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ABSTRACT

NUCLEAR CHIRAL AXIAL CURRENTS AND APPLICATIONS TO
FEW-NUCLEON SYSTEMS

Alessandro Baroni
Old Dominion University, 2017
Director: Dr. Rocco Schiavilla

This Thesis is divided into three main parts. The first part discusses basic aspects of

chiral effective field theory and the formalism, based on time ordered perturbation theory,

used to to derive the nuclear potentials and currents from the chiral Lagrangians. The

second part deals with the actual derivation, up to one loop, of the two-nucleon potential

and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet

divergences generated by loop corrections are isolated using dimensional regularization. The

resulting axial current is finite and conserved in the chiral limit, while the axial charge

requires renormalization. A complete set of contact terms for the axial charge up to the

relevant order in the power counting is constructed. The third part of this Thesis discusses

two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used

to constrain the single low-energy constant entering the axial current; (ii) the calculation

of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed

previous predictions obtained in phenomenological approaches. These latter studies have

played an important role in the analysis and interpretation of experiments at the Sudbury

Neutrino Observatory.
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CHAPTER 1

INTRODUCTION

The understanding of the structure and dynamics of nuclei has been a long-standing

goal of nuclear physics. Typical binding energies are of order 8 MeV per nucleon and Fermi

momenta are around 1.35 fm−1. Therefore nucleons are essentially non-relativistic and this

justifies the conventional approach in which the nucleus is taken to consist of nucleons

interacting with each other via two- and many-body effective potentials, and with external

electroweak fields via one- and many-body effective currents. This picture has succeeded in

describing satisfactorily many nuclear properties at a quantitative level (for a review, see

Ref. [1]).

At a more fundamental level, nuclear interactions can be seen in terms of the interactions

between the nucleon constituents, quarks and gluons. However the nonperturbative character

of quantum chromodynamics (QCD) at low energies makes the problem of computing nuclear

observables directly from QCD extremely difficult. One of the approaches used to study QCD

in this non-perturbative regime is lattice QCD [2]. While lattice calculations (for light nuclei)

have made and continue to make great progress, they are still in their infancy, and at this

point in time are only able to provide a rather crude description of even the lightest nuclei

(for a recent review see Ref. [3]).

Another approach that has been proven to be successful in the description of nuclear

properties, and which we adopt in the present Thesis, is based on chiral effective field theory

(χEFT). In general, effective field theories are low-energy approximations to more fundamen-

tal theories. The general prescription for building an effective field theory requires writing

down the most general Lagrangian consistent with all the symmetries of the underlying the-

ory [4]. Each term in the Lagrangian is multiplied by a coefficient, known as low energy

constant (LEC). A specific example of effective field theory is χEFT where, in its simplest

formulation, nucleons and pions, rather than quarks and gluons, are the degrees of freedom.

This framework was originally proposed by Weinberg in the early 1990’s [5], and it has the

great advantage of providing a direct connection between the symmetries of QCD and the

nuclear forces. It also provides a practical calculational scheme that can, at least in principle,

be improved systematically.
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During the last quarter century, χEFT has been used extensively to derive two- and

many-nucleon interactions. After more than two decades of work, two-nucleon potentials

have reached a precision close to that obtained by phenomenological representations [5, 6,

7, 8, 9, 10, 11]. This theoretical framework, based on the symmetries of QCD, has also

been used to derive three- and four-nucleon forces consistently with the two-nucleon forces

[12, 13, 14, 15]. The application of these chiral forces in nuclei with A ≥ 3 has just started,

but is already leading to promising results in the description of few-nucleon observables [16].

Similarly, the interaction of nuclei with electroweak probes can be seen in terms of the

interactions of quarks with electroweak gauge bosons (the massless photon and the massive

W± and Z0), but can also be described in χEFT. Indeed, a number of few-nucleon reactions

with external electroweak probes has been investigated in such an approach (for a review

see Refs. [17, 18, 19] and references therein). Electromagnetic operators were first derived

in a pioneering work of Park et al. [20], using covariant perturbation theory (Feynman

diagrams). More recently, these electromagnetic currents have been derived by the JLab-

Pisa group [21, 22, 23, 24] and, independently, by the Bochum-Bonn group in time ordered

perturbation theory [25, 26], but with different prescriptions for isolating non iterative terms

in reducible contributions. The resulting operators have been used to study a variety of

electromagnetic observables, such as the charge and the magnetic radii and form factors of

the deuteron and trinucleons (3He and 3H) [24, 27].

In this Thesis we focus on the weak axial charge and current operators. These were

first obtained in χEFT in a paper by Park et al. [28], under a number of approximations

(among others, near-threshold kinematics and ignoring altogether reducible diagrams). Here

we adopt time ordered perturbation theory and further extend the formalism developed

in Refs. [22, 23, 24]. We obtain an axial current that is finite and conserved in the limit

of vanishing pion mass (known as the chiral limit). In contrast, loop corrections to the

axial charge are divergent and we carry out a renormalization procedure, including a careful

analysis of higher-order chiral Lagrangians and the construction of a complete set of contact

terms for the axial charge.

The second objective of this Thesis is to apply these currents and study selected elec-

troweak observables in few-nucleon processes, specifically tritium β-decay and neutrino-

deuteron inclusive scattering. The tritium Gamow-Teller matrix element has been computed

with trinucleon wave functions obtained from available two- and three-nucleon potentials cor-

responding to either χEFT or meson-exchange phenomenology. The calculations of neutrino-

deuteron cross sections at low energy have been carried out only in the χEFT framework.
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The results obtained in this Thesis have confirmed those of previous phenomenological calcu-

lations that played a crucial role in the analysis and interpretation of the Sudbury Neutrino

Observatory experiments [29]. These experiments established solar neutrino oscillations and

the validity of the standard model for the generation of energy and neutrinos in the sun [30].

This thesis is organized as follows. In Chapter 2 we discuss the QCD Lagrangian and

its symmetries— these are relevant for the construction of the chiral Lagrangians. Power

counting is introduced and the chiral Lagrangians needed for the calculation of the weak-

axial current are presented. In Chapter 3 the formalism used to derive nuclear potentials and

electroweak currents is outlined. It is based on time ordered perturbation theory and allows

us to isolate non iterative terms in reducible contributions in a systematic way. In Chapter

4 the well-known derivation of the two-nucleon potential up to one loop is sketched out. In

Chapter 5 the derivation of the nuclear axial current and charge up to one loop is presented in

considerable detail. After illustrating the calculation of the numerous diagrams, we show that

important consistency checks of the calculation are satisfied (i.e., conservation of the current

in the chiral limit, renormalization of the axial charge, etc.). In Chapter 6 this axial current

is used to study tritium beta decay. In particular the use of nuclear wave functions derived

from chiral potentials allows us to carry out a consistent χEFT calculation for the first time

at high orders in the power counting. In Chapter 7 the axial current and charge obtained

here, along with the previously derived electromagnetic current and charge, are employed to

calculate the inclusive cross section for low energy neutrino-deuteron scattering. In Chapter

8 a summary of the results obtained is presented and possible future developments of this

work are outlined. The appendices contain formal details. Appendices A and B report the

explicit expressions of the chiral Lagrangians and corresponding interaction vertices needed

for the calculations. Appendices C, D, E, and F contain details about the renormalization

procedure adopted for the potential and currents. Appendix G deals with the construction

of the contact axial charge operator. Appendix H illustrates nonstatic corrections for a

class of diagrams relevant for the calculation of the axial current. Appendix I reports the

regularized expressions for the loop contributions to the axial current. Appendix J discusses

how the results in the one-body sector emerges in covariant perturbation theory. Lastly,

Appendix K reports configuration-space expressions for the currents used in the tritium

β-decay calculation.
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CHAPTER 2

CHIRAL EFFECTIVE FIELD THEORY

The nonperturbative nature of quantum chromodynamics (QCD) at low energies makes

the task of performing ab initio (i.e., starting from the QCD Lagrangian) calculations of

observables relevant for low-energy hadronic processes very difficult. One approach that

has been successful in the description of low-energy processes is known as chiral effective

field theory (χEFT). Pions and nucleons (and low-energy excitations of the nucleon, such as

the ∆ isobar), rather than quarks and gluons, are the degrees of freedom of χEFT. Chiral

symmetry requires the pion to couple to these baryons, as well as to other pions, by powers

of its momentum Q. As a consequence, classes of Lagrangians emerge, each characterized

by a given power of Q/Λχ, where Λχ ∼ 1 GeV is the chiral symmetry-breaking scale, or

equivalently, a given order in the derivatives of the pion field and/or pion mass factors, and

each containing a certain number of unknown parameters, so called low-energy constants

(LECs). These LECs could in principle be calculated from the underlying QCD theory of

quarks and gluons but, in practice, they are fixed by comparison with experimental data.

They effectively encode short-range physics and the effects due to the excitation of baryon

resonances, such as the ∆ isobar, and heavy meson exchanges, not explicitly retained in

the chiral Lagrangians. This approach was first developed to study pion-pion scattering in

Refs. [4, 31], and later extended to study pion-nucleon scattering. In the next sections, after

introducing chiral symmetry at the quark level, we illustrate how chiral pion-pion and pion-

nucleon Lagrangians emerge using the exact symmetries (Lorentz, parity, and time reversal)

and the approximate chiral symmetry of QCD. In the following, we adopt the conventions

of Ref. [32] in regards to the γ matrices.

2.1 CHIRAL SYMMETRY AND THE QCD LAGRANGIAN

The QCD Lagrangian density in the two-flavor case of light up- and down-quarks is

LQCD =
∑

f=u,d

f(x) (iγµDµ −mf ) f(x)− 1

4
Gµν, a(x)Gµν

a (x)

= q(x) (iγµDµ −M) q(x)− 1

4
Gµν, a(x)Gµν

a (x) , (1)
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where

Dµ = ∂µ − ig Ga
µ(x)λa/2 , (2)

where λa with a = 1 . . . 8 are the SU(3)color Gell-Mann matrices (i.e., the generators of SU(3)

in the fundamental representation),

Gµν
a (x) = ∂µGν

a(x)− ∂νGµ
a(x) , (3)

the gluon-field strength tensors, and Gµ
a(x) are the gluon spin-one fields. The sum over

repeated color indices a goes from 1 to 8. Further, the quark fields q(x) and the quark mass

matrix M are respectively given by

q(x) =

[
u(x)

d(x)

]
, M =

(
mu 0

0 md

)
, (4)

where spinor and color indices are understood and mu and md are the up- and down-quark

masses. In Eq. (1), the θ-term and gauge-fixing terms are not explicitly included, since they

are not relevant in the present study. Having defined the right- and left-handed quark fields,

qR(x) =
1 + γ5

2
q(x) =

[
uR(x)

dR(x)

]
,

qL(x) =
1− γ5

2
q(x) =

[
uL(x)

dL(x)

]
, (5)

we can write Eq. (1) as

LQCD = qL(x)iγµD
µqL(x) + qR(x)iγµD

µqR(x)− qL(x)MqR(x)− qR(x)MqL(x)

−1

4
Gµν, a(x)Gµν

a (x) . (6)

Left and right components of the quark fields are connected only through the mass matrix

M . The light quark masses (in the MS scheme at the scale µ = 2 GeV) are [33]

mu ' (1.5− 3.3) MeV , md ' (3.5− 6.0) MeV . (7)

These quark masses are significantly smaller than the typical hadronic masses, which (apart

from the pion mass) are of the order of 1 GeV. Therefore when studying low energy QCD,

as a starting point we consider the Lagrangian density in Eq. (1) in the limit of vanishing

quark masses, known as the chiral limit,

L0
QCD = qL(x)iγµD

µqL(x) + qR(x)iγµD
µqR(x)− 1

4
Gµν, a(x)Gµν

a (x) . (8)
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This Lagrangian is invariant under the following global transformations

U(1)R : qR(x)→ q′R(x) = e−iΘRqR(x), (9)

U(1)L : qL(x)→ q′L(x) = e−iΘLqL(x), (10)

SU(2)R : qR(x)→ q′R(x) = e−iθR·τ/2qR(x) = RqR(x) , (11)

SU(2)L : qL(x)→ q′L(x) = e−iθL·τ/2qL(x) = L qL(x) , (12)

where τ denotes the Pauli matrices in flavor space, ΘL,R and θL,R are, respectively, real

numbers and three-dimensional real vectors, and the 2 × 2 matrices R = e−iθR·τ/2 and

L = e−iθL·τ/2 have been defined. The symmetry group associated with the transformation

laws in Eqs. (9)–(12) is denoted as U(1)R ⊗ U(1)L ⊗ SU(2)R ⊗ SU(2)L, and can be shown

[34] to be isomorphic to the group G′ = U(1)V ⊗ U(1)A ⊗ SU(2)V ⊗ SU(2)A, defined as

U(1)V : q(x)→ q′(x) = e−iΘV q(x),

U(1)A : q(x)→ q′(x) = e−iγ5ΘAq(x),

SU(2)V : q(x)→ q′(x) = e−iθV ·τ/2q(x) = V q(x) ,

SU(2)A : q(x)→ q′(x) = e−iγ5θA·τ/2q(x) = Aq(x) , (13)

where ΘV,A and θV,A are again real numbers and three-dimensional real vectors, respectively,

with the 2 × 2 matrices V and A defined accordingly. We note that for mu = md 6=
0 the Lagrangian density in Eq. (1) is invariant under transformations of the subgroup

U(1)V ⊗ SU(2)V of G′. We also note that for each one of the eight generators of G′ we

obtain the following eight currents [34]

jµ(x) = q(x)γµq(x) ,

jµ,5(x) = q(x)γµγ5q(x) ,

jµ(x) =
1

2
q(x)γµτ q(x) ,

jµ,5(x) =
1

2
q(x)γµγ5τ q(x) . (14)

In the chiral limit, using Nöether’s theorem, it can be shown [34] that these eight currents

are conserved at the classical level. At the quantum level, the only classical symmetry be-

longing to the group G′ that turns out to be broken is U(1)A [34]. The symmetry associated

with U(1)V corresponds to quark number conservation (and it holds in the case of generic

M). The subgroup of G′ relevant for the following discussion is SU(2)V ⊗ SU(2)A, which

we will denote as G hereafter. In spite of the fact that Eq. (1) is approximately invariant
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under G, the ground state of QCD is symmetric only respect to its vector subgroup SU(2)V

[34]. Therefore the classical symmetry associated with G is said to be spontaneously broken

into its vector subgroup SU(2)V . There are various experimental facts behind this phe-

nomenon. Hadrons in nature arrange themselves in almost mass degenerate multiplets of

SU(2)V , which implies that the vacuum of QCD (in the limit of vanishing quark masses) is

invariant under SU(2)V . If chiral symmetry had not been spontaneously broken, then we

would have observed doublets of particles with opposite parity. However, no such doublets

are observed in the low-energy hadronic spectrum. Another strong argument in favor of

spontaneous symmetry breaking is the existence of pseudoscalar mesons (pions) that are

natural candidates for the corresponding massless Nambu-Goldstone bosons whose existence

is implied by Goldstone’s theorem. However, pions are not exactly massless, but have a

small mass due to the explicit chiral symmetry breaking by the nonvanishing quark masses.

These arguments support the notion that the chiral group G is spontaneously broken down

to SU(2)V .

In order to study the coupling to external probes in low energy QCD we promote, fol-

lowing Refs. [35, 36], the global symmetry described by G to a local one. This is achieved

by allowing the real parameters of Eqs. (13) to depend on space-time coordinates x, i.e.,

ΘV,A(x) and θV,A(x), and corresponding local vector and axial matrices V (x) and A(x). It

can be shown [34] that, in order for LQCD to be invariant in the chiral limit under local

transformations of G, it is necessary to introduce the following hermitian fields

vµ(x) =
τ

2
·Vµ(x) , aµ(x) =

τ

2
·Aµ(x). (15)

It is also convenient to introduce the scalar s(x) and pseudoscalar p(x) hermitian fields,

proportional to the identity matrix in isospin space, in order to reproduce the mass term

that gives the explicit chiral symmetry breaking [34]. The following Lagrangian results

[35, 36]

L = L0
QCD + q(x)γµ

[
vµ(x) + γ5aµ(x)

]
q(x)− q(x)

[
s(x)− iγ5p(x)

]
q(x)

= L0
QCD + Lext , (16)

where L0
QCD denotes LQCD in the chiral limit and Lext denotes the Lagrangian depending

on the external sources. We introduce the fields

rµ(x) = vµ(x) + aµ(x), lµ(x) = vµ(x)− aµ(x) , (17)
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and rewrite L in terms of left and right components of the quark fields obtaining for Lext

Lext = qL(x)γµlµ(x)qL(x) + qR(x)γµrµ(x)qR(x)

−qR(x) [s(x) + ip(x)] qL(x)− qL(x) [s(x)− ip(x)] qR(x) . (18)

The invariance of L under local transformations of the chiral group G is achieved if the

external sources transform in the following way

rµ(x) → R(x)rµ(x)R†(x) + iR(x)∂µR
†(x) , (19)

lµ(x) → L(x)lµ(x)L†(x) + iL(x)∂µL
†(x) , (20)

s(x) + ip(x) → R(x)[s(x) + ip(x)]L†(x) , (21)

s(x)− ip(x) → L(x)[s(x)− ip(x)]R†(x) , (22)

where the parameters that characterize the R and L transformations are now functions of x

in analogy with the V (x) and A(x) transformations defined previously. It is instructive to

show how the coupling between quarks and the charged weak bosons W±
µ arises from L. This

is important in the description of semileptonic weak decays such as pion decay π− → µ− νµ

or neutron decay n→ p e− νe. Choosing the external fields as

rµ = 0 , lµ = − g√
2

(
W+
µ T+ + h.c.

)
, (23)

where h.c. refers to the hermitian conjugate, g is the weak coupling related at lowest order

of perturbation theory to the Fermi constant

GF =
√

2 g2/(8M2
W ) ,

and

T+ =

(
0 Vud

0 0

)
, (24)

with Vud the Cabibbo-Kobayashi-Maskawa quark-mixing matrix element describing the

transformation between two-flavor QCD eigenstates and the corresponding weak eigenstates.

Therefore, inserting Eq. (23) into Eq. (18), we obtain

Lext = − g

2
√

2

[
W+
µ Vuduγ

µ(1− γ5)d+ h.c.
]
, (25)

namely the well-known electroweak Lagrangian that describes the coupling of up and down

quarks to the massive charged weak bosons.
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Before proceeding any further, we remark that the external-source formalism has a deeper

meaning than one described above. In quantum field theory the relevant quantities are

Green’s functions, which are vacuum expectation values of time-ordered products, and can

be related to the physical scattering amplitude through the LSZ reduction formalism. Sym-

metries provide strong constraints on Green’s functions, and among Green’s functions. These

relations are known as chiral Ward identities. In particular it has been shown in Ref. [37]

that the infinite set of all chiral Ward identities satisfied by the Green’s functions of QCD

are equivalent, in the absence of anomalies, to an invariance of the generating functional

under a local transformation of the external fields.

2.2 EFFECTIVE LAGRANGIAN FOR PIONS

We focus on energy scales small enough so that only pions need to be treated as explicit

degrees of freedom, all other mesons can be integrated out in this limit. In the following

πa denotes the pion field of isospin component a, while π the isotriplet of pion fields, and

the dependence on the space-time coordinates x is understood. We recall that QCD is

invariant under the discrete symmetries (parity, time-reversal, and charge conjugation), the

proper Lorentz group, and in the chiral limit, the chiral group G introduced in the previous

section. As first shown in Refs. [38, 39], the pion field πa transforms linearly under the

subgroup SU(2)V of G and nonlinearly under the full group SU(2)V ×SU(2)A. In particular,

considering a generic parametrization U (a matrix in isospin space) of the pion fields, it can

be shown [38, 39] that under SU(2)L × SU(2)R

U −→ U ′ = RU L† , (26)

where L and R are the global transformations that have been defined in Eqs. (11)–(12). In

general, we require U to be unitary [34] with determinant equal to one, and assume it can

be expanded in powers of πa as

U = 1 +
i

fπ
τ · π − 1

2 f 2
π

π2 − i α

f 3
π

π2 τ · π +
8α− 1

8 f 4
π

π4 + . . . , (27)

where the first three terms of the expansion are fixed and the parameter α is arbitrary.

Common choices are α = 0 and α = 1/6 corresponding, respectively, to the non-linear sigma

model U = (σ + i τ · π)/fπ with σ =
√
f 2
π − π2 and to the exponential parametrization

U = exp(i τ · π/fπ), where fπ is the pion decay constant whose value is ' 92 MeV. We

require the effective Lagrangian to have the same symmetry group of massless QCD, i.e., be

invariant under Lorentz and chiral transformations. The building blocks are the matrices U
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and U †, and four dimensional derivatives (denoted with ∂µ) of these quantities. In particular,

Lorentz invariance requires that the number of derivatives to be even, so that the effective

Lagrangian can be written as

Lπ π = L(2)
π π + L(4)

π π + · · · , (28)

where the superscripts denote the power of Q/Λχ (we recall, for clarity, that Q is the low

momentum scale associated with incoming and outgoing pion momenta, and Λχ ∼ 1 GeV is

the chiral symmetry-breaking scale). As an example, we discuss how the kinetic term of the

leading order pion Lagrangian arises.

It is a simple exercise (see, for example, Ref. [34]) to show that the leading order (LO)

Lagrangian is

L(2)
ππ =

f 2
π

4
〈∂µU(x)∂µU †(x)〉 , (29)

where fπ turns out to be the pion decay constant, and 〈· · · 〉 denotes the trace in the two-

flavor space. It is worth noting that, as shown in Refs. [38, 39], all realizations of chiral

symmetry are equivalent to each other modulo non linear field redefinitions of the following

type

π′ = πF [π] , with F [0] = 1 . (30)

According to Haag’s theorem [40], such nonlinear field redefinitions do not affect the S

matrix elements. As a consequence ππ scattering amplitudes will be independent on the

parametrization of the pion field (i.e., the α dependence in Eq. (27) must cancel out). It can

be easily shown that, expanding U in powers of the pion field, the LO Lagrangian assumes

the following form

L(2)
ππ =

1

2
∂µπ · ∂µπ +O(π4) , (31)

that corresponds to the kinetic term of a scalar field. It is clear now that the factor f 2
π/4 in

Eq. (29) has been chosen so as to reproduce the correct normalization for the kinetic term

of the pion field. We are left with the problem that the Lagrangian in Eq. (29) describes

interactions of massless pions, while the pions in the real world have a nonvanishing mass.

Therefore, in order to introduce a nonvanishing mass term for the pion, linked to the explicit

chiral symmetry breaking pattern present in the quark-level Lagrangian LQCD, we observe

that the mass term of LQCD would be invariant under chiral transformations if, instead of

the matrix M , we would have a matrix M̃ that under SU(2)L×SU(2)R would transform as

M̃ → M̃ ′ = RM̃L† . (32)
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So, using M̃ , we can build the most general Lagrangian invariant under the exact Lorentz,

parity and charge conjugation symmetries, and chiral symmetry at first order in M̃ as

Ls.b. =
f 2
πB

2
〈M̃U †(x) + U(x)M̃ †〉 . (33)

We can now replace M̃ by the quark mass matrix M , and notice that Eq. (33) has the

same chiral-symmetry-breaking pattern of the quark mass term in Lagrangian of Eq. (6).

Expanding Eq. (33) in powers of the pion field, we obtain

Ls.b. = f 2
πB(mu +md)−

B

2
(mu +md)π

2 +O(π4) , (34)

where we require the second term to be the pion mass with m2
π = B(mu + md). The first

term consists of an irrelevant constant. It has been shown in Ref. [35] that the low energy

constant B is connected to the quark condensate 〈0|qq|0〉 in the following way

B = − 1

3 f 2
π

〈0|qq|0〉 , (35)

where |0〉 denotes the full QCD vacuum. The quantity B can be interpreted as providing a

measure of the strength of the spontaneous symmetry breaking of the theory.

Similarly to what has been done in the previous section, in order to introduce couplings

to external sources, we promote the global symmetry under G to be a local one. Under local

transformations, the pion field transforms as

U → U ′ = L(x)UR†(x) . (36)

We define the covariant derivative of the pion field as

DµU = ∂µU − i rµ(x)U + i U lµ(x) , (37)

where the external fields rµ(x), and lµ(x) have been introduced before. It is easy to show

that

DµU → R(x) (DµU)L†(x) . (38)

At leading order, besides U and U † and their derivatives, we can also use the fields χ(x) and

χ†(x) defined as linear combinations of the fields s(x) and p(x)

χ = 2B [s(x) + i p(x)] , (39)

χ† = 2B [s(x)− i p(x)] , (40)
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that transform accordingly to Eqs. (21) and (22), and the x-dependence of χ and χ† is

understood. The parameter B is defined as in Eq. (35). These building blocks of the chiral

pion Lagrangian have the following chiral counting

U ∼ O(Q0), Dµ1 · · ·DµnU ∼ O(Qn), χ ∼ O(Q2) . (41)

At leading order in Q2, the effective Lagrangian invariant under Lorentz, parity, charge

conjugation and chiral transformations is now (see Ref. [34])

L(2)
ππ =

f 2
π

4
〈DµU (DµU)†〉+

f 2
π

4
〈χU † + Uχ†〉 . (42)

As we will see later, for the calculation of nuclear axial currents, both L(2)
ππ and L(4)

ππ are

needed (see Appendix A.1 for the explicit expression of L(4)
ππ).

2.3 EFFECTIVE LAGRANGIANS FOR NUCLEONS AND PIONS

We extend the previous treatment to include nucleons. In the following, N denote the

iso-doublet of nucleon fields, and it is convenient to define a matrix u such that u2 = U

(the x-dependnce of u and U will be dropped, unless explicitly noted). Considering the

transformation law of U under global transformations SU(2)L × SU(2)R, we obtain that u

transforms as [34]

u → u′ = Ruh−1(x) , (43)

where h(x) is defined as

h(x) =
[√

RU(x)L
]−1

R
√
U(x) . (44)

As first shown in Ref. [39], if we assume the nucleon field to transform under global trans-

formations SU(2)L ⊗ SU(2)R as

N → N ′ = h(x)N , (45)

then the set (U,N) defines a nonlinear realization of the group G, and therefore

[
U(x)

N(x)

]
→

[
RU(x)L†

h(x)N(x)

]
. (46)

In the case of a pure vector transformation L = R = V , from the definition of u(x) it follows

that u′(x) = V u(x)V †, and therefore from Eq. (43) h = V , and the nucleonic field transforms
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coherently as an isospin doublet. However, the nucleon field transforms non-linearly under

axial transformations [34].

The most general chiral-invariant Lagrangian for pions and nucleons can be constructed

using building blocks, generically denoted as Oi, that transform under SU(2)L × SU(2)R as

O′i = h(x)Oih
−1(x). The building blocks are u, N , and their derivatives. The derivative of

the two-by-two matrix u does not transform covariantly under the group G

∂µu → ∂µu
′ = R (∂µu)h−1(x) +Ru∂µ

[
h−1(x)

]
. (47)

However, if we define the following quantity ũµ = i
[
u† ∂µu− u ∂µu†

]
we have

ũµ → ũ′µ = h(x) ũµ h
−1(x) . (48)

Similarly the derivative of the nucleon field ∂µN does not transform covariantly under global

transformations of G

∂µN → ∂µN
′ = ∂µh(x)N + h(x)∂µN . (49)

Therefore, in order to define a covariant derivative for the nucleon field, it is convenient to

introduce the so called connection

Γ̃µ =
1

2

[
u†∂µu+ u ∂µu

†] , (50)

which under the group G transforms as

Γ̃′µ = h(x) Γ̃µ h(x)−1 . (51)

Now we define the covariant derivative of the nucleon field as

D̃µ = ∂µ + Γ̃µ , (52)

and obtain under G

D̃′µN
′ = h(x)D̃µN , (53)

where the tilde serves to remind us that couplings to external sources have not yet been

considered (i.e., the symmetry group G is global). We can now build the most general La-

grangian that describes the couplings of the nucleons to pions. We will focus in the following

on the leading order Lagrangian, denoted as L̃(1)
πN . This Lagrangian must be invariant under

Lorentz, parity and charge conjugation transformations, as well as transformations under
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the group G. We also require that in the limit of vanishing nucleon-pion couplings we should

recover the usual Dirac equation for spin-1/2 fields. As a consequence L̃(1)
πN must be a bilin-

ear in the nucleon fields and contain at most one derivative of the nucleon field. Using the

building blocks N , D̃µN , and ũµ it can be shown that L̃(1)
πN reads [34]

L̃(1)
πN = N

(
iγµD̃µ −m+

gA
2
γµγ5ũµ

)
N , (54)

where m denotes the nucleon mass, and gA is the nucleon axial coupling constant.

The coupling to external electroweak sources can be introduced in a very natural way

in this framework by requiring that L(1)
πN be invariant under local transformations of G

previously defined in Eq. (36). In analogy to the case of only pions we introduce the external

fields rµ and lµ with the transformation laws given by Eqs.(19)–(20). Under the local group

G the set U,N transforms as
[
U(x)

N(x)

]
→

[
R(x)U(x)L†(x)

h(x)N(x)

]
. (55)

Therefore it is convenient to define the two following quantities

uµ = i
[
u† (∂µ − irµ)u− u (∂µ − ilµ)u†

]
, (56)

Γµ =
1

2

[
u†(∂µ − i rµ)u+ u (∂µ − i lµ)u†

]
, (57)

that represent generalizations of ũµ and Γ̃µ to the case of local transformations. These last

two quantities transform under local transformations as

uµ → u′µ = h(x)uµ h
−1(x) , (58)

Γµ → Γ′µ = h(x)Γµh
−1(x) , (59)

and therefore it is natural to define the following covariant derivative of the nucleon field

DµN = (∂µ + Γµ)N , (60)

that is a generalization of the definiton in Eq. (52). Under the group G we have

D′µN
′ = h(x)DµN . (61)

Therefore the most general π N Lagrangian that describes the coupling to external sources,

denoted in the following as L(1)
πN , it is a straightforward generalization of Eq. (54), where D̃µ,

and ũµ, have been replaced with Dµ, and uµ, respectively,

L(1)
πN = N

(
iγµDµ −m+

gA
2
γµγ5uµ

)
N . (62)
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Higher order pion-nucleon chiral Lagrangians (with two or more insertions of Dµ and uµ)

have been constructed in Ref. [41] and are reported in Appendix A. For the derivation of

the nuclear axial currents the chiral Lagrangians L(1)
πN , L(2)

πN , and L(3)
πN are needed.
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2.4 CONTACT LAGRANGIANS

In this Section we report contact Lagrangians (i.e., without exchange of pions) that

contribute to the NN scattering amplitude. These terms are well-known in the literature

(see for example Ref. [5]), and have been built requiring invariance under Lorentz, parity,

charge conjugation, and the chiral group G. The LO Lagrangian is given by

L(0)
NN = −CS

(
NN

) (
NN

)
− CT

(
NγµN

) (
NγµN

)
, (63)

and depends on two LECs denoted as CS, and CT . At order Q, since we have only one

derivative of the nucleon field at our disposal, it is not possible to build a Lorentz scalar.

The next nonvanishing order is Q2 and the corresponding Lagrangian is denoted as L(2)
NN .

