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ABSTRACT

A NUMERICAL SOLUTION OF
THE LOW ENERGY NEUTRON BOLTZMANN EQUATION

Martha Sue Clowdsley

Old Dominion University, 1999
Director: Dr. John H. Heinbockel

A multigroup method using a straight ahead approximation is created to
calculate low energy neutron fluence due to the elastic scattering of evaporation
neutrons produced in interactions of high energy particles with target nuclei.
This multigroup method is added to NASA Langley Research Center’'s HZETRN
particle transport code. This new code is used to calculate the energy spectra
of the neutron fluence in several different materials. The multigroup method is
found to be an efficient way of calculating low energy neutron fluence in multiple
atom materials as well as single atom materials. Comparisons to results pro-
duced by Monte Carlo methods show that the straight ahead multigroup method
is accurate for larger depths but less accurate for small depths due to leakage at
the boundary. For this reason, an improved multigroup method is created which
propagates neutrons in two directions, forward and backward approximately ac-
counting for the isotropic distribution of the evaporation source. This new multi-
group method compares well with the Monte Carlo method at all depths. For
this reason, the multigroup method is considered an accurate method which is

highly computationally efficient for calculating low energy neutron fluence.
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CHAPTER I

INTRODUCTION

In addition to having many ill effects on human beings, radiation can dam-
age electronic components and degrade material properties. For these reasons,
radiation shielding is a primary concern of designers of manned and unmanned
spacecraft and high altitude aircraft. In order to provide adequate shielding, a
designer would need an estimate of the radiation field that a spacecraft or aircraft
would encounter, a way of evaluating the transport of the particles making up
the radiation field through the shielding material, and a way of evaluating the
effects of a particular radiation field on a target material. This thesis is primar-
ily concerned with particle transport. More specifically, it is concerned with the
transport of low energy neutrons.

A Brief History of Radiation Research

Research into the negative effects of radiation on humans began shortly after
x-rays were discovered in 1895. In the early 1900’s, x-rays and gamma rays were
being used mostly for medical applications and large sheets of lead or bricks were
used as shields. Over time, a large amount of shielding data was developed for
the much used x-rays and gamma rays. Most of this data was in the form of half-
thicknesses or absorption coefficients for exponential factors. The half-thickness

of a shield is the depth at which half of the incident particles will probably be

The model journal used is Nuclear Science and Engineering.
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2
absorbed. If absorption coefficients for exponential factors are used, then the
probability that an incident particle will be absorbed by a depth, z, is 1 — e™#=
where p is the absorption coefficient. More recent data has been developed mostly

on a statistical basis. This data is mostly in the form of tables and graphs.

In 1932, the neutron was discovered. This discovery led to the development
of nuclear weapons and nuclear reactors. The development of nuclear weapons
led to much experimental and theoretical research in the 1950’s and 1960’s in the

area of shielding against gamma-rays from nuclear weapon fallout.

The development of nuclear reactors led to research on neutron shielding.
In the 1950’s, necessary shield depths were approximated using absorption co-
efficients for exponential factors in the same way x-ray shields had been de-
signed. Then researchers began using statistical methods, such as the Monte
Carlo method!s? to predict the probable paths of each incident neutron through
shielding material. These methods were fairly accurate but time consuming, and
the necessary computer time could be very expensive. For these reasons, scientist
began exploring other more deterministic, numerical methods of approximating
the neutron transport. The Boltzmann transport equation was considered a good
model of neutron transport, but it is difficult to solve. For this reason, scien-
tists began making simplifying assumptions to the Boltzmann equation. The
assumption could be made that the neutron fluence at position ¥ moving in di-
rection ) with energy E, (7, , E), is equivalent to (7, Q)e *E for some func-
tion ¢(7, ﬁ) and some constant p. Note that the neutron fluence is the number

of neutrons per unit area per unit energy per steradian and is measured in #
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3
particles/cm? Mev. Other simplifying assumptions involved limiting the geome-
try of the problem. One example of this would be the assumption that the fluence
of particles is the same in all directions. Another would be that all particle trans-
port is one dimensional. The Boltzmann equation could then be solved using
a variety of methods: perturbation techniques!, integral equations’, finite dif-
ference approximations®*, Laplace transforms, method of moments?, multigroup
methods!?4, P, methods’'?*, and S, methods'*. These numerical methods
lacked the accuracy of the Monte Carlo method, but they were faster and less
expensive and it was usually easier to estimate their error.

Nuclear reactor designers can compensate for a lack in accuracy in the nu-
merical solution of the Boltzmann equation by adding extra shielding. Space craft
designers, on the other hand, have less freedom to add extra shielding and indeed
the shield they design must also act as the outer shell of the space craft. An ex-
cellent history of space radiation research is contained in chapter 1 of the NASA
reference publication, Transport Methods and Interactions for Space Radiations®.
A summary of that history follows.

Space Radiation Research

Scientists first became concerned about damage due to space radiation in the
late 1940’s. In 1948, Freier, Lofgren, Ney, and Oppenhiemer published a paper
stating that heavy ions in the galactic cosmic rays exist in the earth’s atmosphere
at high altitudes®. Speaking on this subject at the 1949 panel meeting, " Aero
Medical Problems of Space Travel” at the School of Aviation Medicine, Wright

Field, Ohio, C. F. Gell pointed out that space radiation could be life threatening
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4
and therefore, suggested that space radiation protection be further investigated®.
Reason for this concern was verified in 1950 by H. J. Schaefer who produced data
showing that while these galactic cosmic ray ions produced a dose of only 0.1
mR*/day at sea level, the dose at 70,000 ft was 15 mR/day®.

The solar flare event of February 1956 sparked greater interest in space radia-
tion protection. Solar flare radiation was discussed extensively at the Conference
on Radiation Problems in Manned Space Flight organized by NASA in 1960°.
Here it was suggested that short term exposure to galactic cosmic rays might not
be dangerous, but that shielding must be designed to protect astronauts from
solar flares.

NASA Langley Research Center began studying space radiation in 1958 and
still continues this research. The importance of this area of research increased
dramatically when the U.S. Supersonic Transport Program was begun. The Su-
personic Transport, still in the design stages, will be é. commercial aircraft which
will fly at supersonic velocities and very high altitudes.

The first attempts to model the transport of space radiation through shield-
ing material, like those modeling radiation transport in nuclear reactors, used
Monte Carlo techniques. Much of the early work in space radiation shielding
used the HETC, High-Energy Transport Code, created by Kinney, Coveyou, and
Zerby. However, by the late 1960’s, so many researchers were waiting to use the

HETC code at Oak Ridge National Laboratory that NASA Langley Research

* The roentgen (abbreviation R) is defined as 2.58 x 10™* Coulomb of separated
charge (either positive or negative) per kilcgram of air in the incremental volume
where the primary photon interactions occur.
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5
Center began to develop its own code. This code PROPER-C also used Monte
Carlo techniques. This code was improved by adding a data base of Bertini’s data
for intranuclear-cascade calculations and by making a high energy extrapolation.
The new code was called PROPER-3C. PROPER-3C was faster than HETC
because it used Bertini’s data rather than calculating the intranuclear-cascade,
yet because it used Monte Carlo techniques it still required large amounts of
expensive computer time.

For this reason, by the mid 1970’s, Langley researchers began working on
more deterministic methods of calculating radiation transport. These methods
used perturbation techniques to solve the one-dimensional Boltzmann transport
equation. The first of these codes written at Langley applied only to transport

J10:11 This code was later improved to handle

of nucleons (neutrons and protons
other light ions as well. The resulting code, called BRYNTRN, gave a good
approximation to the radiation fields created in shielding material exposed to
the high energy protons produced by a solar flare5!2:13, BRYNTRN stands for
baryon transport.

After creating BRYNTRN, Langley researchers turned their attention to
heavy ion transport theory. More long term missions, such as the space station
and the mars mission, were being planned and work on the Supersonic Transport
continued. For these reasons, long term galactic cosmic ray exposure became an
important concern.

This research lead to the development of a new code which handles the

transport of heavy ions!*~16. This heavy ion code and the solar flare code,
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6
BRYNTRN, were put together into one large code call HZETRN®:17-18 . HZETRN
stands for high charge and energy transport. The user sets up HZETRN to run for
either a galactic cosmic ray environment or one of several solar flare environments.

The heavy ion transport code in HZETRN is believed to be accurate for
the broad energy spectrum found in the galactic cosmic ray. It is less effective,
though, for mono-energetic laboratory beams. Researchers at Langley are cur-
rently working on a radiation transport code that wiil work for both laboratory
conditions and space conditions!®~25,

A need for improvement in the way HZETRN calculates the transport
of low energy neutrons has recently been recognized. In a 1994 Technical
Memorandum?®, Judy Shinn et al. compared the neutron fluences in water ex-
posed to the February 1956 solar flare calculated by the BRYNTRN program
with the same fluences calculated by the LAHET program. The LAHET pro-
gram (Los Alamos High-Energy Transport code) is a Monte Carlo routine made
up of the HETC code and the MCNP code (Monte Carlo Neutron Photon code).
In this comparison, the number of low energy neutrons produced by the BRYN-
TRN code was significantly smaller than that given by the Monte Carlo routine.
It was assumed that BRYNTRN does not adequately model the scattering of low
energy neutrons produced by evaporation.

One attempt to rectify this problem was made by Robert Singleterry, then
at the University of Arizona?”. He used an Fy method to solve the Boltzmann
equation. This method had the advantage of taking into account the angular

dependence of the neutron fluence, and it proved to be fairly accurate in an
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7
aluminum slab. It, however, was time consuming, and difficulty arose trying
combine this method with the one dimensional transport methods already used
in the HZETRN program.

For these reasons, it was suggested that a new approach that treats the low
energy neutrons separately but still uses a one dimensional transport process
should be attempted.

Objective of This Thesis

This thesis contains a description of a new method for calculating the trans-
port of low energy neutrons due to evaporation. In this new method, the low
energy neutrons produced by evaporation due to the collision of higher energy
neutrons and other ions with the nuclei of target atoms are treated as sources in
the one dimensional Boltzmann transport equation. The fluences of these higher
energy particles have already been calculated by the HZETRN program. The
Boltzmann transport equation with source terms is then solved separately for
just low energy neutrons using a multigroup technique.

In this multigroup method, the entire energy spectrum is divided up into
small energy groupings. The Boltzmann transport equation is then rewritten in
terms of an integral fluence for each energy group. This changes the transport
equation to a system of differential equations, one for each energy group. These
differential equations are then solved for the integral fluences, and the neutron
fluences are approximated from these integral fluences.

This multigroup method is added to the HZETRN program as a subroutine.

Because this method also uses a straight ahead approximation, the low energy
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8
neutron fluences produced can easily be added to the neutron fluences produced
by the main HZETRN program.

This new amended HZETRN program is run for a variety of radiation back-
grounds and a variety of targets. The total neutron fluences produced are then
compared to neutron fluences produced by other programs.

The possibility of further improving the low energy neutron calculations by
including a backward and forward approximation is then investigated. These

fluences are also compared to fluences produced by other programs.
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CHAPTER II

THEORY

Radiation damage is caused by the transfer of energy from high energy in-
cident particles to the atoms of a target material. Dose or dose equivalence, for
human targets, is the measure of this damage. In order to calculate the dose or
dose equivalence, an estimate of the number, types, and energies of particles at
each point in a target material is required. Estimating these quantities not only
requires a count of the incident particles at the targets boundary but an under-
standing of the ways in which these particles can interact with and be transported

through the target material.

Background

Consider a beam of high energy nucleons incident upon a slab of homoge-

neous material as in Figure 1.

Target Material

Q

9890 STER
(@) 0000
OO Ooo(g)goocg%)
O~ 080000 o

Fig. 1. Nucleons incident upon a target material.
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10
Two kinds of interactions can occur between the incident ions and nucleons and
the atoms of the target material: electromagnetic interactions and nuclear colli-
sions. By far the most common type of electromagnetic interactions are coulomb
interactions. Coulomb interactions occur when a charged particle passes close
enough to an atom to have an effect on it. When this occurs, one of two things
happens; either the atom is left in an excited bound state, or the atom is ionized
by ejecting an electron.

An atom is made up of a positively charged nucleus orbited by a number of
negatively charged electrons. Together the nucleus and the electrons are neutrally
charged. Ionization occurs when a positively charged particle pulls an electron
away from the atom. The incident particle loses energy doing this, and the atom
is left with a positive charge.

Nuclear collisions occur when the incident particle impacts the atom nucleus
directly. The volume of the nucleus of an atom is small compared with the
volume of the whole atom. For this reason, charged particles interact with many
orbital electrons between nuclear reactions. In fact, for energies below 100 MeV,
most protons will not have a nuclear collision before stopping. Neutrons, however,
because of their neutral charge, interact with target atoms mostly through nuclear
collisions.

Two types of nuclear collisions can occur: elastic collisions and non-elastic
collisions. In an elastic collision, energy is transferred from the projectile to the
nucleus by recoil of the nucleus. In this case, the nucleus is not left in an excited

state. In a non-elastic collision, the impact excites the nucleus, and nucleons with
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energies almost as large as the original nucleon are immediately ejected in the
same direction. Then the nucleus, still in an excited state, emits lower energy
particles in all directions in order to return to its natural state. This process of
isotropically expelling low energy particles is called evaporation.

