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SPONTANEOUS SYMMETRY BREAKING AND GOLDSTONE THEOREM
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Abstract:

We discuss the concept of spontaneous symmetry breaking and illustrate it with a general example. We
consider Wigner-Weyl and Nambu-Goldstone realisations of symmetry in the quantum theory. Next, we
state Goldstone’s theorem and sketch its proof. We discuss why quantum chromodynamics is not realised in
the Wigner-Weyl mode. We also consider different order parameters of spontaneous chiral symmetry breaking.
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1. INTRODUCTION: SYMMETRIES IN QUANTUM THEORIES

In a quantum theory we define a physical symmetry as a probability amplitude preserving map
in the Hilbert space of the theory. Explicitly speaking, it is an injection acting on two arbitrary states
in the Hilbert space H :

|α⟩ −→ |α′⟩ , |β⟩ −→ |β′⟩ (1)

which satisfies

|⟨α|β⟩| = |⟨α′|β′⟩| . (2)

By Wigner’s theorem these transformations are implemented by either unitary or antiunitary
operators. Unitary operators implement continuous symmetries (they are ”continuously connected”
with identity - 1 is unitary), while discrete symmetries can be implemented by either anti- or unitary
operators.

By Noether’s theorem, the conserved charges Qa associated with continuous symmetries are the
generators of infinitesimal transformations of quantum fields:

[Qa, H] = 0, (3)

where H is the Hamiltonian of the theory.
The symmetry group generated by the operators Qa is implemented in H by a set of unitary

operators U (α), with αa labelling the transformation (a = 1, . . . , dim g, with g being the algebra
associated with the generators). The operators U (α) can be written as

U (α) = eiα
aQa

. (4)

2. WIGNER-WEYL MODE VS NAMBU-GOLDSTONE MODE

There are two different ways in which a symmetry group can be realised in a quantum theory,
depending on the way its elements act on the ground state of the theory. Let us first consider the
case:

U (α) |0⟩ = eiα
aQa |0⟩ = |0⟩ and Qa |0⟩ = 0, (5)

then the symmetry is manifest: vacuum shares the symmetry of the theory. This realisation of the
symmetry is called Wigner-Weyl mode.

Let us now consider the case:

U (α) |0⟩ = eiα
aQa |0⟩ ≠ |0⟩ and Qa |0⟩ ≠ 0. (6)

Using our interpretation of the Qa we can conclude that “the vacuum |0⟩ is charged”. We know
that (3) holds, hence Qa |0⟩ is degenerate with |0⟩. It turns out we have a set of degenerate vacua.
This means that the symmetry is spontaneously broken. This realisation of symmetry is called
Nambu-Goldstone mode.

Let us now construct the states

|πa(p⃗)⟩ =
∫
d3x⃗ eip⃗·x⃗ja0 (x⃗) |0⟩ , (7)
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where ja0 (x) is the conserved current associated with Qa. Let us call the vacuum energy E0. These
states have then the energy E0 + E(p⃗). It is easy to check that E(p⃗)|p⃗=0 = 0. Hence the state
|πa(p⃗)⟩ contains massless particles that emerge in result of the symmetry breaking. These particles
are called Goldstone bosons.

The existence of a non-vanishing vacuum expectation value of the commutator ⟨0| [Qa, ϕ(x)] |0⟩ ≠
0 for a field in a continuous symmetry yields massless particle(s) in the theory (the number depends
on the number of the “broken generators”), see e.g. the discussion in (Meissner, 2002). We can
prove the contraposition of the theorem:

PµP
µ ≥ ε > 0 ⇒ ⟨0| [Qa, ϕ(x)] |0⟩ = 0, (8)

where ε is the mass gap (Coleman et al. 2018). Since

i ⟨0| [Qa, ϕ (x)] |0⟩ = i

∫
d3x ⟨0| [ja0 (x⃗, t) , ϕ (y)] |0⟩ , (9)

it is sufficient to show that ⟨0| [jµ (x) , ϕ (y)] |0⟩ = 0.