It can be shown that there are twelve independent operator structures that contribute [42],

involving two derivatives of the nucleon field. In the following we will not report the explicit

expression of this Lagrangian (see Ref. [42]).
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CHAPTER 3

NUCLEAR CHIRAL EFFECTIVE FIELD THEORY

In this chapter we describe the general framework adopted to derive nuclear potentials

and electroweak currents for use in studies of structure and low-energy electroweak transitions

in nuclei. This framework is based on time-ordered perturbation theory (TOPT) formulated

in terms of interaction Hamiltonians constructed from the π π and π N chiral Lagrangians

in the canonical formalism (see Sec. 3.1). Because of the presence of bound states in A ≥ 2

the derivation of the nuclear potentials and currents requires a careful analysis of the TOPT

expansion, as illustrated in Sec. 3.3.

3.1 INTERACTION HAMILTONIANS FROM CHIRAL

LAGRANGIANS

In this section we derive, in the canonical formalism, the interaction Hamiltonians implied

by the ππ and πN chiral Lagrangians of Ch. 2. These are combined as

L = LπN + Lππ , (64)

where

LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . , (65)

Lππ = L(2)
ππ + L(4)

ππ + . . . , (66)

and the superscript n specifies the chiral order Qn, i.e., the number of derivatives of the pion

field and/or insertions of the pion mass. External fields are counted as being of order Q.

Since we are interested in deriving nuclear potentials and currents up to one loop, it suffices

to retain in L up to L(3)
πN and L(4)

ππ . Further, since we are interested in axial currents, the

right rµ(x) and left lµ(x) fields are taken as

rµ(x) = −lµ(x) =
1

2
τ ·Aµ(x) , (67)

where Aµa(x) is the external axial-vector field of isospin component a. The x-dependence of

the various fields is dropped hereafter. As a consequence the total Lagrangian can be written

in a compact form as

L = N
(
i /∂ −m+ Γ0

a ∂0πa + Λi
a ∂iπa + ∆

)
N

+
1

2

(
∂0πaGab ∂0πb + ∂iπa G̃ab ∂iπb −m2

π πaHab πb

)
− fπ Aµa Fab (∂µπb) , (68)
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where the symbols Γ0
a, Λi

a, and ∆ denote combinations of the pion and axial-vector fields

(and their derivatives), having the following expansions

Γ0
a = Γ0

a(0) + Γ0
a(1) + Γ0

a(2) , (69)

and similarly for Λi
a, and

∆ = ∆(1) + ∆(2) + ∆(3) , (70)

where the argument n in Γ0
a(n), Λi

a(n), and ∆(n) specifies the power counting Qn. The

symbols Gab, G̃ab, Hab, and Fab denote three-by-three matrices in isospin space, containing

powers of the pion field and/or pion mass. A listing of all these quantities, limited to the

terms relevant for the construction of the currents up to one loop, is provided in Appendix A.

At this stage the various fields, masses, and coupling constants are to be understood as bare

(un-renormalized) quantities.

From the Lagrangian L in Eq. (68) the conjugate momenta relative to the nucleon and

pion fields follow as

Π† =
∂L

∂(∂0N)
= iN γ0 , (71)

Πa =
∂L

∂(∂0πa)
= Gab ∂

0πb − fπ FabA0
b +N Γ0

aN , (72)

and the Hamiltonian then reads

H = Π† ∂0N + Πa ∂0πa − L = H0 +HI , (73)

where H0,

H0 =
1

2

(
Πa Πa − ∂iπa ∂iπa +m2

π πa πa
)

+N
(
−i γi ∂i +m

)
N , (74)

is the free pion and nucleon Hamiltonian, while HI is the Hamiltonian accounting for the

interactions between pions and nucleons as well as between these and the external field. We

treat the latter in first order and therefore only keep terms linear in Aµ. The interaction

Hamiltonian is then given by

HI =
1

2
Πa

[(
G−1

)
ab
− δab

]
Πb −

1

2

[
Πa

(
G−1

)
ab

(
N Γ0

b N
)

+ h.c.
]

+
fπ
2

[
Πa

(
G−1

)
ab
FbcA

0
c + h.c.

]
− fπ

2

[(
N Γ0

aN
) (
G−1

)
ab
FbcA

0
c + h.c.

]

+
1

2

(
N Γ0

aN
) (
G−1

)
ab

(
N Γ0

b N
)
−N

(
Λi
a ∂iπa + ∆

)
N

−1

2
∂iπa

(
G̃ab − δab

)
∂iπb + fπ A

i
a Fab ∂iπb +

m2
π

2
πa (Hab − δab) πb . (75)
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It admits the following expansion in powers of Q:

HI = H(1)
I +H(2)

I +H(3)
I + . . . , (76)

and the vertices corresponding to the various interaction terms are listed in Appendix B.

We quantize the theory by imposing the following relations at equal time

[πa(t,x),Πb(t,y)]− = δab δ(x− y) , (77)
[
Nr(t,x),Π†s(t,y)

]
+

= δrs δ(x− y) , (78)

where [. . . , . . . ]∓ denote the commutator (–) or anticommuatator (+), and r and s denote

the nucleonic spin-isospin indices.

3.2 NUCLEAR POTENTIALS FROM FIELD THEORY

AMPLITUDES

Field theory amplitudes are evaluated in time-ordered perturbation theory (TOPT).

Terms in this expansion are conveniently represented by diagrams. We distinguish between

reducible diagrams (diagrams which involve at least one pure nucleonic intermediate state)

and irreducible diagrams (diagrams which include pionic and nucleonic intermediate states).

The former are enhanced with respect to the latter by a factor of Q for each pure nucleonic

intermediate state (see below). In the static limit—in the limit m → ∞, i.e., neglecting

nucleon kinetic energies—reducible contributions are divergent. The prescription proposed

by Weinberg [5] to treat these is to define the nuclear potential and currents as given by

the irreducible contributions only. Reducible contributions, instead, are generated by solving

the Lippmann-Schwinger (or Schrödinger) equation with the nuclear potential (and currents)

arising from irreducible amplitudes. As an aside, we note that, as first pointed out by Wein-

berg [5], in covariant perturbation theory reducible contributions are infrared divergent. In

TOPT the infrared divergences are removed, and the problem becomes one of small energy

denominators.

The formalism used here is based on this prescription [21]. However, the omission of

reducible contributions from the definition of nuclear operators requires care, when the irre-

ducible amplitudes are evaluated in the static approximation. The iterative process will, in

that limit, generate only part of the reducible amplitude. The reducible part of the amplitude

beyond the static approximation needs to be incorporated order by order—along with the

irreducible amplitude—in the definition of nuclear operators. This scheme in combination

with TOPT, which is best suited to separate the reducible content from the irreducible one,
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has been implemented in Refs. [22, 23, 24] and is described below. The method does lead

to nuclear operators, which are not uniquely defined because of the non-uniqueness of the

transition amplitude off-the-energy-shell. This lack of uniqueness is unavoidable; however,

since the resulting operators are unitarily equivalent, the description of physical observables

is not affected by this ambiguity [23, 43].

Another approach for overcoming the difficulties posed by the reducible amplitudes has

been introduced by Epelbaum and collaborators [44]. That method is usually referred to

as the unitary transformation method, and is based on TOPT too. It exploits the Okubo

(unitary) transformation [45] to decouple the Fock space of pions and nucleons into two

subspaces, one that has pure nucleonic states and the other with states which retain at least

one pion. In this decoupled space, the amplitude does not involve enhanced contributions

associated with the reducible diagrams. The subspaces are not uniquely defined since it is

always possible to perform additional unitary transformations on them, with a consequent

change in the formal definition of the resulting nuclear operators. This, of course, does not

affect physical representations.

The two TOPT-based methods outlined above lead to formally equivalent operator struc-

tures for the nuclear potential up to loop corrections included. It is plausible that the two

methods are closely related, although this remains to be proved. Below we briefly outline

the method described in Refs. [22, 23, 24], and sketch how nuclear potentials are obtained.

In the next section we extend the present method to the case of electroweak currents.

The starting point is the conventional perturbative expansion for the two-nucleon (NN)

amplitude

〈f | T | i〉 = 〈f | HI

∞∑

n=1

(
1

Ei −H0 + i η
HI

)n−1

| i〉 . (79)

Here | i〉 and | f〉 represent the initial and final states, respectively |N1N2〉 and |N ′1N ′2〉 of

energies Ei and Ef with Ei = Ef , H0 is the Hamiltonian describing free pions and nucleons,

and HI is the Hamiltonian describing interactions among these particles,

H0 =

∫
dxH0(x) , (80)

and similarly for HI , where the Hamiltonian H0 and HI are defined as in Sec. 3.1 with the

various fields taken in the Schrödinger picture. The evaluation of the amplitude above is

carried out in practice by inserting complete sets of H0 eigenstates between successive terms

of HI . Power counting is then used to organize the expansion in powers of Q/Λχ � 1.

In the perturbative series, Eq. (79), a generic (reducible or irreducible) contribution

is characterized by a certain number, say N , of vertices, each scaling as Qαi × Q−βi/2
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(i=1, . . . , N), where αi is the power counting implied by the relevant interaction Hamil-

tonian HI and βi is the number of pions in and/or out of the vertex, a corresponding N–1

number of energy denominators, and L loops. Out of these N–1 energy denominators, NK

of them will involve only nucleon kinetic energies which scale as Q2, and the remaining

N −NK − 1 energy denominators will involve, in addition, pion energies, which are of order

Q. Loops, on the other hand, contribute a factor Q3 each, since they imply integrations over

intermediate three momenta. Hence the power counting associated with such a contribution

is (
N∏

i=1

Qαi−βi/2

)
×
[
Q−(N−NK−1)Q−2NK

]
×Q3L . (81)

Clearly, each of the N −NK − 1 energy denominators can be further expanded as

1

Ei − EI − ωπ
= − 1

ωπ

[
1 +

Ei − EI
ωπ

+
(Ei − EI)2

ω2
π

+ . . .

]
, (82)

where EI denotes the energy of the intermediate state (including the kinetic energies of

the two nucleons), and ωπ the pion energy (or energies, as the case may be)—the ratio

(Ei−EI)/ωπ is of order Q. The leading order term −1/ωπ represents the static limit, while

the sub-leading terms involving powers of (Ei − EI)/ωπ represent non-static corrections of

increasing order, i.e. recoil corrections.

The Q-scaling of the interaction vertices and the considerations above show that T admits

the following expansion

T = T (ν) + T (ν+1) + T (ν+2) + . . . , (83)

where T (n) ∼ Qn, and chiral symmetry ensures that ν is finite. In the case of the two-nucleon

amplitude ν = 0. A two-nucleon potential v can then be derived which, when iterated into

the Lippmann-Schwinger (LS) equation

v + v G0 v + v G0 v G0 v + . . . , (84)

leads to the T -matrix on-the-energy-shell (Ei = Ef ) of Eq. (83) and order by order in the

power counting. In practice, this requirement can only be satisfied up to a certain order n∗,

and the resulting potential, when inserted in the LS equation, will generate contributions of

order n > n∗, which do not match T (n). In Eq. (84), G0 = 1/(Ei −EI + iη) denotes the free

two-nucleon propagator, and we assume that

v = v(0) + v(1) + v(2) + . . . , (85)
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where the still to be determined v(n) is of order Qn. We note that, generally, a term like

v(m) G0 v
(n) is of order Qm+n+1, since G0 is of order Q−2 and the implicit loop integration

brings in a factor Q3.

Having established the above power counting, we obtain

v(0) = T (0) , (86)

v(1) = T (1) −
[
v(0)G0v

(0)
]
, (87)

v(2) = T (2) −
[
v(0)G0v

(0)G0v
(0)
]

−
[
v(1)G0v

(0) + v(0)G0v
(1)
]
, (88)

v(3) = T (3) −
[
v(0)G0v

(0)G0v
(0)G0v

(0)
]

−
[
v(1)G0v

(0)G0v
(0) + permutations

]

−
[
v(2)G0v

(0) + v(0)G0v
(2)
]

−
[
v(1)G0v

(1)
]
, (89)

and so on. The potentials v(n) are discussed in the next chapter. In particular, it will be

shown that v(1) vanishes identically, and the first nonvanishing correction is suppressed by

two powers of Q relative to the leading order.

3.3 NUCLEAR CURRENTS FROM FIELD THEORY AMPLITUDES

The inclusion (in first order) of electroweak interactions in the perturbative expansion of

Eq. (79) is in principle straightforward. The transition amplitude can be expanded as

Te = T (νe)
e + T (νe+1)

e + T (νe+2)
e + . . . , (90)

where T
(n)
e is of order Qn and νe = −3 in this case. The strong interaction potential derived

in the previous section is denoted by v, and the potential describing the interaction with the

external fields by ve. In the electromagnetic case ve → vγ = V 0 ργ−V · jγ, while in the weak

axial case ve → v5 = A0
a ρ5,a −A5,a · j5,a, where ργ (ρ5) and jγ (j5,a) are the electromagnetic

(weak axial) charge and current, and V µ = (V 0,V) [Aµ = (A0,A)] is the electromagnetic

(weak axial) field.

The requirement that in the context of the LS equation,

(v + ve) + (v + ve)G0 (v + ve) + (v + ve)G0 (v + ve)G0 (v + ve) + . . . , (91)

matches T5 order by order in the power counting implies relations for the v
(n)
γ = V 0 ρ

(n)
γ −
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V · j(n)
γ and v

(n)
5 = A0

a ρ
(n)
5,a −A5,a · j(n)

5,a similar to those derived earlier [23]

v(−3)
e = T (−3)

e , (92)

v(−2)
e = T (−2)

e −
[
v(−3)
e G0 v

(0) + v(0)G0 v
(−3)
e

]
, (93)

v(−1)
e = T (−1)

e −
[
v(−3)
e G0 v

(0)G0 v
(0) + permutations

]

−
[
v(−2)
e G0 v

(0) + v(0)G0 v
(−2)
e

]
, (94)

v(0)
e = T (0)

e −
[
v(−3)
e G0 v

(0)G0 v
(0)G0 v

(0) + permutations
]

−
[
v(−2)
e G0 v

(0)G0 v
(0) + permutations

]

−
[
v(−1)
e G0 v

(0) + v(0)G0 v
(−1)
e

]

−
[
v(−3)
e G0 v

(2) + v(2)G0 v
(−3)
e

]
, (95)

v(1)
e = T (1)

e −
[
v(−3)
e G0 v

(0)G0 v
(0)G0 v

(0)G0 v
(0) + permutations

]

−
[
v(−2)
e G0 v

(0)G0 v
(0)G0 v

(0) + permutations
]

−
[
v(−1)
e G0 v

(0)G0 v
(0) + permutations

]

−
[
v(0)
e G0 v

(0) + v(0)G0 v
(0)
e

]

−
[
v(−3)
e G0 v

(2) G0 v
(0) + permutations

]

−
[
v(−2)
e G0 v

(2) + v(2) G0 v
(−2)
e

]

−
[
v(−3)
e G0 v

(3) + v(3) G0 v
(−3)
e

]
, (96)

where we have made use of the fact that v(1) = 0 (see Ch. 4), and have only retained terms

linear in ve. Relations in Eqs. (86)–(89), and those above allow us to construct v(n) and v
(n)
e

from T (n) and T
(n)
e .
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CHAPTER 4

CHIRAL POTENTIAL AT ONE LOOP

In this Chapter we report a derivation of the chiral two-nucleon (NN) potential up

to next-to-next-to-leading order N2LO (order Q2), along with some contributions at N3LO

(order Q3) that will turn out to be relevant for the derivation of the nuclear axial current

up to one loop. The NN potential up to one loop can be symbolically expressed as

v = vOPE + vTPE + vCT , (97)

namely as a sum of terms due to one-pion exchange (OPE), two-pion exchange (TPE), and

contact (CT) contributions. We note here that TPE contributions (at order Q2) were first

derived by Van Kolck and collaborators [6, 46]. Later, Kaiser and collaborators rederived

TPE contributions as well as loop corrections to OPE (up to order Q2) using covariant

perturbation theory (see Ref. [7]). Soon after, Epelbaum and collaborators obtained these

TPE contributions and loop corrections to OPE and contact interactions within the unitary

transformation method in Ref. [8].

4.1 STATIC POTENTIAL UP TO ORDER Q2

In Fig. 1 we show the diagrams illustrating the contributions occurring up to N2LO (order

Q2).

a1a0

a2 a3 a4 a5 a6 a7 a8

FIG. 1: Diagrams illustrating the contribution to the NN potential entering at LO Q0,

panels a0, and a1, and N2LO (Q2), panels a2-a8. Nucleons and pions are denoted by solid

and dashed lines, respectively. The filled circle in panel a2 represents the vertex from contact

Hamiltonians containing two gradients of the nucleons’ fields. Only one among the possible

time orderings is shown for each topology.
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At LO (Q0) there is a contact interaction, panel a0, along with the one-pion-exchange

(OPE) contribution, panel a1. The next static contributions enter at N2LO, and we distin-

guish among three different categories: (i) contact interactions involving two gradients acting

on the nucleons’ fields, panel a2; (ii) TPE diagrams, panels a3-a5; (iii) loop corrections to

the LO contact and OPE interactions, panels a6-a8. Time ordered diagrams of the type

illustrated by panels a1-a4 are irreducible, while those of the type illustrated by panels a5-a8

have both reducible and irreducible contributions. Here we limit ourselves to report the final

expressions of the various contributions, and show how divergencies are reabasorbed through

a redefinition of the contact terms at order Q2 (for a detailed discussion see Ref. [22]). The

renormalization of loop corrections to the OPE will be discussed in the next section (diagram

a8).

4.1.1 FORMAL EXPRESSIONS

In what follows we use the notation introduced in Ref. [21]. In particular, the potential

is obtained in the center-of-mass frame where the nucleon initial and final relative momenta

are p and p′, respectively. We also define k = p′−p, K = (p′+ p)/2, and ωk =
√
k2 +m2

π.

An overall momentum-conserving δ-function is understood in all terms listed in this chapter.

The diagram illustrated by panel a0 gives rise to the LO contact potential, which is expressed

in terms of the two LEC’s CS and CT as

v
(0)
CT = CS + CT σ1 · σ2 , (98)

while that of panel a1 leads to the standard OPE potential,

v
(0)
OPE = − g2

A

4 f 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

. (99)

Next we consider the contributions arising from panel a2 of Fig. 1, which lead to

v
(2)
CT = C1 k

2 + C2K
2 + (C3 k

2 + C4K
2)σ1 · σ2 + i C5

σ1 + σ2

2
·K× k

+ C6 σ1 · k σ2 · k + C7 σ1 ·K σ2 ·K . (100)

Two-pion-exchange contributions are given by diagrams in panel a3-a5, and read

ṽ
(2)
TPE = v(2)(a3 + a4 + a5) = − 1

128 f 4
π

τ1 · τ2

[
8 g2

A

[
I(2)(k)− k2I(0)(k)

]
+ 4 g4

A

[
J (4)(k)

−2 k2J (2)(k) + k4J (0)(k)
]

+ L(k)

]

− 3 g4
A

16 f 4
π

(σ1 × k)i(σ2 × k)j J
(2)
ij (k) , (101)



26

where we have defined the following loop functions

I(0)(k) =

∫
dp

(2π)3
f(ω−, ω+) ,

I(2)(k) =

∫
dp

(2π)3
p2f(ω−, ω+) ,

J (0)(k) =

∫
dp

(2π)3
g(ω+, ω−) ,

J (2)(k) =

∫
dp

(2π)3
p2g(ω+, ω−) ,

J (4)(k) =

∫
dp

(2π)3
p4g(ω+, ω−) ,

J
(2)
ij (k) =

∫
dp

(2π)3
pipj g(ω+, ω−) ,

L(k) =

∫
dp

(2π)3
(ω+ − ω−)2 f(ω−, ω+) , (102)

with

f(ω−, ω+) =
1

ω+ ω− (ω+ + ω−)
,

g(ω−, ω+) =
ω2

+ + ω+ ω− + ω2
−

ω3
+ ω

3
−(ω+ + ω−)

, (103)

and

ω± =
√

(p± k)2 + 4m2
π . (104)

These loop functions are ultraviolet divergent, and we use dimensional regularization to

isolate the corresponding divergencies. Expressions of the regularized kernels are reported in

Appendix B of Ref. [22]. After dimensional regularization the two-pion exchange contribution

can be written in the following compact form

ṽ
(2)
TPE = v

(2)
TPE + τ1 · τ2 P2(k)

+
(
k2σ1 · σ2 − σ1 · kσ2 · k

)
P0 , (105)

where the renormalized finite part is

v
(2)
TPE =

1

768 π2 f 4
π

τ1 · τ2G(k)

[
4m2

π

(
1 + 4g2

A − 5g4
A

)

+k2
(
1 + 10g2

A − 23g4
A

)
− 48g4

Am
4
π

s2

]

+
3 g4

A

128π2 f 4
π

(
k2σ1 · σ2 − σ1 · k2 σ2 · k

)
. (106)
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Here we have defined

G(k) =
s

k
ln

(
s+ k

s− k

)
, (107)

with s =
√

4m2
π + k2. The divergencies are lumped into the polynomials P2(k), and P0

P2(k)= − 1

384π2 f 4
π

[
m2
π

[
4 + 4g2

A + 16g4
A − 9g2

A(2− 5g2
A) dε

]

+
4

3
k2
[5

8
+

13

4
g2
A −

3

8
g4
A −

3

8
(1 + 10g2

A − 23g4
A) dε

]]
, (108)

P0 =
3 g4

A

128π2 f 4
π

(
dε −

1

3

)
, (109)

with the constant dε defined as

dε = −2

ε
+ γ − ln 4π + ln

m2
π

µ2
− 1 , (110)

where ε = 3− d (d is the number of dimensions), γ is Euler’s constant, and µ is a renormal-

ization scale.

The contributions of diagrams a6 and a7 of Fig. 1 are given by

v(2)(a6 + a7) =
g2
A

3 f 2
π

CT τ1 · τ2 σ1 · σ2 J13 −
g2
A

f 2
π

CT σ1 · σ2 J13 . (111)

where the quantity J13, defined in Eq. (392), is ultraviolet divergent and reads (after dimen-

sional regularization)

J13 =
3m2

π

8 π2

(
dε −

7

3

)
. (112)

Note that diagrams a6 and a7 include reducible contributions. The partial cancellation

between these and contributions resulting from iterations of the LS equation has been taken

into account. Finally following Ref. [22] we note that Fierz identities allow us to rewrite the

spin-isospin structures in Eq. (105) and (111) as

τ1 · τ2 −→ −2− σ1 · σ2 , (113)

τ1 · τ2 k
2 −→ −4(1 + σ1 · σ2)K2 − k2 , (114)

τ1 · τ2 σ1 · σ2 −→ −3 . (115)
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Making use of these identities in the polynomial term P2(k) of Eq. (105) and in Eq. (111)

allow us to separate the finite parts of the Ci from their divergent parts proportional to dε

in the following way

CS = Cr
S +

3 g2
A

64π2 f 4
π

m2
π

(
2− 5 g2

A + 8CT f
2
π

)
dε , (116)

CT = Cr
T +

3 g2
A

64 π2 f 4
π

m2
π

(
1− 5

2
g2
A + 8CT f

2
π

)
dε , (117)

C1 = Cr
1 +

1

64 π2 f 4
π

(
1

12
+

5

6
g2
A −

23

12
g4
A

)
dε , (118)

C2 = Cr
2 +

1

64 π2 f 4
π

(
1

3
+

10

3
g2
A −

23

3
g4
A

)
dε , (119)

C3 = Cr
3 +

1

64 π2 f 4
π

(
−3

2

)
dε , (120)

C4 = Cr
4 +

1

64 π2 f 4
π

(
1

3
+

10

3
g2
A −

23

3
g4
A

)
dε , (121)

C6 = Cr
6 +

1

64 π2 f 4
π

(
3

2

)
dε . (122)

This separation defines also our subtraction scheme, namely all pieces proportional to dε

must be reabsorbed in the LECs multiplying the contact terms. We note that C5 and C7

have no divergent parts (at order Q2). With this definition all divergences cancel out and

we are left with

v(2)(a2 + · · ·+ a7) =
7 g3

ACT m
2
π

8π2 f 2
π

+
7 g2

ACT m
2
π

8π2 f 2
π

σ1 · σ2

+

[
Cr

1 +
1

288π2 f 2
π

(
5

8
+

13

4
g2
A −

3

8
g4
A

)]
k2

+

[
Cr

2 +
1

72π2 f 2
π

(
5

8
+

13

4
g2
A −

3

8
g4
A

)]
K2

+

[
Cr

3 −
g4
A

128π2 f 4
π

]
k2 σ1 · σ2

+

[
Cr

4 +
1

72π2 f 2
π

(
5

8
+

13

4
g2
A −

3

8
g4
A

)]
K2 σ1 · σ2

+i Cr
5

σ1 + σ2

2
·K× k +

[
Cr

6 −
g4
A

128π2 f 4
π

]
σ1 · k σ2 · k

+Cr
7 σ1 ·K σ2 ·K + v

(2)
TPE . (123)
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4.1.2 ONE-PION EXCHANGE CONTRIBUTIONS

In this subsection we deal with a technical problem, namely the renormalization of loop

corrections to OPE contributions. We first construct the set of relevant counter-terms, and

then carry out the renormalization of the nucleon and pion masses, field rescaling factors Zπ

and ZN , the ratio gA/fπ, and, lastly, loop corrections to the OPE. We define

πa =
√
Zπ π

r
a , N =

√
ZN N

r , (124)

where πra and N r denote, respectively, the renormalized pion and nucleon fields, and Zπ and

ZN are the corresponding field rescaling constants, assumed to have the following expansions

Zπ = 1 + δZπ , δZπ ∼ Q2 , (125)

ZN = 1 + δZN , δZN ∼ Q2 . (126)

We also define the physical pion mass mr
π and nucleon mass mr as

mr 2
π = m2

π + δm2
π , δm2

π ∼ Q4 , (127)

mr = m+ δm , δm ∼ Q2 . (128)

As illustrated in Appendix C, the total Lagrangian, taking the external axial field Aµa = 0

in Eq. (440), can be written as

L = N
r (
i /∂ −mr + Γ0 ′

a ∂0π
r
a + Λi ′

a ∂iπ
r
a + ∆′

)
N r

+
1

2

(
∂0πraG

′
ab ∂0π

r
b + ∂iπra G̃

′
ab ∂iπ

r
b −mr 2

π πraH
′
ab π

r
b

)

+δmN
r
N r + δZN N

r
(iγµ∂µ −mr)N r +

δm2
π

2
πraπ

r
a , (129)

which is expressed in terms of renormalized fields and masses, but bare LECs including gA

and fπ. This Lagrangian has essentially the same form as the bare one in Eq. (68) (the primed

quantities are defined in Appendix C), and leads to an interaction Hamiltonian similar to

Eq. (75),

HI = HI

[
Eq. (75) with primed quantities and renormalized fields and masses

]

−δmN
r
N r − δZN N

r (
iγi∂i −mr

)
N r − δm2

π

2
πraπ

r
a . (130)

In addition to the vertices listed in Appendix B, this Hamiltonian generates vertices cor-

responding to the set of counter-terms in Eqs. (447)–(453), explicit expressions for which

follow from those in Appendices B and E.
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The determination of the scaling factors Zπ = 1+δZπ and ZN = 1+δZN for the pion and

nucleon fields, the renormalization of the pion and nucleon masses, and gA/fπ are discussed

in detail in Appendices D. The treatment closely follows the steps outlined in Ref. [47]. We

only quote the results here:

δm2
π = 2 l3

mr 4
π

f 2
π

+
mr 2
π

4f 2
π

J01 , δZπ = −2
mr 2
π

f 2
π

l4 +
10α− 1

2f 2
π

J01 , (131)

δm = −4mr 2
π c1 −

3 g2
A

8 f 2
π

J12 , δZN = −3 g2
A

8 f 2
π

J13 , (132)

gA
fπ

=
grA
f rπ

(
1− 4mr 2

π

grA
d16 +

gr 2
A

3f r 2
π

J13 +
mπr 2 l4
f r 2
π

)(
1− 2mr 2

π

grA
d18

)
, (133)

where the constants Jmn are defined in Eq. (392), and l3 and l4 (c1 and di) are LECs entering

in the subleading L(4)
ππ (L(2)

πN and L(3)
πN) chiral Lagrangians. Only leading Q2 corrections are

provided above, but for δm which also includes the sub-leading term of order Q3 proportional

to J12.

We now turn to a discussion of the loop corrections to OPE, illustrated in Fig. 2. In

diagrams b2, b4, b6, b8, b11, and b14, the solid dot represents the interaction−δm−4mr 2
π c1,

where δm is the nucleon mass counter-term.

b1 b2 b3 b4 b5 b6 b7 b8

b9 b10 b11 b12 b13 b14

b15 b16 b17 b18 b19 b20

b21 b22 b23 b24 b25 b26

b27 b28 b29 b30 b31 b32 b33

FIG. 2: Half of the possible time-ordered corrections to the OPE potential at order Q.

Nucleons, and pions are denoted by solid and dashed lines, respectively. See text for further

explanations.



31

The contributions associated with diagrams b1-b2, b3-b4, b5-b6, b7-b8, b9-b11, and b12-

b14 represent the renormalization of nucleon external lines and, with the choice of δm in

Eq. (131), they are seen to vanish. Next, the solid square in diagrams b16, b18, and b20

represents the interaction

H
(4) ′
2π = −

∫
dx

(
mr 2
π l4
f 2
π

+
δZπ

2

)(
Πr ·Πr + ∂iπr · ∂iπr

)

+

∫
dx

[
mr 4
π (l3 + l4)

f 2
π

+
mr 2
π

2
δZπ −

δm2
π

2

]
πr · πr , (134)

with vertex (in the convention of Appendix B)

〈0 | H(4) ′
2π |k1, a1; k2, a2〉 = δa1,a2

[(
2mr 2

π l4
f 2
π

+ δZπ

)
(ω1ω2 − k1 · k2)

+
2mr 4

π (l3 + l4)

f 2
π

+mr 2
π δZπ − δm2

π

]
. (135)

With δZπ and δm2
π as given in Eq. (131), the contributions of diagrams b15-b20 cancel out.

Lastly the contributions of diagrams b27-b32 vanish identically, while those in diagrams

b21-b26 and b33 sum up to

v(2)(b21 + · · ·+ b26 + b33) = − g2
A

4 f 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

×
[
8
m2
π

gA
d16 −

4m2
π

gA
d18 − 2l4

m2
π

f 2
π

− 2

3

g2
A

f 2
π

J13

]

= − gr 2
A

4 f r 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

×
[
8
mr 2
π

grA
d16 −

4mr 2
π

grA
d18 − 2l4

mr 2
π

f r 2
π

− 2

3

gr 2
A

f r 2
π

J13

]
, (136)

where diagram b33 contains a vertex coming from H
(3) ′
πNN in Eq. (474), and in the second

line the bare couplings and masses have been replaced by the corresponding renormalized

quantities, which is correct to order Q2. In order to complete the renormalization program

to this order, we reconsider diagram a1 in Fig. 1

v(a1) = − g2
A

4 f 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

= − gr 2
A

4 f r 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

×
[
1− 8

mr 2
π

grA
d16 + 2

mr 2
π

f r 2
π

l4 +
2

3

gr 2
A

f r 2
π

J13

]
, (137)
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where the bare ratio gA/fπ has been replaced by its renormalized expression (see Ref. [26]

for the explicit expression). The renormalized OPE potential up to Q2 is then given by the

sum of a1 and b21+ · · ·+b26+b33 and reads

v
(2)
OPE = − gr 2

A

4 f r 2
π

τ1 · τ2

(
1− 4mr 2

π

grA
d18

)
, (138)

where the factor (1− 4mr 2
π d18/g

r
A) is known as the Goldberger-Treiman discrepancy.