Therefore, incident particles loose energy as they pass through the target
material through electromagnetic interactions and nuclear collisions. These par-
ticles eventually loose all of their energy and come to a stop. Secondary particles,
however, are also produced through nuclear collisions. These particles also move
through the target material interacting with other target atoms. For this reason,
the transport of these secondaries must also be modeled in order to estimate dose.
The Boltzmann Transport Equation

The Boltzmann transport equation

Q- Ve;(z, E,Q) - a% [Si(E)¢;(F, E. Q)] + 0;(E)$;(%, E. Q)

= / dE’ / dY fir(E, E',Q, 3 Yor (2, E', &)
E

k2j
+g;(%, E, Q) (2.1)
accurately models the transport of incident particles and their secondaries.

In this equation, ¢;(Z, E, Q) is the fluence of type j particles at position &
with energy E and moving in direction Q per unit area per unit energy per
steradian. For example, ¢,(Z, E,(}) represents the number of neutrons, and
¢2(Z, F, ﬁ) represents the number of protons.

The term o0;(E) represents the macroscopic cross section of the particles of

type 7. The probability that a type j particle of energy F will have a collision in
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distance [ is given by ¢;(E) I. This function has been evaluated experimentally.
The term S;(E) represents the stopping power or linear energy transfer of
type j particles. A charged particle loses energy in discrete increments due to
ionization. However, since the distance between ionizing events is small compared
with the average path length and the energy loss per event is small, this energy
loss is modeled as a continuous function and written as a derivative, S;(E) = —%
which represents the energy loss per unit path length.

The term f;x(E, E',§,€)') is the production cross section for type 7 fragment
particles of energy F moving in direction €} due to a collision caused by a type &
particle of energy E’ from direction §V'.

The term g;(Z, E, }) is the number of type j particles produced at position
Z, with energy F, and direction Q and represents a source term. The source term
is often assumed to be zero when dealing with certain space applications.

Appendix A contains a complete derivation of the Boltzmann transport
equation. However, a brief explanation of the terms in equation (2.1) is im-
portant toward understanding the equation. The first term €} - Vo;(z, E, ﬁ)
is the rate of change in the number of particles with energy F with respect
to distance traveled. The second term —% [S;(E)¢i (%, E, Q)] accounts for
the rate at which type j particles with energy E is changing due to ioniza-
tion. The third term o;(E)¢;(Z, E, Q) gives the number of type j particles
with energy E and direction Q at position Z lost due to nuclear collisions. The
term, Zij f; dE'fdﬁ’fjk(E, E.Q, b (Z, E’,§), accounts for the secon-

daries produced with energy E and direction Q by a nuclear collision at position
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Z. The final term g;(Z, E, Q) accounts for any sources of particles at position T

baving energy E and moving in direction 9)

A straight ahead approximation is often applied to the Boltzmann equation
for high energy particles to make it easier to solve. When this approximation is
used, it is assumed that all secondaries due to nuclear collisions move in the same
direction as the primaries. This approximation is not true for the low energy
reaction products which tend to be produced isotropically. Low energy charged
particles have short ranges and the errors of straight ahead approximation are
limited. The most serious errors are for low energy neutrons which are very
penetrating in most materials. The transport of an isotropic neutron source will

be addressed in this thesis.

The Boltzmann equation with the straight ahead approximation then be-

comes

5 5(3, E) ~ o [S,(B)#5(z, E)] + 03(E)g(z, E)

- / fi (B Ei(z, EVAE +g;(z, E).  (2.2)
k>5YE

This approximation is reasonably accurate for high energy nucleons and ions and

is used in the HZETRN program.
Neutron Transport

Neutrons do not lose energy through ionization. Therefore, the stopping
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power for neutrons S;(F) is zero and the transport equation becomes

Q- V¢1(Z,E, Q) +01(E)$1(, E, Q)
=3 / dE’ / dY fii(E, E',Q, ) éw(Z, E', ')
k>1VE

+gl(fy E: ﬁ) (2.3)
or

ad
a—m'qbl(x’ E) + UI(E)(ﬁl(x’ E)

= [ rulB BV EVE + 1@ B). (24)

k>1

if the straight ahead approximation is used. Assuming that there are no sources

of neutrons, this equation becomes
5o @ B+ E)ai(wB) = 3 [ fulB B)on(e, BVaE.  (23)

E>1

As previously stated, the perturbation methods used by the HZETRN pro-
gram to solve the neutron transport equation, equation (2.5), have been accurate
for high energy neutrons but are less accurate for low energy neutrons. At lower
energies, below 20 MeV, the elastic scattering cross sections become large. This
means that a low energy neutron is likely to have many elastic nuclear collisions
over a short distance. The energy loss per collision depends on the target nu-
cleus mass and is small for most nuclei except for hydrogen. These larger cross
sections make equation (2.5) a much stiffer equation at low energies. For this
reason, different methods are needed to calculate the scattering of low energy

neutrons. It is, therefore, useful, to break the neutron Boltzmann equation into
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two equations, one that can be used to evaluate the low energy neutron fluence
and another that can be used to calculate the higher energy neutron fluence.

Let the neutron fluence be divided into two groups, those created by evap-
oration ¢1(z, E) and those created by direct cascading effects ¢14(z, E) so that

the following equation holds.

¢1(.'II, E) = ¢ld(z7 E) + ¢le(xv E)’ (2°6)

Note that most of the low energy neutrons will have been created by evaporation
and most of the higher energy neutrons will have come from direct cascading
so that ¢1e(z, E) >> ¢1a(z, E) for energies below 15 Mev and ¢1q4(z, E) >>
®1e(z, E) for higher energies. The corresponding interaction term fyx(E, E') can

be separated into three terms

Fie(EL E") = fike(E, E") + fika(E, E') + firea(E, E" )61k (2.7)

representing the evaporation, direct knockout, and elastic scattering respectively.
Typical values for the first two terms are shown in Figure 2. The third elastic

scattering term will be treated in detail.
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Fig. 2. Evaporation and direct cascade production cross sections for
neutrons produced as a result of a nuclear collision between a neutron with
energy 500 Mev and an aluminum atom.
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Substituting equations (2.6) and (2.7) into equation (2.5) gives the following
equation
7]
'a_; [¢]_d(x1 E) + ¢le(x7 E)] + al(E) [¢ld(xa E) + ¢le(x: E)]

- /E ~ (B, B [ua(z, E') + b1o(z, B dE"

+ Z /°° flk(E, E,)(f)k(l‘, E,)dEI. (2.8)
k>1YEF
where
fi1(E, E') = fi1e(E,E) + fi14(E, E") + fi1e(E, E') (2.9)
and
f1e(B. E") = fike(E,E') + fika(E: E) (2.10)

for £ > 1. At higher energies E, where fi1.(E, E’) is close to zero, equation (2.8)

can be approximated by the equation

%md(:c, E) + 01(E)¢ra(z, E)
- /L; f114(E, E")¢ra(z, E')dE'
‘*‘/13 Fua(E, E"¢ra(z, E)dE’

+ Z/E‘” fika(E, E")ér(z, E')dE’. (2.11)

k>1

This equation is equivalent to (2.5) for higher energies, because ¢;(z,FE) =
¢14(z, E) for higher energies. The HZETRN code was modified to return so-
lutions to equation (2.11). The choice of boundary condition is simplified since
neutrons are not present in space radiations.

At lower energies, where ¢14(z, E) is small, and since the reactive processes

at low energies have small cross sections in spacecraft materials. equation (2.8)
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can be approximated by the equation

d

8_x¢le(x’E) + 01 (E)d1re(z, E)
N /E frre(E, E)¢1e(z, E')dE’
+/E fr1e(E, E")$r4(z, E')dE’

+ ZLOO flkg(E7 EI)¢k(z= E,)dEI' (2'12)

k>1

Note that ¢14(z, E) is included in the third term because the integration in this
term is from E to oo. Therefore, the number of low energy neutrons produced
by evaporation is dependent upon the number of higher energy direct cascade
neutrons. Equation (2.12) is the equation for which a new method of solving
is required because HZETRN underestimates the lower energy fluences. In this
equation, however, ¢14(z, E), the fluence of direct cascade neutrons, and ¢r(z, F)
for & > 1, the fluence of other ions, are known functions. The perturbation
methods used in the HZETRN program accurately calculate them except at the
lowest energies where elastic scattering dominates but the solution is small. Note
that ¢14(z, F) is calculated from equation (2.11) and is not dependent upon
¢1e(z, E). The fluence of other types of particles, ¢x(z, E) for k > 1, is calculated
from equation (2.2) and is only dependent upon heavier ions and not the neutron
fluence.

Also note that equations (2.11) and (2.12) are only approximations, because
¢14(z, E) is small but not exactly zero for low energies and @i.(z, E) is small
but not exactly zero for larger energies. The error introduced by using these

equations, however, will be small.
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The HZETRN program also contains a subroutine ELSPEC which will cal-
culate the scattering function, fjkei(E, E’), for all j and all k values at energies
E, E’. The third and fourth terms of equation (2.12) can be calculated from the
appropriate evaporation terms of equation (2.7). If these two terms are viewed

as a source term, then equation (2.12) becomes
a e 4 /4
a_$¢le(z7 E) +01(E)¢18(x1 E) = / .fllel (E: E )‘.ble(x: EI)dE +g(xr E) (2‘13)
E
where

/E fike(E, E"Yor(x, E')dE'.

(2.14)

g(z, E) =/E f11e(E, E )¢ra(z, E')dE' "*'Z

k>1

In fact, the HZETRN program does calculate this source term and stores it in an
array called NSORCF(i,k,l).

Equation (2.13), then, is the low energy neutron equation which must be
solved. However, because the remainder of this thesis deals only with the trans-
port of low energy neutrons, equation (2.13) will henceforth be written in the

form

o¢(z, E)

22 o)z, B) = /E " F(B, BNz, E')IE + g(x,E)  (2.15)

where ¢(z, F) = ¢1e(z, E) refers to the fluence of low energy neutrons only and
f(E,E") = fl1e(E, E') is the neutron elastic scattering function. Also, because
these low energy neutrons transport primarily through a process of elastic scat-
tering in which the energy loss depends on the target nucleus and is kinematically

limited by E//a so that the integral in equation (2.15) is bounded thus producing
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the equation

) E/a
*—a¢gc’E) + 0 (E)¢(z, B) = / f(E, E')é(z, E')dE' +g(z,E)  (2.16)
z E
where
Ar —1\2
*= (AT-i-l) (217)

is less than one and determined by the atomic weight Ar of the target material.
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CHAPTER III

THE MULTIGROUP METHOD FOR SINGLE ATOM MATERIALS

The one-dimensional low energy neutron transport equation for a single atom
target material was given as follows

9¢(z, E)

E/a
2 + o(E)(z, E) = /B F(E,Eé(z, B')dE +g(z,E).  (2.16)

Currently this equation cannot be solved directly, however approximate solutions
have been found. Shultis and Faw?, Duderstadt and Hamilton*, and Bell and
Glasstone'! have all suggested using a multigroup technique to calculate the neu-
tron fluences in a nuclear reactor. This method is also useful for space radiation.
The Multigroup Method

First, the energy interval [Emin, Fmaz], where E,.;n is the smallest energy
for which fluences are needed and E,,,: is the largest energy for which fluences
are not assumed to be zero, must by divided into N subintervals [E;, E;y1],
1 =1,2,..,N, where £} = Fmin and Eny; = E.o-. Integrating each term of
the equation from E; to Ej;y1, for each 7, changes equation (2.16) into a system
of NV differential equations.

The ith differential equation is found by letting

Eir
®:(z) = /E " 4z, B)E (3.1)
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and
Einr
bi(@) = [ glz, E)E. (3.2)
E;

Then, by interchanging the order of integration and differentiation, the first term

becomes

/ T D e BYaE = L) (3.3)
5, 0z dz ) ‘

For the second term the mean value theorem for integrals?® is used,

Eit1

Eit1
/ o(E)é(z, E)E = o(E}) / (z, E)dE (3.4)
E;

where Ef = E; + 07 (E;y+1 — E;) for some value of 87, 0 < 67 < 1, to obtain the
approximation

By
/E " 0(B)d(z. EME = o(57)0.(z). (3.5)

Note that because the value of 7 is unknown, an approximate value must be

chosen. Ways in which this value can be chosen are discussed in Chapter IV.

In order to write the third term,

Ei+1 E/a
I= / / f(E, E'é(z, E')dE'dE, (3.6)
E; E

in terms of ®;(z), the order of integration must be interchanged. This can happen
in several ways depending on the size of the interval [E;, F;4+1] as explored in
Appendix B.

If E;4, = E;/a, the integration in (3.6) is over the shaded area illustrated

in Figure 3.
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EI
1t E'=E/CX
E'=E
EH—I/a
Ein=E/C
E;
> E
Ei Ei+l
Fig. 3. Area of integration when E;,;, = E; /c.
Interchanging the order of integration in equation (2.16) produces
Eir1 rE'
I= / F(E, EYé(z, E')dEIE"
E; E;
Eiri/ae pEiny
+ / (B, E")é(=, E')dEdE". (3.7)
Eivr aF’!

This choice for E;4; involves less computation and will require fewer approx-
imations. Therefore, the energy grid must be set up so that E;;; = % for
t=1,2,...,N. Note that equation (3.7) is derived more completely and other en-
ergy grids are explored in Appendix B. Then, by once again using a mean value

theorem, the third term can be rewritten

[ /. E f(E,EE')dE] <1>,-(m)+[ / BB )E| Sun(e),  (38)

B;
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where E? = E; + 0 (E;y1 — E;) for some @ such that 0 < 87 < 1. Note that the
same 6 is used here as was used when |, ; 1 o(E)p(z, E)dE was calculated.