Proof. Consider ⟨0| jµ(x)ϕ(y) |0⟩. We can write a Källén-Lehmann-like spectral decomposition for
this matrix element:

⟨0| jµ(x)ϕ (y) |0⟩ =
∫
d4p σ(p2)θ (p0) pµe

ip·(x−y). (10)

The vacua do not contribute, as by Lorentz invariance ⟨0| jµ (x) |0⟩ = 0 (there are no Lorentz
covariant vectors in the theory).

Next, we differentiate our result. Using the current conservation we find

⟨0| ∂µjµ(x)ϕ (y) |0⟩ =
∫
d4p σ(p2)θ (p0) pµp

µeip·(x−y) = 0. (11)

Hence, p2σ(p2) = 0. Now, by assumption, p2 ≥ ε > 0, so we can safely divide by p2 to obtain
σ(p2) = 0. This means that

⟨0| jµ (x)ϕ (y) |0⟩ = 0. (12)

Similar reasoning provides us with ⟨0|ϕ (y) jµ (x) |0⟩ = 0. We can finally write

⟨0| [jµ (x) , ϕ (y)] |0⟩ = 0. (13)

It is worthwhile to note that after the symmetry is broken by the choice of a possible vacuum
all other possible vacua become inaccessible in the infinite volume limit. In ordinary quantum
mechanics (where the number of degrees of freedom is finite) tunnelling between different vacua is
possible, so the true ground state is their symmetric combination. On the other hand, in quantum
field theory (where the number of degrees of freedom is infinite) switching from one vacuum into
another would induce the change of the vacuum everywhere in space. The probability of such
switching is vanishing. To make the above arguments more explicit, let us consider a set of spin-1

2

magnets with nearest neighbour interactions (Álvarez-Gaumé, et al., 2011). Our space is now a
lattice with spacing a and lattice vectors x⃗ = (n1a, n2a, n3a). At each lattice site x⃗, there is a spin-1

2

degree of freedom s⃗ = (1
2
σ1,

1
2
σ2,

1
2
σ3) with σi being Pauli matrices. The Hamiltonian is defined as

H = −J
∑
⟨x⃗,x⃗′⟩

s⃗(x⃗) · s⃗(x⃗′), J > 0, (14)

where ⟨x⃗, x⃗′⟩ indicates that we’re summing over the nearest neighbours on the lattice. For each
lattice site we have a 2-dimensional Hilbert space. We can take its basis to be the two s3(x⃗)
eigenstates {|x⃗; ↑⟩ , |x⃗; ↓⟩}. The state corresponding to the spin aligned along direction r̂ at the site
x⃗ is

r̂ · s⃗(x⃗) |x⃗; r̂⟩ = 1

2
|x⃗; r̂⟩ (15)
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We can express it in this basis as

|x⃗; r̂⟩ = cos

(
θ

2

)
|x⃗; ↑⟩+ eiϕ sin

(
θ

2

)
|x⃗; ↓⟩ . (16)

We can easily show that ⟨x⃗; r̂|x⃗; r̂′⟩ = cos (α/2), where α is the angle between r̂ and r̂′. Let us
now construct the ground states of our Hamiltonian. Each of them corresponds to all spins in the
ferromagnet being aligned along a direction r̂. We can then write:

|r̂⟩ =
⊗
x⃗

|.⃗x; r̂⟩ (17)

The overlap between two different ground states is thus given by

⟨r̂|r̂′⟩ =
[
cos

(α
2

)]N
, (18)

where N = V/a3 is the number of lattice sites. As the number of lattice sites increases, the overlap
(18) vanishes (unless r̂ and r̂′ are parallel): the ground states associated to different directions mix
less and less. In large volumes the mixing of the vacua is suppressed enough to approximate the
finite volume theory by the theory with Goldstone bosons. In the limit, V → ∞, the vacua become
orthogonal and the spontaneous symmetry breaking occurs.