4.2 NONSTATIC CORRECTIONS TO THE POTENTIAL

We discuss in this section nonstatic corrections to the potential resulting from expanding

energy denominators. These corrections originate from next-to-leading (Q0) and next-to-

next-to-leading (Q) terms in the expansion of the denominators of the various reducible and

irreducible topologies, Eq. (82). We will first describe the nonstatic corrections to the OPE

potential, and then those to the box topology (diagram a5 of Fig. 1). As it can be seen

from Eq. (96) in Ch. 3 these corrections are needed in order to construct the nuclear axial

currents up to order Q.

4.2.1 ONE-PION EXCHANGE

In this subsection we consider non-static corrections to the OPE potential resulting from

diagram a1 of Fig. 1. These corrections enter in principle at order Q, by keeping the next-

to-leading (Q0) term in the expansion of the pionic energy denominator, and lead to

v(1)(a1) = v(0)(a1)
(E ′1 + E ′2 − E1 − E2)

ωk
. (139)

However this correction vanishes on the energy shell Ei = Ef with Ei = E1 + E2 and

Ef = E ′1 + E ′2 where Ei (pi) are the initial and final energies (momenta) of nucleon i. We

take v(1) to also vanish off-the-energy-shell.

At order Q2 the nonstatic correction to the OPE can be written as

v(2)(a1) = v
(0)
OPE

(E ′1 − E1)2 + (E ′2 − E2)2

2ω2
k

, (140)

or equivalently on the energy shell as

v(2)(a1) = −v(0)
OPE

(E ′1 − E1)(E ′2 − E2)

ω2
k

. (141)

These two forms differ off-the-energy-shell (i.e., E ′1 +E ′2 6= E1 +E2), and this fact turns out

to be relevant in the calculation of nonstatic corrections to the box diagram at order Q3. It
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is convenient to parameterize these corrections in terms of a parameter ν (as was first done

in Ref. [43])

v
(2)
OPE, ns(ν) = v

(0)
OPE

(1− ν) [(E ′1 − E1)2 + (E ′2 − E2)2]− 2 ν (E ′1 − E1)(E ′2 − E2)

2ω2
k

, (142)

where k = p′1−p1 is the momentum transfer. Note that Eqs. (140) and (141) are obtained for

ν = 0 and ν = 1, respectively. Thus, there is an infinite class of corrections v
(2)
OPE, ns(ν), labeled

by the parameter ν, which, while equivalent on the energy shell and hence independent of

ν, are different off-the-energy-shell. Friar [43] has in fact shown that these different off-the-

energy-shell extrapolations v
(2)
OPE, ns(ν) are unitarily equivalent (see also Ref. [23]).

4.2.2 TWO-PION EXCHANGE AT ORDER Q3

For the derivation of nuclear axial currents knowledge of the two-nucleon potential up to

order Q3 is required. This correction results from

v(3) = T (3) −
[
v(0)G0v

(0)G0v
(0)G0v

(0)
]

−
[
v(2)G0v

(0) + v(0)G0v
(2)
]
, (143)

where we have made use of the fact that v(1) = 0. The calculation of the full v(3) contribution

is rather involved, see Ref. [23]. In the following we report only the expressions obtained

for the two topologies needed to calculate the axial currents up to order Q: diagrams a3

and a5 of Fig. 1. Both diagrams, at order Q3, have contributions from (i) vertex corrections

(coming from L(2)
πN , and of no interest here), and (ii) nonstatic corrections resulting from the

expansion of the pionic energy denominators (considered here).

E0
1

E1

eE1 eE1
eE1

eE2
eE0
2

1

2

Thursday, March 30, 17

FIG. 3: Some of the diagrams illustrating the nonstatic corrections to diagram a3 and a5

of Fig. (1) at order Q3. Pion lines with crossed (full) circle indicate that only the next-

to-leading Q0 (next-to-next-to-leading Q) term in the expansion of energy denominators,

Eq. (82), are retained in the corresponding amplitudes. Only one among the possible time

orderings is shown.
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The calculation of diagram a3 is straightforward [23], and gives

v
(3)
TPE,4 = − g2

A

16 f 4
π

τ1 · τ2

∫
dq1

(2π)3

1

ω2
1 ω

2
2

(q1 · q2 + iσ1 · q2 × q1)(E1 + E ′1 − 2 Ẽ1) , (144)

where ω1 =
√

q2
1 +m2

π (and similarly for ω2), Ẽ1 is the intermediate energy as showed in

Fig. 3, and q2 = k−q1. The contribution of diagram a5 depends on the off-the-energy-shell

prescription adopted for v
(2)
OPE, ns(ν) albeit different prescriptions lead to unitarily equivalent

corrections to v
(3)
TPE(ν) [23]. Here we report the correction corresponding to ν = 0, i.e.

v
(3)
TPE,�(ν = 0) = − g4

A

32 f 4
π

(3 + 2 τ1 · τ2)

∫
dq1

(2π)3
(σ1 · q2)(σ1 · q1)(σ2 · q1)(σ2 · q2)

×
(
E1 − Ẽ1 + E ′2 − Ẽ ′2

ω4
1 ω

2
2

+
E ′1 − Ẽ1 + E2 − Ẽ ′2

ω2
1 ω

4
2

)
, (145)

where Ẽ1, Ẽ2, and Ẽ ′2 are the intermediate nucleonic energies as shown in Fig. 3.
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CHAPTER 5

NUCLEAR AXIAL CURRENTS UP TO ONE LOOP

In this chapter we discuss the derivation of the nuclear axial charge and current opera-

tors in chiral effective field theory up to one loop. The derivation is based on TOPT and

accounts for cancellations between the contributions of irreducible diagrams and the contri-

butions from nonstatic corrections of energy denominators in reducible diagrams. Ultraviolet

divergencies associated with the loop corrections are isolated in dimensional regularization.

The resulting axial current is finite and conserved in the chiral limit, while the axial charge

requires normalization. A complete set of contact terms for the axial charge up to the

relevant order in the power counting is constructed.

Hereafter, the momenta ki and Ki are defined as

Ki = (p′i + pi) /2 , ki = p′i − pi , (146)

where pi (p′i) is the initial (final) momentum of nucleon i. A symmetrization (1 
 2) and

an overall momentum-conserving δ-function (2π)3δ(k1 + k2−q) are understood in all terms

listed below unless otherwise noted. While the potential in Ch. 4 has been derived in the

center-of-mass frame, the currents derived here are in a generic frame.

There is an earlier but incomplete derivation by Rho and collaborators [28, 48] of weak

axial currents in χEFT, based on heavy-baryon perturbation theory. There is also a recent

derivation by the Bochum-Bonn group, based on TOPT and the unitary transformation

method, which has appeared a few months after our own work [49]. A comparison between

the various derivations is presented at the end of this chapter.

5.1 ONE-BODY AXIAL CHARGE AND CURRENT

We begin by discussing how the leading-order one-body operators are generated by the

chiral Hamiltonians. The relevant diagrams are shown in Fig. 4. The contribution of panels

a1 and a2 lead to the single-nucleon current given by

j
(−3)
5,a (q) = −gA

2
τ1,a

[
σ1 −

q

q2 +m2
π

σ1 · q
]

(2π)3δ(k1 − q) , (147)
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while the contribution of panel a3 to the single-nucleon axial charge

ρ
(−2)
5,a (q) = − gA

2m
τ1,a σ1 · (K1) (2π)3δ(k1 − q) . (148)

Here q is the momentum carried by the external field and we made explicit the momentum

conserving δ-function. The counting Q−3 of j5,a (panel a1 in Fig. 4) follows from the product

of a factor Q0 associated with the NNA vertex (the external field has been removed), and a

factor Q−3 due to the momentum-conserving δ-function δ (p′2 − p2) implicit in disconnected

terms of this type. Evaluation of the pion-pole contribution (panel a3), in which the axial

source couples directly to the pion which is then absorbed by the nucleon, leads to the ρ
(−2)
5,a

expression in Eq. (148). In this disconnected term, the counting Q−2 accounts for the Q−3

factor due to δ (p′2 − p2), the factors Q and Q2 of the πA and πNN vertices, respectively,

and the factor Q−2 from the pion field normalization and energy denominator associated

with the intermediate state. A similar counting is applied to panel a2 in Fig. 4 contributing

to j5,a.

a2 a3a1

FIG. 4: Diagrams a1 and a2 contribute to the one-body axial current operator at order Q(−3).

Diagram a3 contributes to the one-body axial charge operator at order Q(−2). Nucleons,

pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a

single time ordering is shown for diagrams a2 and a3. The full dot in c is from the interaction

vertex H
(2)
πNN , see Appendix B.

There is no direct coupling of the nucleon to the time-component A0
a of the axial field:

the interaction −(gA/2)N τ ·A0 γ
0γ5N in the term

−N ∆(2)N , (149)

with ∆(2) as given by Eq. (384) occurs with the opposite sign in the term

− (fπ/2)
[
N Γ0

a(1)N
(
G−1

)
ab
FbcA

0
c + h.c.

]
, (150)

with Γ0
a(1) as in Eq. (382) with (G)−1

ab = Fab = δab up to πaπb or m2
π terms, and hence cancels

out in the Hamiltonian of Eq. (75). The single-nucleon axial charge of the correct sign and
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strength follows from the sum of the two time-ordered contributions of diagram a3 with the

full dot representing the interaction (gA/2fπ)N τ ·Π γ0γ5N from

− (1/2)
[
Πa

(
G−1

)
ab
N Γ0

b(1)N + h.c.
]
. (151)

There are relativistic corrections suppressed by two powers of Q to these leading order

operators. We only consider those to the single-nucleon axial current, since they have been

found to give significant contributions to the cross section for proton weak capture on 3He

of interest in solar physics [48],

j
(−1)
5,a (a4) =

gA
4m2

τ1,a

[
K2

1 σ1 +
i

2
k1 ×K1 − σ1 ·K1 K1 +

1

4
σ1 · k1 k1

]
, (152)

j
(−1)
5,a (a5) = − q

q2 +m2
π

[
q · j(−1)

5,a (a4) +
gA

2m2
τ1,a σ1 ·K1 k1 ·K1

]
. (153)

Diagram a5 contains two contributions at order Q−1: one is from the 1/m2 terms originating

from the non-relativistic expansion of the πNN interaction H
(1)
πNN ; the other is due to the

1/m terms in H
(2)
πNN and the (leading) non-static corrections (proportional to 1/m) to energy

denominators.

a4 a5

FIG. 5: Diagrams illustrating the relativistic corrections to the one-body axial current.

Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively.

Only a single time ordering is shown for diagram a5. See text for further explanations.

Loop corrections to the one-body axial charge and current, relevant for the renormaliza-

tion of these operators, are derived in TOPT in Appendix F. They are in agreement with

the results obtained in heavy-baryon perturbation theory [50].

5.2 TWO-BODY AXIAL CHARGE

The weak axial charge two-body operator, in analogy with the two-nucleon potential, can

be written as

ρ5,a = ρ5,a(OPE) + ρ5,a(TPE) + ρ5,a(CT) , (154)
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namely as a sum of terms due to one-pion exchange (OPE), two-pion exchange (TPE), and

contact contributions (CT). In the following, and in Sec. 5.3 as well, contributions to the

OPE and TPE (or MPE in Sec. 5.3) operators are labeled by the power counting superscript

(n). While each individual contribution is not explicitly identified as being OPE or TPE (or

MPE), this is obvious from the context.

5.2.1 ONE- AND TWO-PION EXCHANGE CONTRIBUTIONS

Diagrams contributing to ρOPE
5,a at leading order are shown in Fig. 6. Tree level diagrams

in panels b1 and b2 of this figure enter at order Q−1 and read

ρ
(−1)
5,a (b1) = i

gA
8f 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

, (155)

ρ
(−1)
5,a (b2) = ρ

(−1)
5,a (b1) . (156)

We note that the sum b1+b2 gives the leading order OPE axial charge operator first derived

in Ref. [51] using soft-pion theorem.

b1 b2

FIG. 6: Diagrams contributing to the OPE axial charge at leading order Q−1 (panels b1

and b2). Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,

respectively. Only a single time ordering is shown for each topology.

At order Q0 we have in principle nonstatic contributions coming from the expansion

of the pionic energy denominators, and contributions coming from vertices generated from

chiral Hamiltonians H(2)
πNN . Both these corrections, displayed in Fig. 7, are seen to vanish

when summing over all time orderings (diagrams b3-b6). We note that there are no reducible

contributions up to order Q0.
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b3 b4 b5 b6

FIG. 7: Diagrams contributing to the OPE axial charge at order Q0. Nucleons, pions, and

axial fields are denoted by solid, dashed, and wavy lines, respectively. Pion lines (pion lines

with crossed circle) indicate that only the leading Q−1 (next-to-leading Q0) term in the ex-

pansion of the energy denominators, Eq. (82), are retained in the corresponding amplitudes.

Crossed circle vertices indicate terms coming from next-to-leading Q2 chiral Hamiltonians.

Only a single time ordering is shown for each topology.

Two-pion exchange contributions are shown in panels c1-c12 of Fig. 8. The individual

contributions read

ρ
(1)
5,a(c1 + c2) = i

gA
16 f 4

π

(τ1 × τ2)a σ1 · k2 I
(0)(k2) , (157)

ρ
(1)
5,a(c5 + c6) = i

g3
A

16 f 4
π

[
4 τ1,a σ1i (σ2 × k2)j J

(2)
ij (k2)

+(τ1 × τ2)a
[
k2

2 J
(0)(k2)− J (2)(k2)

]
σ1 · k2

]
, (158)

while those of c3-c4, c7-c8, and c9-c12 vanish, after summing over all time orderings. The

freedom in the choice of pion field, parametrized by the parameter α in Appendix A, intro-

duces an α-dependence in the interaction vertices with three or four pions, see Appendix B.

The contributions of diagrams c4 and c8, which include a 3π vertex, turn out to vanish

identically. But in general this α dependence must cancel out exactly in the calculation of

the scattering amplitude, as is indeed the case for the two-nucleon axial charge and current

operators obtained in this Thesis. The loop functions have been defined in Eqs. (102)−(104)

of the previous chapter, and they have been evaluated in dimensional regularization Ref. [22].
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c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

FIG. 8: Diagrams contributing to the OPE axial charge at leading order Q−1 (panels a1 and

a2), and to the TPE axial charge operator at order Q. Nucleons, pions, and axial fields are

denoted by solid, dashed, and wavy lines, respectively. Only a single time ordering is shown

for each topology.

Insertion of the finite parts of these loop functions leads to

ρ
(1)
5,a(c1 + c2) = −i gA

128 π2 f 4
π

(τ1 × τ2)a σ1 · k2
s2

k2

ln

(
s2 + k2

s2 − k2

)
, (159)

ρ
(1)
5,a(c5 + c6) = −i g3

A

128 π2 f 4
π

[
4 τ1,a (σ1 × σ2) · k2

s2

k2

ln
s2 + k2

s2 − k2

−(τ1 × τ2)a σ1 · k2
k2

2 + 2 s2
2

k2 s2

ln
s2 + k2

s2 − k2

]
, (160)

where

sj =
√

4m2
π + k2

j . (161)
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The divergent and logarithm-free parts read

ρ
(1)
5,a(c1 + c2)|∞ = −i gA

128π2 f 4
π

(τ1 × τ2)a σ1 · k2 (dε − 1) , (162)

ρ
(1)
5,a(c5 + c6)|∞ = −i g3

A

32π2f 4
π

[
τ1,a (σ1 × σ2) · k2

(
dε −

1

3

)

−3

4
(τ1 × τ2)a σ1 · k2

(
dε +

1

3

)]
, (163)

with the constant dε defined in Eq. (110).

5.2.2 CONTACT CONTRIBUTIONS

At order Q0 there are no contact terms contributing to ρCT
5,a , and this fact is proven in

Appendix G. Those at order Q are given by (see Appendix G for a derivation)

ρ5,a(CT) =
4∑

i=1

ziOi , (164)

where the zi are (unknown) LECs and the operators Oi with i = 1, . . . , 4, symmetrized with

respect to the exchange 1
 2, have been defined as

O1 = i (τ1 × τ2)a (σ1 · k2 − σ2 · k1) , (165)

O2 = i (τ1 × τ2)a (σ1 · k1 − σ2 · k2) , (166)

O3 = i (σ1 × σ2) · (τ1,a k2 − τ2,a k1) , (167)

O4 = (τ1,a − τ2,a) (σ1 − σ2) · (K1 + K2) . (168)

We observe that the loop divergencies from c1-c2 and c5-c6 can be reabsorbed in the LECs

z1 and z3, in the following way

z1 = zr1 + i
gA

128π2 f 4
π

(1− 3 g2
A) dε , (169)

z3 = zr3 + i
g3
A

32π2 f 4
π

dε . (170)

Therefore in this subtraction scheme

ρ
(1)
5,a(c1 + c2 + c5 + c6)|∞ + z1O1 + z3O3 =

[
zr1 − i

gA
128π2 f 4

π

(
1− g2

A

)]
O1

+

[
zr3 − i

g3
A

32π2 f 4
π

]
O3 . (171)
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5.3 TWO-BODY AXIAL CURRENT

As for the charge, the two-body current is written as a sum of one-pion exchange (OPE),

multi-pion exchange (MPE), and contact (CT) terms (notation and conventions are as in

Sec. 5.2),

j5,a = j5,a(OPE) + j5,a(MPE) + j5,a(CT) . (172)

We discuss jCT
5,a here. It is well known [52] that a single contact term occurs at order Q0

(Fig. 9), and none at order Q. This term is taken (in the properly symmetrized form) as

j5,a(CT) = z0

[
(τ1 × τ2)a σ1 × σ2 −

q

q2 +m2
π

(τ1 × τ2)a q · (σ1 × σ2)
]
, (173)

where the second term is the pion-pole contribution. This contact term originates from

the interaction Lagrangian
(
Nγµγ5 uµN

)
NN and the LEC z0 is related to the LEC cD (in

standard notation) entering the three-nucleon potential at leading order [52]. The LEC z0 is

fixed by reporducing the Gamow-Teller matrix element contributing to tritium β-decay and

is discussed in the next chapter.

FIG. 9: Contact and corresponding pion-pole term occuring at order Q0 in the axial current.

Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively.

Only a single time ordering is shown for the pion-pole topology (second diagram).

5.3.1 LEADING ONE- AND MULTI-PION EXCHANGE CONTRIBUTIONS

Leading contributions to j5,a(OPE) and j5,a(MPE) are shown, respectively, in panels d1-

d2, and panels e1-e25 of Fig. 10. There are no contributions at order Q−1 from diagrams d1

and d2: in d1 the interaction H
(1)
πNNA contains no coupling to the field Aa, while in d2 the

sum over the 6 time orderings, when leading order vertices from H
(2)
πA, H

(1)
2πNN , and H

(1)
πNN are
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considered, vanishes. The first non-vanishing contributions enter at order Q0, and read

j
(0)
5,a(d1) =

gA
2 f 2

π

(τ1 × τ2)a

[
i
K1

2m
− c6 + 1

4m
σ1 × q +

(
c4 +

1

4m

)
σ1 × k2

]
σ2 · k2

1

ω2
2

+
gA
f 2
π

c3 τ2,a k2 σ2 · k2
1

ω2
2

, (174)

j
(0)
5,a(d2) = − gA

2 f 2
π

q

q2 +m2
π

[
τ2,a

(
4 c1m

2
π + 2 c3 q · k2

)
− c4 (τ1 × τ2)a σ1 · (q× k2)

]
σ2 · k2

1

ω2
2

−i gA
16mf 2

π

q

q2 +m2
π

(τ1 × τ2)a (2 K1 + iσ1 × k1) · (q + k2) σ2 · k2
1

ω2
2

+i
gA

8mf 2
π

q

q2 +m2
π

(τ1 × τ2)a (K1 · k1 + 2 K2 · k2)σ2 · k2
1

ω2
2

. (175)

For the diagrams contributing to j5,a(MPE) only a single time ordering is displayed for

each topology. It is understood that denominators involving pion energies in the reducible

topologies of diagrams e1-e2, e6-e7, e8-e10, e13-e14, e20-e21, e22-e25 are expanded as in

Eq. (82). The resulting contributions depend on the off-the-energy-shell prescription adopted

for the non-static corrections to the OPE and TPE (reported in the Ch. 4), and OPE-

contact potentials (reported in Ref. [23]). Different prescriptions lead to different formal

expressions for these corrections as well as the accompanying weak axial current operators,

which, however, are expected to be related to each other by unitary transformations. This

unitary equivalence has been discussed in considerable detail in Ref. [23], where it was

explicitly verified to hold in the case of the electromagnetic charge operator and is conjectured

to hold also in the present case. The axial current operators derived below are obtained

by adopting the ν = 0 prescription for the non-static corrections to the afore mentioned

potentials, as given in Eqs. (142),(144), and (145) of the previous chapter. We note that

in evaluating the contributions to diagrams e2 and e9 nonstatic corrections in the pion-pole

term of the axial current at leading order need to be accounted for. These are obtained in

Appendix H.
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d1 d2 e1 e2 e3

e4 e5 e6 e7 e8

e9 e10 e11 e12 e13

e14 e15 e16 e17 e18

e19 e20 e21 e22 e23

e24 e25

FIG. 10: Diagrams contributing to the OPE axial current operator at order Q0 and to the

MPE axial current at order Q. Nucleons, pions, and axial fields are denoted by solid, dashed,

and wavy lines, respectively. Crossed circle in diagrams d1 and d2 indicate vertices generated

from chiral Hamiltonians at order Q2. Only a single time ordering is shown for each topology.
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We find that the contributions of diagrams e3, e6-e7, e11-e14, e18-e25 vanish, while those

of the remaining diagrams are given by

j
(1)
5,a(e1) = − g3

A

16 f 4
π

τ2,a

[
R

(2)
ij (k2)σ1j − k2R

(0)(k2)σ1 · k2

]
, (176)

j
(1)
5,a(e2) = − q

q2 +m2
π

q · j(1)
5,a(e1) , (177)

j
(1)
5,a(e4) = − g3

A

16 f 4
π

τ2,a

[
k2

1 R
(0)(k1)−R(2)(k1)

]
σ2 , (178)

j
(1)
5,a(e5) =

g3
A

32 f 4
π

q

q2 +m2
π

[
τ2,a

[
k2

1 R
(0)(k1)−R(2)(k1)

]
[(10α− 1)σ2 · k2 + σ2 · k1]

− (τ1 × τ2)a R
(2)
ij (k1) (σ1 × k1)i σ2,j

]
, (179)

j
(1)
5,a(e8) = − g5

A

16 f 4
π

[
τ2,a

[
(σ1 × k2)× k2

[
k2

2 S
(0)(k2)− S(2)(k2)

]

+
[
k2

2 S
(2)(k2)− S(4)(k2)

]
σ1 −

[
k2

2 S
(2)
ij (k2)− S(4)

ij (k2)
]
σ1j

]

−4 τ1,a εijkk2j S
(2)
kl (k2) (σ2 × k2)l

]
, (180)

j
(1)
5,a(e9) = − q

q2 +m2
π

q · j(1)
5,a(e8) , (181)

j
(1)
5,a(e10) =

g3
A

32 f 4
π

q

q2 +m2
π

[
(2 τ2,a − τ1,a)

[
k2

2R
(0)(k2)−R(2)(k2)

]
σ1 · k2

+ (τ1 × τ2)aR
(2)
ij (k1) (σ2 × k2)i σ1j

]
, (182)

j
(1)
5,a(e15) =

g3
A

32 f 4
π

[
τ2,a (10αq− 3 k1 + k2)

[
k2

1R
(0)(k1)−R(2)(k1)

]

−4 (τ1 × τ2)a R
(2)
ij (k1) (σ1 × k1)j

]
σ2 · k2

ω2
2

, (183)

j
(1)
5,a(e16) =

g3
A

64 f 4
π

τ2,a
q

q2 +m2
π

[
2
(
5m2

π + 2 k2
1 + k2

2 + q2
) [
k2

1 R
(0)(k1)−R(2)(k1)

]

+
[
k4

1 R
(0)(k1)−R(4)(k1)

]
− 20α

(
q2 + k2

2 + 2m2
π

) [
k2

1 R
(0)(k1)−R(2)(k1)

]

+ 80αJ12

]
σ2 · k2

ω2
2

+
g3
A

16 f 4
π

(τ1 × τ2)a
q

q2 +m2
π

R
(2)
ij (k1) (σ1 × k1)i (k2 + q)j

σ2 · k2

ω2
2

, (184)

j
(1)
5,a(e17) =

g3
A

8 f 4
π

τ2,a
q

q2 +m2
π

(1− 10α) J12
σ2 · k2

ω2
2

, (185)

where the constants Jmn are as in Eq. (392), and the loop functions R
(n)
ij have been defined
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as

R(0)(k) =

∫
dp

(2π)3
f̃(ω+, ω−) , (186)

R(2)(k) =

∫
dp

(2π)3
p2 f̃(ω+, ω−) , (187)

R
(2)
ij (k) =

∫
dp

(2π)3
pipj f̃(ω+, ω−) , (188)

R(4)(k) =

∫
dp

(2π)3
p4 f̃(ω+, ω−) , (189)

R
(4)
ij (k) =

∫
dp

(2π)3
pipj p

2 f̃(ω+, ω−) , (190)

(191)

with

f̃(ω+, ω−) =
1

ω2
+ ω

2
−
. (192)

The loop functions S
(n)
ij are defined similarly with f̃(ω+, ω−) replaced by

g̃(ω+, ω−) =
ω2

+ + ω2
−

ω4
+ ω

4
−

= −1

4

d

dm2
π

f̃(ω+, ω−) . (193)

After dimensional regularization, we obtain

R(0)(k) =
1

16π

∫ 1

0

dz
1

M(k, z)
, (194)

R(2)(k) = − 3

4 π

∫ 1

0

dz

[
M(k, z)− 1

12

(z − z)2

M(k, z)
k2

]
, (195)

R
(2)
ij (k) = − 1

4 π

∫ 1

0

dz

[
δijM(k, z)− 1

4

(z − z)2

M(k, z)
kikj

]
, (196)

R(4)(k) =
5

π

∫ 1

0

dz

[
M(k, z)3 − 1

2
(z − z)2M(k, z) k2 +

1

80

(z − z)4

M(k, z)
k4

]
, (197)

R
(4)
ij (k) =

5

3π

∫ 1

0

dz

[
δij

[
M(k, z)3 − 3

20
(z − z)2M(k, z) k2

]

−21

20

[
(z − z)2M(k, z)− 1

28

(z − z)4

M(k, z)
k2
]
kikj

]
, (198)

where

M(k, z) =
√
zz k2 +m2

π , z = 1− z . (199)

The regularized S
(n)
ij (k) loop functions easily follow from Eq. (193). Inserting these relations

into the equations above, and noting that the α dependence cancels out upon summing
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the contributions of diagrams e5, e15, e16, and e17, we obtain the expressions reported in

Appendix I. No divergencies occur in these loop corrections at order Q, consistently with

the fact that there are no contact terms in the axial current at this order. Contributions

coming from L(3)
πN , proportional to the LECs di’s, that enter through topologies d1 and d2,

turn out to vanish.

5.4 LOOP CORRECTIONS TO ONE-PION EXCHANGE

In this section we discuss how to calculate the loop corrections to the one-pion exchange

(OPE) operators, for both the axial charge and axial current. The calculation of the OPE ax-

ial charge is somewhat involved because the rather large number of nonvanishing topologies.

For the axial current the situation is considerably simpler.

5.4.1 COUNTERTERMS

We now proceed to renormalize the loop corrections to the OPE axial charge operator

which come in at order Q. The renormalization of nucleon and pion masses, and field rescal-

ing factors Zπ and ZN , has been carried out in Appendix D. The only other ingredients which

are needed are the relations between the renormalized (physical) pion decay constant f rπ and

nucleon axial coupling constant grA and their respective bare quantities. These relations have

been derived in Appendix F. We report them here

fπ = f rπ

(
1− mr 2

π l4
f r 2
π

+
J01

2 f r 2
π

)
, (200)

gA = g rA

[
1 +

1

2 f r 2
π

J01 +
gr 2
A

3 f r 2
π

J13 −
4mr 2

π

grA
d16

]
, (201)

where the constants Jmn are defined in Eq. (392).

Next we need the set of relevant counter-terms. As illustrated in Appendix C, the total

Lagrangian, including the axial field Aµa , can be written as

L = N
r (
i /∂ −mr + Γ0 ′

a ∂0π
r
a + Λi ′

a ∂iπ
r
a + ∆′

)
N r

+
1

2

(
∂0πraG

′
ab ∂0π

r
b + ∂iπra G̃

′
ab ∂iπ

r
b −mr 2

π πraH
′
ab π

r
b

)
− fπ Aµa F ′ab ∂µπrb

+δmN
r
N r + δZN N

r
(iγµ∂µ −mr)N r +

δm2
π

2
πraπ

r
a , (202)

which is expressed in terms of renormalized fields and masses, but bare gA, fπ and other

LECs. This Lagrangian has essentially the same form as the bare one in Eq. (68) (the primed
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quantities are defined in Appendix C), and leads to a similar interaction Hamiltonian as in

Eq. (75),

HI = HI

[
Eq. (75) with primed quantities and renormalized fields and masses

]

−δmN
r
N r − δZN N

r (
iγi∂i −mr

)
N r − δm2

π

2
πraπ

r
a . (203)

In addition to the vertices listed in Appendix B, this Hamiltonian generates vertices cor-

responding to the set of counter-terms in Eqs. (447)–(453), explicit expressions for which

follow from those in Appendix B.

5.4.2 RENORMALIZATION OF OPE AXIAL CHARGE

We begin by discussing the non-pion-pole contributions illustrated in Fig. 11. In diagrams

g2, g4, g6, g8, g11, and g14, the solid dot represents the interaction −δm− 4mr 2
π c1, where

δm is the nucleon mass counter-term. The contributions associated with diagrams g1-g2,

g3-g4, g5-g6, g7-g8, g9-g11, and g12-g14 represent the renormalization of nucleon external

lines and, with the choice of δm in Eq. (131) they vanish.

Next, the solid square in diagrams g16, g18, and g20 represents the interaction

H
(4) ′
2π = −

∫
dx

(
mr 2
π l4
f 2
π

+
δZπ

2

)(
Πr ·Πr + ∂iπr · ∂iπr

)

+

∫
dx

[
mr 4
π (l3 + l4)

f 2
π

+
mr 2
π

2
δZπ −

δm2
π

2

]
πr · πr , (204)

with vertex (in the convention of Appendix B)

〈0 | H(4) ′
2π |k1, a1; k2, a2〉 = δa1,a2

[(
2mr 2

π l4
f 2
π

+ δZπ

)
(ω1ω2 − k1 · k2)

+
2mr 4

π (l3 + l4)

f 2
π

+mr 2
π δZπ − δm2

π

]
, (205)

With δZπ and δm2
π as given in Eq. (131), the contributions of diagrams g15-g20 cancel out.
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g1 g2 g3 g4 g5 g6 g7 g8

g9 g10 g11 g12 g13 g14

g15 g16 g17 g18 g19 g20

g21 g22 g23 g24 g25 g26

g27 g28 g29 g30 g31 g32

FIG. 11: Half of the possible time-ordered non-pole corrections to the OPE axial charge

at order Q. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,

respectively. See text for further explanations.

