.10) and compressive strength 

vs. 𝜌𝜌𝑟𝑟 (Fig. 4.11).  

Figure 4.12 shows variations of the average 𝜌𝜌𝑟𝑟, average 𝜒𝜒𝑝𝑝, and ratio of the average 𝜌𝜌𝑏𝑏 of the SA-

scaffolds and NA-scaffolds (𝜌𝜌𝑏𝑏(𝑆𝑆𝑆𝑆) 𝜌𝜌𝑏𝑏(𝑁𝑁𝑆𝑆)⁄ ) with the solids loading. For each composition, 𝜌𝜌𝑟𝑟, 𝜒𝜒𝑝𝑝, 

and ratio of the 𝜌𝜌𝑏𝑏 values are shown for a representative scaffold fabricated at a relatively high 

FFV to mainly rationalize the upper bound of the measured compressive strength values. It is note 

that estimation of these quantities at all the FFVs for all the compositions is beyond the scope of 

this study. For each representative scaffold, average 𝜌𝜌𝑟𝑟 shown in Fig. 4.12a was estimated from 

the #1, #2 and #3 specimens. Similarly, for each representative scaffold, average 𝜒𝜒𝑝𝑝 value shown 

in Fig. 4.12b is the average of the pore aspect ratio of the bottom and top planes. For the 
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𝜌𝜌𝑏𝑏(𝑆𝑆𝑆𝑆) 𝜌𝜌𝑏𝑏(𝑁𝑁𝑆𝑆)⁄  (Fig. 4.12c), first the average 𝜌𝜌𝑏𝑏 of the each representative scaffold was determined 

from the 𝜌𝜌𝑏𝑏 values of the bottom and top planes. Next, for a given solids loading, 𝜌𝜌𝑏𝑏(𝑆𝑆𝑆𝑆) 𝜌𝜌𝑏𝑏(𝑁𝑁𝑆𝑆)⁄  

was determined from the average 𝜌𝜌𝑏𝑏 values of the SA-scaffold and NA-scaffold. Figure 4.12a 

shows that for each solids loading 𝜌𝜌𝑟𝑟 of the NA-scaffold is higher than that of the SA-scaffold, 

which is expected to enhance the strength of the former compared to the later. Although a large 

scatter can be noticed for the 𝜒𝜒𝑝𝑝 (Fig. 4.12b, Table 4.5), the SA-scaffold and NA-scaffold at 15 

vol.% solids loading exhibit comparable values. Whereas at other solids loadings, 𝜒𝜒𝑝𝑝 of the SA-

scaffold is observed to be considerably smaller compared to that of the NA-scaffold. Figure 4.12c 

shows that at all the three solids loadings 𝜌𝜌𝑏𝑏(𝑆𝑆𝑆𝑆) 𝜌𝜌𝑏𝑏(𝑁𝑁𝑆𝑆)⁄  remains consistently greater than 1, 

suggesting that the average 𝜌𝜌𝑏𝑏 of the SA-scaffold is greater than that of the NA-scaffold for the 

Figure 4.12: Variations of the (a) average 𝜌𝜌𝑟𝑟, (b) average 𝜒𝜒𝑝𝑝, and (c) 𝜌𝜌𝑏𝑏(𝑆𝑆𝑆𝑆) 𝜌𝜌𝑏𝑏(𝑁𝑁𝑆𝑆)⁄  of the SA-
scaffolds and NA-scaffolds with the solids loading. All the scaffolds were processed at high 

FFVs. 
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comparable solids loading and FFV. As discussed previously, the decrease of the 𝜒𝜒𝑝𝑝 and the 

increase of the 𝜌𝜌𝑏𝑏 is expected to enhance the strength of the ice-templated scaffolds. Figure 4.12 

thus suggests that there are opposing factors that contribute to the strength of the SA-scaffolds and 

NA-scaffolds. While the 𝜌𝜌𝑟𝑟 tends to increase the compressive strength of the NA-scaffolds over 

that of the SA-scaffolds, 𝜒𝜒𝑝𝑝 and 𝜌𝜌𝑏𝑏 would tend to enhance the strength of the SA-scaffolds over 

that of the NA-scaffolds. It is thus possible that for a comparable solids loading and FFV, these 

parameters balance out in a way that the compressive strength of the SA-scaffolds and NA-scaffold 

become comparable as is observed in Figs. 4.10 and 4.11. As a result, while the effects of the 

variation of the particle size on the microstructure of the ice-templated scaffolds are significant 

(Fig. 4.3), effects of the particle size variation on the compressive strength are observed to be 

marginal. 

