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ABSTRACT

NUCLEAR CHIRAL AXTAL CURRENTS AND APPLICATIONS TO
FEW-NUCLEON SYSTEMS

Alessandro Baroni
Old Dominion University, 2017
Director: Dr. Rocco Schiavilla

This Thesis is divided into three main parts. The first part discusses basic aspects of
chiral effective field theory and the formalism, based on time ordered perturbation theory,
used to to derive the nuclear potentials and currents from the chiral Lagrangians. The
second part deals with the actual derivation, up to one loop, of the two-nucleon potential
and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet
divergences generated by loop corrections are isolated using dimensional regularization. The
resulting axial current is finite and conserved in the chiral limit, while the axial charge
requires renormalization. A complete set of contact terms for the axial charge up to the
relevant order in the power counting is constructed. The third part of this Thesis discusses
two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used
to constrain the single low-energy constant entering the axial current; (ii) the calculation
of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed
previous predictions obtained in phenomenological approaches. These latter studies have
played an important role in the analysis and interpretation of experiments at the Sudbury

Neutrino Observatory.
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CHAPTER 1

INTRODUCTION

The understanding of the structure and dynamics of nuclei has been a long-standing
goal of nuclear physics. Typical binding energies are of order 8 MeV per nucleon and Fermi
momenta are around 1.35 fm~!. Therefore nucleons are essentially non-relativistic and this
justifies the conventional approach in which the nucleus is taken to consist of nucleons
interacting with each other via two- and many-body effective potentials, and with external
electroweak fields via one- and many-body effective currents. This picture has succeeded in
describing satisfactorily many nuclear properties at a quantitative level (for a review, see
Ref. [1]).

At a more fundamental level, nuclear interactions can be seen in terms of the interactions
between the nucleon constituents, quarks and gluons. However the nonperturbative character
of quantum chromodynamics (QCD) at low energies makes the problem of computing nuclear
observables directly from QCD extremely difficult. One of the approaches used to study QCD
in this non-perturbative regime is lattice QCD [2]. While lattice calculations (for light nuclei)
have made and continue to make great progress, they are still in their infancy, and at this
point in time are only able to provide a rather crude description of even the lightest nuclei
(for a recent review see Ref. [3]).

Another approach that has been proven to be successful in the description of nuclear
properties, and which we adopt in the present Thesis, is based on chiral effective field theory
(YEFT). In general, effective field theories are low-energy approximations to more fundamen-
tal theories. The general prescription for building an effective field theory requires writing
down the most general Lagrangian consistent with all the symmetries of the underlying the-
ory [4]. Each term in the Lagrangian is multiplied by a coefficient, known as low energy
constant (LEC). A specific example of effective field theory is YEFT where, in its simplest
formulation, nucleons and pions, rather than quarks and gluons, are the degrees of freedom.
This framework was originally proposed by Weinberg in the early 1990’s [5], and it has the
great advantage of providing a direct connection between the symmetries of QCD and the
nuclear forces. It also provides a practical calculational scheme that can, at least in principle,

be improved systematically.



During the last quarter century, yEFT has been used extensively to derive two- and
many-nucleon interactions. After more than two decades of work, two-nucleon potentials
have reached a precision close to that obtained by phenomenological representations [5, 6,
7, 8,9, 10, 11]. This theoretical framework, based on the symmetries of QCD, has also
been used to derive three- and four-nucleon forces consistently with the two-nucleon forces
[12, 13, 14, 15]. The application of these chiral forces in nuclei with A > 3 has just started,
but is already leading to promising results in the description of few-nucleon observables [16].

Similarly, the interaction of nuclei with electroweak probes can be seen in terms of the
interactions of quarks with electroweak gauge bosons (the massless photon and the massive
W* and Z°), but can also be described in YEFT. Indeed, a number of few-nucleon reactions
with external electroweak probes has been investigated in such an approach (for a review
see Refs. [17, 18, 19] and references therein). Electromagnetic operators were first derived
in a pioneering work of Park et al. [20], using covariant perturbation theory (Feynman
diagrams). More recently, these electromagnetic currents have been derived by the JLab-
Pisa group [21, 22, 23, 24] and, independently, by the Bochum-Bonn group in time ordered
perturbation theory [25, 26], but with different prescriptions for isolating non iterative terms
in reducible contributions. The resulting operators have been used to study a variety of
electromagnetic observables, such as the charge and the magnetic radii and form factors of
the deuteron and trinucleons (*He and *H) [24, 27].

In this Thesis we focus on the weak axial charge and current operators. These were
first obtained in YEFT in a paper by Park et al. [28], under a number of approximations
(among others, near-threshold kinematics and ignoring altogether reducible diagrams). Here
we adopt time ordered perturbation theory and further extend the formalism developed
in Refs. [22, 23, 24]. We obtain an axial current that is finite and conserved in the limit
of vanishing pion mass (known as the chiral limit). In contrast, loop corrections to the
axial charge are divergent and we carry out a renormalization procedure, including a careful
analysis of higher-order chiral Lagrangians and the construction of a complete set of contact
terms for the axial charge.

The second objective of this Thesis is to apply these currents and study selected elec-
troweak observables in few-nucleon processes, specifically tritium (S-decay and neutrino-
deuteron inclusive scattering. The tritium Gamow-Teller matrix element has been computed
with trinucleon wave functions obtained from available two- and three-nucleon potentials cor-
responding to either YEFT or meson-exchange phenomenology. The calculations of neutrino-

deuteron cross sections at low energy have been carried out only in the YEFT framework.



The results obtained in this Thesis have confirmed those of previous phenomenological calcu-
lations that played a crucial role in the analysis and interpretation of the Sudbury Neutrino
Observatory experiments [29]. These experiments established solar neutrino oscillations and
the validity of the standard model for the generation of energy and neutrinos in the sun [30].

This thesis is organized as follows. In Chapter 2 we discuss the QCD Lagrangian and
its symmetries— these are relevant for the construction of the chiral Lagrangians. Power
counting is introduced and the chiral Lagrangians needed for the calculation of the weak-
axial current are presented. In Chapter 3 the formalism used to derive nuclear potentials and
electroweak currents is outlined. It is based on time ordered perturbation theory and allows
us to isolate non iterative terms in reducible contributions in a systematic way. In Chapter
4 the well-known derivation of the two-nucleon potential up to one loop is sketched out. In
Chapter 5 the derivation of the nuclear axial current and charge up to one loop is presented in
considerable detail. After illustrating the calculation of the numerous diagrams, we show that
important consistency checks of the calculation are satisfied (i.e., conservation of the current
in the chiral limit, renormalization of the axial charge, etc.). In Chapter 6 this axial current
is used to study tritium beta decay. In particular the use of nuclear wave functions derived
from chiral potentials allows us to carry out a consistent yEFT calculation for the first time
at high orders in the power counting. In Chapter 7 the axial current and charge obtained
here, along with the previously derived electromagnetic current and charge, are employed to
calculate the inclusive cross section for low energy neutrino-deuteron scattering. In Chapter
8 a summary of the results obtained is presented and possible future developments of this
work are outlined. The appendices contain formal details. Appendices A and B report the
explicit expressions of the chiral Lagrangians and corresponding interaction vertices needed
for the calculations. Appendices C, D, E, and F contain details about the renormalization
procedure adopted for the potential and currents. Appendix G deals with the construction
of the contact axial charge operator. Appendix H illustrates nonstatic corrections for a
class of diagrams relevant for the calculation of the axial current. Appendix I reports the
regularized expressions for the loop contributions to the axial current. Appendix J discusses
how the results in the one-body sector emerges in covariant perturbation theory. Lastly,
Appendix K reports configuration-space expressions for the currents used in the tritium

[B-decay calculation.