An integration over the ith energy interval [E;, E;;] produces the ith equa-~
tion

d@i (:L‘)
dx

+o(ED)8:(z) = { [ E f(E, E:)dE] 3:(z)

+ [ /a i* F(E, ;.;_l)dEJ Bip1(z) +bi(z),  (3.9)

which is a first order linear differential equation for i =1,2,..., V.

By letting,
Ef
asi= [ F(BB)E - o(EY) (3.10)
E;
and
Eitr
@i itl =/E. f(E,Ei,)dE, (3.11)

1

the equations given by (3.9) can be written as the following system of ordinary

differential equations.

d(I’dLaEx) = 01,1@1(1:) + 0,1,2@2(33) + bl (:D)

‘_i?%”_)_ = ap 2P2(z) + a2,3P3(z) + b2(z)

dq:;ix) = a;;9:(x) + a;:41Pit1(z) + bi(z)

ggi;\;ﬁ)— =an NDN(Z) + DN (). (3.12)

Note that ®p 41 does not appear in the Nth equation because ¢(z, E) is small

for E > Enyi. Also, each differential equation is subject to the initial condition
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®;(0) specified at z = 0. The equation (3.12) can also be written in the form

dy -
=2 = A7 13
= —ag+¥ (3.13)
where
g = col(®,, Do, ..., PnN), (3.14)
g = COZ(bls ba, ] bN): (3’15)
and A is the upper triangular matrix
-al,l a2 0 0 0 0
az2 a3 O 0
az3 azq4 O
A= (3.16)
aN—2,N—2 QN—2N—1 0
AN-1,N—1 QN-1,N
L aN.N

From this system of differential equations, each value of ®; can be calculated.
Then the low energy neutron fluence at each energy E;, ¢ = 1,2,..., N can be

approximated using the equation

. Ein
¢($1 Ez) = ”(bl(x) = !

= z, F)dE
B —E; By —E; g, o )

(3.17)

as it represents the average fluence over the energy interval [E;, E;41]. Linear
interpolation can then be used to find this fluence at any other energy in the
interval [Ey, En41] if values of ¢ over some other energy grid are required. For
example, the HZETRN energy grid is not the same as the E;;; = E;/a energy

grid and so interpolation is required to add contributions.
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A Numerical Solution
In order to solve the system of differential equations (3.12) given in the

previous section, the Nth equation

d@N (:II)
dr

= annOn(z) + by (z) (3.18)

must be solved first. This equation can be solved analytically giving the exact

solution

®n(z) = e*MNEP N (0) + VN T / bn(s)e oM N3ds. (3.19)
0

Once ®(z) has been calculated, the equation for ®5_1(z) can be solved. Then
®n_1(z) can be used to solve the equation for &, _o(x). This method can be

repeated until ®;(z) is known for all values of the index Zz. The general equation

for ®;(z) is
®;(z) = e*P;(0) + e“"-"z/ [@:,i41Pis1(s) + bi(s)]e™ %" %ds (3.20)
0

fori=1,2,...,N —1.

In (3.19) and (3.20), ®;(z) is calculated in terms of ®;(0) for each i. From
these equations, it is possible to derive the following equations for ®y(z 4+ Az)
in terms of ®n(z),

T+Ax
DN (z + Az) = e*MNEZPH N (z) + 2NN (EHAT) / bn(s)e ?NN%ds  (3.21)

pe

and for ®;(z + Az) in terms of ®;(zx),

z+AT
@i (:1? + A:t:) = ea,-,.-Axéi (.'B) —+ ea‘-,;(:z:-i-Az) / [ai,ﬂ.l q)i+1 (S) + bi(s)]e_“"-‘sds

x

(3.22)
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for i = 1,2,..., N — 1. These new equations can then be used in a marching
technique in which ®; is calculated at each new depth, = + Az, from the previous
smaller depth, z, thus saving computation time.

The integrals in equations (3.21) and (3.22) can be approximated using the

trapezoid rule

z+AT 1
/ bN(s)e—aN,NSdS =~ §A:l: [bN(x)e—aN_N:z + bN(.’L' + Az)e—aN_N(z-{-Ag:)]

(3.23)
and
+Az
/~r [@i,i+1Pi41(s) + bi(s)le™**°ds
=2 %A-T{ [ i+1DPir1(z) + b;(z)]e™ 2=
+ [a:i+1Pit1 (T + AZ) + bi(z + Ax)]e 2 (@A) }. (3.24)

Then equations (3.19) and (3.20) will have the forms

1

5 Azby(z + Azx) (3-23)

@N(.’E + A:l:) = eaN'NAI [@N(l') + %A.’BbN(x)] +
and

. 1
q)i(.’L‘ + A:E) ~ ea'"‘AI [<I>,-(:z:) + §Az(ai,i+1¢>i+1(x) + b,(:z:))]
1
+ 582(05:41Pi41(z + Az) +bi(z + Az)) (3.26)
for:=1,2,...,N—1.
The Marching Procedure

A general procedure can now be outlined for finding the low energy neutron

spectrum at any given depth in a homogeneous slab. First, an energy grid is
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defined by letting F; be the smallest energy for which neutron fluences are needed
and E;yy) = E;/a for ¢ > 1. Then a point Epn4; on this energy grid is chosen
to be the maximum energy. The number of neutrons with energy larger than
Ex4+1 produced by evaporation is assumed to be small compared to the number
of neutrons with the same energy produced by direct cascading. Physical data
supports a value of En4; between 20 Mev and 60 Mev.

Once the energy grid has been created, ®;(0) is calculated for all 7 using
equation (3.1).

Eipa
8:(0) = /E 7 6(0, B)aE. (3.27)

Note that for a single layer of target material the fluence due to evaporation at
the boundary ¢(0, E) is zero for all energies because no nuclear collisions have
occurred yet. Therefore, for a single layer of material, $;(0) =0 for all z.

Next, a suitable step size, Az, must be chosen for marching through the
depths of the target material. Recall, that there is an error on the order of (Ax)?
associated with the trapezoid rule used. Also, note that the total number of
steps needed, M, is the quotient of the total depth and Az. Choosing Az =
0.1 gm/cm? gives an error on the order of 0.01 particles/cm? without requiring
an unnecessarily large number of calculations. The choice of step size is discussed
in more detail in Chapter 4.

Beginning at the largest energy, @ v(Axz) is calculated using equation (3.25)

by letting z =0,

1

5 Azby(Aa). (3.28)

O (Az) 5 702G (0) + %AmbN(O)] +
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Then equation (3.25) can be used to calculate @ x(j-Az) by letting z = (§—1)-Az

for 7 =2,3,4,...., M,

Sy(j-z+ Az) ~ AT [By (G — 1) - Az) + %Abe((j _1)-Az)]

1

*t3

Azby(7 - Az). (3.29)

This process can be repeated to calculate ®n_)(j - Az) for 7 = 1,2,3,.... M
using equation (3.26). In the same way, ®n_o,Pn_3, PN—_4,---,P2, and P; can

be calculated for each multiple of Az using the equations

(I)i(A:E) =~ eai‘iAI [(Di(O) -+ —;—Azz(ai,i.*.l(l)i_*.l (0) + bi(O))]

+ %Az(ai,i+1®i+1 (Al‘) + bl(A.’D)) (330)
and

®;(j - Az) = e*i8%[d;((7 — 1) - Az)
+ %Am(ai,i+1®i+1((j —_ ].) . A:E) +b1((] - ].) . AIE))]

1 .
+ §Ax(ai,i+1<1>i+1 (j - A:L‘) -+ bi(] . AZE)) (331)

for j=2,3,4,...., M.

Once ®;(j - Az) is known for 7 = 1,2,3,..,N and j = 1,2,3,..., M, the
fluences ¢(j - Az, E;) can be calculated for all values of 7 and j using equation
(3.17). If ¢ is needed at some other depth or energy, linear interpolation can
be used. In this way, the number of low energy neutron particles created by

evaporation with any energy can be calculated at any depth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

CHAPTER IV
A TEST PROBLEM

As a first check, the multigroup method described in Chapter III was applied

to a test problem. A numerical solution to the Boltzmann transport equation,

E E/a

BB+ oBrmB) = [ S(EE ol ENE +9(wB),  (216)
E

was still needed, but in this test problem, both the scattering function f(E, E’)

and source term g(z, E) were approximated by analytical functions:

o(ET1e~T(E'-E)
1 — e(l—a)TE’

f(E,E') = (4.1)

and

g9(z,E) =g(E) = KEe F/T (4.2)

where 7, K, and T are constants. Note that the source term g(F) is in fact
dependent on the depth in the material. This dependence, however is small when
compared to the dependence on energy, E/, and was assumed constant for this
test case.

An approximation for the cross section, o(E), was also used,

X, E > E, Mev
o(E) = (4.3)

F7i7e B < B. Mev

where FE, is the constant 0.001 Mev and

x _ ave. cross section (barns) x density (gm/cm?) x 6.023(10)23(particles/mole) -
- Atomic weight (gm/mole)

(4.4)
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The Maxwellian averages of cross sections for various material can be found in the
Guidebook for the ENDF/B-V Nuclear Data Files?®. This reference also contains
plots of the cross sections versus energy for various materials. Equation (4.3) was
created by curve fitting these plots.
The Multigroup Solution
Multigroup solutions were found for three different materials: lithium, alu-
minum, and lead. The atomic weights, nuclear cross sections, and densities for

these materials are listed in Table 1.

TABLE 1

Parameter Values for Selected Elements

Cross Section | Density
Element Symbol | Ar barns™ gm/cm3 o
Lithium Li 7 1.050 .534 .563
Aluminum Al 27 1.348 2.7 .862
Lead Pb 207 11.194 11.342 .981
* Maxwellian averages (elastic)

The constants used in equations (4.1) and (4.2) to calculate the scattering func-
tion and the source term were 7 = 0.4, K =1, and T = 1. Note that K should
is related to the flux of high energy particles and could be on the order of 1 for
cosmic background or on the order of 10?. However, changing the value of K
does not change the shape of the source function, g(F). Therefore, for the sake
of convenience, the value K = 1 was chosen for this test problem.

As a first step, an energy grid was set up such that Fg = 0.1 Mev and

Ei = %- for i =1,..., N, where N was the smallest integer such that gﬁ- > 30
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Mev. Note that this meant that the number of grid points required was dependent
on the atomic weight of the material with more points (finer grid) needed for

heavy materials. This is shown in Table 2.

TABLE 2

Energy Partition Size N

Element a N | 0.1/a"

Lithium 0.563 10 31.53
Aluminum 0.862 39 32.75
Lead 0.981 | 298 30.38

The spatial step size Az = 0.1 gm/cm? was also chosen.

Then ®;(z) = [ 5 ! ¢(z, E)dE was calculated using equations (3.29) and

(3.31),
PN (j-z+Az) ~ eV VAZ[D N ((j—1)-Az) +bn((j— 1) - Az)] +bn(j- Az). (3.29)
fori=Nand =1,2,3,... and

D;(j - Az) me® 8% [@;((5 — 1) - AZ) + @441 Pis1((F — 1) - Az) + by(z)]

+ai,i+]_¢)i+]_(j - A-’IJ) +bi(j . A:z:). (3.31)

fori=1,2,3,..,N—1land j=1,2,3,..., with

azi= [ F(BLEE - o(ED), (3.10)
E;
Eit1
Qi i41 =/ f(E,E,)dE, (3.11)
akE?
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and
Ei41
b(w) = [ o(B)E (32)
E;
where Ef = E; + 0" (Eiy1 — E;) and B}y, = E—i + 1 + 68 (Biyg — Eiyy) for
some 0§1) and 01(2) such that 0 < ﬁgl) <land 0 < 9§2) < 1. Here 01(1) and 02@
were initially chosen to be 0.5 for all energies and all target materials. In this

test case b;(z) was evaluated analytically to obtain
b; = KT(E:e E/T — B e Evt/T) 4 KT? (e~ E:/T — e=Eent/T), (4.5)

Note that b; was not a function of z because g(E) was not a function of z. Also,

/ g L F(E, E?)dE and ffé“ f(E, E:)dE were calculated exactly giving

E; «\o~TE} (oTEi _ ,7E!
: o gm_ O(Ef)e ™5 (e77 — TP
E f(E7 Ei )dE - 1— e(l"a)TEi. (4’6)
and
Eiq . O.(E;)e—TE{ (eTB{+1 __ 'ro:Ei')
/a . HB.E}E = — CoyE (4.7)

T

The fluence ¢(z, E;) for energy grid point E;, was then approximated from

®;(z) using the equation,

@1; (.’L‘)

B =g T E

(4.8)

and fluences at other energies or depths were found by interpolating.

'The fluences for each of the shield materials were plotted and compared to
a numerical method and a recursive method. The values of 6’1(1) and 01(2) which
were used in the mean value theorem were then altered to make the fluences

calculated by the multigroup method more closely match those calculated by the
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numerical method. It was found that the choice of 010) and 0§2) had little effect
on the fluences at smaller depths. However, at larger depths these choices had
some effect on the fluences found in the heavier materials aluminum and lead.

The following values were chosen

0.93 4 0.0030485(E; — 3.037829) — 6, E; > 3.037829
o) = { 0.93 +0.2490258(E; — 3.037829) — 6, 0.5079704 < E; < 3.037829

0.30 — 0.3937829(E; — 0.5079704) — 4, E; <0.5079704
(4.9)

where

& = 0.4680656( A —0-94888853) (4.10)

and

0.90 + 0.004355(E;41 — 3.037829),  FEiy1 > 3.037829
6 = { 0.90 +0.249026(E;,; — 3.037829),  0.5079704 < E;;, < 3.037829
0.27 — 0.255920(E;, — 0.5079704),  E;yq < 0.5079704.