The remaining loop contributions in diagrams g21-g29 are given by

ρ
(1)
5,a(g21) = ρ

(−1)
5,a (a1)

1

4 f 2
π

(1− 10α)J01 , (206)

ρ
(1)
5,a(g22) = ρ

(−1)
5,a (a1)

5

8 f 2
π

(1− 4α)J01 , (207)

ρ
(1)
5,a(g23 + g24) = ρ

(−1)
5,a (a1)

g2
A

24 f 2
π

J13 , (208)

ρ
(1)
5,a(g25 + g26) = −ρ(−1)

5,a (a1)
g2
A

8 f 2
π

J13 , (209)

ρ
(1)
5,a(g27 + g28 + g29) = ρ

(−1)
5,a (a1)

1

4 f 2
π

J01 , (210)

while those in diagrams g30-g32 vanish identically. Here ρ
(−1)
5,a (a1) is defined as in Eq. (155).

Finally, one needs to include the contributions due to the interactions coming from pion

and nucleon field redefinitions. These contributions enter through the πNN vertex generated

by the Hamiltonian denoted as H
(3) ′
πNN , reported in Eq. (473), and through the πNNA vertex
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generated by the following Hamiltonian

H
(3) ′
πNNA = − (δZN + δZπ/2)

1

4 fπ

∫
dxN

r
A0 · (τ × πr) γ0N

r . (211)

They lead to the correction

[
2 δZN + δZπ +

2mr 2
π

gA
(2 d16 − d18)

]
ρ

(−1)
5,a (a1) . (212)

Thus, the sum of the order Q corrections to the axial charge from non-pole contributions,

denoted as ρ
(1)
5,a(npp), reads

ρ
(1)
5,a(npp) = ρ

(−1)
5,a (a1)

[
1

f 2
π

(
9

8
− 5α

)
J01 −

g2
A

12 f 2
π

J13 + 2 δZN

+ δZπ +
2mr 2

π

gA
(2 d16 − d18)

]
, (213)

which, which after insertion of δZN and δZπ, is expressed as

ρ
(1)
5,a(npp) = i

grA
8 f r 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

[
5

8 f r 2
π

J01 −
5 gr 2

A

6 f r 2
π

J13

−2mr 2
π

f r 2
π

l4 +
2mr 2

π

grA
(2 d16 − d18)

]
, (214)

where the bare gA and fπ have been replaced by their respective renormalized values—

this replacement is correct to the order of interest here. The complete non-pion-pole axial

charge, denoted as ρOPE
5,a (npp) below, results from the sum of the leading-order contribution

in Eq. (155) with the ratio gA/f
2
π replaced by its renormalized value explictly derived in

Appendix E as

gA
f 2
π

=
grA
f r 2
π

[
1− 1

2 f r 2
π

J01 +
gr 2
A

3 f r 2
π

J13 +
2mr 2

π

f r2π
l4 −

2mr 2
π

grA
(2 d16 − d18)

]
, (215)

and the contribution ρ
(1)
5,a(npp). We obtain for this sum

ρ5,a(OPE, npp) = i
grA

8 f r 2
π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(
1 +

1

8 f r 2
π

J01 −
gr 2
A

2 f r 2
π

J13

)
. (216)
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h1 h2

h3 h4 h5 h6

h7 h8 h9 h10

h11 h12 h13

h14 h15 h16 h17

FIG. 12: Representative diagrams for each of the relevant classes contributing to pole cor-

rections to the OPE axial charge at order Q. Nucleons, pions, and axial fields are denoted

by solid, dashed, and wavy lines, respectively. More than a single time ordering is shown for

some of the diagrams.

The diagrams describing the pion-pole corrections are illustrated in Fig. 12 (only repre-

sentative diagrams for each of the relevant classes are drawn for brevity), and are similar to

those in Fig. 11. A slightly more complicated analysis along the lines illustrated above leads

to a pion-pole OPE axial charge, denoted ρ
(1)
5,a(pp), given by

ρ5,a(OPE, pp) = i
grA

8 f r 2
π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(
1− 1

8 f r 2
π

J01 −
gr 2
A

2 f r 2
π

J13

)
. (217)

The sum of the npp and pp contributions evaluated in dimensional regularization is

ρ5,a(OPE, npp + pp) = i
grA

8 f r 2
π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(
2− gr 2

A

f r 2
π

J13

)

= ρ
(−1)
5,a (a1)

[
2− 3mr 2

π

8π2 f r 2
π

gr 2
A

(
dε −

1

3

)]
, (218)
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where dε is defined in Eq. (110).

f 1 f 2 f 3 f 4 f 5 f 6

FIG. 13: Additional loop and tree-level corrections of order Q to the OPE axial charge.

Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively.

Only a single time ordering is shown for each topology. See text for further explanations.

There are additional loop corrections to the OPE axial charge, see Fig. 13. Their contri-

butions are obtained as

ρ
(1)
5,a(f1 + f2) = − gr 2

A

2 f r 2
π

ρ
(−1)
5,a (a1)

[
k2

1 I
(0)(k1)− I(2)(k1)

]
, (219)

ρ
(1)
5,a(f3 + f4) = − 1

8 f r 2
π

ρ
(−1)
5,a (a1)L(k1) , (220)

where ρ
(−1)
5,a (a1) is again defined as in Eq. (155), except that gA and fπ are replaced by their

renormalized values grA and f rπ. The loop function I(0)(k), I(2)(k) and L(k) have been defined

in Eqs. (102)–(104). Evaluation in dimensional regularization leads to

ρ
(1)
5,a(f1 + f2) = ρ

(−1)
5,a (a1)

gr 2
A

48π2 f r 2
π

[
s1

k1

ln

(
s1 + k1

s1 − k1

)(
5 k2

1 + 8mr 2
π

)

+ k2
1

(
5 dε −

13

3

)
+ 18mr 2

π

(
dε −

2

9

)]
, (221)

ρ
(1)
5,a(f3 + f4) = ρ

(−1)
5,a (a1)

1

48π2 f r 2
π

[
s3

1

k1

ln
s1 + k1

s1 − k1

− 8mr 2
π + k2

1

(
dε −

5

3

)]
. (222)

We also need to account for tree-level contributions of order Q originating from the vertices

2πNN and NNπA0 in Eqs. (404) and (419), denoted by the solid diamonds in Fig. 13. They

can be written as

ρ
(1)
5,a(f5 + f6) = 2 ρ

(−1)
5,a (a1)

(
d̃1 k

2
1 + d̃2 k

2
2 + d̃3 q

2 + d̃4m
r 2
π

)

+ i
grA

2 f r 2
π

d̃5 τ2,a σ1 · (q× k2) σ2 · k2
1

ω2
2

, (223)
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where we have introduced the following combinations of LECs

d̃1 = 2 d2 + d6 , (224)

d̃2 = 4 d1 + 2 d2 + 4 d3 − d6 , (225)

d̃3 = −2 d2 + d6 , (226)

d̃4 = 4 d1 + 4 d2 + 4 d3 + 8 d5 , (227)

d̃5 = d15 + 2 d23 , (228)

and the di are LECs present in the subleading Lagrangian L(3)
πN . The divergent parts of the

di’s (and hence d̃i’s) have been identified in the heavy-baryon formalism, without considering

any specific process, with the background-field and heat-kernel methods, see Ref. [53] and

references therein. We report below the expressions for these divergent parts from Table 4

of that work:

di =
βi
f 2
π

λ+ dri (µ) , (229)

where, in the conventions adopted in the present work,

λ =
1

32 π2

(
dε + ln

µ2

m2
π

)
, (230)

dri (µ) =
βi

32 π2 f 2
π

ln
m2
π

µ2
+ dri (mπ) . (231)

The βi functions of interest here are

β1 = −g
4
A

6
, β2 = − 1

12
− 5 g2

A

12
, β3 =

1

2
+
g4
A

6
, (232)

β5 =
1

24
+

5 g2
A

24
, β6 = −1

6
− 5 g2

A

6
, β15 = β23 = 0 , (233)

and β5 is from Ref. [53] which corresponds to our choice of operator basis in L(4)
ππ . For the

combinations d̃i above we obtain

d̃1 = − 1

96 π2 f 2
π

(1 + 5 g2
A) dε + d̃ r1 , (234)

d̃2 =
1

16π2 f 2
π

dε + d̃ r2 , (235)

d̃4 =
1

16π2 f 2
π

dε + d̃ r4 , (236)

and d̃3 = d̃ r3 and d̃5 = d̃ r5 . We observe that the divergence proportional to m2
π from loop

corrections in ρOPE
5,a (npp + pp) cancels exactly that present in f1 + f2. Next, the divergent
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part of d̃1 cancels exactly the term proportional to k2
1 dε present in f1 + f2 and f3 + f4. The

divergent parts of d̃2 and d̃4 are the same, and therefore can be reabsorbed in the LEC z2

multiplying the contact term O2. Those of d̃3 and d̃5 vanish, which is consistent with the

fact that there are no divergencies proportional to q2 or in the operator multiplying d̃5.

Combining Eqs. (216), (217), (221), (222), and (223), we then find that the renormalized

OPE contributions up to order Q included read as

ρ5,a(OPE) = i
grA

4 f r 2
π

(τ1 × τ2)a σ2 · k2
1

ω2
2

[
1 +

gr 2
A

96π2 f r 2
π

[(
5 k2

1 + 8mr 2
π

)s1

k1

ln
s1 + k1

s1 − k1

−13

3
k2

1 + 2m2
π

]
+

1

96π2 f r 2
π

(
s3

1

k1

ln
s1 + k1

s1 − k1

− 5

3
k2

1 − 8mr 2
π

)
+
(
d̃ r1 k

2
1 + d̃ r2 k

2
2

+d̃ r3 q
2 + d̃ r4 m

r 2
π

)]
+ i

grA
2 f r 2

π

d̃ r5 τ2,a σ1 · (q× k2) σ2 · k2
1

ω2
2

. (237)

5.4.3 OPE AXIAL CURRENT

In this case there are no contributions of the type shown in Fig. 11 at order Q and the

only loop corrections to the OPE axial current are those in Figs. 12 and 14. However the

contributions of diagrams h1-h17 are easily seen to vanish, while those of diagrams m1-m2

are obtained as

j
(1)
5,a(m1) = − gr 5

A

96 f r 4
π

J14 [ 9 τ2,a k2 − (τ1 × τ2)a (σ1 × k2)]σ2 · k2
1

ω2
2

, (238)

j
(1)
5,a(m2) = − q

q2 +m2
π

q · j(1)
5,a(m1) . (239)

In dimensional regularization we find the finite result

j
(1)
5,a(m1) =

gr 5
A mr

π

256 πf r 4
π

[ 9 τ2,a k2 − (τ1 × τ2)a (σ1 × k2)]σ2 · k2
1

ω2
2

. (240)

No renormalization is necessary in this case. We emphasize again that loop corrections to

diagrams d1-d2 of Fig. 10 enter at order Q2 and are beyond the scope of the present Thesis.
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m1 m2

FIG. 14: The only non-vanishing loop corrections to the OPE axial current. Nucleons, pions,

and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time

ordering is shown for each topology.

5.5 SUMMARY OF AXIAL CHARGE AND CURRENT UP TO

ONE LOOP

In this section we collect, for ease of reference, all expressions for ρ5,a and j5,a. All

couplings and masses are intended to be renormalized (the superscript r is dropped for

simplicity), and we label the various contributions by their power counting NnLO, where

n = 1, 2, 3, and 4 and NnLO means the given contribution is suppressed by (Q/Λχ)n relative

to the leading order (LO) term. The one-body axial current operators read

jLO
5,a = −gA

2
τ1,a

[
σ1 −

q

q2 +m2
π

σ1 · q
]
, (241)

jN2LO
5,a =

gA
4m2

τ1,a

[
R (σ1,k1,K1)− q

q2 +m2
π

q ·R (σ1,k1,K1)

−2
q

q2 +m2
π

σ1 ·K1 k1 ·K1

]
, (242)

where

R (σ1,k1,K1) = K2
1 σ1 +

i

2
k1 ×K1 − σ1 ·K1 K1 +

1

4
σ1 · k1 k1 . (243)

The OPE contribution to the axial charge reads

ρN1LO
5,a (OPE) = i

gA
4f 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

. (244)

The OPE contributions to the axial current read

j̃5,a(OPE) = j5,a(OPE)− q

q2 +m2
π

q · j5,a(OPE)− gA
2 f 2

π

q

q2 +m2
π

[
4m2

π c1 τ2,a

− i

2m
(τ1 × τ2)a (K1 · k1 + K2 · k2)

]
σ2 · k2

1

ω2
2

, (245)
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where, for convenience, we have defined j5,a(OPE) as

j5,a(OPE) = jN3LO
5,a (OPE) + jN4LO

5,a (OPE) , (246)

and the two quantities on the r.h.s. are given by

jN3LO
5,a (OPE) =

gA
2 f 2

π

[
2 c3τ2,a k2 + (τ1 × τ2)a

[
i

2m
K1 −

c6 + 1

4m
σ1 × q

+

(
c4 +

1

4m

)
σ1 × k2

]]
σ2 · k2

1

ω2
2

, (247)

jN4LO
5,a (OPE) =

g5
Amπ

256π f 4
π

[
9τ2,a k2 − (τ1 × τ2)a σ1 × k2

]
σ2 · k2

1

ω2
2

. (248)

The TPE axial charge, and MPE and short-range axial current, can be written, respectively,

as

ρN3LO
5,a (TPE) = i

g3
A

128π2f 4
π

[
(τ1 × τ2)a σ1 · k2

(
3− 1

g2
A

− 4m2
π

k2
2 + 4m2

π

)
− 4 τ1,a (σ1 × σ2) · k2

]

×s2

k2

ln

(
s2 + k2

s2 − k2

)
, (249)

with with sj defined as in Eq. (161), and

j̃N4LO
5,a (MPE) = jN4LO

5,a (MPE)− q

q2 +m2
π

q · jN4LO
5,a (MPE)

+
g3
A

128 πf 4
π

q

q2 +m2
π

[
τ2,a

[
Z1(k1)σ2 · (k1 − k2) + Z2(k1)σ2 · k2

1

ω2
2

]

+ (2 τ2,a − τ1,a)Z1(k2)σ1 · k2 + (τ1 × τ2)a

[
Z3(k1)

[
(σ1 × σ2) · k1

−2 (σ1 × k1) · (k2 + q)σ2 · k2
1

ω2
2

]
+ Z3(k2) (σ1 × σ2) · k2

]]

+
g3
A

128 πf 4
π

τ2,a Z1(k1)

[
(k2 − 3 k1)σ2 · k2

1

ω2
2

− 2σ2

]

+
g3
A

32 πf 4
π

(τ1 × τ2)a Z3(k1)σ1 × k1 σ2 · k2
1

ω2
2

, (250)

where

jN4LO
5,a (MPE) =

g3
A

64πf 4
π

τ2,a [W1(k2)σ1 +W2(k2) k2 σ1 · k2 ]

+
g5
A

64 πf 4
π

τ1,aW3(k2) (σ2 × k2)× k2 , (251)
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and the loop functions Zi and Wi are

W1(k) =

∫ 1

0

dz

[(
1− 5 g2

A

)
M(k, z)− g2

A k
2

2

[
9 z z − 1

M(k, z)
− k2(z z)2

M(k, z)3

]]
, (252)

W2(k) =

∫ 1

0

dz

[
−g

2
A (z z)2 k2

2M(k, z)3
+
z z (7 g2

A + 2)− g2
A

2M(k, z)

]
, (253)

W3(k) = −1

2

∫ 1

0

dz
1

M(k, z)
, (254)

Z1(k) =

∫ 1

0

dz

[
z z k2

M(k, z)
+ 3M(k, z)

]
, (255)

Z2(k) =

∫ 1

0

dz

[
4m3

π − 10M(k, z)3 +M(k, z) (15m2
π + 14 k2 − 6 q · k + 6 q2

−20 z z k2) +
z z k2

M(k, z)

(
5m2

π + 4 k2 + 2 q2 − 2 q · k− 2 k2 z z
) ]

, (256)

Z3(k) =

∫ 1

0

dzM(k, z) , (257)

and M(k, z) defined in Eq. (199).

5.5.1 THREE-BODY CURRENTS

We conclude the derivation by pointing out the following fact. In a three-nucleon system

the two-body loop corrections to the axial current enter at order Q−2, owing to the presence

of a momentum-conserving δ-function δ(p′3 − p3).

FIG. 15: Diagrams illustrating the three-body axial current at N4LO (i.e., order Q−2 in a

three-nucleon system). Nucleons, pions, and axial fields are denoted by solid, dashed, and

wavy lines, respectively. Only a single time ordering is shown and pion-pole contributions

are ignored.

These loop corrections turn out to be of the same order as the three-body axial current,



58

illustrated in Fig. 23 and first derived in Ref. [48]. They are given by

jN4LO
5,a (3B) = −

∑

cyc

g3
A

16 f 4
π

(2 τ1,a τ2 · τ3 − τ2,a τ3 · τ1 − τ3,a τ1 · τ2)

×
(
σ1 −

4

3

σ1 · k1 k1

ω2
1

)
σ2 · k2

ω2
2

σ3 · k3

ω2
3

, (258)

where the sum is over the cyclic permutations of the three nucleons, and a momentum-

conserving δ-function (2π)3δ (k1 + k2 + k3 − q) is implicit.

5.6 CURRENT CONSERVATION IN THE CHIRAL LIMIT

In the chiral limit (mπ → 0) the axial current is conserved and

q · j5,a = [H , ρ5,a ] , (259)

with the two-nucleon Hamiltonian given by (we ignore here three-nucleon potentials and

currents)

H = T (−1) + v(0) + v(2) + . . . , (260)

where the superscripts denote the power counting, the v(n) are the two-nucleon potentials

defined in Eqs. (86) and (88), and the kinetic energy T (−1) (in momentum space) is

T (−1) =
p2

1

2m
(2π)3δ(p′2 − p2) + (1
 2) . (261)

Here, the potentials and axial charge and current operators (including the axial coupling and

pion decay constants and LECs entering them) are to be understood in the chiral limit. Order

by order in the power counting, current conservation implies the following set of relations

q · j(−3)
5,a = 0 , (262)

q · j(−1)
5,a =

[
T (−1), ρ

(−2)
5,a

]
, (263)

q · j(0)
5,a =

[
T (−1), ρ

(−1)
5,a

]
+
[
v(0), ρ

(−2)
5,a

]
, (264)

q · j(1)
5,a =

[
T (−1), ρ

(0)
5,a

]
+
[
v(0), ρ

(−1)
5,a

]
, (265)

where we have only kept up to terms of order Q2. Note that the commutators implicitly

bring in factors of Q3. The first of these relations is obviously satisfied, see Eqs. (147). The

second relation has

q · j(−1)
5,a = − gA

2m2
τ1,a k1 ·K1 σ1 ·K1 + (1
 2) , (266)
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where j
(−1)
5,a is given by th N2LO contributions in Eq. (242), and it is also satisfied. The

left-hand-side of the third relation has

q · j(0)
5,a = i

gA
4mf 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(k1 ·K1 + k2 ·K2) + (1
 2) , (267)

and this matches the first commutator on the right-hand side,
[
T (−1), ρ

(−1)
5,a

]
with ρ

(−1)
5,a given

by

ρ
(−1)
5,a = i

gA
4 f 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

+ (1
 2) , (268)

i.e., the sum of terms a1 and a2 in Eqs. (155) and (156). There are additional contributions to

j
(0)
5,a, which arise from non-static corrections to the denominators involving pion energies in the

diagrams illustrated in Fig. 16, where the crossed (full) circle means that these denominators

are expanded as indicated in Eq. (82) to order Q0 (Q) beyond the leading-order static term.

These contributions have not been considered in this Thesis.

FIG. 16: Illustration of some of the non-static corrections to the axial current reported in

Appendix H. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,

respectively. Pion lines with crossed (full) circle indicate that only the next-to-leading Q0

(next-to-next-to-leading Q) term in the expansion of energy denominators, Eq. (82), are

retained in the corresponding amplitudes.

Lastly, we consider the fourth relation, Eq. (265). The axial current j
(1)
5,a obtained in this
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Thesis is in the static limit, and one expects q · j(1)
5,a to satisfy the commutator

[
v(0) , ρ

(−1)
5,a

]
= − g3

A

16 f 4
π

(τ1,a − τ2,a)

[[
k2

2 R
(0)(k2)−R(2)(k2)

]
σ1 · k2

−
[
k2

1 R
(0)(k1)−R(2)(k1)

]
σ2 · k1

]

+
g3
A

16 f 4
π

(τ1 × τ2)a

[
R

(2)
ij (k2)σ1,i (σ2 × k2)j

−R(2)
ij (k1)σ2,i (σ1 × k1)j

]
, (269)

where the loop functions R(n)(k) and R
(2)
ij (k) in the chiral limit read

R(0)(k) → 1

16

1

k
, (270)

R(2)(k) → − 1

16
k , (271)

R
(2)
ij (k) → − 1

32
k δij + . . . , (272)

and the . . . indicate a term proportional to ki kj, which vanishes when inserted in Eq. (269).

The current-conservation constraint is seen to be satisfied by noting that the only non-

vanishing contributions to q · j(1)
5,a are those due to diagrams e4, e5, e10, e15, e16, and e17

in Fig. 10, proportional to the combination of coupling constants g3
A/f

4
π . In particular, the

contributions of the purely irreducible diagrams e4, e5, e15, e16, and e17 combine to give

q · j(1)
5,a(e4 + e5 + e15 + e16 + e17) = − g3

A

32 f 4
π

[
τ1,a

[
k2

2 R
(0)(k2)−R(2)(k2)

]
σ1 · k2

+ τ2,a

[
k2

1 R
(0)(k1)−R(2)(k1)

]
σ2 · k1

]
+

g3
A

32 f 4
π

(τ1 × τ2)a

[
R

(2)
ij (k2)σ1,i (σ2 × k2)j

−R(2)
ij (k1)σ2,i (σ1 × k1)j

]
, (273)

with the remaining “missing” term being provided by q · j(1)
5,a(e10). The other commutator[

T (−1), ρ
(0)
5,a

]
has a factor 1/m, and therefore non-static corrections need to be included in

j
(1)
5,a, if the latter is to satisfy the complete Eq. (265). These corrections have again been

ignored in the present Thesis.

5.7 COMPARISON WITH OTHER STUDIES

We compare the one- and two-body axial charge and current operators derived here with

those obtained by Park et al. in Refs. [28] and [48] in the heavy-baryon (HB) formulation of
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covariant perturbation theory and by Krebs et al. in Ref. [49], with the unitary transforma-

tion method. The one-body axial charge and current operators at leading order in Eqs. (147)

and (148) are the same as those listed in Ref. [48], except for the pion-pole contribution to

j
(−3)
5,a , which, while nominally of the same order (Q−3) as the non-pole contribution, is nev-

ertheless suppressed at low momentum transfer q and is therefore ignored in Ref. [48] (we

note incidentally that in that work k1 = −q, i.e., the opposite convention adopted here).

Of course, this pion-pole contribution is crucial for current conservation in the chiral limit.

We have neglected the 1/m2 relativistic corrections to the leading order axial charge. These

1/m2 corrections are retained in Ref. [48]. However, the 1/m2 corrections to the leading

order axial current in Eq. (152) are in agreement with those given in Ref. [48], except for

the last term proportional to q (σ1 · q), which was again ignored in that work. For the

discussion of how the leading order axial charge emerges in covariant perturbation theory

see Appendix J.

Turning to the OPE contributions at tree level, we find that the contributions to the

axial charge ρ
(−1)
5,a in Eq. (244) and axial current in Eq. 247 reproduce tose given in Ref. [28].

The contact terms contributing to the Q0 axial current in Ref. [48] can be reduced through

Fierz identities to the form given in Eq. (173).

n1 n2 n3

FIG. 17: Diagrams contributing to the axial charge (n1-n2) and current (n3) at order Q

considered in Ref. [28]. Nucleons, pions, and axial fields are denoted by solid, dashed, and

wavy lines, respectively. Only a single time ordering is shown for each of the possible 12

(n1) and 60 (n2 and n3) cross-box topologies.

Next we consider loop corrections to the axial charge. The contributions of c3-c4, c7-c8,

and c9-c12 in Fig. 8 are found to vanish in both approaches, here and in Refs. [28, 48].

The contributions of diagrams c1 and c2 are the same as in Ref. [28]. The contributions

of diagrams c5 and c6 are different from those reported in Ref. [28] because of the different

treatment of reducible topologies for these types of terms. Indeed, if only the (irreducible)

cross-box topologies are retained for diagrams c5 and c6, as illustrated in Fig. 17, then the

resulting operator is the same as those obtained in Ref. [48]. The OPE axial charge operator
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derived in Ref. [28] reads in our notation

ρ5,a(OPE,Park et al.) = i
gA

4 f 2
π

(τ1 × τ2)a σ2 · k2
1

ω2
2

[
1− k2

2

f 2
π

(
17 g2

A + 4

144 π2
+ cr3

)
− m2

π g
2
A

12 π2f 2
π

+
g2
A

96π2f 2
π

s2

k2

ln

(
s2 + k2

s2 − k2

)(
5 k2

2 + 8m2
π

)
+

1

96π2f 2
π

[
s3

2

k2

ln

(
s2 + k2

s2 − k2

)
− 8m2

π

]]
. (274)

Provided we define

d̃ r1 + d̃ r2 − d̃ r4 −
(5 + 13 g2

A)

288
= −17 g2

A + 4

144π2 f 2
π

− c r3 ,

the expression above is in agreement with our Eq. (313) in the limit q = 0 (or k1 = −k2)

which is assumed in Refs. [28, 48], except for the term proportional to m2
π in the first line

(note that cr3 is not to be confused with the LEC in L(2)
πN).

Moving on to the loop corrections to the axial current, the sum of the contributions due

to diagram m1 of Fig. 14 and diagram e15 of Fig. 10 is the same as in Ref. [48], provided the

parameter α in the 3π A vertex of diagram e15 is set to 1/6—the authors of Refs. [28, 48] use

the exponential parametrization for the pion field. The irreducible contributions of diagrams

e1 and e4 in Fig. 10, and the contributions associated with the cross-box topologies of diagram

e8 in Fig. 10 and illustrated in panel n3 of Fig. 17, are the same as those reported in Ref. [48].

Non-vanishing pion-pole diagrams e2, e5, e9, e10, e16, and e17 as well as diagrams e20-

e21 (e22-e25 vanish) in Fig. 10 have not been considered in Refs. [28, 48]. Because of this

incomplete treatment, loop corrections to the axial current are α-dependent in Refs. [28, 48].

Furthermore, the current is not conserved in the chiral limit.

In the following we compare our operators to those derived in Ref. [49]. That derivation

has been done with the unitary transformation method, and it includes nonstatic corrections

at order Q which we have neglected. The formulas are rather involved and therefore we will

limit ourselves to the comparison in the limit case q = 0. In this limit all pion-pole diagrams

vanish, and the difference between the two expressions for the axial current is

jTOPT
5,a (q = 0)− jUT

5,a (q = 0) = − g5
A

64 π f 4
π

[
τ1,a (σ2 × k2)× k2A(k2)

+τ2,a

[
σ1

[
2A(k2)k2

2 +mπ
10m2

π + 3 k2
2

4m2
π + k2

2

]

+
σ1 · k2 k2

k2
2

A(k2)
(
8m2

π + k2
2

) ]
]
, (275)

where A(k2) = 1/(2 k) arctan [k/(2mπ)]. The factor g5
A/f

4
π in Eq. (275) indicates that the

difference comes from the box diagram, see panel e8 of Fig. 10. In particular, we note that
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our prescription is linked to the off-the-energy-shell extension of the potential ν = 0. In

particular we note that our operator was obtained by considering the ν = 0 prescription for

the off-the-energy-shell extension of OPE and TPE potential. It is possible that differences

in Eq. (275) might be due to the different off-the-energy-shell extrapolations adopted for

these potentials.

For the axial charge operator expressions for two-pion exchange and short-range contri-

butions agree. For loop corrections to the one-pion exchange there are differences in the

logarithm free parts of Eq. (237).
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CHAPTER 6

TRITIUM BETA DECAY

In this chapter we carry out a calculation of the tritium β-decay rate and constrain

the LEC z0 in the axial current by reproducing the tritium Gamow-Teller (GT) matrix

element. This decay has a Q-value of about 100 KeV and therefore we evaluate current

contributions at vanishing momentum transfer (i.e., all pion-pole contributions derived in

the previous chapter are neglected). The LEC z0 is related to the LEC cD entering the

chiral three-nucleon potential at leading order [52] and therefore fixing z0 is equivalent to

fixing cD. There is another LEC, denoted as cE, which along with cD completely characterize

the three-nucleon potential. In the past cD and cE have been fixed by reproducing the GT

matrix element and the trinucleon binding energies [54, 55]. Those calculations included the

axial current up to order Q0. Here we retain all contributions up to order Q.

6.1 CONNECTION BETWEEN THE THREE-NUCLEON FORCE

AND THE CONTACT AXIAL CURRENT

The three-nucleon force at LO is given by the sum of the three diagrams in Fig. 18.

Diagram a represents contact term,

Va(ijk) =
∑

cyclic ijk

cE
Λχ f 4

π

τi · τk , (276)

while diagram b is the two-pion exchange (TPE) contibution

Vb(ijk) =
∑

cyclic ijk

g2
A

4 f 2
π

1

ω2
1 ω

2
2

σi · qi τi,a Fac(ijk) τk,c σk · qk , (277)

where

Fac(ijk) = −4 c1
m2
π

f 2
π

δac +
2 c3

f 2
π

qi · qk δac +
c4

f 2
π

σj · (qi × qk) εacb τj,b , (278)

and we have defined qi = p′i − pi. Lastly diagram c is the one-pion exchange term

Ṽc(ijk) = −
∑

cyclic ijk

gA
8 f 2

π

cD
Λχ f 2

π

(
σi · qi σj · qj

ω2
i

τi · τj +
σj · qk σk · qk

ω2
k

τj · τk
)
,(279)
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where cD is the LEC multiplying the following contact interaction [12]

L(1)
4N,uµ

= − cD
2 Λχ f 2

π

Nγµγ5uµNNN . (280)

Since

uµ = − 1

fπ
τ · ∂µπ + τ ·Aµ + . . . , (281)

(see Appendix A), it is easy to see that the term proportional to the axial field leads precisely

to the two-body contact axial current of Sec. 5.3. In particular it can be easily seen that the

LEC z0 of this contact term is linked to the LEC cD of the three-nucleon force through the

following relation

z0 =
cD

2 Λχ f 2
π

. (282)

a b c
i j k

i’ j’ k ’

FIG. 18: Diagrams illustrating the three-nucleon force at leading order. Nucleons, pions,

and axial fields are denoted by solid, dashed, and wavy lines, respectively. The full dot in

diagrams b denotes corrections to the vertex coming from L(2)
πN . Only a single time ordering

is shown for diagrams b and c. See text for further explanations.