CHAPTER 2

CHIRAL EFFECTIVE FIELD THEORY

The nonperturbative nature of quantum chromodynamics (QCD) at low energies makes
the task of performing ab initio (i.e., starting from the QCD Lagrangian) calculations of
observables relevant for low-energy hadronic processes very difficult. One approach that
has been successful in the description of low-energy processes is known as chiral effective
field theory (YEFT). Pions and nucleons (and low-energy excitations of the nucleon, such as
the A isobar), rather than quarks and gluons, are the degrees of freedom of yEFT. Chiral
symmetry requires the pion to couple to these baryons, as well as to other pions, by powers
of its momentum (). As a consequence, classes of Lagrangians emerge, each characterized
by a given power of Q/A,, where A, ~ 1GeV is the chiral symmetry-breaking scale, or
equivalently, a given order in the derivatives of the pion field and/or pion mass factors, and
each containing a certain number of unknown parameters, so called low-energy constants
(LECs). These LECs could in principle be calculated from the underlying QCD theory of
quarks and gluons but, in practice, they are fixed by comparison with experimental data.
They effectively encode short-range physics and the effects due to the excitation of baryon
resonances, such as the A isobar, and heavy meson exchanges, not explicitly retained in
the chiral Lagrangians. This approach was first developed to study pion-pion scattering in
Refs. [4, 31], and later extended to study pion-nucleon scattering. In the next sections, after
introducing chiral symmetry at the quark level, we illustrate how chiral pion-pion and pion-
nucleon Lagrangians emerge using the exact symmetries (Lorentz, parity, and time reversal)
and the approximate chiral symmetry of QCD. In the following, we adopt the conventions

of Ref. [32] in regards to the  matrices.
2.1 CHIRAL SYMMETRY AND THE QCD LAGRANGIAN

The QCD Lagrangian density in the two-flavor case of light up- and down-quarks is
1

'CQCD = Z ?(55) (Z’yuDu - mf) f(.??) - ZGuu,a(x)GgV(x)
f=u,d
— (@) (19D — M) ax) — ~ G a )G () 1)

4



where

D, =0,—1igG(r)\a/2, (2)
where A, with a = 1...8 are the SU(3)color Gell-Mann matrices (i.e., the generators of SU(3)
in the fundamental representation),

Gy () = "Gy () — 0"Gl(x), (3)

the gluon-field strength tensors, and G¥(x) are the gluon spin-one fields. The sum over
repeated color indices a goes from 1 to 8. Further, the quark fields ¢(z) and the quark mass

matrix M are respectively given by

u(z) m, 0
Q(x) = ) M = ) (4)
d(x) 0 my
where spinor and color indices are understood and m,, and mg4 are the up- and down-quark

masses. In Eq. (1), the #-term and gauge-fixing terms are not explicitly included, since they

are not relevant in the present study. Having defined the right- and left-handed quark fields,

o) = e = 00
o) = 15T = 0] ”

we can write Eq. (1) as

Gal@)GL (2. (6)

a

Loop = qu()inD"qr(x) +qp(x)inu D' qr(z) — 4, (2) Mar(z) — gp(e) Mgy (z)
1
4

Left and right components of the quark fields are connected only through the mass matrix
M. The light quark masses (in the MS scheme at the scale y = 2 GeV) are [33]

my >~ (1.5 = 3.3) MeV , mg >~ (3.5 —6.0) MeV . (7)

These quark masses are significantly smaller than the typical hadronic masses, which (apart
from the pion mass) are of the order of 1 GeV. Therefore when studying low energy QCD,
as a starting point we consider the Lagrangian density in Eq. (1) in the limit of vanishing

quark masses, known as the chiral limit,

1

Locp = (@)D qr(@) + Tp(@)inu D qr(w) = 7 Gru,a(2)GE¥ (2). (8)



This Lagrangian is invariant under the following global transformations

Ur : gr(z) = dplz) = e Oqp(w), (9)
U = qulz) = qplz) = e O qr(a), (10)
SUR)r = qr(z) = qg(x) = e " ?qp(z) = Rqn(z), (11)
SU@2)L : qu(w) = qpz) = e 7 q(2) = Lar(x), (12)

where 7 denotes the Pauli matrices in flavor space, O r and 0 i are, respectively, real

/2 and

numbers and three-dimensional real vectors, and the 2 x 2 matrices R = e 7
L = e727/2 have been defined. The symmetry group associated with the transformation
laws in Egs. (9)-(12) is denoted as U(1)gp ® U(1), ® SU(2)r ® SU(2)1, and can be shown

[34] to be isomorphic to the group G' = U(1)y @ U(1)4 ® SU(2)y ® SU(2) 4, defined as

Uy = qz) = q'(z) = e V().
UM)a = gq(z) = ¢'(x) = e (),
SUQRv : qla) = d'(x) = e q(z) =V q(z),
SU(2)a : q(x) = ¢'(x) = e 047 2(2) = Aq(z), (13)

where Oy 4 and 0y 4 are again real numbers and three-dimensional real vectors, respectively,
with the 2 x 2 matrices V' and A defined accordingly. We note that for m, = my #
0 the Lagrangian density in Eq. (1) is invariant under transformations of the subgroup
U(l)y ® SU(2)y of G'. We also note that for each one of the eight generators of G’ we
obtain the following eight currents [34]

Ju(z) = q(@)ya(x),

Jus(@) = q@)y5q(2),

julr) = Sa@mra(s),

Jus(x) = %G(x)w%ﬂz(x)' (14)

In the chiral limit, using Néether’s theorem, it can be shown [34] that these eight currents
are conserved at the classical level. At the quantum level, the only classical symmetry be-
longing to the group G’ that turns out to be broken is U(1) 4 [34]. The symmetry associated
with U(1)y corresponds to quark number conservation (and it holds in the case of generic
M). The subgroup of G’ relevant for the following discussion is SU(2)y ® SU(2)4, which

we will denote as G hereafter. In spite of the fact that Eq. (1) is approximately invariant



under G, the ground state of QCD is symmetric only respect to its vector subgroup SU(2)y
[34]. Therefore the classical symmetry associated with G is said to be spontaneously broken
into its vector subgroup SU(2)y. There are various experimental facts behind this phe-
nomenon. Hadrons in nature arrange themselves in almost mass degenerate multiplets of
SU(2)y, which implies that the vacuum of QCD (in the limit of vanishing quark masses) is
invariant under SU(2)y. If chiral symmetry had not been spontaneously broken, then we
would have observed doublets of particles with opposite parity. However, no such doublets
are observed in the low-energy hadronic spectrum. Another strong argument in favor of
spontaneous symmetry breaking is the existence of pseudoscalar mesons (pions) that are
natural candidates for the corresponding massless Nambu-Goldstone bosons whose existence
is implied by Goldstone’s theorem. However, pions are not exactly massless, but have a
small mass due to the explicit chiral symmetry breaking by the nonvanishing quark masses.
These arguments support the notion that the chiral group G is spontaneously broken down
to SU(2)y.

In order to study the coupling to external probes in low energy QCD we promote, fol-
lowing Refs. [35, 36], the global symmetry described by G to a local one. This is achieved
by allowing the real parameters of Egs. (13) to depend on space-time coordinates z, i.e.,
Oy a(z) and Oy 4(x), and corresponding local vector and axial matrices V' (x) and A(x). It
can be shown [34] that, in order for Lgcp to be invariant in the chiral limit under local

transformations of G, it is necessary to introduce the following hermitian fields

0l@) = 2 Vyla), ale) = - Agf). (15)

It is also convenient to introduce the scalar s(z) and pseudoscalar p(z) hermitian fields,
proportional to the identity matrix in isospin space, in order to reproduce the mass term
that gives the explicit chiral symmetry breaking [34]. The following Lagrangian results
(35, 36]

L = Lycp+ @)y [vu(x) + 7 au(x)] q(z) —q(2) [s(x) — iv’p(2)] ¢(2)
= Lop + Lext (16)

where E%CD denotes Locp in the chiral limit and Ley denotes the Lagrangian depending

on the external sources. We introduce the fields

ru(@) = vu(@) +au(x), (@) = vu(@) = au(z), (17)



and rewrite £ in terms of left and right components of the quark fields obtaining for L.

Lo = qr(@)7"u(r)qr(@) + gr(e)y*ru(r)qr(z)
—qr(2) [s(x) +ip(2)] qr(2) = gp(2) [s(2) — ip(2)] gr(z) . (18)

The invariance of £ under local transformations of the chiral group G is achieved if the

external sources transform in the following way

r.(z) — R()r.(z)R'(z) +iR(2)0, R (v), (19)
L(z) — L)l (z)L(z) +iL(x)0,L(z), (20)
s(x) +ip(x) — R(x)[s(z) + ip(x)]Li(x), (21)
s(x) —ip(z) — L(2)[s(x) — ip(a)|R(2), (22)

where the parameters that characterize the R and L transformations are now functions of x
in analogy with the V(z) and A(z) transformations defined previously. It is instructive to
show how the coupling between quarks and the charged weak bosons VVMi arises from £. This
is important in the description of semileptonic weak decays such as pion decay 7= — u~ v,
or neutron decay n — pe~ 7,. Choosing the external fields as

re=0, l,=—2(W!T +hc), (23)

V2

where h.c. refers to the hermitian conjugate, g is the weak coupling related at lowest order

of perturbation theory to the Fermi constant

Gr=v2¢"/(8 Myy),

I~ (g V@) | (21)

with V,4 the Cabibbo-Kobayashi-Maskawa quark-mixing matrix element describing the

and

transformation between two-flavor QCD eigenstates and the corresponding weak eigenstates.

Therefore, inserting Eq. (23) into Eq. (18), we obtain

9 _
/Cext = —m [W; Vudu7”(1 — 75)d+ hC} N (25)

namely the well-known electroweak Lagrangian that describes the coupling of up and down

quarks to the massive charged weak bosons.