(4.11)
thus, 01(1) and 01(2) are dependent on energy and the atomic weight of the target
material. The new fluences calculated by the multigroup method using these
values of 9,0) and 0,@) are plotted along with the results of the numerical and
recursive methods and are shown in Figures 4 — 6 in the Comparisons of Results
section.

A Numerical Solution
Since the scattering function, f(F,E’), was an analytic function and the
source term, g(z, E), was analytic function independent of depth z, it was possible

to find another numerical solution for the test problem. This one used a modified

predictor-corrector method.
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The spatial grid was set up so that zo =0 and z; =i-Ax for7 = 1,2,3, ... and

the energy grid was set up so that Eyp =0 Mevand E; =j-AFE for j=1,2,3,....

The Az and AFE were chosen to assure convergence. Next, ¢(z;, E;) was defined
by

é(zi, Ej) = us 5 (4.12)

where

uy j = AzKE;e EilT (4.13)

for j =1,2,3,... and u; ; was calculated in the following manner for 7 = 2,3,4,....
and 7=1,2,3,....

The quantity v; ; was defined by the following equation,

$(zi, E')dE' (4.14)

/«Ej/a O.(EI)TC—T(B’—E]')
Vij =

E; 1 — e (l—a)TE’

and for each i, j value, v; ; was evaluated using Simpson’s 1/3 rule.

Then the first step of a predictor-corrector method for solving equation (2.16)

was given by

fij=vi;+ Eje 5 —o(E)u; ; (4.15)
and
2.7 Ax 1,72 ) = 0
Uit1,j = {211” oS J (4.16)
5(wi -1 +uije1) +Azfiy,  §>0

fort=1,3,5,7,...and 7=0,1,2,3,....

The second step was given by

firrg = virrj + Eje™% — o(B)uip; (4.17)
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and

U2, = Ui j + 2Axfi+1,j (4.18)

fori=1,3,5,7,...and 7=0,1,2,3, ...

The first step is an adaptation of the Fredrichs method3?, and the second is
a second order central difference method.

After the two steps were each repeated one hundred times the following is

added to the second step3!
fivej =vira,j + Eje™" — 0(E)uisa,; (4.19)

and

1 ] .
Uipo,j = §(ui+2,j +ui+1,7) +Azf; (4-20)

fori=1,3,5,7,...and 7=0,1,2,3, ...
Note that for heavy shielding materials, materials for which « is close to one,
a very small AFE is required for convergence of this numerical procedure.
The resulting neutron fluences were plotted in Figures 4 — 6 in the Compar-
isons of Results section as a check against the multigroup method.
A Recursive Solution
An attempt was also made to find a recursive solution to equation (2.16) for
the test problem. In this case, a solution of the form
oo
$(z,B) =) én(E)falz) (4.21)
n=1

was sought.
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The function ¢(z, E') was substituted into equation (2.16) to create the equa-
tion

2 [ S on(E)fo (x)} +0(E) S 6u(E) fulz)

n=1

Ef/a o
= [ HBEY Y 6BV @B + (. B)  (422)
n=1

or equivalently,

S 6ulB)| 2 fala) + o (EVn(a)|
n=1

E/

=;[ /E f(E,E)¢n(E)dE']fn(x>+g(x,E>. (4.23)

Using the assumptions that the nuclear cross section, o(F) = 0, is constant,
which is approximately true in a restricted range for £ > 0.001 Mev, and that
the source term, g{z, E) = g(E), is independent of depth, z, it can be seen that

equation (4.23) is satisfied if the following equations are satisfied,

o1(E) =g(E), (4.24)
E/x
buii(B) = [ F(B.EVon(ENE (4.25)
df;ix) +0afi(z) =1, (4.26)
and
Fne1(z) + 0 fat1(z) = fo(z), (4.27)

dx
where equations (4.25) and (4.27) hold forn =1,2,3, ....

Note that the initial condition

fn(0) =0 (4.28)
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also holds because the low energy neutron fluence due to evaporation is 0 at depth
z =0,

#(0,E) =0. (4.29)
The differential equations (4.26) and (4.27) can be solved exactly to produce

the following recursive relations,
1 ~ox
filz)=—-(1-e¢ ) (4.30)

and
falz) = / " o ()~ du (4.31)
0

forn=2,3,4,....

Note that the solution has a simple physical interpretation. The ¢,(F) fi(z)
term is the uncollided neutrons of the distributed source g(E). The ¢o(F) is
the first collision redistribution of energy and f2(x) their corresponding survival
probability.

Equations (4.24), (4.25), (4.30), and (4.31) were used to create approximate
solutions of the form

N
¢z, E) =Y ¢n(E)fa(z)- (4-32)
n=1

These functions were plotted as a function of energy, E, for various depths. These
plots showed that the functions converged quickly for depths less than or equal
to one but did not converge for larger depths.

These approximate neutron fluences for depths less than or equal to one
produced by equation (4.32), with N=6, are plotted in Figures 4 — 6 in the next

section and were also used as a check against the multigroup method.
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Comparisons of Results
The low energy neutron fluences obtained using the three methods previously
described are plotted in Figures 4 — 6 below. The fluences are plotted against
energy at a number of depths; 0.1 g/ecm?, 0.5 g/cm?, 1.0 g/cm?, 5.0 g/cm?, 10.0
g/em?, 50.0 g/cm?, and 100.0 g/cm?; for each of the three materials; lithium,

aluminum, and lead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Neutron Fluence for Lithium

—
<

10°}
A Multigroup Method

— Numerical Method
O Recursive Method

Fluence (#neutrons/cm?2-Mev)
= =
IS L

A

o A
Lt gl [ 1IUJJJQ1A| |

10° 10y

Energy (Mev)

Fig. 4. Test problem solutions - energy spectra of evaporation neutron
fluence in lithium.
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Fig. 5. Test problem solutions - energy spectra of evaporation neutron
fluence in aluminum.
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Neutron Fluence for Lead

A Muttigroup Method
— Numerical Method
O Recursive Method

Fluence (#neutrons/cm=-Mev)

, 1l C ol AN
10" 10" 10’
Energy (Mev)

Fig. 6. Test problem solutions - energy spectra of evaporation neutron

fluence in lead.

The graphs show a remarkably good agreement between the three methods.
This proves that the multigroup method described in Chapter III is a reasonable

method for the solution to this type of problem.
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The multigroup method also has several advantages over the other methods
described in this chapter. First, it is fast computationally. The numerical method
used a large amount of computer time, while the multigroup method ran in
seconds. Second, it works for larger depths. The recursive method was limited to
depths less than or equal to one g/cm?. Lastly, the multigroup method is more
versatile than either of the other two methods. The numerical method and the
recursive method described in this chapter could be applied to this test problem
only because the source term, g(z, E) = g(E), was only dependent on energy, E.
The multigroup method has no such limitations, nor does the multigroup method
require that the cross sections, o(F), be constant or that the scattering function,
f(E,E"), and the source term, g(z, F), be rather simple analytical functions.
For these reasons, the multigroup method was deemed an ideal method for use

in trying to solve the more complicated problem described in the next chapter.
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CHAPTER V

INCORPORATING THE MULTIGROUP METHOD

INTO THE HZETRN PROGRAM

Having proven to be very accurate on the test problem, the multigroup
method described in Chapter III was then applied to a more realistic problem.
In this case, it was desired to calculate the low energy neutron spectrum at
various depths in an aluminum shield. To accomplish this a solution to equation
(2.16) using more realistic values for both the scattering function f(E,E’) and
the source term g(z, F) as evaluated by the HZETRN program was needed. This
was accomplished by adding the multigroup method to the HZETRN program

in a subroutine called NPRP which stands for neutron propagation.
The HZETRN Program

Before running the HZETRN program, the background radiation must be
specified. Models of radiation fields for several solar particle events (SPEs),
February 1956, November 1960, and August 1972, are available. In the case of
SPEs, the shield is bombarded by large numbers of low to high energy protons.
As these protons interact with the atoms of the shield material, more protons and
other light ions and neutrons are produced. It is also possible to set the program
up to model galactic cosmic rays. In this case, the shield is bombarded with a

variety of heavy ions in addition to protons and light ions, and the transport

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45
process produces more heavy and light ions and protons and neutrons. These
eventually become the source term for the low energy neutron equation.

As an example, the SPE of February 23, 1956 was chosen as input data.

The HZETRN program is set up to calculate radiation transport in two slabs
of material. The program models the transport of ions incident upon an outer
slab of material called the shield. These transport calculations are then continued
through an inner slab of material called the target.

In the main part of the program, the depths, z(k) for £ =1,2,...,10 for the
shield and y(I) for l = 1,2, ...,10 for the_target, and the energies, en(z) for values
i=1,2,...,,30, at which the low energy neutron source term will be calculated are
input. These depths are also the depths at which the particle fluences are found.
Then the shielding material is defined by inputting its atomic weight, charge, and
density.

The program then sets up an energy grid, etf(ze) for ie = 1,2, ..., 30, based
on an equal log spacing of the proton range. Then for each depth, z(k) for k =
1,2,..,9 the subroutine PRPGT is called to propagate the fluence from z(k) to
z(k+1). These fluences are calculated at every energy et f(ie) for ie = 1,2, ...,30
and stored in the ff(Ze,j,k,!l) array for ie = 1,2,...,30;  =1,2,...,6; and [ = 1.
Here, the index j gives the type of ion being transported, §N (neutron), [ H
(proton), 2D (deuteron), 3T (triton), 3He (helion), and $He (helium) for solar
flares, and the index ! gives the depth into the shield and is 1 for no target.

These fluences are then used in a subroutine called SOURCEF to calculate

the source term for the low energy neutron transport equation. This source term
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corresponds to the number of neutrons per unit depth of energy en(z) that are
produced through evaporation when the particles stored in ff(ie, 7, k, ) collide
with atomic nuclei. This source term is stored discretely in the NSORF(i, k,1)
array fort=1,2,...,30, £ =1,2,...,10, and [ = 1. NSORF(i,k,1) is the source
term g(z, F) needed in equation (2.16) at z = z(k) and F = en(z).

If allowed to continue, the program proceeds to define the target material,
calculate the ion transport through the target, and evaluate the low energy neu-
tron source terms for the target in much the same way. The fluences are then
used to calculate estimated dose values for various shield-target geometries.

For this problem, however, the call statement for the multigroup subroutine,
NPRP, was inserted right after the source term for the shield was calculated.
Then the HZETRN program was terminated.

Description of The Multigroup Subroutine NPRP

When the main program calls the multigroup subroutine NPRP, the source
term array NSORCF(i,k,l), as well as the depths z(k) and y(I) and both the
energy grid for the source term en(z) and the energy grid for the fuences et f(ze)
are sent to the subroutine. The atomic weight, charge, and density of the shielding
material are stored in a common block and are, therefore, also available to the
subroutine.

Subroutine NPRP follows the method laid out in Chapter III. First, « is
calculated from the atomic weight of the shield material. Then, yet another
energy grid is created. This energy grid, stored in the ena(ii) array for it =

1,2,3,...,N is set up so that ena(iz + 1) = ena(éi)/a and N is chosen so that
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ena(N) > 30 MeV and ena(N — 1) < 30 MeV.

Next, a step size for marching through the depths of the material is chosen.
Here, care must be taken that each depth in the z(k) array is a multiple of the
chosen step size. In Chapter III, a step size of Az = 0.1 gm/cm? was suggested.
0.1 gm/cm? is adequate here, as well, so long as the depths in the z(k) array are
all multiples of 0.1 gm/cm?2. In the NPRP subroutine this step size is called del.

Once the step size has been defined, the maximum number of steps is calcu-
lated. This is the number of steps needed to get from z(1) to z(10) and is given
by the equation IMAX = INT(ﬂ%}—)-).

Next, subroutine AMATRX is called to calculate a;;,:; and a;i; ;41 for values

1 =1,2,3,..., N. These values are calculated as described in Chapter III,

Eg
Qiiii = / f(E,EL)dE — a(EZ;) (5.1)
E;;
and
Eiity
Qi i1 =/ f(E,E})dE. (5.2)
aEr

The scattering function, f(E, E’), and the nuclear cross sections, o (F), however,
are more complicated analytic functions than used in the test problem in chapter
3. Instead, the HZETRN program contains a subroutine, ELSPEC, that will

calculate either the scattering function, fs(F, E’), or the integral scattering func-

E

o fs(E, B YdE. Note, this scattering function, f,(E, E’), is not the same

tion,
as the scattering function described in chapter 2, but f(E, E’) = o(E') fs(E, E’)
is the scattering function described in chapter 2. The HZETRN program also

contains a subfunction ELSEC which will calculate the elastic nuclear cross sec-
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tion o(F) for any energy E. Thus, the AMATRX subroutine calculates a;; ;; and

@i i+ using the equations

o E;;
aieii = o(E3) [ FBEE - [ (B BB ~o(B)  (63)
aE?; aly,;
and
Eiir
Qi i+l = U(E;i)/ fs(E7 E;.";')dEa (5—4)
akE’;

where ffé*;_.i fo(E, EL)dE, [55 . f+(B, E3)dE, and f S+ (L) fo(E, E5)dE are
calculated by making calls to the ELSPEC subroutine, and o(E};) and o(E;;) are
calculated by the subfunction ELSEC. Once calculated, these values are stored
in the A(%z,12) array.

Once the A(7%,i7) array has been set up, the NPRP subroutine calls
subroutine EINTERP to interpolate the source term values stored in the
NSORCF\(i,k,l) array to the ena(ii) energy grid. This subroutine uses lin-
ear interpolation. The interpolated source term values are stored in the
X NEW (i1, k,l) array, where X NEW (ii, k, ) is the source term at energy ena(7i)
and depth z(k) into the shield and y(l) into the target.

