

Leading the Lead Out!

Low-cost Household Biochar Water Filter for Lead Removal

Department of Civil & Environmental Engineering, Old Dominion University

Pushpita Kumkum, Sandeep Kumar

Dr. Sandeep Kumar (757) 683 3898 skumar@odu.edu

Motivation

Expensive and difficult to install the traditional filter

Prefers to drink from the tap to avoid the cost and hassle

More than 500,000 kids in the U.S. have elevated levels of lead in their blood

Replacing the lead service lines or distributing bottles during crisis like Flint, MI can be

Widespread

impact on

Quality of life

for the This Filter can be a **Developing and** solution for entire lead-Developed contamination problem of region the world

Labor

This can cause:

Decreased ability to pay attention

· Underperformance at school

xposure to lead can seriously harm a child's health

Basic Features of the Proposed Biochar Water-Filter

Feedstock can be yard-waste **Extensive** leadremoval potential

Affordable to allsmall, rural, tribal and disadvantaged communities

Sustainable biochar system is carbon negative

Objective & Scope

Goal 1

- Theoretical Investigation
- Building a Prototype
- Demonstrating the Efficiency

Goal 2

- Determination of design parameters
- Packing of biochar in the filter
- Testing in real-time setting
- Creating a business plan

Goal 3

- Formation of Enterprise
- Partnership with NGOs
- Applying to EPA Small Business Innovation Research

Research & Development

Construction of Biochar-maker and Production of Biochar

Construction of the small-scale production unit

Feedstock

Step-by-step Process of Granulating the Biochar

Pushing the

Granulated biochar

biochar

Granulation Parameters

Spreading biochar dough with a roller

_	Binder E olution	Biochar Bi used	nder Used	Biochar Produced	Results
1st Trial 30%	isopropyl	50 g	26 g	26 g	uniform, med. sized granules
2ndTrial 25%	molasses	50 g	114 g	15 g	large, non-uniform granules
3rd Trial 90%	isopropyl	50 g	97 g	21 g	very uniform, small granules

Granules after Drying

Tied-up with a company: Diamond Science & Technology

Submitted proposal for EPA Small Business **Innovation Research**

Lab-scale Performance

Batch Study

Batch Reactor

Column Study

(a) Initial Pb Concentration = 0.5 ppm, Flow rate = 10 ml/min, Amount of Biochar = 15 g (b) Initial Pb Concentration = 0.5 ppm, Flow rate = 2 ml/min, Amount of Biochar = 15 g

No lead in effluent sample – even after 5 days!

Quantifiable Benefits of the Filter

Component	Unit Price (\$)	Effort/Cost
Biochar-maker	0	Man-hour, Used
Unit		food cans
Feedstock	0	Man-hour, Twigs, wood chips
Filter Material	0.56	Plastic Cup
Mesh/Screen/ch eese cloth etc.	0.43	Household Item
Installation Cost	0	Easy to Install
Total	0.99	Inexpensive!!

Conclusion

- More efficient binder solution for granulating biochar needs to be explored further
- Lower flow rate increases the biochar adsorption potential
- Breakthrough time was reached within 1 h of total run time for higher flow rate
- Total amount of Pb adsorbed was 51 mg/g biochar for initial concentration of 0.5 ppm and 2ml/min flow rate

Acknowledgements

US Environmental Protection Agency: Grant Number (FAIN): 83926601

Biomass Research Laboratory Group at Old Dominion University