Before proceeding any further, we remark that the external-source formalism has a deeper
meaning than one described above. In quantum field theory the relevant quantities are
Green’s functions, which are vacuum expectation values of time-ordered products, and can
be related to the physical scattering amplitude through the LSZ reduction formalism. Sym-
metries provide strong constraints on Green’s functions, and among Green’s functions. These
relations are known as chiral Ward identities. In particular it has been shown in Ref. [37]
that the infinite set of all chiral Ward identities satisfied by the Green’s functions of QCD
are equivalent, in the absence of anomalies, to an invariance of the generating functional

under a local transformation of the external fields.
2.2 EFFECTIVE LAGRANGIAN FOR PIONS

We focus on energy scales small enough so that only pions need to be treated as explicit
degrees of freedom, all other mesons can be integrated out in this limit. In the following
7, denotes the pion field of isospin component a, while 7t the isotriplet of pion fields, and
the dependence on the space-time coordinates x is understood. We recall that QCD is
invariant under the discrete symmetries (parity, time-reversal, and charge conjugation), the
proper Lorentz group, and in the chiral limit, the chiral group G introduced in the previous
section. As first shown in Refs. [38, 39], the pion field 7, transforms linearly under the
subgroup SU(2)y of G and nonlinearly under the full group SU(2)y x SU(2) 4. In particular,
considering a generic parametrization U (a matrix in isospin space) of the pion fields, it can
be shown [38, 39] that under SU(2), x SU(2)r

U—U =RUL", (26)

where L and R are the global transformations that have been defined in Egs. (11)—(12). In
general, we require U to be unitary [34] with determinant equal to one, and assume it can

be expanded in powers of 7, as
1 ' 8a—1
U = 1+LT'7T——7T2—B71'2T-7T+ @

J 212 P 8 fx

where the first three terms of the expansion are fixed and the parameter « is arbitrary.

™+ (27)

Common choices are & = 0 and o« = 1/6 corresponding, respectively, to the non-linear sigma
model U = (¢ +iT - m)/f, with ¢ = /f2 — m2 and to the exponential parametrization
U = exp(iT -7/ fz), where f. is the pion decay constant whose value is ~ 92MeV. We
require the effective Lagrangian to have the same symmetry group of massless QCD, i.e., be

invariant under Lorentz and chiral transformations. The building blocks are the matrices U
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and U', and four dimensional derivatives (denoted with d,,) of these quantities. In particular,
Lorentz invariance requires that the number of derivatives to be even, so that the effective

Lagrangian can be written as
Lov = L4 LG4, 23)

where the superscripts denote the power of Q)/A, (we recall, for clarity, that @ is the low
momentum scale associated with incoming and outgoing pion momenta, and A, ~ 1GeV is
the chiral symmetry-breaking scale). As an example, we discuss how the kinetic term of the
leading order pion Lagrangian arises.

It is a simple exercise (see, for example, Ref. [34]) to show that the leading order (LO)
Lagrangian is
IE
4

where f; turns out to be the pion decay constant, and (---) denotes the trace in the two-

LY = T0U(2)0"U (), (29)

flavor space. It is worth noting that, as shown in Refs. [38, 39|, all realizations of chiral

symmetry are equivalent to each other modulo non linear field redefinitions of the following

type
n =nF[n], with F[0] =1. (30)

According to Haag’s theorem [40], such nonlinear field redefinitions do not affect the S
matrix elements. As a consequence 77 scattering amplitudes will be independent on the
parametrization of the pion field (i.e., the o dependence in Eq. (27) must cancel out). It can
be easily shown that, expanding U in powers of the pion field, the LO Lagrangian assumes

the following form

L) = Som 'mtO(Y), (31)
that corresponds to the kinetic term of a scalar field. It is clear now that the factor f2/4 in
Eq. (29) has been chosen so as to reproduce the correct normalization for the kinetic term
of the pion field. We are left with the problem that the Lagrangian in Eq. (29) describes
interactions of massless pions, while the pions in the real world have a nonvanishing mass.
Therefore, in order to introduce a nonvanishing mass term for the pion, linked to the explicit
chiral symmetry breaking pattern present in the quark-level Lagrangian Locp, we observe
that the mass term of Locp would be invariant under chiral transformations if, instead of

the matrix M, we would have a matrix M that under SU(2)r x SU(2)g would transform as

M — M =RML'. (32)
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So, using M , we can build the most general Lagrangian invariant under the exact Lorentz,
parity and charge conjugation symmetries, and chiral symmetry at first order in M as
f2B

Loy = “T<A7UT(:¢)+U(:5)J\7T>. (33)

We can now replace M by the quark mass matrix M, and notice that Eq. (33) has the
same chiral-symmetry-breaking pattern of the quark mass term in Lagrangian of Eq. (6).
Expanding Eq. (33) in powers of the pion field, we obtain

B
‘cs.b. = fy%B<mu + md) - 5 (mu + md) 71'2 + O(ﬂA) ) (34)

where we require the second term to be the pion mass with m2 = B(m, + mg). The first
term consists of an irrelevant constant. It has been shown in Ref. [35] that the low energy
constant B is connected to the quark condensate (0|gq|0) in the following way
1
37

where |0) denotes the full QCD vacuum. The quantity B can be interpreted as providing a

B = (0lgq|0) , (35)

measure of the strength of the spontaneous symmetry breaking of the theory.
Similarly to what has been done in the previous section, in order to introduce couplings
to external sources, we promote the global symmetry under G to be a local one. Under local

transformations, the pion field transforms as
U — U =Lx)UR'(2). (36)
We define the covariant derivative of the pion field as
DU = 0,U—ir,(z)U+iUl,(x), (37)

where the external fields r,(z), and [, (z) have been introduced before. It is easy to show
that

DU — R(z)(D,U) L (z). (38)

At leading order, besides U and UT and their derivatives, we can also use the fields x(z) and

x'(z) defined as linear combinations of the fields s(x) and p(x)

x = 2B[s(z) +ip(z)], (39)
X' = 2Bls(z) —ip(x)] (40)
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that transform accordingly to Egs. (21) and (22), and the z-dependence of y and X is
understood. The parameter B is defined as in Eq. (35). These building blocks of the chiral

pion Lagrangian have the following chiral counting
U~0(Q"),  Du-D,U~O0@Q"), x~O0(Q). (41)

At leading order in (Q?, the effective Lagrangian invariant under Lorentz, parity, charge

conjugation and chiral transformations is now (see Ref. [34])

2 _ f_7% prn\t f_z T i
L2 = I o+ ot oy, (42)

As we will see later, for the calculation of nuclear axial currents, both £% and £ are

needed (see Appendix A.1 for the explicit expression of dﬁ?).
2.3 EFFECTIVE LAGRANGIANS FOR NUCLEONS AND PIONS

We extend the previous treatment to include nucleons. In the following, N denote the
iso-doublet of nucleon fields, and it is convenient to define a matrix u such that v? = U
(the z-dependnce of u and U will be dropped, unless explicitly noted). Considering the
transformation law of U under global transformations SU(2);, x SU(2)g, we obtain that u

transforms as [34
u — u =Ruh (1), (43)
where h(z) is defined as
ha) = | RU(J:)L]_l RU(a). (44)

As first shown in Ref. [39], if we assume the nucleon field to transform under global trans-
formations SU(2), ® SU(2)g as

N — N =h(z)N, (45)

then the set (U, N) defines a nonlinear realization of the group G, and therefore

(46)

RU(x)LT]
h(z)N(z)|

In the case of a pure vector transformation L = R =V, from the definition of u(x) it follows
that v'(z) = Vu(z)VT, and therefore from Eq. (43) h = V, and the nucleonic field transforms
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coherently as an isospin doublet. However, the nucleon field transforms non-linearly under
axial transformations [34].

The most general chiral-invariant Lagrangian for pions and nucleons can be constructed
using building blocks, generically denoted as O;, that transform under SU(2);, x SU(2)g as
O! = h(z)O;h~*(z). The building blocks are u, N, and their derivatives. The derivative of

the two-by-two matrix v does not transform covariantly under the group G
du — ' = R(Ou)h ' (z) + Rud, [h ' (z)]. (47)
However, if we define the following quantity u, = ¢ [uT Ou — u@uuw we have
U, — U, =h(z)u,h (). (48)

Similarly the derivative of the nucleon field 9, /N does not transform covariantly under global

transformations of G
N — 0,N =09,h(x)N + h(x)J,N . (49)

Therefore, in order to define a covariant derivative for the nucleon field, it is convenient to

introduce the so called connection
Foo— it o,ut 50
u_§[u uu+“uu}’ (50)
which under the group G transforms as

T = )T, h)™ (51)

D,=0,+T,, (52)
and obtain under G
D,N' = h(z)D,N, (53)

where the tilde serves to remind us that couplings to external sources have not yet been
considered (i.e., the symmetry group G is global). We can now build the most general La-
grangian that describes the couplings of the nucleons to pions. We will focus in the following
on the leading order Lagrangian, denoted as Zﬁrﬂz, This Lagrangian must be invariant under

Lorentz, parity and charge conjugation transformations, as well as transformations under
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the group G. We also require that in the limit of vanishing nucleon-pion couplings we should
recover the usual Dirac equation for spin-1/2 fields. As a consequence ES]{, must be a bilin-
ear in the nucleon fields and contain at most one derivative of the nucleon field. Using the
building blocks N, D, N, and @, it can be shown that ZSK, reads [34]

2;1]2, = N <i7“5u —m+ %47“7560 N, (54)

where m denotes the nucleon mass, and g4 is the nucleon axial coupling constant.