After the source terms have been interpolated to the new energy grid, the
NPRP subroutine calls subroutine INTX to calculate the integral of the source
term from ena(iZ) to ena(ii + 1) for 7 = 1,2,3,..., N — 1. The trapezoid rule is
used to calculate these integrals. The new integrated source terms are stored in
the array, B(ii,k,l), where B(ii, k,l) is the integral of the source term at z(k)
and y(I) from ena(iz) to ena(ii + 1). Note that this is the b;(z) term given by

equation (3.2) in Chapter III.
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Next, a new array called Y BAR(,icount) is initialized so that
YBAR(N,icount) =0 (5.5)

for icount = 1,2, 3, ...,%mazx. This new array will contain the integral fluences,
called ®;(z) in Chapter III. Y BAR(iz,icount) is the integral of the neutron flu-
ence from energy ena(iz) to energy ena(ii+1) at depth = icount*del. Therefore,
Y BAR(N,icount) is the integral of the neutron fluence at the largest energy at
depth = = icount * del. Recall, that the fluence of evaporation neutrons is small
enough to be approximated by zero for energies greater than 30 Mev. For this
reason, the integral fluence at energy ena(V) is set to zero.

The marching process is begun at the next highest energy ena(N — 1) and
continues downward to ena(l).

At each of these energies, the depth and the depth counter are initially set
to zero, dep = 0 and icount = 0. Then, the integral fluence is calculated at
zero depth. For the shield material, this value is zero, because there can be no

evaporation neutrons before any collisions have occurred. Therefore,
Y BAR(i1,0) =0. (5.6)

A second marching process, this one through the depths of the material, is,
then, begun. At each step, the depth, dep, is increased by del, and the depth
counter, tcount, is increased by one.

At each depth, the subroutine BINT is called to interpolate the integral of
the source term stored in the B(7i,k,[) to the current depth. This new value is

stored in the BB(%i,icount) array. This subroutine also uses linear interpolation.
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Next Y BAR(%%,icount), the integral fluence at the current energy ena(iz)
and the current depth dep, is calculated from the integral fluence at the previous
depth, (icount — 1)del and the integral luences at the previous energy, ena(ii+1).

If icount = 1, equation (3.30) from Chapter III is used
QZ(A.’L‘) s %iBT [<I>,-(0)+ai,i+1<1>,—+1 (0)-{-62(0)] +ai,i+l¢i+L(A$)+bi(AI) (3.30)
or in terms of the variable names used in the NPRP subroutine

Y BAR(ii, 1) =eA(#)4el [y B AR(4%,0) + A(44, i + 1)Y BAR(ii + 1,0) + BB(44,0)]

+ A(4,4% + 1)Y BAR(i + 1, 1) + BB(di, 1). (5.7)
Otherwise, equation (3.31) is used

®;(j - Az) me® A% [&;((f — 1) - Az) + 45,341 Pi41((F — 1) - Az) +b((F — 1) - Az)]
+ @i 4+1Pi41(7 - Az) +b:(5 - Az). (3.31)
or
Y BAR(ii, icount) =e(:%)4el [y B AR(i%, icount — 1)
+ A(4i, 4 + 1)Y BAR(4% + 1, icount — 1)
+ BB(ii,icount — 1)]
+ A(#i,4 + 1)Y BAR(% + 1, icount)
+ BB(ii,icount). (5.8)

Once the integral fluence has been calculated, the NPRP subroutine checks

to see if the current depth, dep, is one of the depths at which neutron fluences
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are needed, z(k) for £ = 1,2,3,...,,10. If it is, the neutron fluence is calculated
from the integral fluence by dividing the integral fluence by the difference in the
energy grid, ena(ii+1) —ena(z). This fluence is stored in the PHI(ii, k, l) array,
where PHI(ii,k,l) is the neutron fluence at energy ena(ii) and depth z(k) in
the shield and y(!) in the target.

Next, the NPRP subroutine goes on to the next depth and repeats this
process. Once the maximum depth, £(10), is reached, the program goes on to
the next energy, one step lower on the energy grid than the one just finished, and
starts again at depth dep = 0.

Once this process has been repeated for every energy, the NPRP subroutine
interpolates the neutron fluences stored in the PHI(ii,k,l) array back to the
et f(ie) energy grid provided by the main program. The new fluences are stored
in the fneu(ie,k,l) array, where fneu(ie, k,!l) is the low energy neutron fluence
at energy etf(ie) and depth z(k) into the shield and y(l) into the target. Once
again, linear interpolation is used.

These low energy neutron fluences are then returned to the main program
where they can be added to the other neutron fluences stored in ff(ze, 1,k,1).
Results

The low energy neutron fluences created by the scattering of evaporation neu-
trons as calculated by the NPRP subroutine are plotted in Figure 7. Here, fluence
is plotted against energy for nine depths, 0.1 gm/cm?, 0.3 gm/cm?, 1 gm/cm?,
3 gm/cm?, 5 gm/cm?, 10 gm/cm?2, 20 gm/em?, 30 gm/cm?, 50 gm/cm?, and

100 gm/cm?. Note that the fluence increases with depth. Also, note that the
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fluence at depth zero is zero and cannot be shown on a log plot.
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Fig. 7. Low energy neutron fluences due to scattering of evaporation
neutrons in an aluminum shield exposed to the February 23, 1956 solar particle
event.

Note that the shape of this graph is similar to that of Figure 5.

Figure 8 shows these fluences added to the neutron fluences produced by the
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HZETRN program. In other words, this plot shows the total neutron fluence.
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Fig. 8. Total neutron fluences in an aluminum shield exposed to the February

23, 1956 solar particle event.

Figures 9—11 show comparisons of the total neutron fluence calculated by the

HZETRN program with the multigroup subroutine with the total neutron fluence
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calculated by the HZETRN program without transporting evaporation neutrons
and the total neutron fluence calculated by the HZETRN program with the evap-
oration neutrons transported using the same perturbation methods used on the
higher energy neutrons. These comparisons are made at depths of 1 gm/cm?,

10 gm/cm?, and 100 gm/em? respectively.
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Fig. 11. Energy spectra of neutron Auence at 100 gm/cm? depth in
aluminum exposed to the February 23, 1956 solar energetic particle event.

In all three cases, the total low energy neutron fluence calculated by the HZETRN

program with the multigroup subroutine, NPRP, is larger than the total low

energy neutron fluence calculated either of the other two ways. This indicates that
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the rescattering terms of the original HZETRN code were inaccurate representing

a net loss of neutrons.
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CHAPTER VI

THE MULTIGROUP METHOD FOR

MULTIPLE ATOM TARGET MATERIALS

The low energy neutron transport equation derived in Chapter II

- E/a
‘_—%(a E) ¢ o(B)o(x, B) = / f(E, E)¢(z, E)AE' +g(z, B)  (2.16)
z E

must be altered when used to model transport in a material containing more than
one type of atom such as CO; or water. A separate scattering function fg(E, E')
must be calculated for each atom in the target material. For example, if the
target is COsq, then fc(E,E’) will represent the number of scattered neutrons
with energy E produced when a neutron with energy E’ collides with the nucleus
of a carbon atom, and fo(F, E’) will represent the number of scattered neutrons
with energy E produced when a neutron with energy E’ collides with the nucleus

of an oxygen atom. The low energy neutron transport equation then becomes

9¢(z, E)
oz

E/ag
+o(E)p(z, E) =3 / f5(E, E)é(z, E")dE' +g(z,E) (6.1)
B E
where ag is the a for atom type B given by equation (2.17).
Derivation of Multigroup Method for Multiple Atom Materials
The method described in Chapter III for solving equation (2.16) must also

be altered for use with composite materials. For single atom materials, the multi-

group energy grid is set up so that E;y) = E;j/a for i =1,2,3,..., N — 1 where
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a is dependent on the atomic weight of the material. For multiple atom mate-
rials, on the other hand, each different atom has a different atomic weight and,
therefore, a different &. However, one energy grid must still be chosen in order to
solve equation (6.1). Using a smaller energy grid will lead to smaller errors (see
Appendix B). For this reason, the a for the heaviest atom in the target material

should be used to create the energy grid. Recall that

e

where AT is the atomic weight. Taking the derivative of o with respect to atomic

weight, A7, produces the equation

do _ 4(AT - 1)

= > 0. .
dAT (Ap+1)3 — 0 (6.2)

Recall that A7 > 1. This shows that « is a non-decreasing function of Ar.
Therefore, a is maximized when Ar is maximized.

For this reason, a first step to solving equation (6.1) must be to sort the
atoms of the target material putting them in order from heaviest to lightest and
numbering them so that o is the o for the heaviest atom, ag corresponds to
the next heaviest atom, and so on. The energy grid can then be set up so that
Eip1 =E;/o; fori=1,2,3,..., N — 1.

Next, each term of equation (6.1) is integrated from FE; to E;4; as described
in Chapter III. In fact, the first, second, and last term of equation (6.1) are

integrated in exactly the same way as Chapter III,

et 8 E)d 0
L gt BiE = ga), (53)
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Eina
| o(Byte B)E = o(51)0:(a), (3.4)

and

Eirr
bs(e) = [ gla E)E. (3.2)
E;
The third term, however, is different. First, put the third term in the form

E/ag E/ay
E ENo(z,E')dE' = E’ E"dE'
Zﬁ: /B fo(E, E")¢(z, E) [E fi(E,E"¢(z, E')

E/ag
+> / f8(E,E")¢(z,E')dE'. (6.3)

g>17E

Now, EE.';i"'l 5/&1 f1(E,E"¢(z, E')dE'dE can be rewritten in the form

[ /E E f(E, E,-*)dE] ®;(z) + [ /a Ein(E,E{)dEJ ®;11(z), (3.8)

1E7

as described in Chapter III.

Next, fb{i"“ fg/a" fa(E,E")¢(z, E')dE'dE must be calculated for each 8 >

1. Here, E;;1 < Ej/ag. This situation is described in Appendix B and the
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relationship

i+1 rE/ag
/, /E fs(E,E")¢(z, E')dE'dE
; o
- U Jo(E: E?’)dE] HE)
E;

+ Z U - fg(E,ES,P)dE]@m(r)

m=i+1

* </EH_1 (2) 7
it [ o5, B0, B

+m3 [ / . f8(E,E)g(z, E')dE] }%—(x)

E(S)

+ \; [ / B fg(E,E,(,P)dE] O, (z)

(l)
m=7j+1

+73 [ / e fa(E,E)g(z, E')dE] @ (z) (6.4)

is derived. Here, j is such that E; is the largest point on the energy grid that
is less than F;/ag, and k is such that Ej is the largest point on the energy grid
that is less than F;;;/ag. See Appendix B for unknown variables. Note that
equation (6.4) will be truncated so that the largest index n appearing on the
integral fluence, ®,(z) will be IV, because the fluence ¢(z, E) is assumed to be

zero for energies larger than En.

Also, note that the hydrogen atom is a special case. The atomic weight

of hydrogen is 1. This means that « for hydrogen is zero and E/« is infinite.
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Therefore, for hydrogen

/ Fen /E ” fu(E, E"é(z, E')dE'dE

E;

e®
= [ / ) fH(E,E§1))dEJ¢>i($)

E;
N Ein
s [ [T e, B)AE] @) (6.5)
m=t+1 E:
Next, let,
wii= Y [ IoB.EDNAE ~ o) (6.6)
B JE:
and
Ei.q-l Ei-{»—l 1
son= [ A(BENE+Y [ peEE9aE ()
a E; 8>1 E;
and
Qi i+n = Z Cﬁ,i-}-n (6-8)

B>1

for n =2,3,4,...,N —i where Cg i+n is the coefficient of ®;;.,(z) given by equa-
tion (6.4) or equation (6.5). As in Chapter III, the low energy neutron transport
equation, then, becomes sequence of IV differential equations. However, for mul-

tiple atom materials the 7th equation is given by

d‘%ja(f) = ni:: i n®n(z) + bi(z) (6.9)

for i=1,2,3,..., N. In matrix form this equation is written

=Aj+b (3.13)

BI&
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where now A has the upper triangular form

a1 Q12 a3 414 Q15 a,N
Q22 @23 Q24 Q25

azs3 Q34 Q35
A= (6.10)

aN-2,N—2 OGN-2 N-1 OaN-2,N

aN—-1,N—-1 aN-1,N
L aN,N |
These N equations can be solved by starting at the highest energy, En, and

solving the Nth equation first. Then, ® 5 (z) can be used to calculate @y, (z)
and ®n(z) and ®n—_1(z) can be used to calculate ®y_2(z) and so on. In a

manner similar to Chapter III, the following equation for ®;(z) can be derived.

®;(j - Az) = e*i8% [0y((7 — 1) - Az)
N-1—i

1 , 1 _
+ 20z Y a154n®in((G — 1) - Az) + SAzb((F - 1) - Az)]

2 et 2

1 N—-1—1i 1
+ 50z X_:l @ii+n@irn(] - AT) + 5 ATb:(5 - AT) (6.11)

fort=1,2,3,..,N—1land j=1,2,3,.... M.
Neutron Fluences in Multiple Atom Materials

In order to actually calculate the low energy neutron fluence in a multiple
atom target material, the equations derived in the previous section were added
to the HZETRN program. First, a subroutine called SORT was created to sort
the atoms in terms of atomic weight. A call to this subroutine was added to the
beginning of the NPRP subroutine. Next, subroutine AMATRX was altered to
calculate a; ; for i = 1,2,3,...,N and j = 4,4+ 1,7+ 2,..., N using equations
(6.6), (6.7), and (6.8). Then, the NPRP subroutine was altered to calculate the

integral fluence, ®;(z) or Y BAR(i, k,1), using equation (6.11).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

Once the program was altered, the HZETRN program was run for a target
of water, HoO. Note that this is an important target because human tissue is
mostly water and often modeled as water. Once again, the February 1956 SPE
was used.