In order to compare with previous determinations of this LEC [48, 54, 55], it is convenient

to define the adimensional LEC ẑ0 by rescaling z0 as

ẑ0 =
2mf 2

π

gA
z0 , (283)

and the LEC cD in the three-nucleon potential related to ẑ0 via [48, 54, 55]

cD =
gA Λχ

m
ẑ0 , (284)

where Λχ is taken as 1 GeV here (in Refs. [54, 55] Λχ = 0.7 GeV was adopted). The scale Λχ

is not to be confused with the cutoff Λ which regularizes the configuration-space expressions

of the axial operators.
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6.2 NUCLEAR WEAK CURRENTS

After defining the charge raising (+) and lowering (−) isospin operators as

τi,± =
τi,x ± i τi,y

2
, (285)

and

(τ1 × τ2)± = (τ1 × τ2)x ± i (τ1 × τ2)± , (286)

we introduce the charge changing axial current operators

j5,± = j5,x ± i j5,y . (287)

Referring to the summary in Sec. 5.5 we report in the following the one- and two-body

nuclear axial currents in the limit of vanishing external field momentum. The one-body

operator terms at LO and N2LO are

jLO
5,± = −gA τ1,± σ1 , (288)

jN2LO
5,± =

gA
2m2

τ1,±
(
K2

1 σ1 −K1 σ1 ·K1

)
, (289)

while the two-body operator at N3LO are separated into one-pion exchange (OPE) and

contact (CT) terms corresponding respectively to Eqs. (173) and (245)

jN3LO
5,± (OPE) =

gA
2 f 2

π

{
4 c3 τ2,± k + (τ1 × τ2)±

[(
c4 +

1

4m

)
σ1 × k− i

2m
K1

]}

×σ2 · k
1

ω2
k

, (290)

jN3LO
5,± (CT) = z0 (τ1 × τ2)± σ1 × σ2 . (291)

The (two-body) operator at N4LO are given by Eqs. (245) and (250),

jN4LO
5,± (OPE) =

g5
Amπ

256π f 4
π

[
18 τ2,± k− (τ1 × τ2)± σ1 × k

]
σ2 · k

1

ω2
k

, (292)

j̃N4LO
5,± (MPE) =

g3
A

32πf 4
π

τ2,±

[
W1(k)σ1 +W2(k) k σ1 · k + Z1(k)

(
2 k σ2 · k

1

ω2
k

− σ2

)]

+
g5
A

32 πf 4
π

τ1,±W3(k) (σ2 × k)× k− g3
A

32πf 4
π

(τ1 × τ2)± Z3(k)σ1 × k

×σ2 · k
1

ω2
k

, (293)
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where the loop functions are defined in Eqs. (252)−(257). Lastly, the expression of the

three-nucleon axial current

jN4LO
5,± (3B; k2,k3) = −

∑

cyc

g3
A

8 f 4
π

(2 τ1,± τ2 · τ3 − τ2,± τ3 · τ1 − τ3,± τ1 · τ2)

×σ1
σ2 · k2

ω2
2

σ3 · k3

ω2
3

, (294)

where the sum is over the cyclic permutations of the three nucleons, and in the q = 0 limit

k1 = − (k2 + k3). We have neglected the term proportional to σ1 · k1 in Eq. (294) since the

computational effort required to numerically implement thi operator is unjustified in view

of its expected contributions, see Table 1.

Configuration-space expressions for these two- and three-body operators (denoted gener-

ically as 2B and 3B, respectively) follow from

j5,±(2B) =

∫
dk

(2π)3
eik·r12 CΛ(k) j5,±(2B; k) , (295)

j5,±(3B) =

∫
dk2

(2π)3

dk3

(2π)3
e−ik2·r12 e−ik3·r13 CΛ(k2) CΛ(k3) j5,±(3B; k2,k3) , (296)

where the relative positions are defined as rij = ri − rj, and CΛ(k) is the momentum cutoff,

which we take as

CΛ(k) = e−(k/Λ)4 . (297)

This cutoff does not modify the power counting of the various terms, as it is easily seen by ex-

panding in powers of k/Λ. Lastly, terms proportional to Kj in the N2LO and N3LO currents

are obtained by replacing Kj with −i∇j in configuration space (the momentum operator),

and need to be symmetrized accordingly to preserve hermiticity. Explicit expressions for

these Fourier transforms are listed in Appendix K.

The weak vector charge has in principle contributions from one- and two-body terms

derived in Ref. [23]; however, the latter vanish in the limit q = 0, and only the one-body

term at LO contributes in this limit ρ± = τi,± the well-known Fermi transition operator.
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6.3 GAMOW-TELLER MATRIX ELEMENT IN TRITIUM β-DECAY

The Gamow-Teller (GT) matrix element is obtained from the tritium half-life via (see [56]

and references therein)

(1 + δR) t fV =
K/G2

V

〈F〉2 + fA/fV g2
A 〈GT〉2

, (298)

where gA = 1.2723 is the current experimental value [57] for the nucleon axial coupling

constant, δR = 1.9% is the outer radiative correction [58], t is the half-life of 3H, and fV

and fA are Fermi functions reported in Ref. [59] to have the values 2.8355 × 10−6 and

2.8505 × 10−6, respectively. The experimental value used for K/G2
V is (6144.5 ± 1.9) s as

obtained in Ref. [60], and that used for (1+δR) t fV is (1134.6±3.1) s as reported in Ref. [59].

Finally, 〈F〉 and 〈GT〉 denote the reduced matrix element of the Fermi (F) and GT operators

〈F〉 = 〈3He||ρ+||3H〉 , (299)

〈GT〉 = 〈3He||j5,+||3H〉 , (300)

where the |3H〉 and |3He〉 wave functions are obtained with the hyper spherical-harmonics

(HH) expansion method (for a review see Ref. [61]) from two- and three-nucleon potentials

derived from either χEFT or the phenomenological approach.

The combination of chiral potentials is denoted as N3LO/N2LO(500) [N3LO/N2LO(600)]

corresponding to cutoff Λ = 500 MeV (Λ = 600 MeV), and consists of two-nucleon potentials

at N3LO from Refs. [9, 62] and three-nucleon potentials at N2LO from Refs. [12, 63]. 1 The

combination of conventional potentials is denoted as AV18/UIX and consists of the Argonne

v18 (AV18) two-nucleon potential [64] and Urbana-IX (UIX) three-nucleon potential [65]. In

all cases we obtain 〈F〉 = 0.9998. From this value we extract via Eq. (298) the experimental

GT matrix element as

GTEXP = 〈GT〉EXP/
√

3 = 0.9511 ± 0.0013 . (301)

Contributions to the GT matrix element corresponding to the LO, N2LO, N3LO, N4LO,

and N4LO(3B) axial operators are reported in Table 1, where the LEC z0 in the N3LO(CT)

operator is taken as z0 = 1 in units of GeV−3. The LECs c3 and c4 in the N3LO(OPE)

operators are constrained by fits to πN scattering data, and two different sets of values

1Note that for consistency with the convention adopted in Chapters 4 and 5, it would be more appropriate
to label these two- and three-nucleon potentials, respectively, as N4LO and N3LO. However, this is not the
standard notation used in the literature.
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(listed in the table caption) have been used in the present study, one from Refs. [9, 62]

and the other from a recent analysis of these data based on Roy-Steiner equations [66],

specifically the values corresponding to the column labeled N3LO in Table II of that work.

The first set of c3 and c4 values (from Refs. [9, 62]) enters the chiral two- and three-nucleon

potentials, used here to generate the 3H and 3He wave functions. Clearly, use of the second

set from Ref. [66] in the N3LO(OPE) axial current is not consistent with these potentials;

results for the GT matrix element are provided in that case only to give an estimate of their

sensitivity to the c3 and c4 values. As per the additional LECs (cD, cE) in the three-nucleon

potential, these have been obtained by the fitting procedure described below. In particular,

we note that the LEC z0 in the N3LO(CT) operator is related to cD via Eq. (284). The

GT (and F) matrix elements are computed exactly, without approximation, with quantum

Monte Carlo methods. The spin-isospin algebra is carried out with techniques similar to

those developed in Ref. [67] for the electromagnetic current operator. The results reported

in the tables below are based on random walks consisting of 106 configurations. Statistical

errors are not listed, but are typically at the few parts in 103, except in the special case of

the N3LO(OPE) results, for which they are at the few % level (see below).

In Table 1 we report the results for the N3LO/N2LO(500) and N3LO/N2LO(600) models,

and in parentheses those for the AV18/UIX model. The LO and N2LO axial operators do

not need to be regularized, and hence the corresponding contributions for the AV18/UIX are

the same for Λ = 500 MeV and 600 MeV. However, the N3LO/N2LO contributions change

(rather significantly at N2LO) as Λ varies in this range due to the intrinsic cutoff dependence

of the potentials. In the N3LO axial current of Eq. (290) the terms proportional to c3 and

c4 have opposite signs and tend to cancel each other. The degree of cancellation depends

crucially on the values of the LECs and Hamiltonian model. In particular, when c3 and c4

are taken from Refs. [9, 62], the sum of their contributions for the N3LO/N2LO model is (in

magnitude) comparable to the contribution from the non-local terms proportional to Ki in

Eq. (290).



70

TABLE 1: Contributions to the GT matrix element of tritium β-decay corresponding to the

Hamiltonian model N3LO/N2LO (AV18/UIX) and cutoffs Λ = 500 MeV and 600 MeV in the

chiral potentials and weak axial current operators. The acronyms LO, N2LO, N3LO(OPE),

N3LO(CT), N4LO(OPE), N4LO(MPE), and N4LO(3B) refer, respectively, to the axial oper-

ators given in Eq. (288), Eq. (289), Eq. (290), Eq. (291), Eq. (292), Eq. (293), and Eq. (294).

In the N3LO(OPE) operator the LECs c3 and c4 have the values c3 = −3.20 GeV−1 and

c4 = 5.40 GeV−1 from Refs. [9, 62], while in the N3LO?(OPE) operator they are taken as

c3 = −5.61 GeV−1 and c4 = 4.26 GeV−1 from Ref. [66]. The LEC z0 in N3LO(CT) is taken

to have the value z0 = 1 in units of GeV−3. The LECs (cD, cE) in the three-nucleon chi-

ral potential have the values (−1.847,−0.548) for Λ = 500 MeV and (−2.030,−1.553) for

Λ = 600 MeV. See text for further explanations.

Λ 500 MeV 600 MeV

LO 0.9363(0.9224) 0.9322 (0.9224)

N2LO –0.569(–0.844)×10−2 –0.457(–0.844)×10−2

N3LO(OPE) 0.825(1.304)×10−2 0.043(7.517)×10−2

N3LO?(OPE) 0.579(0.812)×10−1 0.652(1.413)×10−1

N3LO(CT) –0.586(–0.721)×10−3 –0.717(–0.644)×10−3

N4LO(OPE) –0.697(–0.964)×10−2 –0.867(–1.216)×10−2

N4LO(MPE) –0.430(–0.565)×10−1 –0.532(–0.775)×10−1

N4LO(3B) –0.143(–0.183)×10−2 –0.153(–0.205)×10−2

The contributions from loop corrections, row labeled MPE, are relatively large and com-

parable to those from OPE. As a matter of fact, when the values for the c3 and c4 LECs are

from Refs. [9, 62], the N3LO(OPE) contributions are an order of magnitude smaller than the

N4LO(MPE) in the case of the chiral potentials. The origin of this large contribution can

be traced back to the term proportional to the loop function W1(k) in Eq. (293), specifically

to the term with the factor (1 − 5 g2
A) in Eq. (252). It originates from box diagram e8 of

Fig. 10. All the N4LO corrections have opposite signs relative to the LO and OPE at Q0.

Next, we discuss the determination of the value for the LEC z0 required to reproduce

GTEXP for the various Hamiltonian models we consider, by retaining corrections in the axial

current up to either N3LO or N4LO. Values for the LECs are reported in Table 2 for the

hybrid calculation based on the AV18/UIX Hamiltonian model, and in Table 3 for the chiral

Hamiltonian model. In Table 2 the values for ẑ0 and cD, related via Eq. (284) are listed,

so that they can be compared with previous determinations [48, 55, 68]. These values are
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obtained by simply reproducing the central value of GTEXP in Eq. (301).

TABLE 2: Adimensional values of the LECs corresponding to the AV18/UIX Hamiltonian

model and cutoffs Λ = 500 MeV and 600 MeV in the chiral axial current. The LEC ẑ0 is deter-

mined by reproducing GTEXP in calculations including in this current corrections up to either

N3LO or N4LO. The values for ẑ0 and cD are obtained using the LECs (c3, c4) = (−3.20, 5.40)

GeV−1 from Refs. [9, 62], those for ẑ?0 and c?D using (c3, c4) = (−5.61, 4.26) GeV−1 from

Ref. [66], in both the N3LO and N4LO calculations.

N3LO N4LO

Λ 500 600 500 600

ẑ0 –0.421 0.742 –1.607 –1.048

cD –0.571 1.007 –2.180 –1.421

ẑ?0 0.769 2.038 –0.417 0.235

c?D 1.043 2.764 –0.566 0.318

In order to determine the values corresponding to the chiral potentials, we proceed as in

Ref. [55]. The 3H and 3He ground state wave functions are calculated using these potentials

for Λ = 500 MeV and 600 MeV. We span the range cD ∈ [−4, 3], and, in correspondence

to each cD in this range, determine cE so as to reproduce the binding energies of either 3H

or 3He. The resulting trajectories are essentially indistinguishable, as shown in Fig. 21 for

Λ = 500 MeV and in Fig. 22 for Λ = 600 MeV, and as already obtained in Ref. [55]. Then,

for each set of (cD, cE), the triton and 3He wave functions are calculated and the Gamow-

Teller matrix element, denoted as GTTH, is determined, by including in the axial current

corrections up to N3LO or N4LO. The ratio GTTH/GTEXP for both values of the cutoff Λ is

shown in Fig. 19 for the N3LO case and Fig. 20 for the N4LO one.
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FIG. 19: The ratio GTTH/GTEXP as function of the LEC cD obtained retaining corrections

up to N3LO in the nuclear axial current. The results for both values of the cutoff Λ are

shown.
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FIG. 20: Same as Fig. 19 but with the corrections in the axial current up to N4LO.

The LECs (cD, cE) that reproduce simultaneously GTEXP (its central value) and the

trinucleon binding energies are given in Table 3.
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TABLE 3: Values for the (cD, cE) LECs as obtained by fitting the A = 3 binding energy and

GTEXP (its central value), using the N3LO/N2LO potential models with cutoffs Λ = 500

MeV and 600 MeV. The results labelled N3LO and N4LO are obtained retaining in the

nuclear axial current up to N3LO and N4LO contributions, respectively.

N3LO N4LO

Λ 500 600 500 600

cD –0.353 –0.443 –1.847 –2.030

cE –0.305 –1.224 –0.548 –1.553

The values for cD at N3LO are found to be consistent with those listed in [55], after

allowance is made for the different Λχ (0.7 GeV in that work versus 1 GeV above) and for

the fact that GTEXP as determined here is slightly smaller than adopted in [55].

Alternatively, we could choose a different set of three-nucleon observables to fit these

LECs. We consider here, together with the A= 3 binding energy, the nd doublet scattering

length and, for which we take the experimental value 0.645± 0.010 fm, obtained in Ref. [69].

In the range cD ∈ [−4, 3] the resulting trajectories are displayed in Figs. 21 and 22 for

Λ = 500 MeV and 600 MeV, respectively. The experimental uncertainty in and has been

taken into account, and therefore the results of Figs. 21 and 22 are presented as a band.
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FIG. 21: The cD-cE trajectories fitted to reproduce the experimental A= 3 binding energies

and the doublet nd scattering length using the N3LO/N2LO potential with Λ = 500 MeV.

The values of 8.475 MeV, 7.725 MeV and 0.645 ± 0.010 fm [69] are used for the 3H, 3He

and nd scattering length, respectively. Note that the A = 3 binding energies have been

corrected for the small contributions (+7 keV in 3H and −7 keV in 3He) due to the n-p mass

difference [70]. The (cyan) band is due to the experimental uncertainty on the nd scattering

length. The vertical lines indicate the cD values obtained by fitting GTEXP and retaining up

to N4LO or N3LO contributions in the axial current.
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FIG. 22: Same as Fig. 21 but for Λ = 600 MeV.

The trajectories originating from the A= 3 binding energies and nd scattering length

are quite close to each other, but do not overlap. In the Λ = 500 MeV case, there is a

crossing point at (cD, cE) =(−2.340,−0.567), while for Λ = 600 MeV there is no crossing.

In particular, using the (cD, cE) in Table 3, we obtain and = 0.654(0.665) fm for Λ = 500

MeV and and = 0.687(0.699) fm for Λ = 600 MeV, when the N4LO (N3LO) contributions in

the axial current are retained. The present calculations of the nd scattering wave functions

ignore higher order electromagnetic interaction terms, such as those associated with the

nucleons’ magnetic moments. These terms are known to reduce the and value of about 3

% [61], when the AV18/UIX Hamiltonian model is used. Thus, the present analysis seems

to indicate that the three A= 3 observables (A= 3 binding energies, GTEXP, and and) are

simultaneously reproduced, at least for Λ = 500 MeV, when the nuclear axial current retains

corrections up to N4LO.
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CHAPTER 7

INCLUSIVE NEUTRINO SCATTERING OFF THE

DEUTERON AT LOW ENERGIES

In this chapter we discuss inclusive neutrino scattering off deuteron induced by neutral

and charge-changing weak currents in a chiral EFT framework. A number of studies of these

processes was carried out in the past several decades. These efforts culminated in a set of

predictions [71, 72], in the early 2000’s, for neutrino-deuteron cross sections for incoming

neutrino energies up to 150 MeV. The calculations were based on the conventional meson-

exchange framework, and used last-generation realistic potentials available at the time and

a realistic model for the nuclear weak currents, which included one- and two-body terms.

The Nakamura et al. studies played an important role in the analysis and interpretation

of the Sudbury Neutrino Observatory (SNO) experiments [29], which have established solar

neutrino oscillations and the validity of the standard model for the generation of energy and

neutrinos in the sun [30].

Concurrent with those studies was a next-to-next-to-leading order calculation of neutrino-

deuteron cross sections at low energies (. 20 MeV) in an effective field theory in which pion

degrees of freedom are integrated out and which is consequently parametrized in terms of

contact terms [73]. In the strong-interaction sector, the LECs multiplying these contact

terms were fixed by fitting the effective range expansions in the 1S0 and 3S1 two-nucleon

channels (which dominate the low-energy cross sections). The weak current included one-

body terms with couplings (nucleon magnetic moments and axial coupling constant) taken

from experiment as well as two-body terms. In the vector sector, the two LECs associated

with these two-body terms were determined by reproducing the radiative capture rate of

neutrons on protons at thermal energies and the deuteron magnetic moment. In the axial

sector the two-body terms were characterized by a single LEC (labeled L1,A, and correspond-

ing to our z0), which however remained undetermined. Nevertheless, by fitting the results

of Ref. [72], Butler and collaborators [73] were able to show that the resulting value for L1,A

was natural, and that the calculated cross sections reproduced well the energy dependence

obtained in the Nakamura et al. calculations.
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The energy range of the Nakamura et al. studies was extended up to 1 GeV in the more

recent calculations by Shen et al. [74]. These calculations too were based on the conventional

framework, but included refinements in the modeling of the weak currents, which, however,

turned out to have only a minor impact on the predicted cross sections [74]. The results

confirmed those of Nakamura et al. in the energy range up to 150 MeV.

The calculation reported in this chapter differs from all previous ones in one essential

aspect: it is fully based on a χEFT formulation of the nuclear potential [9, 62] and weak

currents [22, 23, 24, 75, 76] at high orders in the power counting. The LECs in the potential

have been constrained by fitting the nucleon-nucleon scattering database in the energy range

extending up to the pion-production threshold [9, 62], while the LECs in the electroweak

current have been fitted to a number of low-energy electro-weak observables in the A= 2 and

3 nuclei [24, 76] (specifically, the isoscalar and isovector magnetic moments of the deuteron

and trinucleons, and the tritium Gamow-Teller matrix element).

A comparison among the results of the various calculations is discussed at the end of this

chapter.

7.1 NEUTRINO INCLUSIVE CROSS SECTION

The differential cross section for neutrino (ν) and antineutrino (ν) inclusive scattering off

a deuteron, specifically the processes 2H(νl, νl)pn and 2H(νl, νl)pn induced by neutral weak

currents (NC) and denoted respectively as νl-NC and νl-NC, and the processes 2H(νe, e
−)pp

and 2H(νe, e
+)nn induced by charge-changing weak currents (CC) and denoted respectively

as νl-CC and νl-CC, can be expressed as [74]

(
dσ

dε′dΩ

)

ν/ν

=
G2

8π2

k′

ε
F (Z, k′)

[
v00R00 + vzz Rzz − v0z R0z + vxxRxx ∓ vxy Rxy

]
, (302)

where G=GF for the NC processes and G=GF cos θC for the CC processes, and the − (+)

sign in the last term is relative to the ν (ν) initiated reactions. Following Ref. [72], we adopt

the value GF = 1.16637876 × 10−5 GeV−2 as obtained from an analysis of super-allowed

0+ → 0+ β-decays [60]—this value includes radiative corrections—while cos θC is taken as

0.97425 from Ref. [77]. The initial neutrino four-momentum is kµ = (ε,k), the final lepton

four momentum is kµ ′ = (ε′,k′), and the lepton scattering angle is denoted by θ. We have

also defined the lepton energy and momentum transfers as ω = ε − ε′ and q = k − k′,

respectively, and the squared four-momentum transfer as Q2 = q2 − ω2 > 0. The Fermi

function F (Z, k′) with Z = 2 accounts for the Coulomb distortion of the final lepton wave
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function in the CC reaction,

F (Z, k′) = 2 (1 + γ) (2 k′ rd)
2 γ−2 exp (π y)

∣∣∣∣∣
Γ(γ + i y)

Γ(1 + 2 γ)

∣∣∣∣∣

2

, γ =

√
1− (Z α)2 , (303)

and it is set to one otherwise. Here y = Z α ε′/k′, Γ(z) is the gamma function, rd is the

deuteron charge radius (rd = 1.97 fm), and α is the fine structure constant. Radiative

corrections for the CC and NC processes due to bremsstrahlung and virtual photon- and

Z-exchanges have been evaluated by the authors of Refs. [78, 79] at the low energies (∼ 10

MeV) most relevant for the SNO experiment, which measured the neutrino flux from the 8B

decay in the sun. However, these corrections are not retained in the present work.

The factors vµν in Eq. (302) denote combinations of lepton kinematical variables including

the final lepton mass, while the nuclear response functions are defined schematically as

(explicit expressions for the vµν and Rµν can be found in Ref. [74])

Rµν(q, ω) ∼ 1

3

∑

M

∑

f

δ(ω +md − Ef ) 〈f |jµ(q, ω)|d,M〉 〈f |jν(q, ω)|d,M〉∗ , (304)

where |d,M〉 and |f〉 represent, respectively, the initial deuteron state in spin projection

M and the final two-nucleon state of energy Ef , and md is the deuteron rest mass. The

three-momentum transfer q is taken along the z-axis (i.e., the spin-quantization axis), and

jµ(q, ω) is the time component (for µ = 0) or space component (for µ = x, y, z) of the NC

or CC, denoted, respectively, by jµNC or jµCC . The former is given by

jµNC = −2 sin2θW jµγ,S + (1− 2 sin2θW ) jµγ,z + jµ5,z , (305)

where θW is the Weinberg angle (sin2θW = 0.2312 [77]), jµγ,S and jµγ,z include, respectively, the

isoscalar and isovector terms of the electromagnetic current, and jµ5,z includes the isovector

terms of the axial current (the subscript z on these indicates that they transform as the

z-component of an isovector under rotations in isospin space).

The charge-changing weak current reads

jµCC = jµ± + jµ5,± , (306)

where jµ± and jµ5,± are respectively the weak vector and weak axial currents defined as

jµ± = jµx ± ijµy , jµ5,± = jµ5,x ± ij
µ
5,y . (307)

We observe that the conserved-vector-current hypothesis relates jµ± to the isovector compo-

nent jµγ,z of the electromagnetic current via

[
τ1,a + τ2,a, j

µ
γ,z

]
= 2 iεazbj

µ
b . (308)
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Before turning to a brief discussion of the one- and two-body χEFT contributions to the NC

and CC, we note that, as described in considerable detail in Ref. [74], we evaluate, by direct

numerical integrations, the matrix elements of the weak current between the deuteron and

the two-nucleon scattering states labeled by the relative momentum p and in given pair-spin

and pair-isospin channels, thus avoiding cumbersome multipole expansions. Differential cross

sections are then obtained by integrating over p and summing over the discrete quantum

numbers the appropriate matrix-element combinations entering the response functions [74].
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7.2 ELECTRO-WEAK CURRENT

The χEFT contributions up to one loop to the electromagnetic current (jγ) [22, 24] and

charge (ργ) [23, 24] are illustrated diagrammatically in Figs. 23 and 24, while those to the

weak axial current (j5,a) and charge (ρ5,a), obtained in this Thesis (see also Refs. [75, 76]) in

Figs. 25 and 26. We recall here that the former are denoted below as jγ = jiγ and ργ = j0
γ ,

and the latter as j5 = ji5,z and ρ5 = j0
5,z, respectively, and subscripts specifying isospin

components are dropped for simplicity here.

LO

N3LO

a

NLO

b c

N2LO

d

e f g h i j k

FIG. 23: Diagrams illustrating one- and two-body electromagnetic currents entering at Q−2

(LO), Q−1 (NLO), Q 0 (N2LO), and Q 1 (N3LO). Nucleons, pions, and photons are denoted

by solid, dashed, and wavy lines, respectively. The square in panel (d) represents the (Q/m)2

relativistic correction to the LO one-body current (m is the nucleon mass); the solid circle in

panel (j) is associated with the γπN coupling involving the LECs d8, d9, and 2 d21 – d22 in the

πN chiral Lagrangian L(3)
πN [41]; the solid circle in panel (k) denotes two-body contact terms

of minimal and non-minimal nature, the latter involving two unknown LECs (see text). Only

one among all possible time orderings is shown for the NLO and N3LO currents, so that all

direct- and crossed-box contributions are accounted for.

The electromagnetic currents from LO, NLO, and N2LO terms and from N3LO loop

corrections depend only on the nucleon axial coupling gA and and pion decay amplitude
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fπ (NLO and N3LO), and the nucleon magnetic moments (LO and N2LO). Unknown LECs

enter the N3LO OPE contribution involving the γπN vertex from the chiral Lagrangian L(3)
πN

(see Ref. [41]) as well as the contact currents implied by non-minimal couplings, as discussed

in Sec. 7.2.1. On the other hand, in the charge operator there are no unknown LECs up

to one loop, and OPE contributions, illustrated in panels (c)-(e) of Fig. 24, only appear at

N3LO.

LO

N2LO

N3LO

N4LO

a

b

c d e

f g h i j k

FIG. 24: Diagrams illustrating one- and two-body electromagnetic charge operators entering

at Q−3 (LO), Q−1 (N2LO), Q0 (N3LO), Q1 (N4LO). The square in panel (b) represents

the (Q/m)2 relativistic correction to the LO one-body charge operator, whereas panel (c)

represents the charge operator ρ
(0)
γ (OPE) given in Eq. (309). As in Fig. 23, only a single

time ordering is shown for the N3LO and N4LO contributions.

The contributions in panels (d) and (e) involve non-static corrections [23], while those in

panel (c) were first derived by Phillips [80]

ρ(0)
γ (OPE) =

g2
A

8mf 2
π

(τ1 · τ2 + τ2z)
σ1 · q σ2 · k2

k2
2 +m2

π

. (309)

This operator plays an important role in yielding predictions for the A= 2–4 charge form

factors that are in excellent agreement with the experimental data at low and moderate

values of the momentum transfer (q . 1 GeV/c) [18, 24]. The calculations in Ref. [24] also
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showed that the non-static corrections of pion range from panels (d) and (e) of Fig. 24 are

typically an order of magnitude smaller than those generated by panel (c).

LO
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q r s t u

o

p v w x

FIG. 25: Diagrams illustrating one- and two-body axial currents entering at Q−3 (LO), Q−1

(N2LO), Q 0 (N3LO), and Q 1 (N4LO). Nucleons, pions, and axial fields are denoted by solid,

dashed, and wavy lines, respectively. The squares in panels (c) and (d) denote relativistic

corrections to the one-body axial current, while the circles in panels (e) and (f) represent

vertices implied by the L(2)
πN chiral Lagrangian [41], involving the LECs ci (see Ref. [75] for

additional explanations). As in Fig. 23, only a single time ordering is shown.

The axial current and charge operators illustrated in Figs. 25 and 26 include pion-pole

contributions, which turned out to be relevant for the current to be conserved in the chiral

limit as we saw in Sec. 5.6. In the electromagnetic current the divergent parts of the loop

integrals are reabsorbed by the LECs multiplying contact terms [22], while those in the

electromagnetic charge cancel out, in line with the fact that there are no counter-terms at

N4LO [23]. We recall here that in the case of the axial operators, there are no divergencies

in the current, while those in the charge lead to renormalization of the LECs multiplying

contact-type contributions. In particular, the infinities in loop corrections to the OPE axial

charge (not shown in Fig. 26) are re-absorbed by renormalization of the LECs di in the L(3)
πN

chiral Lagrangian.
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FIG. 26: Diagrams illustrating one- and two-body axial charge operators entering at Q−2

(LO), Q−1 (N1LO), and Q 1 (N3LO). Nucleons, pions, and axial fields are denoted by solid,

dashed, and wavy lines, respectively. The diamonds in panels (l) and (m) indicate higher

order AπN vertices implied by the L(3)
πN chiral Lagrangian [41], involving the LECs di (see

Ref. [75] for additional explanations). As in Fig. 23, only a single time ordering is shown.

7.2.1 CONSTRAINING THE LECS IN THE ELECTRO-WEAK CURRENTS

There is a total of ten LECs entering the two-body electro-weak currents discussed above,

five of these are in the electromagnetic (vector) sector and the remaining five (in the limit

of vanishing momentum transfer) in the axial sector. In the vector sector, contact terms

originate from minimal and non-minimal couplings. The LECs multiplying the former are

known from fits of the two-nucleon scattering database [24]. Non minimal couplings enter

through the electromagnetic field tensor, and it has been shown [22] that only two indepen-

dent structures occur at order Q (see panel (k) in Fig. 23):

j(1)
γ (CT) = −i e

[
c̃Sγ σ1 + c̃Vγ (τ1,z − τ2,z)σ1

]
× q , (310)

where e is the electric charge, c̃Sγ and c̃Vγ are the two LECs, and the superscripts specify

the isoscalar (S) and isovector (V ) character of the associated operator. There is also a

pion-range two-body operator resulting from sub-leading γπN couplings associated with the
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L(3)
πN Lagrangian, and illustrated by panel (j) in Fig. 23. It reads:

j(1)
γ (OPE) = i e

gA
4 f 2

π

σ2 · k2

k2
2 +m2

π

[(
d̃Vγ,1τ2,z + d̃Sγ τ1 · τ2

)
k2

−d̃Vγ,2(τ1 × τ2)z σ1 × k2

]
× q , (311)

where the LECs d̃Vγ,1, d̃Vγ,2 and d̃Sγ are related [24] to the LECs d8, d9, d21, and d22 in the

original L(3)
πN Lagrangian [41] in the following way

d̃Sγ = −8 d9 , d̃Vγ,1 = −8 d8 , d̃Vγ,2 = 2 d21 − d22 . (312)

As discussed below, these LECs have been determined by a combination of resonance satu-

ration arguments and fits to photo-nuclear data in the two- and three-nucleon systems.