The coupling to external electroweak sources can be introduced in a very natural way
in this framework by requiring that ES}, be invariant under local transformations of G
previously defined in Eq. (36). In analogy to the case of only pions we introduce the external
fields r, and [, with the transformation laws given by Eqs.(19)—(20). Under the local group
G the set U, N transforms as

Ulx) R(m)U(m)L*(z)] | 55)
N(z) h(x)N (x)
Therefore it is convenient to define the two following quantities
u, = 1 [uT (Op —iry)u—u(0, —il,) uT] , (56)
r, = % (W' (0, —ir,)u+u(d, —il,)u'], (57)

that represent generalizations of u, and fu to the case of local transformations. These last

two quantities transform under local transformations as

w, — uj, = h(z)u,h " (z), (58)
I, = IV, =h@)lh(z), (59)

and therefore it is natural to define the following covariant derivative of the nucleon field
D,N=(0,+T,) N, (60)
that is a generalization of the definiton in Eq. (52). Under the group G we have
D,N" = h(x)D,N. (61)

Therefore the most general @ N Lagrangian that describes the coupling to external sources,
denoted in the following as ESK,, it is a straightforward generalization of Eq. (54), where 15“,

and u,,, have been replaced with D,,, and w,,, respectively,

ESK, = N <i7“DH —m+ %7“75%) N. (62)
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Higher order pion-nucleon chiral Lagrangians (with two or more insertions of D, and u,)

have been constructed in Ref. [41] and are reported in Appendix A. For the derivation of

the nuclear axial currents the chiral Lagrangians EE}K,, ESTQJ)V, and Esz, are needed.
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2.4 CONTACT LAGRANGIANS

In this Section we report contact Lagrangians (i.e., without exchange of pions) that
contribute to the NN scattering amplitude. These terms are well-known in the literature
(see for example Ref. [5]), and have been built requiring invariance under Lorentz, parity,

charge conjugation, and the chiral group GG. The LO Lagrangian is given by
£9 = —Cs (NN (NN) = Cr (N4,N) (N4N) | (63)

and depends on two LECs denoted as Cg, and Cp. At order @), since we have only one
derivative of the nucleon field at our disposal, it is not possible to build a Lorentz scalar.
The next nonvanishing order is @ and the corresponding Lagrangian is denoted as EE\Q,EV
It can be shown that there are twelve independent operator structures that contribute [42],
involving two derivatives of the nucleon field. In the following we will not report the explicit

expression of this Lagrangian (see Ref. [42]).
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CHAPTER 3

NUCLEAR CHIRAL EFFECTIVE FIELD THEORY

In this chapter we describe the general framework adopted to derive nuclear potentials
and electroweak currents for use in studies of structure and low-energy electroweak transitions
in nuclei. This framework is based on time-ordered perturbation theory (TOPT) formulated
in terms of interaction Hamiltonians constructed from the 77 and w N chiral Lagrangians
in the canonical formalism (see Sec. 3.1). Because of the presence of bound states in A > 2
the derivation of the nuclear potentials and currents requires a careful analysis of the TOPT

expansion, as illustrated in Sec. 3.3.

3.1 INTERACTION HAMILTONIANS FROM CHIRAL
LAGRANGIANS

In this section we derive, in the canonical formalism, the interaction Hamiltonians implied

by the 7w and wN chiral Lagrangians of Ch. 2. These are combined as

L= 'CWN + £7T7T ’ <64)

where
Lo = LY 422 +2% + (65)
Lon = LB 4@ (66)

and the superscript n specifies the chiral order ()", i.e., the number of derivatives of the pion
field and/or insertions of the pion mass. External fields are counted as being of order Q).
Since we are interested in deriving nuclear potentials and currents up to one loop, it suffices
to retain in £ up to /3532[ and /:2472. Further, since we are interested in axial currents, the
right r,(z) and left [, (z) fields are taken as

o) = (o) = 37 ). (67)

where A¥(z) is the external axial-vector field of isospin component a. The z-dependence of
the various fields is dropped hereafter. As a consequence the total Lagrangian can be written

in a compact form as
L = N(ia—m+F2807ra+A28i7ra+A) N
1 , ~
+§ (aoﬂ'a Gab (907rb —+ 8’7ra G(zb éh-m, — mfr WaHab 7Tb) — f7r Ag Fab ((‘iﬂrb) R (68)
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where the symbols I'?, A?  and A denote combinations of the pion and axial-vector fields

(and their derivatives), having the following expansions
Py =T0(0) + To(1) + T4(2) (69)

and similarly for A’, and
A=A(1)+A(2) +A(3), (70)

where the argument n in T9(n), A’(n), and A(n) specifies the power counting Q". The
symbols G g, éab, H,, and F},;, denote three-by-three matrices in isospin space, containing
powers of the pion field and/or pion mass. A listing of all these quantities, limited to the
terms relevant for the construction of the currents up to one loop, is provided in Appendix A.
At this stage the various fields, masses, and coupling constants are to be understood as bare
(un-renormalized) quantities.

From the Lagrangian £ in Eq. (68) the conjugate momenta relative to the nucleon and

pion fields follow as

oL —
I 0N iNA°, (71)
I, = _oL = Gu0'm, — fr Fi A} + NTON (72)
a 8(8071',1) ab b 7w Lab 1y a )

and the Hamiltonian then reads
H=T1"0yN + 1,0y, — L =Ho+Hy , (73)
where H,,
Ho = 5 (T Ty — 9 Oy + 2 o ) + ¥ (=i 0+ m) N (74)

is the free pion and nucleon Hamiltonian, while H; is the Hamiltonian accounting for the
interactions between pions and nucleons as well as between these and the external field. We
treat the latter in first order and therefore only keep terms linear in A,. The interaction

Hamiltonian is then given by

M= STL[(C),—0a] T~ 3 [T (G7),, (NTYN) +he)
L2 (1, (67),, e A 4 he] L2 [(NTON) (67, P D 4 e
b5 (NTON) (G7),, (NTYN) = N (A dima + A) N
—% 070 (Gl = 8an) Oimy + f Ay Foy 07y + m;wra (Hap — 600) T - (75)
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It admits the following expansion in powers of ():
Hy=HY + 1P + 1P+ (76)

and the vertices corresponding to the various interaction terms are listed in Appendix B.

We quantize the theory by imposing the following relations at equal time

[ma(t, %), Iy(t, y)] - = Oy 0(x =), (77)
[Nr(tv X)’ Hi(ta yﬂ + = 67"8 6(X - Y) ) (78)
where [...,...]+ denote the commutator (-) or anticommuatator (+), and r and s denote

the nucleonic spin-isospin indices.

3.2 NUCLEAR POTENTIALS FROM FIELD THEORY
AMPLITUDES

Field theory amplitudes are evaluated in time-ordered perturbation theory (TOPT).
Terms in this expansion are conveniently represented by diagrams. We distinguish between
reducible diagrams (diagrams which involve at least one pure nucleonic intermediate state)
and irreducible diagrams (diagrams which include pionic and nucleonic intermediate states).
The former are enhanced with respect to the latter by a factor of () for each pure nucleonic
intermediate state (see below). In the static limit—in the limit m — oo, i.e., neglecting
nucleon kinetic energies—reducible contributions are divergent. The prescription proposed
by Weinberg [5] to treat these is to define the nuclear potential and currents as given by
the irreducible contributions only. Reducible contributions, instead, are generated by solving
the Lippmann-Schwinger (or Schrédinger) equation with the nuclear potential (and currents)
arising from irreducible amplitudes. As an aside, we note that, as first pointed out by Wein-
berg [5], in covariant perturbation theory reducible contributions are infrared divergent. In
TOPT the infrared divergences are removed, and the problem becomes one of small energy
denominators.

The formalism used here is based on this prescription [21]. However, the omission of
reducible contributions from the definition of nuclear operators requires care, when the irre-
ducible amplitudes are evaluated in the static approximation. The iterative process will, in
that limit, generate only part of the reducible amplitude. The reducible part of the amplitude
beyond the static approximation needs to be incorporated order by order—along with the
irreducible amplitude—in the definition of nuclear operators. This scheme in combination

with TOPT, which is best suited to separate the reducible content from the irreducible one,
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has been implemented in Refs. [22, 23, 24] and is described below. The method does lead
to nuclear operators, which are not uniquely defined because of the non-uniqueness of the
transition amplitude off-the-energy-shell. This lack of uniqueness is unavoidable; however,
since the resulting operators are unitarily equivalent, the description of physical observables
is not affected by this ambiguity [23, 43].