The total neutron fluence, evaporation neutrons and direct cascade neutrons,
is plotted against energy in Figures 12 — 14 for depths of 1 gm/cm?2, 10 gm/cm?,
and 30 gm/cm?, respectively. These fluences are plotted with neutron fluences
produced by the LAHET Monte Carlo code?® . The neutron fluences calculated

by the original HZETRN program are also plotted.
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Fig. 12. Energy spectra of neutron fluence at 1 gm/cm? depth in water
exposed to the February 23, 1956 solar energetic particle event.
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Fig. 13. Energy spectra of neutron fluence at 10 gm/cm? depth in water
exposed to the February 23, 1956 solar energetic particle event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

10°

p—
>10°
O
=
N.
5
w10
c
o
b
=
2
3 10°
N 4
o]
3
c
O
2100__ —  HZETRNfiuence with muligroup neutrons
1 — — - HZETRNfluence without evaporation neutrons
— - — - — HZETRNfiuence with evaporation neurons
------------------ Monte Carlo fluence
10‘2 Lttt L 111l L4 1 LIl L L 11l L Lt

10" 10° 10’ 10 10° 10*
Energy (Mev)

Fig. 14. Energy spectra of neutron fluence at 30 gm/cm? depth in water
exposed to the February 23, 1956 solar energetic particle event.

These plots show that the low energy neutron fluences produced by the
HZETRN program with the NPRP multigroup subroutine are much closer to

those predicted by the Monte Carlo method. This is especially true at the deeper
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depths of penetration. This comparison confirms that the multigroup method is
an improved predictor of the scattering of evaporation neutrons.

Figures 12 — 14 also show that while the results produced by the HZETRN
program with the NPRP subroutine are close to those produced by the Monte
Carlo method, much closer than those produced by the old HZETRN method,
these fluences are still too low. Several hypotheses can be made as to the rea-
son for this. First, there is some error in the perturbation methods used by
the HZETRN program to produce the source terms needed for the multigroup
method. Figures 12 — 14, however, show a good agreement between HZETRN
and the Monte Carlo method at larger energies, so these errors must be assumed
to be small. There are also some errors produced in the multigroup method when
numerical integrations are performed, but the test problem in Chapter IV showed
that these errors are small.

The nuclear cross sections used are believed to be a larger source of error.
First, only the elastic cross sections were used in the multigroup subroutine. The
elastic cross sections are much larger than the non-elastic cross sections at low
energies. Non-elastic cascading does occur, however, and the multigroup method
would be more accurate if both types of cross section were used.

Also, the nuclear cross sections used by the HZETRN program are interpo-
lated from a large data base that was developed experimentally. Researchers at
NASA Langley Research Center have some questions about its accuracy and are

currently planning to update it.
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Transport in Two Directions

Another observation can be made from Figures 12 — 14. That is that the
HZETRN program with the NPRP subroutine appears to be more accurate at
larger depths. This is counterintuitive since any error produced by the numerical
integration would build up as the program marches through the depths.

The fact that the multigroup method is less accurate for smaller depths is
a result of the straight ahead approximation made to the Boltzmann transport
equation when the method was derived. It was assumed that all secondaries
produced by nuclear collisions would move in the same direction as the primary
ion, proton, or neutron that caused the collision. For secondaries that are charged
particles or high energy neutrons, this is an accurate assumption, most secondary
particles do move in the same direction as the primaries. Low energy neutrons
produced by evaporation, however, move in all directions. These neutrons make
up the source term used in the multigroup method. Therefore, the multigroup
method fails to account for the ”leakage” at the boundary of low energy neutrons
that have been transported back from deeper depths in the slab.

For this reason, a more accurate method would solve the full neutron trans-
port equation, not the one dimensional equation produced when the straight
ahead approximation is used. Solving the full neutron transport equation would,
however, be inefficient in terms of computer time and incompatible with the
HZETRN program. Therefore, this was not attempted. Instead, the one dimen-
sional multigroup method was improved by making the assumption that half the

source neutrons move in the forward direction and half the source neutrons move
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in the backward direction. Such an approximation is known to be consistent with
diffusion theory.

The NPRP subroutine was altered so that the low energy neutron fluences
¢¢(z, E) were calculated for all energies and all depths in the way described in
Chapter V except that only half the source term was used. The process was
then repeated using the other half of the source terms except this time instead of
marching forward through the depths of the material, the program started at the
largest depth and marched backward through the depths. The fluences produced
by this backward propagation ¢,(z, E) were then added to the fluences from the

forward propagation,

¢(x= E) = ¢f($: E) + d’b(xmaa: — I, E)° (612)

In order to model an infinite slab, a large depth must be chosen. A depth of
160 gm/cm? was used for aluminum and water.

Some thought was given to how the initial luence ¢»(0, ') should be calcu-
lated for the backward propagation. As already stated, for a single slab exposed
to space radiation, ¢f(0,E) = 0 for forward propagation. If an infinite slab is
being modeled and the maximum depth is large enough, then ¢o(0, E) =0 is an
accurate approximation. Another possibility is to use a mirror boundary condi-
tion where ¢,(0, E) = ¢ (Zmaz,E). This models a slab with a second identical
slab placed concurrently at its maximum depth. Both slabs are exposed to the
same radiation field.

This new two direction multigroup method was applied to the 100 gm/cm?
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slab of water. Both values of ¢5(0, E) were attempted and there was only a very
small difference in the total neutron fAuences produced with the two different
boundary conditions. Figures 15 — 17 show the total neutron fluences produced
when this new two direction multigroup method is used for depths of 1 gm/cm?,

10 gm/cm?2, and 30 gm/cm?.
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Fig. 15. Energy spectra of neutron fluence at 1 gm/cm? depth in water
exposed to the February 23, 1956 solar energetic particle event calculated with
the two direction multigroup method.
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exposed to the February 23, 1956 solar energetic particle event calculated with
the two direction multigroup method.
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Fig. 17. Energy spectra of neutron fluence at 30 gm/cm? depth in water
exposed to the February 23, 1956 solar energetic particle event calculated with

the two direction multigroup method.

Figure 15 shows that the new two direction multigroup method greatly im-

proves the low energy neutron fluence predictions at small depths. Figures 16
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and 17 show that switching to this new subroutine has a much smaller effect on
the low energy neutron calculations at larger depths. This is because the build
up of high energy neutrons reaches a maximum at some depth past which it de-
clines. Since the low energy neutrons are in near equilibrium with their source,
they maximize near the source maximum without regard to direction.

Neutron Transport in Two Materials

As previously stated in Chapter V, the HZETRN program is set up to cal-
culate radiation transport through two materials, the first called the shield and
the second referred to as the target. The HZETRN program calculates the ra-
diation fluence at a number of depths in the shield. These depths are input at
the beginning of the program and are stored in the z(k) array. Then, for each of
these shield depths, the HZETRN program calculates the radiation fluence at a
number of target depths which were also input at the beginning of the program.
The target depths are stored in the y(!) array. The fluences are stored in the
ff(i, 5, k, 1) array, where f f(%, 7, k,!) is the fluence of type j particles with energy
etf(¢) at shield depth z(k) and target depth y(I). Note that the f(z, 7, &k, ) array
is used instead of the ff(z,7,k,l) array if galactic cosmic ray radiation is being
transported instead of solar flare radiation. The program uses these fluences to
make dose calculations.

For example, in order to calculate the radiation dose absorbed by an astro-
naut’s liver, a ray tracing method uses 512 different evenly spaced rays, each of
them pointing toward the center of the astronaut’s liver. Each of these rays is

considered a path along which particles can travel to the astronaut’s liver. The
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amount of shield each ray passes through can be evaluated. The amount of human
tissue each ray passes through to get to the liver can also be evaluated. Recall
that human tissue is modeled as water. The HZETRN program calculates the
particle fluence at each of the 512 needed (shield depth, target depth) pairs. It
does this by interpolating over the fluences, ff(7,7,k,1), that it has already cal-
culated at the at shield and target depths given at the beginning of the program.
The total number of each type of particle absorbed by the astronauts liver as a
function of energy can then be calculated by integrating over these 512 fluences

coming from different directions.

In order to be compatible with the main HZETRN program, the NPRP sub-
routine must also calculate fluences at the shield and target depths given at the
beginning of the main program. It is easy to set up the older one direction NPRP
subroutine to work this way. First, the HZETRN program is changed so that it
calls the NPRP subroutine twice, once after the source terms for the shield are
calculated and again after the source terms for all of the shield/target combina-
tions are calculated. An integer variable called NLAY tells the subroutine which
layer to propagate through, NLAY = 1 for the shield and NLAY = 2 for the
target. If NLAY = 1, the NPRP subroutine calculates the low energy neutron
fluence for each of the shield depths z(k) for k£ =1,2,3, ..., 10 in exactly the way
described in Chapter V. If NLAY = 2, the steps described in Chapter V are
repeated ten times, once for each shield depth. This means that the NPRP sub-
routine starts with the first shield depth, usually set to be zero, and calculates the

neutron fluence at each target depth in the way described in Chapter V. Then it
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starts over with the second shield depth and again calculates the fluence at each
target depth. This process is repeated until the neutron fluence is calculated for
every target depth for the largest shield depth. There is, however, one major
difference in the way neutron fluences are calculated for the target. When the
neutron fluences are calculated in the shield the initial condition is assumed to be
zero, ¢(0, E) = 0. When calculating neutron fluences in the target, on the other
hand, the initial fluence is equivalent to the fluence at the shield depth which was
calculated the first time the NPRP subroutine was called. Note that this fluence
must be interpolated to the new energy grid because the multigroup energy grid

is dependent on the material. Once again, linear interpolation is used.

Setting up the two direction version of NPRP to work for a shield/target
combination is more difficult. This subroutine cannot be set up to calculate
fluences at all shield depth/target depth combinations. Instead, the user must
choose one maximum shield depth zmaz and one maximum target depth ymaz.
Then the subroutine can be used to calculate the energy spectrum of the low
energy neutron fluence at any depth in the shield or any depth in the target with
a shield of zmax gm/cm? in front of it. The program will propagate half the
source neutrons through the shield material to the maximum shield depth and
through the target material to the maximum target depth. It will then propagate
the other half of the source term back through the target and back through the
shield. In this case, when the NPRP subroutine is called the first time, after
the source terms for the shield have been calculated, the neutron fluences for the

forward propagation of half of the source term through the shield are calculated
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and stored in a common block. The atomic weights and atomic charges and the
density for the shield are renamed and also stored in a common block along with
the energy grid for the shield. All of these variables will be reassigned for the
target material. The second time subroutine NPRP is called, the neutron fluences
for the forward propagation of half of the source term through the target are
calculated. Then, the neutron fluences for the backward propagation of the other
half of the source term back through the target are calculated. Then, the energy
grid is reset to the energy grid for the shield material and the neutron fluences
for the backward propagation of the second half of the source term through the
shield are calculated. Lastly, the forward propagation fluences and the backward
propagation fluences are added together.

Both the one direction version of the code and the two direction version
of the code were run for a shield of 100 gm/cm? and a target of 100 gm/cm?
exposed to the solar flare environment of February 23, 1956. As a final check of
the multigroup method, the results were compared to neutron fluences calculated
with MCNPX Monte Carlo code3?. These Monte Carlo fluences were prepared by
Dr. Robert Singleterry at NASA Langley Research Center. The neutron fluences

produced are graphed in Figures 18 — 23.
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Fig. 18. Energy spectra of neutron fluence at 1 gm/cm? depth in the shield
of a 100 gm/cm? aluminum shield with a target of 100 gm/cm? of water behind
it.
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Fig. 19. Energy spectra of neutron fluence at 10 gm/cm? depth in the shield
of a 100 gm/cm? aluminum shield with a target of 100 gm/cm? of water behind
it.
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Fig. 20. Energy spectra of neutron fluence at 30 gm/cm? depth in the shield
of 2 100 gm/cm? aluminum shield with a target of 100 gm/cm? of water behind

it.
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Fig. 21. Energy spectra of neutron fluence at 1 gm/cm? depth in the target
of a 100 gm/cm? aluminum shield with a target of 100 gm/cm? of water behind

it.
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Figures 18 — 23 show that the two direction multigroup method accurately
approximates the transport of evaporation neutrons. The neutron fluences pro-
duced by this method are close to those produced by the Monte Carlo method.
These figures also show that the one direction multigroup method accurately ap-
proximates the low energy neutron fluence for large depths but underestimates
the fluence at small depths. The fluences predicted by the one direction multi-
group method at small depths are, however, better than those predicted by the
old HZETRN method.

The HZETRN program with the two direction NPRP subroutine was also
used to calculate the energy spectrum of the neutron fluence in a 25g/cm? shield
of CO, with a 100g/cm? target of regolith33. The environment of the February
23, 1956 solar particle event was used for this run. The energy spectrum of the
neutron fluence at the boundary between the shield and the target is shown in
Figure 24. These shield and target materials were chosen because the atmosphere
on mars is mostly COs and the ground is mostly regolith. The energy spectrum
of the neutron fluence shown in Figure 24, then, is a good estimate for the energy
spectrum of the neutron fluence on the ground on Mars if another large solar flare
occurred. With a robotic mission to Mars planned for 2003, this information could
be valuable in estimating the radiation environment on the Martian surface.