In the weak axial sector, the single contact term at order Q0 (or N3LO, see panels (g)

and (h) of Fig. 25) has one LEC z0 and it has been fixed in the previous chapter. The axial

charge operators at N3LO from OPE [panels (l) and (m) of Fig. 26] and contact interactions

[panel (n)] involve, in principle, nine LECs [75]. Since the processes of interest in the present

work are relatively low-momentum transfer ones, however, we have considered here these

operators in the limit q → 0 (or k1 ' −k2), which leads to

ρ
(1)
5,a(OPE) = i

gA
384 π2 f 4

π

(τ1 × τ2)a

{
g2
A

[(
5 k2

2 + 8m2
π

) s2

k2

ln
s2 + k2

s2 − k2

− 13

3
k2

2 + 2m2
π

]

+

(
s3

2

k2

ln
s2 + k2

s2 − k2

− 5

3
k2

2 − 8m2
π

)
+ d̃V5,1 k

2
2 + d̃V5,2m

2
π

}
σ2 · k2

k2
2 +m2

π

, (313)

ρ
(1)
5,a(CT) = i c̃V5,2 (τ1 × τ2)a σ1 · k1 + i c̃V5,3 τ1,a (σ1 × σ2) · k2 + (1
 2) , (314)

where we recall that sj =
√
k2
j + 4m2

π. The LECs d̃V5,i denote the combinations [75]

d̃V5,1 = 4 (d1 + d2 + d3) , d̃V5,2 = 4 (d1 + d2 + d3) + 8 d5 , (315)

in terms of the di’s in L(3)
πN [41], and are taken from an analysis of πN scattering data as

reported in Ref. [62]. The LECs c̃V5,i where c̃V5,2 = z2 and c̃V5,3 = z3 have yet to be determined.

TABLE 4: The LECs in units of powers of 1/Λ (Λ is the short-range cutoff) as in Eq. (317).

Their values are adimensional. See text for forther explanations.

Λ (MeV) dSγ dVγ,1 dVγ,2 cSγ cVγ dV5,1 dV5,2 cV5,1 cV5,2 cV5,3

500 0.219 3.458 0.865 4.072 –7.981 –0.210 0.690 13.22 0.062 0.062

600 0.323 4.980 1.245 11.38 –11.69 –0.302 0.994 25.07 0.130 0.130
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The two-body operators are regularized with the same short-range cutoff CΛ(k) =

exp(−k4/Λ4) used in the previous chapter. In the electromagnetic sector, the two isoscalar

LECs c̃Sγ and d̃Sγ are fixed (for each Λ) by reproducing the deuteron and isoscalar trinucleon

magnetic moments, while the two isovector LECs d̃Vγ,1 and d̃Vγ,2 are constrained by assuming

∆-resonance saturation [24],

d̃Vγ,1 =
4µγN∆ hA

9m (m∆ −m)
, d̃Vγ,2 =

1

4
d̃Vγ,1 , (316)

where m∆ –m= 294 MeV, hA/(2fπ) = fπN∆/mπ with f 2
πN∆/(4 π) = 0.35 as obtained by

equating the first-order expression of the ∆-decay width to the experimental value, and the

transition magnetic moment µγN∆ is taken as 3µN [81]. The remaining LEC c̃Vγ is determined

by reproducing the isovector trinucleon magnetic moment [24]. In the weak axial sector, the

LEC c̃V5,1 is fixed by reproducing the tritium Gamow-Teller matrix element [76], while the

other two LECs c̃V5,2 and c̃V5,3 in the axial charge are taken here to assume natural values

c̃V5,i ' 1/Λ4
χ, for i= 2, 3 and with Λχ = 1 GeV. However, cross sections results are insensitive

to variations of c̃V5,2 and c̃V5,3 over a rather broad range (see Sec. 7.3). In Table 4 we list the

values of all these LECs in units of the short-range cutoff Λ, namely

d̃Sγ = dSγ /Λ
2 , d̃Vγ,i = dVγ,i/Λ

2 , c̃Sγ = cSγ /Λ
4 , c̃Vγ = cVγ /Λ

4 ,

d̃V5,i = dV5,i/Λ
2 , c̃V5,1 = cV5,1/Λ

3 , c̃V5,2 = cV5,2/Λ
4 , c̃V5,3 = cV5,3/Λ

4 . (317)

Finally, we note that, since the processes under consideration involve small but non-

vanishing four-momentum transfers Q2, hadronic electro-weak form factors need to be in-

cluded in the χEFT operators. Some of these form factors have been calculated in chiral

perturbation theory [82], but the convergence of this calculation in powers of the momen-

tum transfer appears to be rather poor. For this reason, in the results reported below, the

form factors in the electromagnetic current and charge are accounted for as in Ref. [24], i.e.,

the nucleon, pion, and N∆-transition electromagnetic form factors are taken from fits to

available electron scattering data. For the case of the axial charge and current, the oper-

ators are simply multiplied by GA(Q2)/gA, where GA(Q2) is the nucleon axial form factor,

parametrized as GA(Q2) = gA/(1 + Q2/Λ2
A)2 with ΛA = 1 GeV, consistently with available

neutrino scattering data (see [74] and references therein).

7.3 CROSS-SECTION PREDICTIONS

Total cross sections, integrated over the final lepton energy and scattering angle and

obtained for the νe-CC, νe-CC, νl-NC, and νl-NC processes, are shown, respectively, in
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Figs. 27–30, where they are compared to the corresponding predictions from Ref. [72] for

incoming neutrino energies ranging from threshold up to 150 MeV.
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FIG. 27: (Color online) Total cross sections in fm2 for the νe-CC induced process on the

deuteron. The solid line corresponds to the χEFT calculation with cutoff Λ = 500 MeV,

based on the chiral potential of Ref. [9] and including electro-weak contributions up to N3LO

in the vector current and axial charge, and up to N4LO in the axial current and vector charge,

see Figs. 23–26. The dashed line is obtained within the conventional meson-exchange picture

of Ref. [72]. The inset shows the ratio of conventional to χEFT predictions.
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FIG. 28: (Color online) Same as in Fig. 27 but for the νe-CC induced process on the deuteron.

The present χEFT calculations are based on the Entem and Machleidt potentials of

Refs. [9, 62] corresponding to cutoffs Λ = 500 and 600 MeV, and weak (vector and axial)

current and charge operators of Refs. [22, 23, 24, 75], as described in the previous section.

Matrix elements of these operators, suitably regularized as in Sec. 7.2.1, between the initial

deuteron and final two-nucleon scattering states are evaluated with the methods developed

in Ref. [74]. In practice, this entails obtaining the two-nucleon radial wave functions from

solutions of the Lippmann-Schwinger equation in pair spin-isospin ST channels with total

angular momentum J ≤ Jmax, and in approximating these radial wave functions by spherical

Bessel functions in channels with J > Jmax. The full wave function, labeled by the rela-

tive momentum p (and corresponding energy p2/(2µ), µ being the reduced mass) and the

discrete quantum numbers ST , is then reconstructed from its partial-wave expansion [74].

Consequently, interaction (including Coulomb in the case of two protons) effects in the final

scattering states are exactly accounted for only in channels with J ≤ Jmax. For the neutrino
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energies of interest here, however, we find that these effects are negligible when Jmax & 5 [74].
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FIG. 29: Same as in Fig. 27 but for the νe-NC induced process on the deuteron.

The cross sections increase rapidly, by over two orders of magnitude, as the neutrino

energy increases from threshold to 150 MeV. Nevertheless, the present χEFT predictions

remain close to, albeit consistently larger at the 1–2% level than, those obtained in the

conventional frameworks of Refs. [72] and [74], as shown explicitly for the case of Ref. [72]

by the insets in Figs. 27–30 . The present χEFT electro-weak current and the meson-

exchange models adopted in Refs. [72] and [74] provide an excellent description of low-

energy observables in the two- and three-nucleon systems (see Refs. [18, 24] and references

therein). In particular, the axial current in both approaches (χEFT and meson-exchange) is

constrained to reproduce the tritium Gamow-Teller matrix element.
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TABLE 5: Total cross sections in fm2, corresponding to cutoff Λ = 500 MeV, for the CC-

induced processes on the deuteron at selected initial neutrino energies and at increasing

orders in the chiral counting. Referring to Figs. 23–26, the rows are labeled as follows: LO for

the leading-order vector and axial current and charge; N(1|2)LO including the vector current

and axial charge at N1LO, and the axial current and vector charge at N2LO; N(2|3)LO

including the vector current at N2LO, and the axial current and vector charge at N3LO;

N(3|4)LO including the vector current and axial charge at N3LO, and the axial current and

vector charge at N4LO. Also listed are the results at LO and N(3|4)LO but Λ = 600 MeV

(labeled as LO? and N(3|4)LO?), and those obtained in the conventional frameworks of (i)

Ref. [74] in impulse approximation (IA) and with inclusion of two-body currents (TOT) and

(ii) Ref. [72] with inclusion of two-body currents (TOT). The notation (xx) means 10xx.
σ(νe-CC) σ(νe-CC)

Eν (MeV) 10 50 100 150 10 50 100 150

LO 2.676(–16) 1.345(–14) 6.611(–14) 1.591(–13) 1.243(–16) 7.441(–15) 2.661(–14) 4.944(–14)

N(1|2)LO 2.670(–16) 1.345(–14) 6.606(–14) 1.581(–13) 1.237(–16) 7.341(–15) 2.602(–14) 4.792(–14)

N(2|3)LO 2.794(–16) 1.413(–14) 6.913(–14) 1.653(–13) 1.298(–16) 7.825(–15) 2.801(–14) 5.221(–14)

N(3|4)LO 2.734(–16) 1.388(–14) 6.852(–14) 1.650(–13) 1.266(–16) 7.523(–15) 2.676(–14) 4.981(–14)

LO? 2.666(–16) 1.342(–14) 6.593(–14) 1.588(–13) 1.239(–16) 7.417(–15) 2.653(–14) 4.925(–14)

N(3|4)LO? 2.729(–16) 1.388(–14) 6.858(–14) 1.656(–13) 1.263(–16) 7.520(–15) 2.679(–14) 4.998(–14)

IA Ref. [74] 2.630(–16) 1.314(–14) 6.424(–14) 1.516(–13) 1.219(–16) 7.260(–15) 2.567(–14) 4.688(–14)

TOT Ref. [74] 2.680(–16) 1.348(–14) 6.631(–14) 1.574(–13) 1.242(–16) 7.403(–15) 2.606(–14) 4.751(–14)

TOT Ref. [72] 2.708(–16) 1.376(–14) 6.836(–14) 1.641(–13) 1.242(–16) 7.372(–15) 2.618(–14) 4.871(–14)

The χEFT cross sections of Figs. 27–30 correspond to cutoff Λ = 500, but their variation

as Λ is increases to 600 MeV remains well below 1% over the whole energy range, as can be

seen in Tables 5 and 6, rows labeled N(3|4)LO and N(3|4)LO?. The convergence of the chiral

expansion is also shown in these tables, where the various rows are labeled in accordance

with the power counting adopted in the present chapter, see Figs. 27–30. Overall, corrections

beyond LO lead to a couple of % increase in the cross sections for both the CC and NC

processes. A similar increase due to two-body terms in the weak current is obtained in

the conventional calculations, see rows labeled IA and TOT in Tables 5 and 6. Note that

the IA row corresponds to results obtained with one-body currents, including relativistic

corrections [74]. These IA currents are the same as the χEFT ones illustrated by panel (a)

of Fig. 23, panels (a) and (b) of Fig. 24, panels (a)-(d) of Fig. 25, and panel (a) of Fig. 26.

Since the contributions due to the OPE two-body terms in the vector current, panels (b) and

(c) of Fig. 23, and axial charge, panels (b) and (c) of Fig. 26, are very small, the difference

between the IA and N(1|2)LO results essentially reflects differences in the wave functions

obtained from conventional and chiral potentials. Indeed, the overall ∼ 2 % offset between
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the TOT and N(3|4)LO predictions is primarily due to these differences.

0 50 100 150
Eν(MeV)

0
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4
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fm

2 ) x
 1

014

This paper
Nakamura et al. (2002)

0 50 100 150
Eν(MeV)

0.96

0.98

1.00

νe-NC

FIG. 30: Same as in Fig. 27 but for the νe-NC induced process on the deuteron.

TABLE 6: Same as in Table 5 but for the NC-induced processes.
σ(νe-NC) σ(νe-NC)

Eν (MeV) 10 50 100 150 10 50 100 150

LO 1.101(–16) 5.872(–15) 2.660(–14) 5.991(–14) 1.050(–16) 4.554(–15) 1.664(–14) 3.175(–14)

N(1|2)LO 1.097(–16) 5.856(–15) 2.644(–14) 5.912(–14) 1.045(–16) 4.505(–15) 1.631(–14) 3.076(–14)

N(2|3)LO 1.151(–16) 6.178(–15) 2.789(–14) 6.250(–14) 1.097(–16) 4.793(–15) 1.752(–14) 3.347(–14)

N(3|4)LO 1.124(–16) 6.032(–15) 2.740(–14) 6.176(–14) 1.069(–16) 4.625(–15) 1.684(–14) 3.214(–14)

LO? 1.096(–16) 5.853(–15) 2.652(–14) 5.973(–14) 1.045(–16) 4.539(–15) 1.659(–14) 3.165(–14)

N(3|4)LO? 1.121(–16) 6.028(–15) 2.742(–14) 6.191(–14) 1.067(–16) 4.622(–15) 1.685(–14) 3.224(–14)

IA Ref. [74] 1.084(–16) 5.747(–14) 2.577(–14) 5.720(–13) 1.033(–16) 4.449(–15) 1.604(–14) 3.003(–14)

TOT Ref. [74] 1.104(–16) 5.892(–15) 2.657(–14) 5.935(–14) 1.053(–16) 4.546(–15) 1.640(–14) 3.075(–14)

TOT Ref. [72] 1.107(–16) 5.944(–14) 2.711(–14) 6.130(–13) 1.053(–16) 4.535(–15) 1.647(–14) 3.129(–14)
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The cross sections for the νl-NC and νl-NC processes only differ in the sign of the interfer-

ence response function Rxy in Eq. (302). In the case νe-CC and νe-CC processes, additional

differences result from isospin-symmetry breaking terms in the final state interactions of

pp versus nn. At low energies (Eν . 10 MeV), cross sections are dominated by the axial

current, the associated contributions being more than two orders of magnitude larger than

those from the vector current. As the energy increases, vector-current contributions increase

becoming comparable, albeit still significantly smaller by over a factor of five at Eν = 150

MeV than, axial-current ones. As a consequence, the νl-NC and νl-NC are fairly close at

low energies, but diverge significantly from each other as the energy increases. Because of

the aforementioned isospin-symmetry breaking effects (primarily induced by the Coulomb

repulsion), the νe-CC and νe-CC differ even at low energies. Finally, cross section contri-

butions from the axial charge are negligible at Eν = 10 MeV and remain well below 1% at

Eν = 150 MeV. At this latter energy, for example, ignoring these axial-charge contributions

altogether would reduce the νl-NC (νl-NC) cross section from the N(3|4)LO value of 6.176

(3.214) listed in Table 6 to 6.157 (3.194) in units of 10−14 fm2. Thus, uncertainties in the

values of the LECs c5,2 and c5,3 in the contact axial charge do not have a significant impact

on the present cross section predictions.
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CHAPTER 8

CONCLUSIONS

In the first part of this Thesis, after reviewing some key points of chiral effective field the-

ory (χEFT), we have discussed the formalism used to derive nuclear potentials and currents

form chiral Lagrangians. This formalism consists in essence of the following two steps: (i)

time ordered perturbation theory is used to calculate the field-theory amplitude, and power

counting is used to organize the various terms contributing to the amplitudes; (ii) nuclear

potential and currents are obtained by requiring that when they are iterated into the cor-

responding Lippmann-Schwinger (or Schrödinger) equation they generate T -matrices that

match the field-theory amplitudes on-the-energy-shell order-by-order in the power counting.

As we have seen this prescription leads to the partial cancellations between the contributions

of irreducible diagrams and those owing to nonstatic corrections from energy denominators

of reducible diagrams.

In the second part of this Thesis, we have discussed in detail the derivation of nuclear

potentials and currents up to one loop. In both derivations ultraviolet divergences associated

with loop corrections are isolated in dimensional regularization and reabsorbed through a

redefinition of LECs. The resulting axial current is finite and conserved in the chiral limit,

while the axial charge requires renormalization. For the axial current there is a single LEC

z0 which enters at N3LO, while for the axial charge four independent LECs have been found

to be present at N4LO. Loop corrections to the one-pion exchange (OPE) axial charge lead

to renormalization of linear combinations of the LECs di in the subleading L(3)
πN Lagrangian.

In the third part of this Thesis, we have reported two applications. The first is the

calculation of the tritium β-decay rate by including in the charge-changing weak current the

corrections up to one loop (N4LO) derived in Ch. 5. The LEC z0 in the axial current has

been constrained by reproducing the empirical value for tritium Gamow-Teller (GT) matrix

element. Using trinucleon wave functions obtained from solutions of the Schrödinger equation

with two- and three-nucleon potentials corresponding to either χEFT (the N3LO/N2LO

combination [63, 83]) or meson-exchange phenomenology (the AV18/UIX combination) we

have found that the contributions due to loop corrections in the axial current are, in relative

terms, as large as those from the one-pion exchange, which nominally occur at lower order

in the power counting.
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The second application has been the calculation of the inclusive cross sections for the

reactions 2H (νe, e
−) pp and 2H (νe, e

+)nn, and 2H (νl/νl, ν
′
l/νl

′)np. The results are within

1–2 %, albeit consistently larger than, those obtained in earlier conventional calculations.

The weak dependence on the cutoff suggests that the associated theoretical uncertainty is

very small.

The operators derived in this Thesis can be used to improve the accuracy and reliability

of theoretical predictions for weak nuclear reactions, for example the proton weak captures

on protons and 3He important in solar physics. Earlier calculations of these processes, such

as those reported in Refs. [48, 84], have used axial current operators up to N3LO. In view

of the relatively large contributions obtained here at N4LO for the tritium Gamow-Teller

matrix element, it would be interesting to reexamine these capture reactions by including

these N4LO loop corrections.

Finally, we note that an accurate theory of nuclear electroweak structure and dynamics

is relevant for low-energy tests of physics beyond the standard model in β-decay experi-

ments [85]. Phenomenologically, the weak interactions are known to couple only to left-

handed neutrinos and to violate parity maximally. However beyond-the-standard-model

(BSM) theories have been constructed in which small deviations from these properties are

introduced. These deviations affect the correlation coefficients entering the β-decay rates

and can, in principle, be detected. For a proper interpretation of these measurements and,

in particular, to unravel possible signatures of BSM physics, it is crucial to have control of

the nuclear structure and weak interactions in nuclei.

When coupled to numerically exact methods such as quantum Monte Carlo techniques,

to solve the many-body Schrödinger equations, the χEFT potentials and weak currents

obtained in this Thesis offer the opportunity to carry out a first-principles calculation of

these decays and provide predictions for their rates and associated theoretical uncertainties

rooted in QCD.
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[56] R. Schiavilla, V. G. J. Stoks, W. Glöckle, H. Kamada, A. Nogga, J. Carlson, R. Mach-

leidt, V. R. Pandharipande, R. B. Wiringa, A. Kievsky, S. Rosati, and M. Viviani, Phys.

Rev. C 58, 1263 (1998).

[57] K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

[58] S. Raman, C.A. Houser, T. A. Walkiewicz, and I.S. Towner, At. Data and Nucl. Data

Tables 21, 567 (1978).

[59] J. J. Simpson, Phys. Rev. C 35, 752 (1987).

[60] J. C. Hardy, and I. S. Towner, Phys. Rev. C 91, 025501 (2015).

[61] A. Kievsky, S. Rosati, M. Viviani, L. E. Marcucci, and L. Girlanda, J. Phys. G: Nucl.

Part. Phys. 35, 063101 (2008).

[62] R. Machleidt and D.R. Entem, Phys. Rep. 503, 1 (2011).

[63] P. Navratil, Few-Body Syst. 41, 117 (2007).

[64] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

[65] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa, Phys. Rev. Lett.

74, 4396 (1995).

[66] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meissner, Phys. Rev. Lett. 115,

192301 (2015).

[67] R. Schiavilla, V. R. Pandharipande, and D. O. Riska, Phys. Rev. C 40, 2294 (1989).

[68] L. E. Marcucci, M. Piarulli, M. Viviani, L. Girlanda, A. Kievsky, S. Rosati, and R.

Schiavilla, Phys. Rev. C 83, 014002 (2011).

[69] K. Schoen, D. L. Jacobson, M. Arif, P. R. Huffman, T. C. Black, W. M. Snow, S. K.

Lamoreaux, H. Kaiser, and S. A. Werner, Phys. Rev. C 67, 044005 (2003).

[70] A. Nogga, A. Kievsky, H. Kamada, W. Glöckle, L. E. Marcucci, S. Rosati, and M.
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APPENDIX A

CHIRAL LAGRANGIANS

We summarize the notation and conventions for the various fields and covariant deriva-

tives adopted in this Thesis [41]:

U = 1 +
i

fπ
τ · π − 1

2 f 2
π

π2 − i α

f 3
π

π2 τ · π +
8α− 1

8 f 4
π

π4 + . . . , (318)

u =
√
U

= 1 +
i

2 fπ
τ · π − 1

8 f 2
π

π2 − i (8α− 1)

16 f 3
π

π2 τ · π +
(32α− 5)

128 f 4
π

π4 + . . . , (319)

uµ = i
[
u†(∂µ − i rµ)u− u (∂µ − i lµ)u†

]
, (320)

DµU = ∂µU − i rµ U + i U lµ , (321)

DµN = (∂µ + Γµ)N = ∂µN +
1

2

[
u†(∂µ − i rµ)u+ u (∂µ − i lµ)u†

]
N , (322)

F±µν = u† FR
µν u± uFL

µν u
† , (323)

FR
µν = ∂µrν − ∂νrµ − i [ rµ , rν ] , rµ = vµ + aµ , (324)

FL
µν = ∂µlν − ∂νlµ − i [ lµ , lν ] , lµ = vµ − aµ , (325)

χ± = u† χu± uχ† u = m2
π

(
U † ± U

)
. (326)

The parameter α is arbitrary because of the freedom in the choice of pion field—the only

constraint is that U be unitary with detU = 1. In the following we consider only the coupling

to the axial-vector field; further, we ignore isospin-symmetry-breaking effects as well as the

coupling to the isoscalar component of the axial-vector field, and hence

rµ = −lµ =
1

2
τ ·Aµ , (327)

FR
µν =

1

2
τ · (∂µAν − ∂νAµ + Aµ ×Aν) , (328)

FL
µν = −1

2
τ · (∂µAν − ∂νAµ −Aµ ×Aν) . (329)
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Inserting the expansions for U and u and keeping terms linear in the axial-vector field, we

find:

uµ = − 1

fπ

(
1− α

f 2
π

π2

)
τ · ∂µπ +

4α− 1

2 f 3
π

τ · ππ · ∂µπ

+ τ ·Aµ +
1

2 f 2
π

[(τ × π)× π] ·Aµ + . . . , (330)

DµU = i τ ·
[

1

fπ
∂µπ −

(
1− π2

2 f 2
π

)
Aµ

]
− 1

f 2
π

π · ∂µπ +
1

fπ
π ·Aµ + . . . , (331)

DµN =

[
∂µ +

i

4 f 2
π

(τ × π) · ∂µπ −
i

2 fπ

(
1− απ

2

f 2
π

)
(τ × π) ·Aµ

+i
(8α− 1)

16 f 4
π

π2 ∂µπ · (π × τ ) + . . .

]
N , (332)

F+
µν =

1

fπ
(τ × π) · Fµν + . . . , (333)

F−µν =

[
τ +

1

2 f 2
π

(τ × π)× π
]
· Fµν + . . . , (334)

χ+ = m2
π

(
2− π

2

f 2
π

)
+ . . . , (335)

χ− = −2 i

fπ
m2
π τ · π + . . . , (336)

where Fµν ≡ ∂µAν − ∂νAµ and the . . . denote higher powers of the pion field than shown.

A.1 ππ SECTOR

The ππ Lagrangians up to order Q4 read [34]:

L(2)
ππ =

f 2
π

4
〈DµU (DµU)† + χ+〉 , (337)

L(4)
ππ =

l1
4
〈DµU (DµU)†〉 〈DνU (DνU)†〉+

l2
4
〈DµU (DνU)†〉 〈DµU (DνU)†〉+

l3
16
〈χ+ 〉2

+
l4
16

[
2 〈DµU (DµU)† 〉〈χ+ 〉+ 2 〈χ†U χ†U + χU †χU †〉 − 〈χ−〉2 − 4 〈χ†χ〉

]

+l5

(
〈FR

µν U F
µν
L U †〉 − 1

2
〈FL

µνF
µν
L + FR

µνF
µν
R 〉
)

+i
l6
2
〈FR

µν D
µU (DνU)† + FL

µν (DµU)† DνU〉 − l7
16
〈χ−〉2 +

h1 + h3

4
〈χχ†〉

+
h1 − h3

16

(
〈χ+〉2 + 〈χ−〉2 − 2 〈χU † χU † + U χ† U χ†〉

)

−2h2〈FL
µν F

µν
L + FR

µν F
µν
R 〉 , (338)

where in the absence of isospin symmetry breaking (which is assumed throughout the present

Thesis) χ is proportional to the identity matrix, namely χ = m2
π, and 〈χ−〉 vanishes. Here
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〈. . . 〉 implies a trace in flavor space. Furthermore, the terms proportional to the LECs l1, l2,

l5, l6, and hi do not contribute to the order of interest. The symmetric matrices G̃ab, Gab,

Hab, and Fab in the Lagrangian of Eq. (68) are obtained as

G̃ab =

(
1− 2α

f 2
π

π2 + 2 l4
m2
π

f 2
π

)
δab −

4α− 1

f 2
π

πaπb , (339)

Gab = G̃ab + 2
c2 + c3

f 2
π

NN δab , (340)

Hab =

[
1− 8α− 1

4 f 2
π

π2 + 2 (l3 + l4)
m2
π

f 2
π

]
δab , (341)

Fab =

(
1− 2α + 1

2 f 2
π

π2 + 2 l4
m2
π

f 2
π

)
δab −

2α− 1

f 2
π

πaπb . (342)

By retaining only terms linear in the pion field and external axial field, the equation of

motion implied by L(2)
ππ is

∂ 2
0 π = −

(
∂i∂i +m2

π

)
π + fπ ∂0A

0 + fπ ∂iA
i . (343)

A.2 πN SECTOR

The πN Lagrangians up to order Q3 read:

L(1)
πN = N

(
i /D −m+

gA
2
/u γ5

)
N , (344)

L(2)
πN =

7∑

i=1

ciN O
(2)
i N , (345)

L(3)
πN =

23∑

i=1

diN O
(3)
i N , (346)

with the operators O
(2)
i and O

(3)
i defined as in Ref. [41]. Here gA is the nucleon axial coupling

constant, and the ci and di are LECs. Below, the γµ, γ5, and σµν are γ matrices and

combinations of γ-matrices in standard notation [32], and εµνρσ is the Levi-Civita tensor

with ε0123 = +1.
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In terms of the expansions above, L(1)
πN is given by

L(1)
πN = N

[
i /∂ −m− 1

4 f 2
π

(τ × π) · /∂ π − gA
2 fπ

(
1− α

f 2
π

π2

)
τ · /∂ π γ5

+
gA

4 f 3
π

(4α− 1) τ · ππ · /∂ π γ5 +
(1− 8α)

16 f 4
π

π2 /∂ π · (π × τ )

+
1

2 fπ

(
1− α

f 2
π

π2

)
(τ × π) · /A +

gA
2
τ · /A γ5 +

gA
4 f 2

π

[(τ × π)× π] · /A γ5

]
N ,

(347)

where /∂ = γµ∂µ and /A = γµAµ. The operators O
(2)
i in the L(2)

πN Lagrangian are expressed

as (below the notation χ̃+ = χ+ − 〈χ+〉/2 is used)

O
(2)
1 = 〈χ+〉 −→ 4m2

π

(
1− π2

2 f 2
π

)
, (348)

O
(2)
2 = − 1

8m2
〈uµuν〉Dµν + h.c. −→ 1

f 2
π

∂0π · ∂0π −
2

fπ
∂0π ·A0

+
1

mfπ

(
1

fπ
∂0π · ∂iπ − ∂0π ·Ai − ∂iπ ·A0

)
γ0 i
←→
∂ i, (349)

O
(2)
3 =

1

2
〈uµuµ〉 −→

1

f 2
π

∂µπ · ∂µπ −
2

fπ
∂µπ ·Aµ , (350)

O
(2)
4 =

i

4
[uµ , uν ]σ

µν −→ 1

2
τ ·
(
− 1

f 2
π

∂µπ × ∂νπ +
2

fπ
Aµ × ∂νπ

)
σµν , (351)

O
(2)
5 = χ̃+ −→ 0 , (352)

O
(2)
6 =

1

8m
F+
µν σ

µν −→ 1

4mfπ
(τ × π) · ∂µAν σ

µν , (353)

O
(2)
7 =

1

8m
〈F+

µν〉σµν −→ 0 , (354)
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while those in the L(3)
πN Lagrangian reduce to

O
(3)
1 = − 1

2m
[uµ , [Dν , u

µ]]Dν + h.c. −→ 2

fπ
τ ·
(
− 1

fπ
∂µπ × ∂0∂

µπ + Aµ × ∂0∂
µπ

−∂0Aµ × ∂µπ
)
γ0 , (355)

O
(3)
2 = − 1

2m
[uµ , [Dµ , uν ]]D

ν + h.c. −→ 2

fπ
τ ·
(
− 1

fπ
∂µπ × ∂µ∂0π + Aµ × ∂0∂

µπ

−∂µA0 × ∂µπ
)
γ0 , (356)

O
(3)
3 =

1

12m3
[uµ , [Dν , uρ]]D

µνρ + h.c. −→ 2

fπ
τ ·
(
− 1

fπ
∂0π × ∂2

0π + A0 × ∂ 2
0 π

−∂0A0 × ∂0 π
)
γ0 , (357)

O
(3)
4 = − 1

2m
εµναβ 〈uµuνuα〉Dβ + h.c. −→ 0 , (358)

O
(3)
5 =

i

2m
[χ− , uµ]Dµ + h.c. −→ −4m2

π

fπ
τ ·
[
π ×

( 1

fπ
∂0π −A0

)]
γ0 , (359)

O
(3)
6 =

i

2m
[Dµ , F̃+

µν ]D
ν + h.c. −→ ∂iF+

i 0 γ
0 , (360)

O
(3)
7 =

i

2m
[Dµ , 〈F+

µν〉]Dν + h.c. −→ 0 , (361)

O
(3)
8 =

i

2m
εµναβ 〈F̃+

µνuα〉Dβ + h.c. −→ 0 , (362)

O
(3)
9 =

i

2m
εµναβ 〈F+

µν〉uαDβ + h.c. −→ 0 , (363)

O
(3)
10 =

1

2
γµγ5 〈u · u〉uµ −→ 0 , (364)

O
(3)
11 =

1

2
γµγ5 〈uµuν〉uν −→ 0 , (365)