3. AN EXPLICIT EXAMPLE OF SYMMETRY BREAKING

We consider a set of n real scalar fields {ϕi} which we assemble into a vector Φ. We have an
N -parameter group G with elements g ∈ G which is characterised by real parameters αa, a =
1, . . . , N . The action of the group takes the form:

G ∋ g : Φ → U (g)Φ = eiα
aQa

Φ, (19)

where Qa are the generators of the group. With g near identity:

U (g)Φ = Φ+ iαaQaΦ+O
(
α2

)
, (20)

where Qa are Hermitean, so ∂µΦ · ∂µΦ is invariant under the transformation shown in (19). The
number of parameters αa is equal to the number of generators. Commutators of any two generators
of the group must give another generator:[

Qj,Qk
]
= ifjklQl, (21)

where fjkl are the structure constants of group G. This means that the group generators form a
closed Lie algebra.

Let us now consider a general Lagrangian

L =
1

2
(∂µΦ)(∂µΦ)− U(Φ), (22)

with the potential U(Φ) that is invariant under the group G. We assume that the potential U(Φ) is
invariant under the group G. We pick one of the potential’s minima to be our vacuum denoted as
⟨Φ⟩, which is not invariant under G. We will consider the case where ⟨Φ⟩ is invariant only under
a subgroup H ⊂ G, which we will call the unbroken group. The remaining generators are the
spontaneously broken generators.

For illustration, one could consider a 3-component real scalar field Φ = (ϕ1, ϕ2, ϕ3) with the
SO(3)-invariant ”Mexican hat” potential. ⟨Φ⟩ would then be a vector of fixed length pointing in
an arbitrary direction. We can choose it to point in the 3-direction: H would then be a subgroup
containing rotations about the 3-axis, see Fig. 1.

(a) Spontaneous symmetry breaking in SO(3) (b)

Figure 1
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The potential is constant on the plane tangent to the chosen vacuum (see Figure (1b)). This is
why the particles are massless: they need no energy to move on this plane (Zee, 2010). One can
easily see that we reduce our SO(3) symmetry to the SO(2) symmetry, which has one generator
instead of three. This means there are two spontaneously broken generators and thus we have two
Nambu-Goldstone bosons. It is important to note that the theory is indeed symmetric under the
whole SO(3). The physics doesn’t depend on any particular choice of vacuum and the different
vacua are related by the full SO(3) symmetry.

In the generic case, let us arrange the generators G in the following way:

H = {Q1,Q2, . . . ,Qm} (23)

and

G = {Q1,Q2, . . . ,Qm,Qm+1, . . . ,QN}. (24)

Generators of G not included in H do not leave ⟨Φ⟩ unchanged. This means that:

N∑
a=m+1

λaQa = 0 ⇒ λa = 0, ∀a = m+1, . . . , N. (25)

No linear combination of spontaneously broken generators acting on the vacuum can give zero.
Such a combination would have to be in H . The generators in (25) form an (N−m)-dimensional
manifold. There are N−m spontaneously broken symmetry generators, thus there are N−m
Goldstone bosons in the theory.

Let the potential be a multi-dimensional Mexican hat potential:

U(Φ) =
1

4
λ(Φ ·Φ− d2)2. (26)

The symmetry group of the theory is G = SO(n). Its dimension is the number of independent
planes in the N-space: dimG = 1

2
n(n− 1). The ground state satisfies: ⟨Φ⟩ · ⟨Φ⟩ = d2. Let us pick

our vacuum to be

⟨ϕn⟩ = d, ⟨ϕa⟩ = 0, a < n, (27)

and label the remaining fields as Φ⊥ = (ϕ1, ϕ2, . . . , ϕn−1).
We define Φ′ as Φ = Φ′ + ⟨Φ⟩. The potential has then the form

U =
1

4
λ(ϕn

′ϕ′
n + 2dϕ′

n +Φ′
⊥ ·Φ′

⊥)
2. (28)

We identify the masses of the particles: m2
N = 2d2λ, m2

⊥ = 0. The subgroup H is SO(n−1)
with dimH = 1

2
(n− 1)(n− 2). We explicitly see that there are n − 1 Goldstone bosons:

dimG−dimH = n−1.