Figure 24 shows that the fluence calculated using the 2 direction multigroup
method is about twice as large as the fluence calculated using the 1 direction
multigroup method at low energies. The 1 direction method only calculates

those neutrons transported to the surface from higher altitudes. The 2 direction
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method, on the other hand, also includes neutrons created in the Martian ground
and transported upward. This demonstrates the importance of the 2 direction

method.
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CHAPTER VII

RESULTS AND CONCLUSIONS

A one dimensional integro-differential equation was derived to model the
elastic scattering of low energy neutrons in a target material. This transport
equation utilized the assumption that all scattered neutrons move in the same
direction as the primary neutrons. Evaporation neutrons produced when charged
particles or higher energy neutrons collide with atomic nuclei are treated as a

source term in this equation.

A multigroup method was created to solve this low energy neutron transport
equation. This was done by partitioning the energy range into a finite grid and
defining an integral fluence for each energy interval. In this way, the transport

equation was transformed into a solvable system of differential equations.

This multigroup method was first applied to a test problem in which both
the neutron scattering function and the source term were approximated by ana-
lytical functions. In this test problem, the dependence of the source term on the
depth in the material was removed. This made it possible to solve the transport
equation numerically and recursively for small depths. Neutron fluences calcu-
lated with the multigroup method in three materials, lithium, aluminum, and

lead, compared well with fluences calculated using the other two methods.

Next the multigroup method of calculating low energy neutron transport
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was added to the HZETRN particle transport code. The multigroup method was
found to be ideal for this purpose. It is efficient in terms of computer time and
it uses the straight ahead approximation used by the main program so the low

energy neutron fluences can easily be combined with the higher energy neutrons.

The multigroup method was also expanded to calculate neutron transport
in materials with more than one type of atom. This method was applied to a
water target and compared well with Monte Carlo results at larger depths where
the flux is in near equilibrium with the sources. This comparison, however, also
showed that the multigroup method underestimates low energy neutron fluence at
small depths in the material. The hypothesis was formed that this was happening
because the multigroup method did not account for evaporation neutrons that
scattered backward from larger depths in the material. For this reason, a new
two direction multigroup method was derived in which half of the source term
was transported forward through the material and half was transported back-
ward through the material. Results from this two direction multigroup method
compared well with Monte Carlo results even at small depths.

The multigroup method was also applied to an aluminum shield with a water
target behind it. These results also compared well with Monte Carlo results but
once again the two direction method was needed to calculate fluence at small
depths.

Lastly, the multigroup method was applied to a shield of COs with a target
of regolith behind it used to model the Mars environment. It was found that the

low energy neutron flux on the Martian surface will be due to the albedo from
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the regolith as well as neutrons transported down through the atmosphere. One

focus of the Mars 2003 mission is to test these code predictions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

REFERENCES

1. G. 1. BELL and S. GLASSTONE, Nuclear Reactor Theory, Van Nostrand
Reinhold, New York (1970).

2. J. K. SHULTIS and R. E. FAW, Radiation Shielding, Prentice-Hall, Upper
Saddle River, New Jersey (1996).

3. W.ZAIHUA, ” An Approximate Solution to the Neutron Transport Equation,”
Transport Theory and Statistical Physics, 26, 263-270 (1997).

4. J. J. DUDERSTADT and L. J. HAMILTON, Nuclear Reactor Analysis, J.
Wiley and Sons, New York (1976).

5. J. W. WILSON, L. W. TOWNSEND, W. SCHIMMERLING, G. S. KHAN-
DELWAL, F. KHAN, J. E. NEALY, F. A. CUCINOTTA, L. C. SIMONSEN, J. L.
SHINN, and J. W. NORBURY, "Transport Methods and Interactions for Space
Radiations,” NASA RP-1257, National Aeronautics and Space Administration
(1991).

6. P. FREIER, E. J. LOFGREN, E. P. NEY, and F. OPPENHIEMER, "The
Heavy Component of Primary Cosmic Rays,” Phys. Rev., T4, 1818-1827 (1948).

7. HHARMSTRONG, H. HABER, and H. STRUGHOLD, " Aero Medical Prob-
lems Space Travel-Planning Meeting, School of Aviation Medicine,” J. Aviation
Med., 20, 383-417 (1949).

8. H. J. SCHAEFER, ”Evaluation of Present-Day Knowledge of Cosmic Radia-
tion at Extreme Altitude in Terms of Hazard to Health,” J. Aviation Med., 21,
375-394 (1950).

9. J. G. JACOBS, ed., ”Proceedings of Conference on Radiation Problems in
Manned Space Flight,” NASA TN D-588, National Aeronautics and Space Ad-
ministration (1960).

10. S. L. LAMKIN, ”A Theory for High-Energy Nucleon Transport in One Di-
mension,” Master’s Thesis, Old Dominion University, Norfolk, Virginia (1974).

11. J. W. WILSON and S. L. LAMKIN, ”Perturbation Theory for Charged-

Particle Transport in One Dimension,” Nuclear Science and Engineering, 57,
292-299 (1975).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

12. J. W. WILSON, L. W. TOWNSEND, J. E. NEALY, S. Y. CHUN, B. S.
HONG, W. W. BUCK, S. L. LAMKIN, B. D. GANAPOL, F. KHAN, and F.
A. CUCINOTTA, "BRYNTRN: A Baryon Transport Model,” NASA TP 2887,
National Aeronautics and Space Administration (1989).

13. J. L. SHINN, J. W. WILSON, M. WEYLAND, and F. A. CUCINOTTA,
" Improvements in Computational Accuracy of BRYNTRN (A Baryon Transport
Code),” NASA TP 3093, National Aeronautics and Space Administration (1991).

14. J. W. WILSON, ” Analysis of the Theory of High-Energy Ion Transport,”
NASA TN D-8381, National Aeronautics and Space Administration (1977).

15. J. W. WILSON, "Depth-Dose Relations for Heavy lon Beams,” Virginia
Journal of Science, 28, 136-138 (1977).

16. J. W. WILSON, Heavy Ion Transport in the Straight Ahead Approximation,”
NASA TP 2178, National Aeronautics and Space Administration (1983).

17. J. W. WILSON, S. Y. CHUN, F. F. BADAVI, L. W. TOWNSEND, and
S. L. LAMKIN, "HZETRN: A Heavy lon/Nucleon Transport Code for Space
Radiations,” NASA TP 3146, National Aeronautics and Space Administration
(1991).

18. J. W. WILSON, F. F. BADAVI, F. A. CUCINOTTA, J. L. SHINN, G. D.
BADHWAR, R. SILBERBERG, C. H. TSAO, L. W. TOWNSEND, and R. K.
TRIPATHI, "HZETRN: Description of a Free-Space Ion and Nucleon Transport
and Shielding Computer Program,” NASA TP 3495, National Aeronautics and
Space Administration (1995).

19. J. W. WILSON, L. W. TOWNSEND, S. L. LAMKIN, and B. D. GANAPOL,
” A Closed Form Solution to HZE Propagation,” Radiation Research, 122, 223-
228 (1990).

20. J. W. WILSON, R. C. COSTEN, J. L. SHINN, and F. F. BADAVT, "Green'’s
Function Methods in Heavy Ion Shielding,” NASA TP 3311, National Aeronautics
and Space Administration (1993).

21. J. W. WILSON, F. F. BADAVI, J. L. SHINN, and R. C. COSTEN, " Approx-
imate Green’s Function Methods for HZE Transport in Multilayered Materials,”
NASA TM 4519, National Aeronautics and Space Administration (1993).

22. F. A. CUCINOTTA, J. W. WILSON, and F. F. BADAVI, "Extension of the

BRYNTRN Code to Monoenergetic Light Ion Beams,” NASA TP 3472, National
Aeronautics and Space Administration (1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

23. J. L. SHINN, J. W. WILSON, W. SCHIMMERLING, M. R. SHAVERS,
J. MILLER, E. V. BENTON, A. L. FRANK, and F. F. BADAV], "A Green'’s
Function Method for Heavy Ion Beam Transport,” Radiation and Environmental
Biophysics, 34, 155-159 (1995).

24. S. Y. CHUN, G. S. KHANDELWAL, and J. W. WILSON, " A Green’s Func-
tion Method for High Charge and Energy Ion Transport,” Nuclear Science and
Engineering, 122, 267-275 (1996).

25. J. W. WILSON, F. A. CUCINOTTA, H. TAI, J. L. SHINN, S. Y. CHUNN, R.
K. TRIPATHI, and L. SIHVER, ”Transport of Light Ions in Matter,” Advances
in Space Research, 21, 1763-1771 (1998).

26. J. L. SHINN, J. W. WILSON, M. A. LONE, P. Y. WONG, and R. C.
COSTEN, ”Preliminary Estimates of Nucleon Fluxes in a Water Target Exposed
to Solar-Flare Protons: BRYNTRN Versus Monte Carlo Code,” NASA TM 4565,
National Aeronautics and Space Administration (1994).

27. R. C. SINGLETERRY, ”Neutron Transport Associated with the Galac-
tic Cosmic Ray Cascade,” PhD Thesis, University of Arizona, Tucson, Arizona
(1993).

28. D. KINCAID and W. CHENEY, Numerical Analysis, Brooks/Cole, Belmont,
California (1991).

29. B. A. MAGURNO, R. R. KINSEY, and F. M. SCHEFFEL, " Guidebook for
the ENDF/B-V Nuclear Data Files,” NP-2510, Research Project 975-1, BNL-
NCS-31451, ENDF-328, Brookhaven National Laboraty (1982).

30. C. A. HALL and T. A. PORSCHING, Numerical Analysis of Partial Differ-
ential Equations, Prentice Hall, Englewood Cliffs, New Jersey (1990).

31. G. DAHLQUIST and A. BJORCK, Numerical Methods, Prentice Hall, En-
glewood Cliffs, New Jersey (1974).

32. H. G. HUGHES, R. E. PRAEL, and R. E. LITTLE, "MCNPX-The LA-
HET/MCNP code merger,” LA-UR-97-4891, Los Alamos National Laboratory
(1997).

33. L. C. SIMONSEN, J. E. NEALY, L. W. TOWNSEND, and J. W. WILSON,
"Space Radiation Shielding for a Martian Habitat,” SAE TP 901348 (1990).

34. S. L. LAMKIN, "High Energy Nucleon Transport in One Dimension”, PhD
Thesis, Old Dominion University, Norfolk, Virginia (1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

APPENDIX A

DERIVATION OF THE BOLTZMANN TRANSPORT EQUATION

Shultis and Faw?, Duderstadt and Hamilton?, and Bell and Glasstone® all
contain derivations of the Boltzmann transport equation for neutrons, and Stan-
ley Lamkin’s master’s thesis'? contains an easy to follow derivation of the simpli-
fied one dimensional Boltzmann equation with the straight ahead approximation
for neutrons and charged particles. The derivation described here, however, is
most similar to the one described in Lamkin’s doctoral dissertation3t. The full
Boltzmann transport equation is derived for neutral particles and charged parti-
cles.

An attempt to create a transport equation is an attempt to describe the
position and motion of every energetic particle in a medium at a given time.
Here, the position of a particle will be given by the vector £ = zi+yj + zk and
its velocity by the vector V =Vii+ Vyf-i— V.k. Note that the velocity can be
written in terms of its magnitude, v, and its direction, Q. In this case, vV =2Q.
Also note that the kinetic energy of a particle is related to the magnitude of its
velocity by the equation £ = %m'v2, where m is the particle’s mass. Therefore,
the velocity of a particle can be determined if its energy and direction are known.

The direction () can be described in terms of 8 and 1, as shown in Figure

25.
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Fig. 25. Solid angle about position Z.

Here, d§} = d€}(0,1) = sinfdf di is a solid angle measured in steradians begin-
ning at direction 2.

Let N;(Z, E, Q, t) be the total number of type j particles at position Z with
energy E and direction ) at time ¢ per unit volume per unit energy per steradian.
Then N;(Z, E, ﬁ,t) dZ dE dS} is the total number of particles in volume element
df = dz dydz with energy between E and E + dFE that have direction in solid
angle d} at time ¢. This number is not conserved, but the total number of type
7 particles in volume element df that have a direction in d$) with energy greater
than F,

U (2, E,Q,t) dfd = / dE, N;(Z, E,s,Q,t) d£dS, (A1.1)
E

is conserved.
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The Boltzmann equation can, therefore, be derived by evaluating the rate of
change of the number of particles in a volume element dZ with direction in solid
angle d{} having energy greater than E. This rate of change is equivalent to the

difference of the number of particles gained and the number of particles lost,

d — —
E\Ilj(f’ E,Q,t) dZ d2 = gains — losses. (A1.2)

The gains are due to sources and to those particles brought into the volume
element df and the solid angle d§} by collision scattering. Let g;(Z, E, €1,t) be

the number of type j particles created at position £ with energy F and direction

Q by some particle source. Then

/ dE, g;(Z, Es,$,t) dZ d{} (A1.3)
E

is the number of particles created with energy greater than E in volume element
dZ and solid angle d§l. Let Zi(F, E',§,§Y) be the probability that a type j
particle is produced with energy E and direction §} when a type k particle with
energy E’ and direction ' collides with an atom, and let mjx(E, ) be the multi-
plicity of type j particles produced in the same collision. Note that m x(E, Q) =1
for elastic scattering. Then the total scattering function f;x(E, E’, §1, ) is given
by

fi(E, B, Q,Q) = m(E, Q) Zi(E, E,Q, Q). (Al.4)
Next, define

6;(Z, E,Q, t) = v N;(Z, E, §,1) (A1.5)

to be the number of type j particles with energy E and direction {2 at time ¢ per

unit area per unit energy per steradian passing through position £ per second.
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This is called the particle luence. The total number of type j particles brought

into the volume element dZ and the solid angle d} with energy greater then E is

> / dE, / dE’ / dY fiu(Es, E',Q, 0 )(Z, B,V t)dEdQ.  (AL.6)
E E,

k23

Note that the integral [ dY is taken over all angles. Also note that conservation
of energy prevents a nuclear collision from producing particles with greater energy
than the original particle. For this reason, the integral [, g: dE’, for energy of the
particle before the collision, is taken from E,; to oo instead of 0 to oo.