Another approach for overcoming the difficulties posed by the reducible amplitudes has
been introduced by Epelbaum and collaborators [44]. That method is usually referred to
as the unitary transformation method, and is based on TOPT too. It exploits the Okubo
(unitary) transformation [45] to decouple the Fock space of pions and nucleons into two
subspaces, one that has pure nucleonic states and the other with states which retain at least
one pion. In this decoupled space, the amplitude does not involve enhanced contributions
associated with the reducible diagrams. The subspaces are not uniquely defined since it is
always possible to perform additional unitary transformations on them, with a consequent
change in the formal definition of the resulting nuclear operators. This, of course, does not
affect physical representations.

The two TOPT-based methods outlined above lead to formally equivalent operator struc-
tures for the nuclear potential up to loop corrections included. It is plausible that the two
methods are closely related, although this remains to be proved. Below we briefly outline
the method described in Refs. [22, 23, 24], and sketch how nuclear potentials are obtained.
In the next section we extend the present method to the case of electroweak currents.

The starting point is the conventional perturbative expansion for the two-nucleon (NN)

amplitude

AT =S (g t) 10 (19

Here |i) and | f) represent the initial and final states, respectively | Ny Ny) and | N{NJ) of
energies F; and Ey with E; = Ey, Hy is the Hamiltonian describing free pions and nucleons,

and H;j is the Hamiltonian describing interactions among these particles,

Hy = / dx Ho(x) (80)

and similarly for H;, where the Hamiltonian H, and H; are defined as in Sec. 3.1 with the
various fields taken in the Schrodinger picture. The evaluation of the amplitude above is
carried out in practice by inserting complete sets of Hy eigenstates between successive terms
of H;. Power counting is then used to organize the expansion in powers of /A, < 1.

In the perturbative series, Eq. (79), a generic (reducible or irreducible) contribution

is characterized by a certain number, say N, of vertices, each scaling as Q% x Q%/2
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(i=1,...,N), where «; is the power counting implied by the relevant interaction Hamil-
tonian H; and f; is the number of pions in and/or out of the vertex, a corresponding N—1
number of energy denominators, and L loops. Out of these N—1 energy denominators, Ny
of them will involve only nucleon kinetic energies which scale as 2%, and the remaining
N — Ng — 1 energy denominators will involve, in addition, pion energies, which are of order
Q. Loops, on the other hand, contribute a factor Q2 each, since they imply integrations over
intermediate three momenta. Hence the power counting associated with such a contribution

is N
(H Qai6¢/2> % [Qf(NfNKfl) szNK] % Q3 | (81)

i=1

Clearly, each of the N — Ng — 1 energy denominators can be further expanded as

1 1 E, —E (B — E))?
1 B8 B

— 2 ... 9
™

(82)

B, — FEr—w, Wy Wr w

where E; denotes the energy of the intermediate state (including the kinetic energies of
the two nucleons), and w, the pion energy (or energies, as the case may be)—the ratio
(E; — Ey)/w, is of order Q. The leading order term —1/w, represents the static limit, while
the sub-leading terms involving powers of (E; — Ej)/w, represent non-static corrections of
increasing order, i.e. recoil corrections.

The @-scaling of the interaction vertices and the considerations above show that T" admits

the following expansion
T = TW 470+ L p+2) (83)

where T(™ ~ Q™, and chiral symmetry ensures that v is finite. In the case of the two-nucleon
amplitude v = 0. A two-nucleon potential v can then be derived which, when iterated into

the Lippmann-Schwinger (LS) equation
v+vGov+vGovGov+ ..., (84)

leads to the T-matrix on-the-energy-shell (E; = Ef) of Eq. (83) and order by order in the
power counting. In practice, this requirement can only be satisfied up to a certain order n*,
and the resulting potential, when inserted in the LS equation, will generate contributions of
order n > n*, which do not match T™. In Eq. (84), Gy = 1/(E; — E; + in) denotes the free

two-nucleon propagator, and we assume that

v =200 4o® @ 1 (85)
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where the still to be determined v(™ is of order Q. We note that, generally, a term like
0™ Gou™ is of order Q™! since Gy is of order Q2 and the implicit loop integration
brings in a factor Q3.

Having established the above power counting, we obtain

0@ =710 (86)
v D)GOU(O)] ) (87)
v O)GOU(O)GOU(O)}

vWGw® + U(O)Gov(l)] : (88)

o =7 — (
— (
— (
B =7B) [U(O)GQU(O)GOU(O)GO’U(O)}
— (
— (
— (

v@ = T7®

WG VG + permutations}
v 2)G0U(0) + U(O)G0U(2)]
v 1)G0v(1)] , (89)

and so on. The potentials v(™ are discussed in the next chapter. In particular, it will be
shown that v vanishes identically, and the first nonvanishing correction is suppressed by

two powers of () relative to the leading order.
3.3 NUCLEAR CURRENTS FROM FIELD THEORY AMPLITUDES

The inclusion (in first order) of electroweak interactions in the perturbative expansion of

Eq. (79) is in principle straightforward. The transition amplitude can be expanded as

T, = TW) 4 Tt p et o (90)
where 7™ is of order Q" and v, = —3 in this case. The strong interaction potential derived

in the previous section is denoted by v, and the potential describing the interaction with the
external fields by v.. In the electromagnetic case v, — v, = VY p, — V- j,, while in the weak
axial case v, — v5 = A% ps, — Asa - j5.0, where p,, (ps) and jy (js5.) are the electromagnetic
(weak axial) charge and current, and V#* = (VO V) [A* = (A" A)] is the electromagnetic
(weak axial) field.

The requirement that in the context of the LS equation,
(v+ve) + (v +ve) Go (V4 ve) + (v+v.) Gy (V+ve) Go (V4 ve) + ..., (91)

matches Ty order by order in the power counting implies relations for the v%n) = V0 p(vn) —
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(
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p j5. similar to those derived earlier [23]

v =T, (92)
o =T — [0 Gool@ + 0@ Gyl (93)
oV =70 [vé_g) Gov® Goov @ + permutations]

- [vf;z) Gov® + 09 Gy 0272)] , (94)
O =17 _ [vé_g’) Gov'? Gy Gyo® + permutations}
— [Ué_Q) Go v© Go v 4+ permutations]
— [05D Go v @ + 019 Gy vV
— [05 Gov® + 0P Gy (95)
vél) = Te(l) — _vé_g) Gov® Gy v @ Gy ov® Gy 0@ + permutations]
— _0272) Gov® Gov @ Gy + permutations}
— -vé_l) Go v Gyo @ + permutations]
- [_vgo) Gov @+ G, véo)]
— [Ué_‘” Gov? Gy v + permutations]
- [vé_m Gov® +0® G, vé‘z)]
— [05 Gov® + 0¥ Gy | (96)

where we have made use of the fact that v(!) = 0 (see Ch. 4), and have only retained terms

linear in v,. Relations in Eqgs. (86)-(89), and those above allow us to construct v™ and e

from 7™ and Te(n).
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CHAPTER 4

CHIRAL POTENTIAL AT ONE LOOP

In this Chapter we report a derivation of the chiral two-nucleon (NN) potential up
to next-to-next-to-leading order N2LO (order Q?), along with some contributions at N3LO
(order @3) that will turn out to be relevant for the derivation of the nuclear axial current

up to one loop. The NN potential up to one loop can be symbolically expressed as
v = wopg + VUrPE + VCT , (97)

namely as a sum of terms due to one-pion exchange (OPE), two-pion exchange (TPE), and
contact (CT) contributions. We note here that TPE contributions (at order Q%) were first
derived by Van Kolck and collaborators [6, 46]. Later, Kaiser and collaborators rederived
TPE contributions as well as loop corrections to OPE (up to order %) using covariant
perturbation theory (see Ref. [7]). Soon after, Epelbaum and collaborators obtained these
TPE contributions and loop corrections to OPE and contact interactions within the unitary

transformation method in Ref. [8].
4.1 STATIC POTENTIAL UP TO ORDER @?