O
(3)
12 = − 1

8m2
γµγ5 〈uλuν〉uµDλν + h.c. −→ 0 , (366)

O
(3)
13 = − 1

8m2
γµγ5 〈uµuν〉uλDλν + h.c. −→ 0 , (367)

O
(3)
14 =

i

4m
σµν〈[Dλ , uµ]uν〉Dλ + h.c. −→ 1

fπ

( 1

fπ
∂0∂iπ · ∂jπ − ∂0∂iπ ·Aj

−∂0Ai · ∂jπ
)
σijγ0 , (368)

O
(3)
15 =

i

4m
σµν〈uµ[Dν , uλ]〉Dλ + h.c. −→ 1

fπ

( 1

fπ
∂iπ · ∂0∂jπ − ∂iπ · ∂jA0

−Ai · ∂0∂jπ
)
σijγ0 , (369)

O
(3)
16 =

1

2
γµγ5 〈χ+〉uµ −→ 2m2

π τ ·
(
− 1

fπ
∂iπ + Ai

)
γiγ5 , (370)

O
(3)
17 =

1

2
γµγ5 〈χ+ uµ〉 −→ 0 , (371)

(372)
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O
(3)
18 =

i

2
γµγ5 [Dµ , χ−] −→ m2

π

fπ
τ · ∂iπ γiγ5 , (373)

O
(3)
19 =

i

2
γµγ5 [Dµ , 〈χ−〉] −→ 0 , (374)

O
(3)
20 = − i

8m2
γµγ5 [F̃+

µν , uλ]D
λν + h.c. −→ 0 , (375)

O
(3)
21 =

i

2
γµγ5 [F̃+

µν , u
ν ] −→ 0 , (376)

O
(3)
22 =

1

2
γµγ5 [Dν , F−µν ] −→

1

2
τ · ∂νFiν γ

iγ5 , (377)

O
(3)
23 =

1

2
γµγ5 ε

µναβ 〈uνF−αβ〉 −→ −
1

fπ
εiναβ∂νπ · Fαβ γiγ5 . (378)

Several comments are now in order. First, the expressions above for L(1)
πN , L(2)

πN , and L(3)
πN

retain all terms relevant in the present study. Typically, these include at most three pion,

two pion, and one pion fields for n = 1, 2, 3 in L(n)
πN , respectively. In some instances, for

example in O
(3)
1 , terms with two pion fields are also considered for reasons having to do with

the treatment of tadpole-type contributions (see below). The Lagrangian
∑

n L
(n)
πN can now

conveniently be expressed as given in Eq. (68) with the quantities Γ0
a(n), Λi

a(n), and ∆(n),

defined in Eqs. (69)–(70), given at leading order by

Γ0
a(0) = − 1

4 f 2
π

(τ × π)a γ
0 +

8α− 1

16 f 4
π

π2 (τ × π)a γ
0, (379)

Λi
a(0) = − gA

2 fπ

(
1− α

f 2
π

π2

)
τa γ

iγ5 +
gA

4 f 3
π

(4α− 1)(τ · π) πa γ
iγ5 , (380)

∆(1) =
gA
2
τ ·Ai γ

iγ5 +
1

2 fπ

(
1− α

f 2
π

π2

)
(τ × π) ·A0 γ

0

+
gA

4 f 2
π

[(τ × π)× π] ·Ai γ
iγ5 ; (381)

at next-to-leading order by

Γ0
a(1) = − gA

2 fπ

(
1− α

f 2
π

π2

)
τa γ

0γ5 +
gA

4 f 3
π

(4α− 1)(τ · π) πa γ
0γ5 − 2

c2 + c3

fπ
A0
a , (382)

Λi
a(1) = − 1

4 f 2
π

(τ × π)a γ
i +

c3

f 2
π

∂iπa − 2
c3

fπ
Aia −

c4

fπ
(τ ×Aj)a σ

ij

+
c4

2 f 2
π

(τ × ∂jπ)a σ
ij +

(1− 8α)

8 f 4
π

π2 (π × τ )a γ
i , (383)

∆(2) =
gA
2
τ ·A0 γ

0γ5 +
1

2 fπ

(
1− α

f 2
π

π2

)
(τ × π) ·Ai γ

i +
gA
4f 2

π

[(τ × π)× π] ·A0 γ
0γ5

+4m2
π c1

(
1− π2

2 f 2
π

)
+

c6

4mfπ
(τ × π) · ∂iAj σ

ij ; (384)
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and at next-to-next-to-leading order by

Γ0
a(2) =

c2

mfπ

(
1

fπ
∂iπa − Ai,a

)
γ0 i
←→
∂ i +

c4

fπ

[
1

fπ
(τ × ∂iπ)a − (τ ×Ai)a

]
σ0i

+2
d1 + d2

f 2
π

[(
τ × ∂i∂iπ

)
+
(
τ × ∂iπ

) ←̃→
∂ i

]
γ0

+2
d1 + d2 + d3

fπ

[
−m

2
π

fπ
(τ × π)a −

1

fπ

(
τ × ∂i∂iπ

)
a

+
(
τ × ∂iAi

)
a

]
γ0

−4 d5
m2
π

f 2
π

(τ × π)a γ
0 +

d14 − d15

fπ

[
1

fπ
∂iπa σ

ij←̃→∂ j + ∂iAj,a σ
ij

+Aj,a σ
ij←̃→∂ i

]
γ0 +

d23

fπ
ε0ijkFjk,a γiγ5 , (385)

Λi
a(2) = − c2

mfπ
A0,a γ

0 i
←→
∂ i +

c4

fπ
(τ ×A0)a σ

0i − 2
d1

fπ

(
τ × ∂0A

i
)
a
γ0

−2
d2

fπ

(
τ × ∂iA0

)
a
γ0 − d6

fπ

(
τ × Fi 0

)
a
γ0

+
d14

fπ
∂0Aj,aσ

ijγ0 − d15

fπ
∂jA0,aσ

ijγ0

−m
2
π

fπ
(2 d16 − d18) τa γ

iγ5 + 2
d23

fπ
εijk0Fk0,aγjγ5 , (386)

∆(3) =
c6

4mfπ
(τ × π) · (∂0Ai − ∂iA0)σ0i − 2

d1 + d2 + d3

fπ
(τ ×A0) ·

(
∂i∂iπ +m2

ππ
)
γ0

+4 d5
m2
π

fπ
τ · (π ×A0) γ0 +

d6

fπ
(τ × π) · ∂iFi 0 γ

0 + 2m2
π d16 τ ·Ai γ

iγ5

+
d22

2
τ · ∂νFiνγ

iγ5 . (387)

Second, the various derivatives act only on the field to their immediate right, for example

∂0π ·A0 means (∂0π) ·A0. However, the symbols
←→
∂ i =

−→
∂ i −

←−
∂ i and

←̃→
∂ i =

−→
∂ i +

←−
∂ i in

Eqs. (349) and (385)–(386) denote derivatives acting only on the right and left nucleon fields,

respectively.

Third, the power counting Qn of L(n)
πN counts powers of derivatives of the pion field (or of

pion mass factors) and factors of Aµa and its derivatives (note that Aµa is counted as being of

order Q). However, the Lorentz structure of the terms may lead to additional suppression.

For example, in L(1)
πN a term like

− 1

4 f 2
π

(τ × π) · ∂0π γ
0 ,
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is of order Q, but a term like

− gA
2 fπ

(
1− α

f 2
π

π2

)
τ · ∂0π γ

0γ5 ,

which is nominally of order Q, is in fact of order Q2, since Nγ0γ5N couples the lower to

the upper components of the spinors, and therefore involves the three-momenta of the initial

and final nucleons (of order Q). We have taken advantage of this suppression in some of

the terms O
(3)
i in L(3)

πN by retaining only the diagonal piece in their Lorentz structure, for

example in term O
(3)
14 .

Fourth, time derivatives of the nucleon fields in L(2)
πN and L(3)

πN are removed by making

use of the equation of motion (to order Q)

∂0N = −im γ0N +
[
−γ0γi∂i + i γ0 Γ0

a(0) ∂0πa + i γ0Λi
a(0) ∂iπa + i γ0 ∆(1)

]
N , (388)

implying that

∂2
0N = −m2N − im γ0

[
. . .
]
N − im

[
. . .
]
γ0N (389)

= −m2N +
[
− mgA

fπ
τ · ∂iπ γiγ5 +mgA τ ·Ai γ

iγ5 −
m

fπ
τ · (A0 × π)γ0

]
N ,(390)

where in the second line we have ignored non-linear terms in the pion field, since they do

not contribute to the order of interest here.

Fifth, double time derivatives of the pion fields in L(3)
πN are removed by making use of the

equation of motion, see Eq. (343) above. Terms containing both one time derivative and one

space derivative of the pion fields have been rewritten by integrating by parts. For example,

in L(3)
πN a term like

2
d1 + d2

f 2
π

N
(
τ × ∂0∂

iπ
)
· ∂iπN ,

can be re-expressed, modulo a total divergence, as

−2
d1 + d2

f 2
π

N

[
(τ × ∂0π) · ∂i∂iπ + (τ × ∂0π) · ∂iπ

←̃→
∂ i

]
N .
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APPENDIX B

INTERACTION VERTICES

In this appendix we report expressions for the vertices corresponding to the interaction

terms in the Hamiltonian of Eq. (75), which we write as

HI =
3∑

n=1

[ (
H

(n)
πNN +H

(n)
2πNN +H

(n)
3πNN + · · ·

)
+
(
H

(n)
NNA +H

(n)
πNNA +H

(n)
2πNNA + · · ·

) ]

+
2∑

m=1

[ (
H

(2m)
2π +H

(2m)
4π + · · ·

)
+
(
H

(2m)
πA +H

(2m)
3πA + · · ·

) ]
, (391)

where the superscript n denotes the power countingQn and the subscript specifies the number

of pion, nucleon, and axial fields entering a given interaction term. We use the following

notation: λ = pστ (λ′ = p′ σ′τ ′) are the momentum and spin and isospin projections of the

initial (final) nucleon; k1,k2, . . . and a1, a2, . . . are the momenta and isospin projections of

pions 1, 2, . . . with energies ω1, ω2, . . . , where ωi =
√
k2
i +m2

π; q and a denote the momentum

and isospin projection of the external axial field with energy ωq and its spatial and time

derivatives expressed as ∇Aµa −→ iqAµa and ∂0A
µ
a −→ −i ωq Aµa . We also define P =

(p′ + p)/2 and the constants

Jmn =

∫
dl

(2π)3

l 2m

ω n
l

. (392)

B.1 πNN VERTICES

The interaction terms read

H
(1)
πNN =

gA
2fπ

∫
dxNτ · ∂iπγiγ5N , (393)

H
(2)
πNN =

gA
2fπ

∫
dxNτ ·Πγ0γ5N , (394)

H
(3)
πNN =

m2
π

fπ
(2 d16 − d18)

∫
dxNτ · ∂iπγiγ5N , (395)



108

from which the following vertices for pion absorption are obtained

〈λ′ | H(1)
πNN |λ; k, a〉 = i

gA
2fπ

τa σ · k , (396)

〈λ′ | H(2)
πNN |λ; k, a〉 = −i gA

2mfπ
τa ωσ ·P , (397)

〈λ′ | H(3)
πNN |λ; k, a〉 = i

m2
π

fπ
(2 d16 − d18)τa σ · k

+i
gA

8m2fπ
τa

[
2σ ·P k ·P− σ · (p′ − p)

(p′ − p) · k
2

−2P 2 σ · k− ik · (p′ − p)×P

]
, (398)

where on the r.h.s. of the above equations the 1/
√

2ω normalization factor from the pion

field expansion in normal modes, the initial and final spin-isospin states of the nucleons,

and the three-momentum conserving δ-function (2π)3δ(p′ − p − k) have been dropped for

simplicity. We will continue to do so in the equations to follow. Vertices in which the

pion is in the final state (pion emission) are obtained from those above by the replacements

ω,k −→ −ω,−k. Lastly, only the leading order is retained in the non-relativistic expansion

of the Lorentz structures associated with the various interaction terms (here and to follow)

unless otherwise noted. Indeed, Eq. (398) includes the leading relativistic correction to the

vertex given in Eq. (396).

B.2 2πNN VERTICES

The interaction terms read

H
(1)
2πNN =

1

4f 2
π

∫
dxN Π · (τ × π) γ0N , (399)

H
(2)
2πNN =

∫
dxN

[
1

4f 2
π

∂iπ · (τ × π) γi + c1
2m2

π

f 2
π

π2 − c3

f 2
π

∂iπ · ∂iπ +

−c2 + c3

f 2
π

Π ·Π +
c4

2f 2
π

τ · (∂iπ × ∂jπ)σij
]
N , (400)

H
(3)
2πNN =

∫
dxN

[
− 2

d1 + d2 + d3

f 2
π

(τ ×Π) ·
(
∂i∂iπ +m2

ππ
)
γ0 − 4

d5m
2
π

f 2
π

(Π× π) · τγ0

+2
d1 + d2

f 2
π

(τ ×Π) ·
(
∂i∂iπ + ∂iπ

←̃→
∂ i

)
γ0 +

d15 − d14

f 2
π

Π · ∂iπ σij
←̃→
∂ j γ

0

]
N ,

(401)
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from which the vertices follow as

〈λ′ | H(1)
2πNN |λ; k1, a1; k2, a2〉 =

i

4f 2
π

εa1a2c τc (ω1 − ω2) , (402)

〈λ′ | H(2)
2πNN |λ; k1, a1; k2, a2〉 = − i

4f 2
π

2 P + iσ × (p′ − p)

2m
· (k1 − k2) εa1a2aτa + 4 c1

m2
π

f 2
π

δa1,a2

−2 c3

f 2
π

k1 · k2 δa1,a2 +
2 (c2 + c3)

f 2
π

ω1ω2 δa1,a2

− c4

f 2
π

σ · (k1 × k2) εa1a2aτa , (403)

〈λ′ | H(3)
2πNN |λ; k1, a1; k2, a2〉 = i(ω1 − ω2)

[
εa1a2cτc

(
− 2

d1 + d2 + d3

f 2
π

ω1ω2 + 4
d5m

2
π

f 2
π

+ 2
d1 + d2

f 2
π

k1 · k2

)
+
d15 − d14

f 2
π

(k1 × k2) · σ δa1,a2
]
. (404)

Vertices in which either or both pions are in the final state are obtained from those above

by replacing ki, ωi −→ −ki,−ωi.

B.3 3πNN VERTEX

The interaction term reads

H
(1)
3πNN = − gA

2f 3
π

∫
dxN

[
απ2 τ · ∂iπ +

1

2
(4α− 1)τ · ππ · ∂iπ

]
γiγ5N , (405)

which leads to the following interaction vertex

〈λ′ | H(1)
3πNN |λ; k1, a1; k2, a2; k3, a3〉 = − i gA

2 f 3
π

σ ·
[
τa1δa2,a3 [(2α− 1/2) (k2 + k3) + 2αk1]

+τa2δa1,a3 [(2α− 1/2) (k1 + k3) + 2αk2]

+τa3δa1,a2 [(2α− 1/2) (k1 + k2) + 2αk3]
]
. (406)

The corresponding tadpole contribution is

〈λ′ | H(1)
3πNN |λ; k, a〉 = −i gA

8f 3
π

(10α− 1) J01 τa σ · k , (407)

where J01 has been defined in Eq. (392).

B.4 4πNN VERTEX

The interaction term reads

H
(1)
4πNN =

1

32 f 4
π

∫
dxN

(
Πa π

2 + π2 Πa

)
(τ × π)a γ

0N , (408)
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and the tadpole contribution follows as

〈0 | H(1)
4πNN |k1, a1; k2, a2〉 =

5 i

32 f 4
π

J01 εa1a2c τc(ω1 − ω2) . (409)

B.5 NNA VERTICES

The interaction terms read

H
(1)
NNA = −gA

2

∫
dxN τaA

i
a γi γ

5N , (410)

H
(3)
NNA = −

∫
dxN

(
2m2

πd16 τ ·Aiγ
iγ5 +

d22

2
τ · ∂jFijγ

iγ5

)
N , (411)

from which the vertices follow as

〈λ′ | H(1)
NNA |λ〉 =

gA
2
τa

[
σ − 1

2m2
P 2 σ − i

4m2
(p′ − p)×P +

1

2m2
σ ·P P

− 1

8m2
σ · (p′ − p) (p′ − p)

]
·Aa , (412)

〈λ′ | H(3)
NNA |λ〉 = 2m2

π d16 τa σ ·Aa +
d22

2
τa
(
q q · σ − q2σ

)
·Aa , (413)

where in Eq. (413) terms of order Q2 have been retained in the expansion of the bilinear

Nγγ5N , since they have been shown to generate significant corrections to the single-nucleon

axial current [48].

B.6 πNNA VERTICES

The interaction terms read

H
(1)
πNNA = − 1

4fπ

∫
dxNA0 · (τ × π) γ0N , (414)

H
(2)
πNNA =

∫
dxN

[
− 1

2fπ
(τ × π) ·Aiγ

i − c6

4mfπ
(τ × π) · ∂iAj σ

ij +
2 c3

fπ
Ai · ∂iπ

+
c4

fπ
(∂iπ × τ ) ·Aj σ

ij

]
N , (415)

H
(3)
πNNA =

∫
dxN

[
2 d2 + d6

fπ
(∂iπ × τ ) · ∂iA0γ0 +

d15

fπ
∂jA

0 · ∂iπσijγ0

+2
d23

fπ
ε0ijk ∂iπ · ∂kA0 γjγ

5 − d6

fπ
(τ × π) · ∂i∂iA0γ0

+2
d1 + d2

fπ
(τ ×A0) · (∂i∂iπ + ∂iπ

←̃→
∂ i)γ

0 +
d15 − d14

fπ
∂iπ ·A0σ

ij←̃→∂ j + . . .

]
N ,

(416)
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where the dots indicate terms which do not contribute in tree-level diagrams of order Q, for

example
∫

dxN

[
− 2

d23

fπ
ε0ijk γiγ

5 Π · ∂jAk − 2
d1 + d2 + d3

fπ
τ ·
(
∂iA

i ×Π
)
γ0

]
N ,

or

2
d1 + d2 + d3

fπ

∫
dxN τ · (∂0A0 ×Π) γ0N ,

and ∂0A0 → −i ωqA0 is of order Q3, since in our counting the energy of the external field is

of order Q2. The interactions in Eqs. (414)–(416) lead to the following vertices

〈λ′ | H(1)
πNNA |λ; k, a〉 = − 1

4fπ
εabcA

0
b τc , (417)

〈λ′ | H(2)
πNNA | λ; k, a〉 = − 1

2mfπ
εabc τb Ac ·

[
P +

i

2
σ × (p′ − p)

]

−i c6

4mfπ
εabc τb Ac · (σ × q) + 2i

c3

fπ
k ·Aa

−i c4

fπ
εabc τb Ac · (σ × k) , (418)

〈λ′ | H(3)
πNNA | λ; k, a〉 =

2d1 − d6

fπ
(A0 × τ )a q · k +

d14 + 2 d23

fπ
σ · (q× k)A0

a

−d6

fπ
(A0 × τ )a q2 . (419)

B.7 2πNNA VERTICES

The interaction term reads

H
(1)
2πNNA = − gA

4f 2
π

∫
dxNAi · [(τ × π)× π] γiγ5N , (420)

which leads to the following vertex and tadpole contributions

〈λ′ | H(1)
2πNNA |λ; k1, a1; k2, a2〉 =

gA
4f 2

π

(δa,a1 τa2 + δa,a2 τa1 − 2 δa1,a2 τa) Aa · σ , (421)

〈λ′ | H(1)
2πNNA |λ〉 = − gA

4f 2
π

J01 τa Aa · σ . (422)

B.8 3πNNA VERTICES

The interaction term reads

H
(1)
3πNNA =

4α− 1

16 f 3
π

∫
dxN π2 A0 · (τ × π) γ0N , (423)
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from which the tadpole contribution is obtained as

〈λ′ | H(1)
3πNNA |λ; k, a〉 = −5 (4α− 1)

32 f 3
π

J01

(
τ ×A0

)
a
. (424)

B.9 2π VERTICES

The interaction terms read

H
(4)
2π =

∫
dx

[
−m

2
π l4
f 2
π

(
Π ·Π + ∂iπ · ∂iπ

)
+
m4
π (l3 + l4)

f 2
π

π · π
]
, (425)

from which the vertex is obtained as

〈0 | H(4)
2π |k1, a1; k2, a2〉 = δa1,a2

[
2m2

π l4
f 2
π

(ω1ω2 − k1 · k2) +
2m4

π (l3 + l4)

f 2
π

]
, (426)

where, as noted earlier, the momentum-conserving δ-function (2π)3δ(k1 + k2) and the pion

field normalization factor 1/
√

4ω1ω2 are understood. Vertices in which one or both pions

are in the final state follow by replacing ωi,ki −→ −ωi,−ki. Enforcing the δ function

requirement k1 = −k2 = k and ω1 = ω2 = ω, the vertex in Eq. (426) reduces to

〈0 | H(4)
2π |k, a;−k, a〉 =

4m2
π l4
f 2
π

ω2 +
2m4

π l3
f 2
π

. (427)

Similarly, we find

〈k, a | H(4)
2π |k, a〉 =

2m4
π l3
f 2
π

, (428)

according to the prescription given above. Apart from the factor 1/(2ω), which is not

included in the equations above, these vertices are the same as given in Appendix F of

Ref. [47].

B.10 4π VERTICES

The interaction terms read

H
(2)
4π =

∫
dx

[
4α− 1

2f 2
π

(
π ·Π Π · π + ∂iπ · π ∂iπ · π

)

+
α

f 2
π

(
πa Π ·Π πa + π2∂iπ · ∂iπ

)
− 8α− 1

8f 2
π

m2
ππ

4

]
, (429)
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which leads to the following vertex

〈0 | H(2)
4π |k1, a1; k2, a2; k3, a3; k4, a4〉 =

1

f 2
π

×
[
δa1,a2δa3,a4

[
−2α(ω1 + ω2 + ω3 + ω4)2 +m2

π + (k3 + k4)2 + (ω1 + ω2)(ω3 + ω4)
]

+δa1,a3δa2,a4
[
−2α(ω1 + ω2 + ω3 + ω4)2 +m2

π + (k1 + k3)2 + (ω1 + ω3)(ω2 + ω4)
]

+δa1,a4δa2,a3
[
−2α(ω1 + ω2 + ω3 + ω4)2 +m2

π + (k1 + k4)2 + (ω1 + ω4)(ω2 + ω3)
] ]

, (430)

and the corresponding tadpole contribution is

〈0 | H(2)
4π |k1, a1; k2, a2〉 = δa1,a2 J01

[
1− 10α

2 f 2
π

(ω1ω2 − k1 · k2)− 20α− 3

4 f 2
π

m2
π

]
, (431)

and the constant J01 has been defined in Eq. (392).

B.11 πA VERTICES

The interaction terms read

H
(2)
πA = fπ

∫
dx
(
Ai · ∂iπ +A0 ·Π

)
, (432)

H
(4)
πA =

2m2
π l4
fπ

∫
dx Ai · ∂iπ , (433)

from which the vertices are obtained as

〈0 | H(2)
πA |k, a〉 = i fπ

(
k ·Aa − ω A0

a

)
, (434)

〈0 | H(4)
πA |k, a〉 = 2 i

m2
π l4
fπ

k ·Aa . (435)

B.12 3πA VERTEX

The interaction term reads

H
(2)
3πA =

1

2fπ

∫
dx
[
2 (1− 2α)Ai · π π · ∂iπ − (2α + 1)Ai · ∂iπ π · π

+2 (α− 1/2)A0
a πb Πa πb + 2αA0

a (πa π ·Π + Π · π πa )
]
, (436)
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which leads to the following vertex

〈0 | H(2)
3πA |k1, a1; k2, a2; k3, a3〉 =

i

fπ

[
δa2,a3 Aa1 · [(2α− 1) q− 2 k1]

+δa1,a3 Aa2 · [(2α− 1) q− 2 k2]

+δa1,a2 Aa3 · [(2α− 1) q− 2 k3]

−δa2,a3 A0
a1

[2α (ω1 + ω2 + ω3)− ω1]

−δa1,a3 A0
a2

[2α (ω1 + ω2 + ω3)− ω2]

−δa1,a2A0
a3

[2α (ω1 + ω2 + ω3)− ω3]
]
, (437)

where in the first three lines use has been made of the δ-function (2π)3δ(k1 + k2 + k3 + q).

The tadpole contribution is found to be

〈0 | H(2)
3πA |k, a〉 = − i

2fπ
J01

[
(5α + 1/2) Aa · k + (5α− 3/2)A0

a ω
]
. (438)
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APPENDIX C

COUNTER-TERMS TO ORDER Q3

In this section we construct the counter-terms corresponding to the Lagrangian in

Eq. (68). The expressions below are obtained in the presence of the external axial field. The

counter-terms needed for the renormalization of the OPE potential discussed in Sec. 4.1.2

follow easily from these by ignoring the terms proportional to Aµ.

Having made the replacements in Eqs. (124)–(128), the bare Lagrangian L of Eq. (68)

can be rewritten in terms of the renormalized fields and physical masses as

L = Lr + δLr , (439)

where Lr is the same as in Eq. (68) but now in terms of renormalized fields and masses, and

δLr includes the set of counter-terms

δLr = δmN
r
N r + δZNN

r
(iγµ∂µ −mr)N r + δZNN

r [
Γ0,r
a (0)∂0π

r
a + Λi,r

a (0)∂iπ
r
a + ∆r(1)

]
N r

+δZπN
r
[ [

Γ0,r(0) + δΓ0,r
a (0)

]
∂0π

r
a +

[
Λi,r
a (0)/2 + δΛi,r

a (0)
]
∂iπ

r
a + δ∆r(1)

]
N r

+
δm2

π

2
πraπ

r
a +

δZπ
2

[
∂0π

r
a

(
G̃r
ab + δG̃r

ab

)
∂0πrb + ∂iπ

r
a

(
G̃r
ab + δG̃r

ab

)
∂iπrb

−mr 2
π πra (Hr

ab + δHr
ab) π

r
b

]
− δZπ fπ Aµa(F r

ab/2 + δF r
ab)∂µπ

r
b , (440)

where Γ0,r
a (0), Λi,r

a (0) and ∆r(1) are the field combinations defined in Eqs. (379), (380)

and (381) expressed in terms of renormalized fields and physical masses. The remaining
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quantities are given by

δΓ0r
a (0) =

8α− 1

8 f 4
π

πr · πr (τ × πr)a γ
0 , (441)

δΛi,r
a (0) =

gA
4f 3

π

[
2απr · πr τa + (4α− 1) τ · πrπra

]
γiγ5 , (442)

δ∆r(1) =
1

4fπ

(
1− 3α

f 2
π

πr · πr
)

(τ × πr) ·A0γ
0

+
gA
4f 2

π

[
(τ × πr)× πr

]
·Ai γ

iγ5 , (443)

δG̃r
ab = −2α

f 2
π

πr · πr δab +
1− 4α

f 2
π

πraπ
r
b , (444)

δHr
ab =

1− 8α

4f 2
π

πr · πr δab , (445)

δF r
ab = −2α + 1

2f 2
π

πr · πrδab +
1− 2α

f 2
π

πra π
r
b . (446)

It is convenient to define

G̃ ′ab = G̃r
ab + δZπ

(
G̃r
ab + δG̃r

ab

)
, (447)

G ′ab = G̃ ′ab + 2
c2 + c3

f 2
π

N
r
N rδab , (448)

F ′ab = F r
ab + δZπ (F r

ab/2 + δF r
ab) , (449)

H ′ab = Hr
ab + δZπ (Hr

ab + δHr
ab) , (450)

Γ0 ′
a = Γ0,r

a + δZN Γ0,r
a (0) + δZπ

[
Γ0,r
a (0) + δΓ0,r

a (0)
]
, (451)

Λi ′
a = Λi,r

a + δZNΛi,r
a (0) + δZπ

[
Λi,r
a (0)/2 + δΛi,r

a (0)
]
, (452)

∆ ′ = ∆r + δZN ∆r(1) + δZπ δ∆
r(1) , (453)

which then leads to the Lagrangian as given in Eq. (202). The interaction Hamiltonian in

terms of the renormalized fields and physical masses is given in Eq. (203).
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APPENDIX D

FIELD AND MASS RENORMALIZATION OF THE NUCLEON

AND PION

In this appendix we discuss mass and wave function renormalization of the nucleon and

pion in TOPT. We closely follow the treatment Ref. [47].

We begin by discussing the nucleon case. The relevant interaction Hamiltonians are given

by Eq. (203) of the previous Appendix, and read

H
(2)
NN =

∫
dx
(
δMNN − 4m2

π c1NN
)
, (454)

H
(4)
NN = −δZN

∫
dxN

(
iγi∂i −MN

)
N , (455)

H
(1)
πNN =

gA
2fπ

∫
dxNτ · ∂iπγiγ5N . (456)

The transition amplitude for a single nucleon is given by the diagrams in Fig. 31.

s1 s2 s3

FIG. 31: Diagrams relevant for δM and ZN .

The contributions s2 and s3 are

s2 = δM − 4m2
π c1 + δZN Ep , (457)

s3 =
3 g2

A

8 f 2
π

∫
dk

(2π)3

k2

ωk

1

Ep − (Ep−k + ωk) + iε
. (458)

Diagram s3 at order Q3 gives

s3 = −3 g2
A

8 f 2
π

J12 , (459)
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where J12 has been defined in Eq. (392). We set the N → N amplitude to zero order by

order in the power counting, assuming

δM = δM (2) + δM (3) + . . . , (460)

where δM (n) is of order Qn. Therefore we obtain

δM (2) = 4m2
π c1 , δM (3) =

3 g2
A

8 f 2
π

J12 , (461)

and the correction δZN Ep (of order Q4) is fixed below.

a b c

� p� p

<−−Er−−>

� p

� k

1

2

1 1

2 2

<−−Er−−> <−−Er−−>

FIG. 32: Parts of a general diagram with the propagation of nucleons only.

Next we consider the “dressing” of a nucleon line belonging to a more complicated di-

agram, see Fig. 32. Panel a on this figure represents a diagram in which one nucleon of

momentum p is created at vertex 1 and annihilated at vertex 2 (shown by the two dots at

the beginning and end of the nucleon line). The other nucleons have energies collectively

denoted by Er. Note that there are no pions in flight in the intermediate state. The energy

denominator of diagram a is

P0(E) =
1

Ei − (Ep + Er) + iε
=

1

E + iε
, (462)

where E = Ei−Ep−Er and Ei is the initial energy (which depends on the particular process

under consideration).

Diagrams b and c in Fig. 32 represent, respectively, the contribution in which nucleon 1

emits and reabsorbs a pion of momentum k and that in which a contact interaction occurs.