Although there is no single comprehensive study on the particle size effects on the compressive 

strength of the freeze-cast sintered scaffolds, Deville et al. [71] recently conducted a meta-analysis 

of the influence of the starting particle size on the compressive strength by combining data for 

various materials and solvents. In spite of a significant scatter of the data and different materials 

used, the meta-analysis interestingly revealed that the upper bound of the compressive strength is 

comparable within a particle size range of 0.5-2 μm, which is similar to the results observed in this 

study. It is notable that freeze casting is a physical process and the dependence on the powder 

material type is not expected to be significant. Therefore, it is suggested that the current 

investigation sheds some light on the results of the meta-analysis of the particle size vs. strength 

by Deville et al. [71] and provides a rationale for the observed comparable upper bound of the 

strength within the particle size range of 0.5-2 μm. Another important implication of the present 

study is that the particle size variation within a range of submicrometer to few micrometers (typical 
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particle size range used in ceramic processing) can be uniquely employed to systematically modify 

the microstructure of the ice-templated ceramic scaffolds, however, without significantly altering 

their compressive response; which, can be useful to optimize the structure-property relationships 

of the ice-templated scaffolds for the structural, biomedical and functional applications.    

 

4.3   CONCLUSIONS 

In this investigation, ice-templated Al2O3 scaffolds were fabricated from two different particle 

sizes (0.3 µm, NA powder and 0.9 µm, SA powder) at three different solids loadings (15, 25, and 

35 vol.%) and within a FFV range of 12-34 µm/s. For both the SA-scaffolds and NA-scaffolds, 

relative density and total porosity increased and decreased, respectively, with the increasing solids 

loading. However, the increase was observed to be significantly greater for the NA-scaffolds 

relative to the SA-scaffolds. For each scaffold composition, the relative density also increased with 

the increasing FFV. The pore morphology of both the SA-scaffolds and NA-scaffolds changed 

with the increasing solids loading and FFV. However, it was observed that with the increasing 

solids loading and FFV while the pore morphology of the SA-scaffolds transitioned from a 

lamellar to an almost isotropic structure, the NA-scaffolds only transitioned from lamellar to 

dendritic structure. The observed microstructural differences due to the particle size variation are 

rationalized based on the interactions of the powder particles with the freezing front during the 

unidirectional ice-templating process, where the smaller particles are rejected by the ice fronts with 

a relative ease in comparison to the larger particles. As a result, the smaller particles exhibit a 

better tendency to develop a lamellar pore architecture relative to the larger particles. Uniaxial 

compressive stress-strain measurements, however, revealed marginal variations of the strength in 

between the SA-scaffolds and NA-scaffolds in spite of the significant differences of the 
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microstructure and the relative density at a comparable solids loading and FFV. The apparent 

marginal particle size effects on the compressive strength are rationalized based on the relative 

variation of the relative density, pore aspect ratio, and interlamellae bridge density in between the 

SA-scaffolds and NA-scaffolds. This study also suggests that within a particle size range of 

submicrometer to few micrometers, it could be possible to develop ice-templated ceramic scaffolds 

of considerably different microstructures, however, of comparable compressive strength which 

may find applications in the structural, bio-medical, impact energy absorption and energy storage 

fields. 

 

4.4   FUTURE WORK 

The data presented in this study show strong trends in terms of effects of varying the size of the 

ceramic particles, on the microstructure and relative density of the icetemplated sintered scaffolds. 

However, in spite of the observed differences of the microstructure, relative density, and porosity, 

the uniaxial compressive stress-strain measurements revealed marginal particle size effects on the 

compressive strength of the sintered scaffolds. Thus, the current investigation sheds some light on 

the results of the meta-analysis of the particle size vs. strength by Deville et al. [71] and provides 

a rationale for the observed comparable upper bound of the strength within the particle size range 

of 0.5-2 μm, based on the relative variation of the relative density, pore aspect ratio, and 

interlamellae bridge density in between the sintered alumina scaffolds processed from 0.3 μm and 

0.9 μm particle sizes. As a result, analyzing and understanding these effects over a larger range of 

particle sizes (from few nanometers to few micrometers), could be worthy of future investigations 

to provide further insight into the process-structure-property relationships of freeze-cast cellular 

ceramics. A thorough understanding of the relationships between the rheological properties of the 
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initial suspension and the final characteristics of the porous structures and corresponding 

mechanisms in freezing process, with respect to the varying powder particle size, is still at an early 

stage; hence, further investigation involving these aspects may be helpful in evolving stronger and 

tougher, light weight ceramic architectures. 
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