In Fig. 1 we show the diagrams illustrating the contributions occurring up to N*LO (order

Q?).

ao at
N 7 -~ \
N -7 L, // 4 ’ -7
/ L. ! P
- / y \ \ !
- - v ~ \
az as a4 ab a6 az as

FIG. 1: Diagrams illustrating the contribution to the NN potential entering at LO Q°,
panels a0, and al, and N2LO (Q?), panels a2-a8. Nucleons and pions are denoted by solid
and dashed lines, respectively. The filled circle in panel a2 represents the vertex from contact
Hamiltonians containing two gradients of the nucleons’ fields. Only one among the possible

time orderings is shown for each topology.
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At LO (Q°) there is a contact interaction, panel a0, along with the one-pion-exchange
(OPE) contribution, panel al. The next static contributions enter at N*LO, and we distin-
guish among three different categories: (i) contact interactions involving two gradients acting
on the nucleons’ fields, panel a2; (ii) TPE diagrams, panels a3-ab; (iii) loop corrections to
the LO contact and OPE interactions, panels a6-a8. Time ordered diagrams of the type
illustrated by panels al-a4 are irreducible, while those of the type illustrated by panels a5-a8
have both reducible and irreducible contributions. Here we limit ourselves to report the final
expressions of the various contributions, and show how divergencies are reabasorbed through
a redefinition of the contact terms at order Q? (for a detailed discussion see Ref. [22]). The
renormalization of loop corrections to the OPE will be discussed in the next section (diagram

ag).
4.1.1 FORMAL EXPRESSIONS

In what follows we use the notation introduced in Ref. [21]. In particular, the potential
is obtained in the center-of-mass frame where the nucleon initial and final relative momenta
are p and p’, respectively. We also define k = p’ —p, K = (p’+p)/2, and wy, = \/m
An overall momentum-conserving d-function is understood in all terms listed in this chapter.
The diagram illustrated by panel a0 gives rise to the LO contact potential, which is expressed
in terms of the two LEC’s Cs and C'r as

véo% =Cs+Croy-oy, (98)
while that of panel al leads to the standard OPE potential,
2
Ué)olz‘E:_4g_%T1'T2 Ul.l;g?.k ' (99)
Next we consider the contributions arising from panel a2 of Fig. 1, which lead to
W2 = O+ G K 1 (C3h? 4 C K)oy -oa+iCs 2022 K x k
+ Cso1-koy k+Cr01 - Koy K. (100)

Two-pion-exchange contributions are given by diagrams in panel a3-a5, and read

T, = v (a3 +ad+a5) = — 8% [T (k) = BIOW)] + 44| 7O (R)

T T2

128 [

2 K2T (k) + k”‘J(O)(k)} + L(k)

3 4
—169;4 (o1 % K)i(os x k); I (k) | (101)
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where we have defined the following loop functions

1) = [ B flown)

GRE
1) = [ R wn)
190) = [ GEg g
190 = [ B
190) = [ GErtslenen)
JP (k) = / (jggpzpjg(W+,w—)7
L) = g s =) Flamwn). (102)
with
flomws) =~ ;-
omw) = SEgmte (103)
and

we =+/(pEtk)2+4m2 . (104)

These loop functions are ultraviolet divergent, and we use dimensional regularization to
isolate the corresponding divergencies. Expressions of the regularized kernels are reported in
Appendix B of Ref. [22]. After dimensional regularization the two-pion exchange contribution

can be written in the following compact form
5(T23>E = U(TQP)’E + 71112 (k)

+ (Ko1-02—01-kos k) Py, (105)

where the renormalized finite part is

9 1
Vg = Tosa2 it T G(k) {477%% (1+ 4¢3 — 593)
48ghmy
+k% (14 10g% — 23¢%) — ggm“}
—l—i (k2a' o0 —01 - k -k
109 (o n) 2 09 ) (106)

128 2 f2
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Here we have defined

Glk) = %ln(zj;i) (107)

with s = \/4m2 + k2. The divergencies are lumped into the polynomials P (k), and P,

1 2 2 4 2 2
Py(k)= — 38470 [ [mw [4 + 494 + 1694 — 994(2 — 5924) de}
4 5 13 3 3
—kQ[— eyt R | 102—234d€} 108
+ gk gt 94— g9a— g (1+10g4 — 23g24) ; (108)
3g% 1
py=-—294 (g _2) 109
07 128x2 f1 ( 3> (109)
with the constant d. defined as
2 2
dez——+’y—ln47r—|—lnm—;—1, (110)
€ 7

where € = 3 — d (d is the number of dimensions), 7 is Euler’s constant, and p is a renormal-
ization scale.

The contributions of diagrams a6 and a7 of Fig. 1 are given by

2 2
U(Q)(a6+a7) = 39—?207“7'1 cTo 0102 J13 — %C’Tal b)) J13. (111)

where the quantity Jy3, defined in Eq. (392), is ultraviolet divergent and reads (after dimen-

sional regularization)

3m? 7
Jg = (g~ L) 112
BT g2 ( 3) (112)

Note that diagrams a6 and a7 include reducible contributions. The partial cancellation
between these and contributions resulting from iterations of the LS equation has been taken
into account. Finally following Ref. [22] we note that Fierz identities allow us to rewrite the

spin-isospin structures in Eq. (105) and (111) as

‘T1'T2—)—2—0'1'0'2, (113)
g5 'T2k2 — —4(1+0'1 'O'Q)K2 —kz, (114)

T Too] -0y — —3. (115)
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Making use of these identities in the polynomial term P(k) of Eq. (105) and in Eq. (111)

allow us to separate the finite parts of the C; from their divergent parts proportional to d.

in the following way

Cs

Cr

Ch

Cy

Cs

Cy

Cs

This separation defines

3
o+ ﬂ?A m2 (2—5¢% +8Cr f2) d.,

64 12 f3
r 39,24 2 5 o 2
CT+647r2f;}m“ 1—§gA+SCTf7r d
1 LS 2N,
P eanz fi\12 67T 1294
1 /1 10, 23
Cr - 02 7Y 4 de
2+647T2f7% (3+ 3gA 3914) )
1 3
A ~2)a
O3+647r2f;‘( 2) :
1 /1 10, 23,
. S - B,
1 Ga (3+ 3 94 39A)

(116)
(117)
(118)
(119)
(120)
(121)

(122)

also our subtraction scheme, namely all pieces proportional to d,

must be reabsorbed in the LECs multiplying the contact terms. We note that C5 and C;

have no divergent parts (at order @?). With this definition all divergences cancel out and

we are left with

v@ (a2 + -+ +a7)

795 Crm?
872 f2

7g% Crm?
87r2 72

o102

+|C] +

Plapeal (51 8p
2 Ton2f2\8 4

4
r 9ga 2
* Crm]“l"’z

7272 f2 4 8
. o1+ 09 gj
r K x k T L
+1C3 X k + [CG 12872 f1
+Cr o K 0'2-K+U(T21;E .

1 5+132 3.4\] e
28872 f2 g A SgA

Al

i 1 /5 13, 3
et (2 553 oo

:|0'1'k0'2'k

(123)
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4.1.2 ONE-PION EXCHANGE CONTRIBUTIONS

In this subsection we deal with a technical problem, namely the renormalization of loop
corrections to OPE contributions. We first construct the set of relevant counter-terms, and
then carry out the renormalization of the nucleon and pion masses, field rescaling factors Z,
and Zy, the ratio ga/ fr, and, lastly, loop corrections to the OPE. We define

Ta=\Zenl, N=+/ZyN", (124)

where 7] and N” denote, respectively, the renormalized pion and nucleon fields, and Z, and

Zn are the corresponding field rescaling constants, assumed to have the following expansions

Zp = 1467, , 67, ~ Q% , (125)
Iy = 1+8Zy, 6Zy~Q*. (126)

We also define the physical pion mass m/ and nucleon mass m" as

mi? = m2+om2 om2 ~ Q" (127)
m" = m+om, om ~ Q* . (128)

As illustrated in Appendix C, the total Lagrangian, taking the external axial field A# = 0
in Eq. (440), can be written as

L = N (id—m"+TY0rt + AL O + A') N”

1 .

+5 (07 Gl Qo + ', Gy Oy — it Hiy )

ENEE NS VA r T 5m72r r.r
+0m N N"+6Zy N (iv"0, —m") N" + 5 Tala s (129)

a’’a

which is expressed in terms of renormalized fields and masses, but bare LECs including g4
and f,. This Lagrangian has essentially the same form as the bare one in Eq. (68) (the primed
quantities are defined in Appendix C), and leads to an interaction Hamiltonian similar to
Eq. (75),

Hr = Hip [Eq. (75) with primed quantities and renormalized fields and masses}
— —r om?
—smN'N" = 52y N (ir'0; —m") N" — % . (130)

In addition to the vertices listed in Appendix B, this Hamiltonian generates vertices cor-
responding to the set of counter-terms in Eqs. (447)—(453), explicit expressions for which

follow from those in Appendices B and E.
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The determination of the scaling factors Z, = 1+0Z, and Zy = 142y for the pion and
nucleon fields, the renormalization of the pion and nucleon masses, and g4/ f, are discussed

in detail in Appendices D. The treatment closely follows the steps outlined in Ref. [47]. We
only quote the results here:

r4 r2 r2
5 mr. m _ oM 10a—1

(57’17,7r = 2[3 f2 4f2 JOl s 5Zﬂ- f2 l4 2]? JOl s (131)

347

_ r2 _ “JA
om = —4777/71. C1 8f2 J12 s (SZN = 8f2 J13 s (132)
ga 9 4mr? g2 m7r”2l4> < 2m!? )

= = =1|1- dig + Jis + ——— 1-— d , 133
I < a3 f72 T 159)

where the constants J,,, are defined in Eq. (392), and I3 and I, (¢; and d;) are LECs entering
in the subleading e (Efsz, and ﬁf}z,) chiral Lagrangians. Only leading Q* corrections are
provided above, but for m which also includes the sub-leading term of order Q® proportional
to Jia.