These contributions are given by

S(E) =

∫
dk

(2π)3

3 g2
A

8 f 2
π

k2

ωk

1

E + Ep − E|p−k| − ωk
= −4m2

π c1 + δM + . . . , (463)

and S(0) = 0 follows from the choice of δM discussed previously for a single nucleon (of

course, energy denominators in the diagrams of Figs. 31 and 32 are different, and S(E) only

vanishes for E = 0).
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By summing up repeated b- and c-type insertions, we obtain the well known result

PD(E) =
1

E + iε
+

1

E + iε
S(E)

1

E + iε
+ · · ·

=
1

E − S(E) + iε
. (464)

By expanding S(E) in powers of E (E is assumed to be small) and by keeping only linear

terms in E, we find

PD(E) ' 1

1− S ′(0)

1

E + iε
=

ZN
E + iε

, (465)

where ZN = 1/[1− S ′(0)],

S ′(0) = −
∫

dk

(2π)3

3 g2
A

8 f 2
π

k2

ω3
k

= −3 g2
A

8 f 2
π

J13 . (466)

Since −E = Ep+Er−Ei is the energy of the intermediate state relative to the initial energy,

it is physically sensible that for E → 0 the dressed operator should have the same form as the

bare propagator 1/(E+ iε) up to the (nucleon wave function) renormalization factor ZN . In

the following we adopt the common practice of attaching a
√
ZN at each of the two vertices

of an internal nucleon line, and of multiplying by an extra
√
ZN each external nucleon line.

The renormalization of nucleon lines when additional pions are present must be discussed

case by case.

In the case of the pion the relevant interaction Hamiltonians from Eq. (203) are

H
(4)′
2π =

∫
dx

[
− mr 2

π l4
f 2
π

(
Πr ·Πr + ∂iπr · ∂iπr

)
+
mr 4
π (l3 + l4)

f 2
π

πr · πr

−δZπ
2

(
Πr ·Πr + ∂iπ

r · ∂iπr −mr 2
π π

r · πr
)
− δm2

2
πr · πr

]
, (467)

H
(2)′
4π =

∫
dx

[
4α− 1

2f 2
π

(
πr ·Πr Πr · πr + ∂iπ

r · πr ∂iπr · πr
)

+
α

f 2
π

(
πra Πr ·Πr πra + πr 2∂iπ

r · ∂iπr
)
− 8α− 1

8f 2
π

mr 2
π π

r 4

]
. (468)

with vertices (in the convention of Appendix B) given by

〈0 | H(4)′
2π |k1, a1; k2, a2〉 = δa1,a2

[
2m2

π l4
f 2
π

(ω1ω2 − k1 · k2) +
2m4

π (l3 + l4)

f 2
π

+δZπ
(
ω1ω2 − k1 · k2 +m2

π

)
− δm2

]
, (469)

〈0 | H(2)′
4π |k1, a1; k2, a2〉 = δa1,a2 J01

[
1− 10α

2 f 2
π

(ω1ω2 − k1 · k2)− 20α− 3

4 f 2
π

m2
π

]
.(470)
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Considerations similar to those obtained above for the nucleon lead to

δm2
π = 2l3

mr 4
π

f 2
π

+
mr 2
π

4f 2
π

J01 , (471)

δZπ = −2
mr 2
π

f 2
π

l4 +
10α− 1

2f 2
π

J01 . (472)
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APPENDIX E

RENORMALIZATION OF THE RATIO gA/fπ

The relevant Hamiltonians are

H
(1)′
3πNN = − gA

2f 3
π

∫
dxN

r
[
απr 2 τ · ∂iπr +

1

2
(4α− 1)τ · πr πr · ∂iπr

]
γiγ5N r , (473)

H
(3) ′
πNN =

∫
dx

[
mr 2
π

fπ
(2 d16 − d18) +

gA
2fπ

(
δZN +

δZπ
2

)]
N
r
τ · ∂iπrγiγ5N r . (474)

u1 u2 u3 u4

FIG. 33: Diagrams relevant for the renormalization of gA/fπ.

The contributions of diagrams in Fig. 33 are

u1 = i
gA
2fπ

σ · k τa , (475)

u2 = −i gA
8f 3

π

(10α− 1) J01 σ · k τa , (476)

u3 = i
g2
A

48f 3
π

J13 σ · k τa , (477)

u4 = i

[
m2
π

fπ
(2 d16 − d18)− 3g3

A

16f 3
π

+
gA
4f 3

π

(
−2m2

π l4 +
10α− 1

2

)
J01

]
σ · k τa , (478)

and their sum reads

u1 + u2 + u3 + u4 = i
gA
2fπ

σ · k τa
[
1 +

2m2
π

gA
(2 d16 − d18)− g2

A

3f 2
π

J13 −
m2
π l4
f 2
π

]
. (479)

In terms of the renormalized coupling, we must have

i
grA

2 f rπ
σ · k τa = u1 + u2 + u3 + u4 , (480)
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which implies (to order Q2)

grA
f rπ

=
gA
fπ

[
1 +

m2
π

gA
(4 d16 − 2 d18)− g2

A

3f 2
π

J13 −
m2
π l4
f 2
π

]

=
gA
fπ

(
1 +

4m2
π

gA
d16 −

g2
A

3f 2
π

J13 −
m2
π l4
f 2
π

)(
1− 2m2

π

gA
d18

)
, (481)

where in the second line we have isolated the Goldberger-Treiman discrepancy [47]. The

quantity J13 is ultraviolet divergent, and in dimensional regularization is given by

J13 =
3m2

π

8π2

(
dε −

7

3

)
, (482)

where dε has been defined in Eq. (110). The divergent parts of li’s and di’s have been

identified in the heavy-baryon formalism, without considering any specific process, with the

background-field and heat-kernel methods (se Ref. [53], and references therein). We report

below the expressions for these divergent parts from Table 4 of that work:

li = γiλ+ lri (µ) , (483)

di =
βi
f 2
π

λ+ dri (µ) , (484)

where, in the conventions adopted in the present work,

λ =
1

32 π2

(
dε + ln

µ2

m2
π

)
, (485)

lri (µ) =
γi

32 π2 f 2
π

ln
m2
π

µ2
+ lri (mπ) , (486)

dri (µ) =
βi

32 π2 f 2
π

ln
m2
π

µ2
+ dri (mπ) , (487)

where lri (mπ) and dri (mπ) are the physical (i.e., scale independent) LECs from L(4)
ππ and L(3)

πN .

The γi and βi functions of interest here are those relative to l4 and d16 respectively

γ4 = 2 , (488)

β16 =
1

2
gA + g3

A . (489)

We note that LEC d18 has no divergent part. As we can see divergencies, cancel out exactly

in Eq. (481), and we are left with

grA
f rπ

=
gA
fπ

(
1 +

4mr 2
π

grA
dr16 −

7 gr 2
A

12π2f r 2
π

mr 2
π −

mr 2
π lr4
f r 2
π

)
, (490)

where on the r.h.s. we have replaced gA, fπ, mπ by their renormalized quantities, which is

correct to the order Q2 we are considering here. Note that

gA
fπ

=
grA
f rπ

(
1− 4mr 2

π

grA
dr16 +

7 gr 2
A

12π2f r 2
π

mr 2
π +

mr 2
π lr4
f r 2
π

)
. (491)
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APPENDIX F

RENORMALIZATION OF THE ONE-BODY AXIAL

CURRENT

We first discuss the renormalzation of the pion decay constant fπ. The relevant interac-

tion Hamiltonians are

H
(2) ′
πA = fπ

∫
dx
(
Ai · ∂iπr + A0 ·Πr

)
, (492)

H
(2) ′
3πA =

1

2fπ

∫
dx
[
2 (1− 2α)Ai · πr πr · ∂iπr − (2α + 1)Ai · ∂iπr πr · πr

+2 (α− 1/2)A0
a π

r
b Πr

a π
r
b + 2αA0

a (πra π
r ·Πr + Πr · πr πra )

]
, (493)

H
(4) ′
πA =

∫
dx

[
2mr 2

π l4
fπ

Ai · ∂iπr−
δZπ

2
fπ
(
−Ai · ∂iπr+A0 ·Πr

)]
, (494)

where H
(2) ′
πA and H

(2) ′
3πA are the same as in Eqs. (432) and (436) but in terms of renormalized

pion field and mass, while H
(4) ′
πA relative to Eq. (433) includes counter-terms. The contribu-

tions illustrated in Fig. 34 read

a1 = −ifπ
(
k ·Aa − ωA0

a

)
, (495)

a2 = − i

2fπ
J01

[
− (5α + 1/2) Aa · k− (5α− 3/2)A0

a ω
]
, (496)

a3 = −2 i
mr 2
π l4
fπ

k ·Aa + i
δZπ

2
fπ
(
−k ·Aa − ωA0

a

)
. (497)

a1 a2 a3

FIG. 34: Diagrams relevant for the renormalization of fπ.
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We now require that the renormalized (physical) pion decay constant is equal to

−if rπ
(
k ·A− ωA0

a

)
= a1 + a2 + a3 , (498)

implying

f rπ = fπ

(
1 +

mr 2
π l4
f 2
π

− J01

2 f 2
π

)
, (499)

which to the order Q2 of interest also gives

fπ = f rπ

(
1− mr 2

π l4
f r 2
π

+
J01

2 f r 2
π

)
. (500)

This result is in accord with that obtained in Ref. [35].

We can now move on to discuss the renormalization of the axial coupling contant gA

by considering the coupling to Aa. The relevant interaction Hamiltonians are H
(1) ′
ANN and

H
(1) ′
2πNNA in Eqs. (410) and (420), and

H
(3) ′
ANN =−

∫
dxN

r
(

2mr 2
π d16 τ ·Aiγ

iγ5 + δZN
gA
2
τ ·Aiγ

iγ5 +
d22

2
τ · ∂jFijγ

iγ5

)
N r . (501)

We consider a similar set of diagrams as in Fig. 34, but for the incoming pion line replaced

by the external field. Their contributions are given by

b1 =
gA
2
τa σ ·Aa , (502)

b2 = − gA
4f 2

π

J01 τa σ ·Aa , (503)

b3 =
g3
A

48f 2
π

J13 τa σ ·Aa , (504)

b4 =
(gA

2
δZN + 2mr 2

π d16

)
τa σ ·Aa +

d22

2
τa [q× (q× σ)] ·Aa , (505)

and sum up to g rA σ τa/2, with the renormalized axial coupling constant (to order Q2) ob-

tained as

g rA = gA

[
1− 1

2 f r 2
π

J01 −
gr 2
A

3 f r 2
π

J13 +
4mr 2

π

grA
d16

]
, (506)

and g rA, apart from the Goldberger-Treiman discrepancy, is in agreement with Eq. (490). It

is also in agreement with the results, to order Q2, reported by Schindler et al. in Ref. [50].

The term proportional to d22 quadratic in q contributes to the nucleon axial radius [50].
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d1 d2 d3 d4 d5 d6

FIG. 35: Pion-pole diagrams.

Finally we examine the pion-pole contributions illustrated in Fig. 35. We obtain

d1 = −gA
2

Aa · q
q · σ

q2 +mr 2
π

τa , (507)

d2 + d3 =
gA
2f 2

π

(
−mr 2

π l4 +
J01

2

)
Aa · q

q · σ
q2 +mr 2

π

τa , (508)

d4 =
gA
8f 2

π

(10α− 1) J01 Aa · q
q · σ

q2 +mr 2
π

τa , (509)

d5 = − g3
A

48f 2
π

J13 Aa · q
q · σ

q2 +mr 2
π

τa , (510)

d6 =

[
−mr 2

π (2 d16 − d18) +
3 g3

A

16f 2
π

J13

− gA
4f 2

π

(
−2mr 2

π l4 +
10α− 1

2
J01

)]
Aa · q

q · σ
q2 +mr 2

π

τa . (511)

Their sum reads

d1 + · · ·+ d6 = −gA
2

[
1− 1

2 f r 2
π

J01 −
gr 2
A

3 f r 2
π

J13 +
4mr 2

π

grA
d16

](
1− 2mr 2

π

grA
d18

)

×Aa · q
q · σ

q2 +mr 2
π

τa , (512)

and therefore the renormalized grA follows exactly as in Eq. (490), including the Goldberger-

Treiman discrepancy. The renormalized (single-nucleon) current is then given by

j5,a = −g
r
A

2
σ τa +

g rA
2

q
q · σ

q2 +mr 2
π

τa , (513)

and this current is conserved in the chiral limit (mπ → 0), since in that limit grA = g rA.
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APPENDIX G

CONTACT TERMS FOR THE AXIAL CHARGE CURRENT

The weak-interaction potential v5 = A0
a ρ5,a−Aa · j5,a is parity (P) and time-reversal (T )

invariant, which implies that ρ5,a
P−→ −ρ5,a and j5,a

P−→ j5,a, and ρ5,a
T−→ (−)a+1 ρ5,a and

j5,a
T−→ (−)a j5,a. At order Q0 there is no momentum dependence, and consequently there

are no contact terms which can be constructed for ρ5,a, while two such terms occur for j5,a, of

which only one is independent (Fierz identities, see below) and is given in Eq. (173). At order

Q the contact terms in ρ5,a and j5,a must be linear in either ki = p′i−pi or Ki = (p′i + pi) /2

with i = 1 and 2. None can be constructed for j5,a. A complete, but non minimal, set of

hermitian operators for the axial charge ρ5,a is the following:

Õ1 = (τ1,a + τ2,a) (σ1 + σ2) · (K1 + K2) ,

Õ2 = (τ1,a + τ2,a) (σ1 − σ2) · (K1 −K2) ,

Õ3 = i (τ1,a + τ2,a) (σ1 × σ2) · (k1 − k2) ,

Õ4 = (τ1,a − τ2,a) (σ1 − σ2) · (K1 + K2) ,

Õ5 = (τ1,a − τ2,a) (σ1 + σ2) · (K1 −K2) ,

Õ6 = i (τ1,a − τ2,a) (σ1 × σ2) · (k1 + k2) ,

Õ7 = i (τ1 × τ2)a (σ1 − σ2) · (k1 + k2) ,

Õ8 = i (τ1 × τ2)a (σ1 + σ2) · (k1 − k2) ,

Õ9 = (τ1 × τ2)a (σ1 × σ2) · (K1 + K2) .

The antisymmetry of initial and final two-nucleon states requires

Õi = −P τP σP spaceÕi , (514)

where P space is the space exchange operator, and P σ and P τ are the spin and isospin exchange

operators with P σ = (1 + σ1 · σ2) /2 and similarly for P τ . Exchange of the final momenta

of the two nucleons p′1 
 p′2 leads to

P space(k1 + k2) = k1 + k2 , P space(k1 − k2) = 2 (K2 −K1) , (515)

P space(K1 + K2) = K1 + K2 , P space(K1 −K2) = (k2 − k1) /2 , (516)
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while spin exchange implies

P σ (σ1 + σ2) = σ1 + σ2 , P
σ (σ1 − σ2) = i (σ1 × σ2) , P σ (σ1 × σ2) = −i (σ1 − σ2) ,

(517)

and similar relations follow under isospin exchange. The following (Fierz) identities are

obtained from Eq. (514):

Õ2 = Õ3/2 , Õ4 = Õ9 , Õ5 = Õ8/2 , Õ6 = −Õ7 , (518)

while Õ1 is required to vanish. Hence only 4 of the above 9 operators are independent, and

a convenient set is

O1 =
(
Õ7 − Õ8

)
/2 , O2 =

(
Õ7 + Õ8

)
/2 , O3 =

(
Õ6 − Õ3

)
/2 , O4 = Õ4 . (519)

We note that O1 and O3 have the same operator structures associated with the divergent

parts of the loop diagrams.
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APPENDIX H

NONSTATIC CORRECTIONS TO ONE-BODY PION-POLE

DIAGRAM

The one-body axial current, coming from the pion-pole term (diagrams a and b of Fig. 36),

before the expansion of the energy denominator, reads

j5,a(a) =
gA
4
τ1,a

q

Ei − E1 −
√
q2 +m2

π

σ1 · q√
q2 +m2

π

, (520)

j5,a(b) =
gA
4
τ1,a

q

Ei − ωq − E ′1 −
√
q2 +m2

π

σ1 · q√
q2 +m2

π

, (521)

where Ei = ωq +E1 is the initial energy carried, respectively, by the external axial field and

the nucleon,
√
q2 +m2

π is the pion energy, q is the three-momenta of the axial field, and a

momentum conserving δ-function is understood.

a b

FIG. 36: Time orderings for the pion-pole one-body axial current topologies, indicated in

diagram a2 of Fig. 4. Nucleons, and pions are denoted by solid, and dashed lines, respectively.

The second nucleon line is not displayed. See text for further explanations.

The LO contribution enters at order Q−3, obtained by the LO expansion of energy de-

nominators of diagrams a and b and it is the pion-pole analogue the one-body GT operator

j
(−3)
5,a (a + b) = −gA

2
τ1,a

q

q2 +m2
π

σ1 · q . (522)

The nonstatic correction at order Q−2 turns out to vanish on the energy shell

j
(−2)
5,a (a + b) = −gA

2
τ1,a

q

(q2 +m2
π)3/2

σ1 · q (2Ei − E1 − E ′1 − ωq) = 0 . (523)
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We take it to vanish off-the-energy-shell too. At order Q−1 Eq. (520) reads

j
(−1)
5,a (a + b) = −gA

2
τ1,a

q

(q2 +m2
π)2
σ1 · q (E ′1 − E1)

2

= −gA
2
τ1,a

q

(q2 +m2
π)2
σ1 · q ω2

q , (524)

where the two forms are equivalent on the energy shell. In this Thesis the off-the-energy-

shell-extension of the one-body axial current at order Q−1 used is the one reported in the

second line of Eq. (524).



130

APPENDIX I

REGULARIZED LOOP CONTRIBUTIONS TO jMPE
5,a

The regularized contributions of diagrams in Fig. 10 read:

j
(1)
5,a(e1) =

g3
A

64 πf 4
π

τ2,a

∫ 1

0

dz

[
σ1M(k2, z) + k2 σ1 · k2

zz

M(k2, z)

]
, (525)

j
(1)
5,a(e4) = − g3

A

64 πf 4
π

τ2,a σ2

∫ 1

0

dz

[
k2

1zz

M(k1, z)
+ 3M(k1, z)

]
, (526)

j
(1)
5,a(e5) =

g3
A

128πf 4
π

q

q2 +m2
π

∫ 1

0

dz

[
τ2,a σ2 · (k1 − k2)

[
k2

1 zz

M(k1, z)
+ 3M(k1, z)

]

− (τ1 × τ2)a (σ1 × σ2) · k1M(k1, z)

]
, (527)

j
(1)
5,a(e8) = − g5

A

64 π f 4
π

∫ 1

0

dz

[
τ2,a

[
5σ1M(k2, z) +

k2

2
σ1 · k2

[
k2

2 (zz)2

M(k2, z)3
+

1− 7 zz

M(k2, z)

]

+
k2

2

2
σ1

[
9 zz − 1

M(k2, z)
− k2

2 (zz)2

M(k2, z)3

]]
+
τ1,a

2
(σ2 × k2)× k2

1

M(k2, z)

]
, (528)

j
(1)
5,a(e10) =

g3
A

128π f 4
π

q

q2 +m2
π

∫ 1

0

dz

[
(2 τ2,a − τ1,a)

[
k2

2

M(k2, z)
+ 3M(k2, z)

]
σ1 · k2

+ (τ1 × τ2)aM(k2, z) (σ1 × σ2) · k2

]
, (529)

j
(1)
5,a(e15) =

g3
A

128π f 4
π

∫ 1

0

dz

[
τ2,a

[
k2

1 zz

M(k1, z)
+ 3M(k1, z)

]
(k2 − 3 k1)

+4 (τ1 × τ2)a (σ1 × k1)M(k1, z)

]
σ2 · k2

ω2
2

, (530)

j
(1)
5,a(e16) =

g3
A

128π f 4
π

q

q2 +m2
π

∫ 1

0

dz

[
τ2,a

[
− 10M(k1, z)

3 +M(k1, z)(15m2
π + 11 k2

1

+3 k2
2 + 3 q2 − 20 k2

1zz) +
k2

1 zz

M(k1, z)
(5m2

π + k2
2 + q2 + 3 k2

1 − 2 k2
1zz)

]

−2 (τ1 × τ2)a (σ1 × k1) · (k2 + q)M(k1, z)

]
σ2 · k2

ω2
2

, (531)

j
(1)
5,a(e17) =

g3
A

32π

m3
π

f 4
π

τ2,a
q

q2 +m2
π

σ2 · k2

ω2
2

, (532)
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where M(k, z) and z have been defined in Eqs. (199). The contributions corresponding to

diagrams e2, e9, and e21 easily follow from those for e1, e8, and e20. The loop functions Wi

and Zi introduced in Eqs. (250) and (251) are defined as

W1(k) =

∫ 1

0

dz

[(
1− 5 g2

A

)
M(k, z)− g2

A k
2

2

[
9 z z − 1

M(k, z)
+

k2(z z)2

4M(k, z)3

]]
, (533)

W2(k) =

∫ 1

0

dz

[
−g

2
A (z z)2 k2

M(k, z)3
+
z z (7 g2

A + 2)− g2
A

2M(k, z)

]
, (534)

W3(k) = −1

2

∫ 1

0

dz
1

M(k, z)
, (535)

Z1(k) =

∫ 1

0

dz

[
z z k2

M(k, z)
+ 3M(k, z)

]
, (536)

Z2(k) =

∫ 1

0

dz

[
4m3

π − 10M(k, z)3 +M(k, z) (15m2
π + 14 k2 − 6 q · k + 6 q2

−20 z z k2) +
z z k2

M(k, z)

(
5m2

π + 4 k2 + 2 q2 − 2 q · k− 2 k2 z z
) ]

, (537)

Z3(k) =

∫ 1

0

dzM(k, z) . (538)
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APPENDIX J

LEADING ORDER AXIAL CHARGE IN COVARIANT

PERTURBATION THEORY

We discuss here how the one-body axial charge operator emerges in covariant perturbation

theory. The relevant interaction Hamiltonian densities are

HπA(x) = fπ A0(x) ·Π(x) , (539)

H(a)
πNN(x) =

gA
2fπ

N(x)τ ·Π(x)γ0γ5N(x) , (540)

H(b)
πNN(x) =

gA
2fπ

N(x)τ · ∂iπ(x)γiγ5N(x) , (541)

where all fields are in interaction picture.

a b

FIG. 37: Feynman amplitudes contributing to the one-body axial charge at leading order.

The S-matrix elements associated with the Feynman amplitudes in Fig. 37 are given by

S
(γ)
fi = −1

2

∫
d4x d4y 〈p′, λ′|T

[
HπA(x)H(γ)

πNN(y) +H(γ)
πNN(x)HπA(y)

]
|p, λ〉 , (542)

where γ = a or b, T denotes the usual chronological product. Then for γ = a we obtain

S
(a)
fi = − gA

8m
χ†λ′ σ · (p

′ + p) A0
c τd χλ

∫
d4x d4y

[
ei(p

′−p)·y−iq·x〈0|T [Πc(x) Πd(y)] |0〉

+ ei(p
′−p)·x−iq·y〈0|T [Πd(x) Πc(y)] |0〉

]
, (543)

where we have considered the leading order in the non-relativistic expansion of the nucleon

matrix element. Since in the interaction picture the conjugate field momentum Πc(x) =
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∂0πc(x), it is easily seen that (see also Ref. [86])

〈0|T [Πc(x) Πd(y)] |0〉 = ∂0
x ∂

0
y 〈0|T [πc(x) πd(y)] |0〉 − i δcd δ(x0 − y0) δ(x− y)

= −i δcd
∫

d4k

(2π)4
e−ik·(x−y)

(
1 +

k2
0

m2
π − k2 − iε

)
, (544)

with the Feynman propagator defined by

〈0|T [πc(x) πd(y)] |0〉 =

∫
d4k

(2π)4

−i δcd
m2
π − k2 − iε

e−ik·(x−y) . (545)

The T -matrix element Tfi obtained from Sfi = −i (2π)4 δ(p′ − p− q)Tfi reads

T
(a)
fi = − gA

4m
A0
c χ
†
λ′ σ · (p

′ + p) τc χλ

(
1 +

q2
0

m2
π + q2 − q2

0 − iε

)
, (546)

where the term proportional to q0 = p′0− p0 is suppressed by Q2 in the power counting. The

leading order term leads to the axial charge operator in Eq. (148). A similar analysis shows

that the leading-order contribution to S
(b)
fi vanishes.

As already noted, the interaction Hamiltonian in Eq. (75) contains no direct coupling of

A0
a to the nucleon. However, diagrams of the type illustrated in Fig. 37 are not considered

in Refs. [28, 48]. It would appear that their contribution is accounted for by retaining the

term −i δcd δ(x−y) in Eq. (544), which effectively leads to a direct coupling between A0
a and

the nucleon.
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APPENDIX K

CONFIGURATION-SPACE EXPRESSIONS

The Fourier transforms of two-body operators are easily reduced to one-dimensional

integrals [or two-dimensional ones in the case of the N4LO(MPE) operator], which can be

conveniently evaluated by Gaussian quadrature formulae. For example, the N3LO(OPE)

current is given by

jN3LO
± (OPE) = jN3LO

± (c3) + jN3LO
± (c4) + jN3LO

± (nl) , (547)

where

jN3LO
± (c3) = −τ2,±

[
F1(z; c3)

z
σ2 + F2(z; c3) ẑ (σ2 · ẑ)

]
+ (1
 2) , (548)

jN3LO
± (c4) = − (τ1 × τ2)± σ1 ×

[
F1(z; c4)

z
σ2 + F2(z; c4) ẑ (σ2 · ẑ)

]
+ (1
 2) , (549)

jN3LO
± (nl) = − (τ1 × τ2)± {−i∇

z
1 , F1(z; nl) σ2 · ẑ }+ (1
 2) . (550)

Here we have defined r = r1 − r2, the adimensional variable z = Λ r, −i∇z
i as the adimen-

sional momentum operator, and the radial functions

F1(z; c3) = − 1

π2

gA c3

f
2

π

∫ ∞

0

dx
x3

x2 +m 2
π

e−x
4

j1(xz) , (551)

F2(z; c3) =
1

π2

gA c3

f
2

π

∫ ∞

0

dx
x4

x2 +m 2
π

e−x
4

j2(xz) , (552)

where jn(xz) are spherical Bessel functions. We have also introduced adimensional constants

(denoted with the overline) expressing them units of the cutoff Λ. They are given by

mπ = mπ/Λ , m = m/Λ , fπ = fπ/Λ , c3 = c3 Λ , c4 = c4 Λ . (553)

The functions F1(z; c4) and F2(z; c4), and F1(z; nl) follow from those above by the replace-

ment of the pre-factor as

1

π2

gA c3

f
2

π

−→ 1

4π2

gA

f
2

π

(
c4 +

1

4m

)
for F1(z; c4) and F2(z; c4) , (554)

1

π2

gA c3

f
2

π

−→ 1

16π2

gA

mf
2

π

for F1(z; nl) . (555)
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The Fourier transform of the three-body operator is given by

jN4LO
± (3B) =

∑

cyc

(2 τ1,± τ2 · τ3 − τ2,± τ3 · τ1 − τ3,± τ1 · τ2)

×σ1 (σ2 · ẑ12) (σ3 · ẑ13)F1(z12; 3B)F1(z13; 3B) , (556)

and the function F1(z; 3B) is obtained from F1(z; c3) by replacing

1

π2

gA c3

f
2

π

−→ 1

4
√

2 π2

g
3/2
A

f
2

π

. (557)

The Fourier transform of the second term in the N4LO(3B) current of Eq. (294) propor-

tional to σ1 · k1 can be reduced to a two-dimensional parametric integral. To this end we

first regularize it as,

2nd term =
∑

cyc

g3
A

6 f 4
π

(isospin) σ3 ·∇3 σ2 ·∇2 σ1 ·∇1 ∇1 I , (558)

I =

∫
dk2

(2π)3

dk3

(2π)3
CΛ(|k2 + k3 |) e−i(k2·r12+k3·r13) 1

ω2
k2+k3

ω2
k2
ω2
k3

, (559)

where (isospin) stands for the isospin factor in parentheses of Eq. (556). After changing

variables to k2 = P/2 + p and k3 = P/2 − p, making use of Feynman’s parametrization

for the denominator 1/
(
ωP/2+k ωP/2−k

)
, and carrying out the angular integration over the

P directions, we find

I =
1

16π3

∫ 1/2

−1/2

dy

∫ ∞

0

dP P 2 e−(P/Λ)4

P 2 +m2
π

j0 (P |r1−R23 + y r23 |) e−L(P,y) r23
1

L(P, y)
, (560)

where

L(P, y) =
√
m2
π + P 2 (1/4− y2) . (561)

In terms of adimensional variables, the current now reads

2nd term =
∑

cyc

g3
A

96π3 f
4

π

(isospin) σ3 ·∇z
3 σ2 ·∇z

2 σ1 ·∇z
1 ∇z

1

∫ 1/2

−1/2

dy

∫ ∞

0

dx x2 e−x
4

x2 +m2
π

×e−L(x,y) z

L(x, y)
j0 (x |Z + y z |) , (562)

where the gradients are relative to zi = Λ ri, and we have defined Z = Λ (r1 −R23) and

z = Λ r23, and

L(x, y) =
√
m2
π + x2 (1/4− y2) . (563)
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In order to evaluate the gradients, we introduce the Jacobi variables,

∇z
1 = ∇Z , ∇z

2 = −1

2
∇Z + ∇z , ∇z

3 = −1

2
∇Z −∇z , (564)

where the gradients ∇Z and ∇z are now relative to Z and z, respectively. We obtain

σ3,δ σ2,γ σ1,β

(
1

4
∇Z
δ ∇Z

γ −∇z
δ∇z

γ −
1

2
∇Z
δ ∇z

γ +
1

2
∇z
δ∇Z

γ

)[
e−Lz ∇Z

β∇Z
α j0 (x |Z + y z |)

]

= x2 e−Lz σ3,δ σ2,γ σ1,β

{
x2

(
1

4
− y2

)
∇t
δ∇t

γ∇t
β∇t

α − xL
(

1

2
− y
)
ẑδ∇t

γ∇t
β∇t

α

+xL

(
1

2
+ y

)
ẑγ∇t

δ∇t
β∇t

α −
[
L

2
(

1 +
1

Lz

)
ẑδ ẑγ −

L

z
δγδ

]
∇t
β∇t

α

}
j0(t) , (565)

where we have defined t = xZ + x y z and the corresponding gradient ∇t. By making use

of the identities

∇t
β∇t

α j0(t) = δαβ

(
1

t

d

dt

)
j0(t) + tα tβ

(
1

t

d

dt

)2

j0(t) , (566)

∇t
γ∇t

β∇t
α j0(t) = (δαβ tγ + δαγ tβ + δβγ tα)

(
1

t

d

dt

)2

j0(t) + tα tβ tγ

(
1

t

d

dt

)3

j0(t) , (567)

∇t
δ∇t

γ∇t
β∇t

α j0(t) = (δαβ δγδ + δαγ δβδ + δβγ δαδ)

(
1

t

d

dt

)2

j0(t) + (δαβ tγ tδ + δαγ tβ tδ

+δβγ tα tδ + δαδ tβ tγ + δβδ tα tγ + δγδ tα tβ)

(
1

t

d

dt

)3

j0(t)

+tα tβ tγ tδ

(
1

t

d

dt

)4

j0(t) , (568)

and (
1

t

d

dt

)m
j0(t) = (−)m

1

tm
jm(t) , (569)

the current in Eq. (562) is reduced to a sum of terms depending on parametric integrals

in x and y. While the matrix element of 2nd term could in principle be evaluated, the

computational effort required to do so in the present Monte Carlo calculations is, however,

too large (and unjustified in view of its expected contribution, see Table 1). For this reason

it has been neglected in Ch. 6 of the present Thesis.
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