The losses are caused by particles leaving the volume element or the solid

angle or dropping below energy E due to scattering. These losses are given by
R — —
/ dE, o;(Es)é;(E, E, O, t)dz i} (A1.7)
E

where 0;(E) is the nuclear cross-section.
Therefore, the total change to the number of particles in volume element dz
and solid angle d§} with energy greater than E at time ¢ is

%qu(f, E.Q,t)dZdQ

k23

= / dE, / dE’ / dSY fix(Ee, E Q. )i (z, E, Y , t)dZ d
JE o
_/ dE, O'j(Es)(ﬁj(f,E,ﬁ, t)dfdﬁ
E

+ / dE, g;(Z, Fs, 1, t) dZ dS1. (A1.8)
E

The rate of change %i can also be expanded to get

d¥; 8¥;  8¥;dz  9V;dy 9¥;dz
dt =~ ot dr dt = Oy dt = 9z dt
OV, dE  8¥;df  8Y;dy

OE dt ' 90 dt ' 8y dt’

(A1.9)
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Now, let %3— = at + égf (‘ﬁ, where [ = /z2 + y2 + 22 is the path length. Note
that £ = v and %—% = 0. Also, recall that %’3 = —S;(E), where S;(E) is

the linear stopping poxx;er. This is the energy lost per unit path length due to

ionization. It is treated as a continuous function because the ionizing events are
so close together. Also, note that the angular velocity terms ‘;‘z and are 0 for
most materials. An exception to this would be a material with a magnetic field
that pulled charged ions from their normal straight ahead path. Here, they are

assumed to be zero. Therefore, equation (A1.9) becomes

dav;  8v; - oY,

4y, 0. — vs (B2 A1.10

Using equation (Al.1), equation (A1l.10) becomes

a¥; _ 9 Nj(f, Es,Q,t)dE, +V - Vz / N;(Z, Es,$1,t) dE,
dt at E
_ S, (E) / N;(Z, E,, 3, t) dE, (AL11)

or equivalently

dy¥ ;
_Et_._;at/ ¢J(SE ES,Q t)dE +Q V / ¢](x ES,Q t) E

- Sj(E)—/ ¢ (Z. Es, Q,t) dE,. (A1.12)
OF Jg
Note that limg_, ¢;(Z, E, 8, t) = 0. Therefore,
o [ =~ -
55 [ G5B f,0)dE, = ~4;( B.4,0) (41.13)

For this reason, equation (A1.12) takes the form

d¥;

dt =v3t/ $3(&, s, §,1) dE, + Q- Vz / ¢; (%, Eq, 2, t) dE,

+ 5;(E)$;(Z, E,Q,1). (A1.14)
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Substituting equation (A1.8) into equation (Al.14) produces the equation

> / dE, / dE’ / dY fin(Es, E',Q, ) (2, E', ¥, 1)

k>3
_ / dE, 05(E,)65(Z, E. () + / dE, g,(Z, By, 5, 1)
E
'vat/ o;(Z, ES,Q t)dEs +Q-Vz / i (Z, E's,Q t)dE;
+ 5;(E)$;(Z, B, 1) (A1.15)

If the partial derivative of every term of this equation is taken, equation (A1.15)

becomes

——q‘)J(:z: E,Q,8)+G- Vzo;(Z, E, Q,t) — 3 [S (E)¢;(z, E, Q 8]

+0;(E)¢;(Z, B, {, 1)
= Z/ dE'/dQ’ka(E E,Q,0)or(F, E, XV, )

k>3
+g;(%,E,Q,1). (A1.16)

This is the full Boltzmann transport equation.
If a steady-state distribution is assumed, 5% 8t =0, the Boltzmann transport

equation takes the form

6

Q-Ve;(& E, Q) - [s (B)9;(Z. B, Q)] +0(E)¢;(Z, E, )
= dE' | dS¥ fir(E, E', S, )oe(Z, E, Q')
- e i
+ g;(Z, E, Q). (2.1)

The source term is usually assumed to be zero when dealing with space
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radiation. In this case, equation (2.1) becomes

— — a - —
=3 / ~ iE / dY fi(E, E',Q, o (Z, E', §). (A1.17)
E

k23
For neutrons, j = 1 in the HZETRN program, the stopping power is zero,
S1(FE) = 0, because no energy is lost due to ionization. The neutron transport

equation, therefore, becomes

ﬁ . v¢1(f7 E7 ﬁ) + O’I(E)‘ﬁl(f’ E1 ﬁ)

oC
=3 / dE’ / dS¥ fii(E, E',§,0) ¢, (Z, E', &)
E

k>1
+91(Z, E, Q). (2.3)

If a straight ahead approximation is made, the Boltzmann equation becomes

-5z, E) — 5 [S,(E)85(z, E)] +03(E)a5(, E)

= Z/Ew fix(E, E')pr(z, E")dE + gj(z, E). (2.2)

k23
Here, the assumption is made that all secondaries move in the same direction
as the primaries, in this case, the = direction. While this assumption is only an
approximation, it has been found to be reasonably accurate for the transport of

high energy nucleons and is used in the HZETRN program.
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APPENDIX B
CHOOSING AN ENERGY GRID

The way the energy grid, E1, Es, E3, ..., Ex, Eny1, is chosen for the multi-
group method affects the accuracy of the results. For a given interval, [E;, E;41],
there are three possibilities. In Case I, Fiy; < E;/e, in Case 11, Ei4) > E;/ea,
and in Case III, Ei+ 1 = E;/a. The way in which the order of integration is

switched in expression (3.6), -
Eiq1 pE/a
/ / F(E, E')é(z, E')dE'dE, (3.6)
i E

depends on which case applies.

For Case I, switching the order of integration in expression (3.6) leads to the

expression
Eipr pE'
/ / f(E,E)¢(z,E")dEdE’
Ei E{
Ei/a E;+1
+ / / f(E,E"¢(z, E'YdEdE’
Ein i
Bivi/a pEitt
+ / f(E,E"¢(z,E")dEdE'. (A2.1)
E:/x aE’
See Figure 26.
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Fig. 26. Multigroup energy partition when E;;; < E;/c.

This expression can then be rewritten in terms of a number of smaller inte-

grals by including every point of the energy grid as shown in Figure 27.
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Fig. 27. Detailed multigroup energy partition when F;;; < E;/a.
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In this case, the above expression takes the form

/ Fe / ® B, Eo(z, E'AEdE'

Em+1 pEir
+ Z / /E ~ [(B,E"¢(z, E")dEIE'

m—1.+].
= i+1
+ / / F(E, E"Y¢(z, E')dEJE'
E; E;

Ej Eity
+ / f(E,E")¢(z,E")dEJE’
E; /a ak’

Emaet id1
+ Z / f f(E,E"¢(z, E"YdEdE'

m=j+1

Eiv1/a pEinr
/ F(E, E')é(z, E')dEdE". (A42.2)

Note that E; is the largest point on the energy grid that is less than E;/o and
Ey is the largest point in the energy grid that is less than E;;/c.
A first attempt to write this expression in terms of ®,,(z) for the values

given by m =14,7+ 1,2 + 2, ..., k yields
g
[ / 1B, B ()
Ei

S e oo

m=i+1

Ei/c i+1
+/ / f(E,E"¢(z,E")dEdE'

+ / F / " HE,E)é(z, E')dELE'

El

+ Z [ / B B, BB 8,0(2)

m=j+1

i+1/a i+1
+ / / F(E, B (z, E')AELE, (42.3)
Ey aFE'’
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where a mean value theorem is once again used with En, 0 = =Fn+0;(Em+1—FEmn)
and @}, chosen so that 0 < 8}, < 1.

In order to write
E /0 E(+1
/ / F(E, Eé(z, E')dEdE" (42.4)
E;

in terms of ®;(z), another approximation must be made. This term is a fraction
of the expression

Ej+1 Ei+1
/ / f(E,E"¢(z, E"YdEdE'. (A2.5)
Ej E;

Therefore,

Ei/a i+l Ejiy i+l
/ / f(E,E"¢(z, E'YdEdE' =71 / f(E,E"¢(z,E'YdEdE’
E; E;
(A2.6)
for some 77 such that 0 < 77 < 1. Since 77 is not known, an 7] is chosen to

approximate 7; . The quantity ] = g%—g-’- is a logical choice. Then

Eifa rEin Ejv1r rEiqa
/ / " H(E. Bo(w, BVAEAE =7 /E | / B, Bt BB
‘ J (A2.7)
and using the same mean value theorem this becomes
Bi/a (rEisy Eiqa
L s et pymas =i [ 18, otz B 52
(A2.8)
where E§-2) =FE; + 0§.2) (—E&- — E;) for some 95-2) chosen so that 0 < 0§~2) <1l
Similarly,

/E o / " (B, B"(z, B')dEdE =3 [ / Z HE, EP)¢(a, E’)dE]@ ()
’ (A2.9)
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where 75 = 1 — 7} and E§3) = %‘- + 05-3) (Ejy1 — %L) for some 05-3) chosen so that

0< 05-3) <1and

Eirr/e i+l Eit1 )
L [ s mete maEaE | [ (8,0t BE|wute)
akE E
(A2.10)
where 75 = -—E;:_/la_——EE" and E( ) = B + 05—4) ( %ﬂ — E%) for some 05-4) chosen so

that 0 < 0% < 1.

Now expression (A2.3) takes the form

E®

[ /E " f(E,Egl))dE} ®; (z)
+ Z [ 18,514 |0
+{n;[ /B E+ F(E,E)é(z, E')dE] s [ /a Z(+> f(E, EJ(-3))¢(x,E’)dE} }cpj(z)
v 3 [ [ e B e
Eis
15 [ o FE B8 E’)dE] @4 (z). (42.11)

Note that if & > N, this expression will be truncated to include only values of
®,.(z) where m < N.
In Case II, the energy grid is set in such a way that on the interval [E;, E;41],

E > %’- as in Figure 28.
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E:

v
m

Ei Ei+l
Fig. 28. Multigroup energy partition when F;, > E;/a.
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In this case, switching the order of integration in expression (3.6) leads to

the expression

Ei/& !
/ / f(E,E"¢(z, E"YdEdE'
E; E;

Eix1 pE'
+ f(E,E"¢(z, E'YdEdE'
Eija JaE'

;—1/& Et-rl
/ F(E, E")(z, E')dEdE'. (42.12)

El+l

If all of the energy grid points are used, as in Figure 29,
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Fig. 29. Detailed multigroup energy partition when F;y, > E;/c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

this expression becomes

EiJa rE'
[ [ #8.E(, BiBaE
E; E;
Eisr rE'

+ f(E,E"Y¢(z,E'YdEdE'
E; /o: ok’

Em+1 pEin
+ Z / / f(E,E"¢(z, E'YdEJE'

m=i+1

Eiri/a i+l
+ / F(E, E')é(z, E')dEdE. (42.13)
Ex ok’

As in the first case, some approximations must be made in order to write
this expression in terms of ®,, for m = 4,7+ 1,7+ 2, ..., k. In this case, the above

expression can be approximated by

(2) B(s)

i [ rim pas] 4 | o T BB oo

S [ 18, 5)38] 0mte

m=i+1l £,

- { /. e, “’)dE] &1 (z). (42.14)

(4)
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where

x E‘i/a_E‘i
M =47""F7"
Eit1 —E;
ny =1—mn,
)
37 Epy1 —E’

L _

E® =E; +68( E:),
(63

@ - L goop B
Ei o + 01 (E‘I--i-l . )v
EY) = Ep + 0 (Emir — Em),

and

E;
E,S,A‘) = EA: -+ 0,(:)(7.-:_—1 - Ek)

with 0 < 6,69 07,6 < 1.

In Case III, E;;; = E;/a on interval [E;, ;4] as shown in Figure 30.
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Fig. 30. Multigroup energy partition when E;; = E;/c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113
In this case, switching the order of integration in expression (3.6) gives

Ein !
/ F(E, E')é(z, E')dEdE"
E; E;
FE

Bixifa pEin
+ / F(E, E")(z, E')dEdE". (42.15)
i+1 ak’

This expression can easily be written in terms ®;(z) and @4, (z)

[ /E E f(E, E;—")dE] @i(z) + [ /a o f(E, E{)dE} ®;p1(2), (A2.16)

E;
by once again using a mean value theorem with E} = E; 407 (E;y+, — E;) where
0* is chosen so that 0 < 67 < 1.

All three cases required the use of a mean value theorem. The error created
by using a mean value theorem decreases with the size of the interval. This would
favor using Case 1. However, in both Case I and Case III, additional approxima-
tions were made creating additional errors. This implies that Case II was the
best in terms of error as well as simplicity of calculation. Therefore, the energy
grid should be set so that F;;; = EF/a for all 2.

All three cases were tried on the simplified problem described in Chapter 3,
and the error resulting from Case I or Case II type energy grids was found to be
within acceptable limits. The error resulting from a Case III type energy grid,

however, was much larger.
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