We now turn to a discussion of the loop corrections to OPE, illustrated in Fig. 2. In
diagrams b2, b4, b6, b8, b11, and b14, the solid dot represents the interaction —dm—4m”? ¢

where dm is the nucleon mass counter-term.

[ “ T//} /l / T’ JV/KA‘ lr//w
! - (
L -7 Pr ! - _ - 1
b1 b2 b3 b4 b5 b6 b7 b8
7 s 7
7 // / / 7
/ | ~ | s ! 2z l - *
/ % _ 7 N s Ve s
4 4
b9 b10 b11 b12 b13 b14
-
\F)\ !\ (*)/ . , //
/ / > /I \// /
{N) \.
b15 b16 b17 b18 b19 520
//:) 7 ) _ \ B // ,/ 7
- re e - '
c T F - /' " N
b21 b22 b23 b24 b25 b26
— /| , ™ 4 -7
- J s \
[ // / - _ s s ! ///
\ Vs \ ~ - s
b27 b28 b29 b30 b31 b32 b33

FIG. 2: Half of the possible time-ordered corrections to the OPE potential at order Q.

Nucleons, and pions are denoted by solid and dashed lines, respectively. See text for further
explanations.
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The contributions associated with diagrams b1-b2, b3-b4, b5-b6, b7-b&8, b9-b11, and b12-
b14 represent the renormalization of nucleon external lines and, with the choice of dm in
Eq. (131), they are seen to vanish. Next, the solid square in diagrams b16, b18, and b20

represents the interaction

r2] 02 ,
HQ(fr)' = —/dx (m}Q S 5 ) (H’”-H’”+0’7‘r”-8ﬂr’”)
r4 l l T2 K 2
+/dx |:m7r <f32+ 4) + m27r 5Z7r o T;lﬂj| ﬂ_r '71_7' ’ (134)

with vertex (in the convention of Appendix B)

2mr?|
<0| Héjlr), |k17a1;k27a2> - 5(11,(12 |: ( f7r2 : + 5Z7|—) (W1W2 — k1 . k2)

2 m;4 (lg + l4)
+T

With 6Z, and dm? as given in Eq. (131), the contributions of diagrams b15-b20 cancel out.

+mi2 07, — mi} : (135)

Lastly the contributions of diagrams b27-b32 vanish identically, while those in diagrams
b21-b26 and b33 sum up to

o, -kos -k
V@ (b21 + -+ + b26 + b33) = —Lf%n-rg S
iy k
m?2 4m? m?2 2 g*
g% __oikoyk
aft
mr2 4mr2 mr2 2 r2
x {8 s = = = 2 g%Jw], (136)
A A ™ T

where diagram b33 contains a vertex coming from HE}\),;V in Eq. (474), and in the second

line the bare couplings and masses have been replaced by the corresponding renormalized
quantities, which is correct to order Q%. In order to complete the renormalization program
to this order, we reconsider diagram al in Fig. 1
2
v(al) = —49—% T 'TQ%?k

g2 o, ko, k

g
r2 m

m r2 2gr2
T dig 42—, + =2 Jps 137
g4 fr2 3 fr2 (137)

xX|1—28
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where the bare ratio g4/ fr has been replaced by its renormalized expression (see Ref. [26]
for the explicit expression). The renormalized OPE potential up to Q? is then given by the
sum of al and b21+ ---+b26+b33 and reads
T2 4 T2
UgP)’E = A "T2 (1 — dlS) ; (138)

_
4frz ! 7

where the factor (1 —4m’?d;3/g") is known as the Goldberger-Treiman discrepancy.
4.2 NONSTATIC CORRECTIONS TO THE POTENTIAL

We discuss in this section nonstatic corrections to the potential resulting from expanding
energy denominators. These corrections originate from next-to-leading (Q°) and next-to-
next-to-leading () terms in the expansion of the denominators of the various reducible and
irreducible topologies, Eq. (82). We will first describe the nonstatic corrections to the OPE
potential, and then those to the box topology (diagram a5 of Fig. 1). As it can be seen
from Eq. (96) in Ch. 3 these corrections are needed in order to construct the nuclear axial

currents up to order Q).
4.2.1 ONE-PION EXCHANGE

In this subsection we consider non-static corrections to the OPE potential resulting from
diagram al of Fig. 1. These corrections enter in principle at order (), by keeping the next-
to-leading (Q) term in the expansion of the pionic energy denominator, and lead to
(B} + EY — By — Ey)

vW(al) = v(al)
Wk

(139)

However this correction vanishes on the energy shell £ = Ey with E; = E; + Ey and
Ey = E} + E} where E; (p;) are the initial and final energies (momenta) of nucleon i. We
take v to also vanish off-the-energy-shell.

At order Q% the nonstatic correction to the OPE can be written as

0 (Bf = E1)*+ (BEy — Ey)?

or equivalently on the energy shell as
Ei— Ey)(Ey— E
v@(al) =~ A= E)(EE = o) (141)

Wi

These two forms differ off-the-energy-shell (i.e., E] + Ej # Ey + E,), and this fact turns out

to be relevant in the calculation of nonstatic corrections to the box diagram at order Q3. It
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is convenient to parameterize these corrections in terms of a parameter v (as was first done

in Ref. [43])

o (1—v)[(E] — E)*+ (E) — Ey)*] —2v (E] — E1)(E — Es)
2w}

. (142)

where k = p| —p; is the momentum transfer. Note that Egs. (140) and (141) are obtained for
v = 0and v = 1, respectively. Thus, there is an infinite class of corrections U(()Ql):.E’nS(V), labeled
by the parameter v, which, while equivalent on the energy shell and hence independent of
v, are different off-the-energy-shell. Friar [43] has in fact shown that these different off-the-

energy-shell extrapolations ng)’E, (V) are unitarily equivalent (see also Ref. [23]).

4.2.2 TWO-PION EXCHANGE AT ORDER @?

For the derivation of nuclear axial currents knowledge of the two-nucleon potential up to

order (Q? is required. This correction results from

v® =T~ OGO GO G
— [1PG® + QG ], (143)

where we have made use of the fact that Y = 0. The calculation of the full v® contribution
is rather involved, see Ref. [23]. In the following we report only the expressions obtained
for the two topologies needed to calculate the axial currents up to order (): diagrams a3
and a5 of Fig. 1. Both diagrams, at order *, have contributions from (i) vertex corrections
(coming from £7(T2])V, and of no interest here), and (ii) nonstatic corrections resulting from the

expansion of the pionic energy denominators (considered here).

B
2 -
~ Yanps
~ ~] ~ |~ Jo
FE - ~ E 2
1 /@/ Ey 2 By \$\
1 o
Ey

FIG. 3: Some of the diagrams illustrating the nonstatic corrections to diagram a3 and a5
of Fig. (1) at order @*. Pion lines with crossed (full) circle indicate that only the next-
to-leading Q° (next-to-next-to-leading Q) term in the expansion of energy denominators,
Eq. (82), are retained in the corresponding amplitudes. Only one among the possible time

orderings is shown.
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The calculation of diagram a3 is straightforward [23], and gives

2
(3) . ga dqy 1 . =
e =i [ G i e B =25, 04

where w1 = /q7 + m2 (and similarly for w,), Ey is the intermediate energy as showed in

Fig. 3, and q2 = k —q;. The contribution of diagram a5 depends on the off-the-energy-shell

prescription adopted for U((DQF)’E (V) albeit different prescriptions lead to unitarily equivalent

corrections to U(T?}))E(u) [23]. Here we report the correction corresponding to v = 0, i.e.

4 d
U(TgllE,D(VZO) = _33—13%(3+271'72)/#(0—1'Q2>(01‘QI>(U2'QI)(02'Q2)
(El—E1+E;—Eg IE;—E1+E2—E;) (145)
w2 ' w2 Wi )
1 W) ] Wy

where F, FE,, and E} are the intermediate nucleonic energies as shown in Fig. 3.
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CHAPTER 5

NUCLEAR AXIAL CURRENTS UP TO ONE LOOP

In this chapter we discuss the derivation of the nuclear axial charge and current opera-
tors in chiral effective field theory up to one loop. The derivation is based on TOPT and
accounts for cancellations between the contributions of irreducible diagrams and the contri-
butions from nonstatic corrections of energy denominators in reducible diagrams. Ultraviolet
divergencies associated with the loop corrections are isolated in dimensional regularization.
The resulting axial current is finite and conserved in the chiral limit, while the axial charge
requires normalization. A complete set of contact terms for the axial charge up to the
relevant order in the power counting is constructed.

Hereafter, the momenta k; and K; are defined as

K, =(p,+pi)/2, ki =p; —pi , (146)

where p; (p}) is the initial (final) momentum of nucleon i. A symmetrization (1 = 2) and
an overall momentum-conserving d-function (27)3d(k; + ko — q) are understood in all terms
listed below unless otherwise noted. While the potential in Ch. 4 has been derived in the
center-of-mass frame, the currents derived here are in a generic frame.