4. SPONTANEOUS BREAKING OF CHIRAL SYMMETRY

The full symmetry of massless quantum chromodynamics is SU(Nf )R ⊗ SU(Nf )L ⊗U(1)V ⊗
U(1)A, Nf being the number of light flavours. The conserved charges correspond to the vector and
axial vector currents:

Qi
V =

∫
d3x⃗V i

0 (x⃗, t), Qi
A =

∫
d3x⃗Ai

0(x⃗, t), (29)

where i = 1, . . . , N2
f − 1. The conservation of charges means that[

H,Qi
V

]
=

[
H,Qi

A

]
= 0. (30)

The conserved charges form a closed group structure.
Let us now discuss the possible realisations of the symmetry. In Wigner-Weyl mode the vacuum

is not charged: Qi
V |0⟩ = Qi

A |0⟩ = 0. Let us consider a one-particle state |a⟩, with p⃗ = 0. This
means that H |a⟩ = m |a⟩. Thanks to (30) we can see that the states Qi

V |a⟩ ,Qi
A |a⟩ have the same

energy:

H
(
Qi

V/A |a⟩
)
= Qi

V/A (H |a⟩) = m
(
Qi

V/A |a⟩
)
. (31)
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The states Qi
V |a⟩ =

∑
b cab |b⟩, i = 1, . . . , N2

f − 1, form a multiplet of SU(Nf ). The states Qi
A |a⟩

will form a SU(Nf ) multiplet as well, but with different parity and in general, corresponding to
a different irreducible representation of SU(Nf ). Thus we have two multiplets corresponding to
the same mass, yet having different parity. This is not observed in nature. QCD is not realised in
Wigner-Weyl mode. On the other hand, in Nambu-Goldstone mode we have

Qi
V |0⟩ = 0,Qi

A |0⟩ ≠ 0, (32)

and there is no parity doubling.
Consider now the quantity

⟨0|Ak
µ(x)

∣∣πi(q)
〉
= iqµFπe

−iqx, (33)

where |πi(q)⟩ is a pion state with momentum q and Fπ is the pion decay constant. If the chiral
symmetry is spontaneously broken, then Fπ ̸= 0 and vice versa. Thus, Fπ is an order parameter of
spontaneous breaking of chiral symmetry.

Another order parameter is the quark condensate:

⟨0| ψ̄(0)ψ(0) |0⟩ = ⟨0| [ψ̄L(0)ψR(0) + ψ̄R(0)ψL(0)] |0⟩ . (34)

If ⟨0| ψ̄(0)ψ(0) |0⟩ ≠ 0, then we can be sure that the symmetry is broken, though it can be broken
even if ⟨0| ψ̄(0)ψ(0) |0⟩ = 0.

5. CONCLUSIONS

Symmetries in quantum theories can be realised in two different ways. In Wigner-Weyl mode
the symmetry transformation leaves the vacuum invariant. In Nambu-Goldstone mode the vacuum
is not invariant under the transformation and we obtain a set of degenerate vacua. In this case the
symmetry is spontaneously broken: we have to choose one of the many ground states to be our
vacuum. Goldstone theorem states that every generator of the spontaneously broken continuous
symmetry corresponds to one massless boson. Spontaneous symmetry breaking manifests itself in
the choice of the ground state. The Lagrangian itself retains its fundamental symmetry. It can be
also shown that Goldstone bosons have perturbative dynamics at small momenta. Their interactions
are vanishing in the limit pµ → 0.

Quantum chromodynamics is not realised in Wigner-Weyl mode, since the degenerate multiplets
with different parity are not observed experimentally. The unique order parameter of chiral symme-
try breaking is the pion decay constant Fπ. If its value is nonzero, the symmetry is spontaneously
broken and vice versa. Another order parameter is the quark condensate. Its nonzero value is
sufficient to determine that the symmetry is spontaneously broken, although spontaneous symmetry
breaking can occur even if ⟨0| ψ̄(0)ψ(0) |0⟩ = 0.
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