There is an earlier but incomplete derivation by Rho and collaborators [28, 48] of weak
axial currents in yEFT, based on heavy-baryon perturbation theory. There is also a recent
derivation by the Bochum-Bonn group, based on TOPT and the unitary transformation
method, which has appeared a few months after our own work [49]. A comparison between

the various derivations is presented at the end of this chapter.
5.1 ONE-BODY AXIAL CHARGE AND CURRENT

We begin by discussing how the leading-order one-body operators are generated by the
chiral Hamiltonians. The relevant diagrams are shown in Fig. 4. The contribution of panels
al and a2 lead to the single-nucleon current given by

i@ = —%A Tla |01 — ﬁ oi-q| (2m)°(ki —q) (147)
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while the contribution of panel a3 to the single-nucleon axial charge

) = —5 o (Ky) (20)6(k - q) (148)

Here q is the momentum carried by the external field and we made explicit the momentum
conserving d-function. The counting Q@ of js5, (panel al in Fig. 4) follows from the product
of a factor Q" associated with the NN A vertex (the external field has been removed), and a
factor Q=3 due to the momentum-conserving d-function ¢ (p), — p2) implicit in disconnected
terms of this type. Evaluation of the pion-pole contribution (panel a3), in which the axial
source couples directly to the pion which is then absorbed by the nucleon, leads to the pé:f)
expression in Eq. (148). In this disconnected term, the counting Q=2 accounts for the Q3
factor due to ¢ (p) — p2), the factors @ and Q? of the 1A and NN vertices, respectively,
and the factor Q=2 from the pion field normalization and energy denominator associated
with the intermediate state. A similar counting is applied to panel a2 in Fig. 4 contributing

to j5,a'

/ /

s :

at a2 asd

FIG. 4: Diagrams al and a2 contribute to the one-body axial current operator at order Q(~3).
Diagram a3 contributes to the one-body axial charge operator at order Q~2. Nucleons,
pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a
single time ordering is shown for diagrams a2 and a3. The full dot in c is from the interaction

vertex H 7(3& ~» see Appendix B.

There is no direct coupling of the nucleon to the time-component AY of the axial field:
the interaction —(g4/2)N 7 - Ag7°9° N in the term

~NA(2)N , (149)
with A(2) as given by Eq. (384) occurs with the opposite sign in the term
—(f=/2) [NTYU1)N (G™Y),, Fie A +he] | (150)

with T9(1) as in Eq. (382) with (G),) = Fu = 64 up to m,m, or m2 terms, and hence cancels

out in the Hamiltonian of Eq. (75). The single-nucleon axial charge of the correct sign and
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strength follows from the sum of the two time-ordered contributions of diagram a3 with the

full dot representing the interaction (g4/2f,) N T -I17°y° N from
—(1/2) I, (G™"),, NT(1) N +hc] . (151)

There are relativistic corrections suppressed by two powers of () to these leading order
operators. We only consider those to the single-nucleon axial current, since they have been
found to give significant contributions to the cross section for proton weak capture on *He

of interest in solar physics [48],

(- l 1
.]g,al)(a4) = 4?;:12 Tl,a |i[(12 o1+ 5 kl X Kl — 01 Kl K1 + Z O k1 k1‘| , (152)
jé;l) (a5) = _W—LT)’LQ [q ']E—)’_al) (a4) + 29722 T1,6071 ° K1 k1 . K1:| . (153)

I one is from the 1/m? terms originating

Diagram ab contains two contributions at order
from the non-relativistic expansion of the 7NN interaction H 7(5\), ~; the other is due to the
1/m terms in H 7(3\), n and the (leading) non-static corrections (proportional to 1/m) to energy

denominators.

\,ITE é/

a4 ad

FIG. 5: Diagrams illustrating the relativistic corrections to the one-body axial current.
Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively.

Only a single time ordering is shown for diagram ab. See text for further explanations.

Loop corrections to the one-body axial charge and current, relevant for the renormaliza-
tion of these operators, are derived in TOPT in Appendix F. They are in agreement with

the results obtained in heavy-baryon perturbation theory [50].
5.2 TWO-BODY AXIAL CHARGE

The weak axial charge two-body operator, in analogy with the two-nucleon potential, can

be written as

p5,a = p5,a(OPE) + p5,a<TPE) + p5,a<CT> ) (154>
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namely as a sum of terms due to one-pion exchange (OPE), two-pion exchange (TPE), and
contact contributions (CT). In the following, and in Sec. 5.3 as well, contributions to the
OPE and TPE (or MPE in Sec. 5.3) operators are labeled by the power counting superscript
(n). While each individual contribution is not explicitly identified as being OPE or TPE (or
MPE), this is obvious from the context.

5.2.1 ONE- AND TWO-PION EXCHANGE CONTRIBUTIONS

Diagrams contributing to p§t" at leading order are shown in Fig. 6. Tree level diagrams

in panels bl and b2 of this figure enter at order Q! and read

_ ) 1
Pé,al)(bl) =t 5—% (71 X T2), 02 ko 2 (155)
pShm2) = pP (b1 (156)

We note that the sum b1+b2 gives the leading order OPE axial charge operator first derived

in Ref. [51] using soft-pion theorem.

—

s s

FIG. 6: Diagrams contributing to the OPE axial charge at leading order Q! (panels bl

b1 b2

and b2). Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,

respectively. Only a single time ordering is shown for each topology.

At order Q° we have in principle nonstatic contributions coming from the expansion
of the pionic energy denominators, and contributions coming from vertices generated from
chiral Hamiltonians ’Hgi, ~- Both these corrections, displayed in Fig. 7, are seen to vanish
when summing over all time orderings (diagrams b3-b6). We note that there are no reducible

contributions up to order Q°.
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< 4 S ¢
b3 b4 b5 b6

FIG. 7: Diagrams contributing to the OPE axial charge at order Q°. Nucleons, pions, and

axial fields are denoted by solid, dashed, and wavy lines, respectively. Pion lines (pion lines

with crossed circle) indicate that only the leading Q™! (next-to-leading Q°) term in the ex-

pansion of the energy denominators, Eq. (82), are retained in the corresponding amplitudes.

Crossed circle vertices indicate terms coming from next-to-leading Q2 chiral Hamiltonians.

Only a single time ordering is shown for each topology.

Two-pion exchange contributions are shown in panels cl-c12 of Fig. 8. The individual

contributions read

Pl +e2) = i (X m)aor ke TO (k) (157)

. g
p§f3(65 +c6) = i 16?”4 471401 (02 X ko), ‘]z'(jZ)(k2>

+(m X To)o [k T (k) — TP (ka)] 01 - ko | (158)

while those of ¢3-c4, ¢7-¢8, and ¢9-c12 vanish, after summing over all time orderings. The
freedom in the choice of pion field, parametrized by the parameter o in Appendix A, intro-
duces an a-dependence in the interaction vertices with three or four pions, see Appendix B.
The contributions of diagrams c4 and c¢8, which include a 37 vertex, turn out to vanish
identically. But in general this a dependence must cancel out exactly in the calculation of
the scattering amplitude, as is indeed the case for the two-nucleon axial charge and current
operators obtained in this Thesis. The loop functions have been defined in Eqgs. (102)—(104)

of the previous chapter, and they have been evaluated in dimensional regularization Ref. [22].
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FIG. 8: Diagrams contributing to the OPE axial charge at leading order Q! (panels al and

a2), and to the TPE axial charge operator at order (). Nucleons, pions, and axial fields are

denoted by solid, dashed, and wavy lines, respectively. Only a single time ordering is shown

for each topology.

Insertion of the finite parts of these loop functions leads to

k
ga <T1XT2)GO'1'k22hl(S2+ 2) s

phalcl +c2) =

! 128 7'('2 f# k?g S9 — k’g
3
(1) . ga 59 82+k’2
Ps5.4(cH + c6) @12872f#{ Tia (01 X 072) 2 1182_]{2
]{32—|-282 Sg—l—k‘z
—(T1 X To)a 01 - ko 2 2]
(7'1 7'2) 01 Ko ey S HSQ—kQ )

where

s;=1/4m2 + K5 .

(159)

(160)

(161)
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The divergent and logarithm-free parts read

phalcl + )l = —i #f;ﬁ(n X T2)a 01 ko (de — 1) (162)
P (54 cb)oe = —i g T4 (01 X 03) - ko dE—1
> 32m2fA | 3
3 1
_Z(TlXTQ)aa'l'k2 (de+§):| : (163)

with the constant d. defined in Eq. (110).
5.2.2 CONTACT CONTRIBUTIONS

At order Q° there are no contact terms contributing to p5a, and this fact is proven in

Appendix G. Those at order ) are given by (see Appendix G for a derivation)

4

p57a(CT) = Z Zi Oz s (164)
i=1
where the z; are (unknown) LECs and the operators O; with ¢ = 1,...,4, symmetrized with

respect to the exchange 1 = 2, have been defined as

O1 = i(nxm), (01 k—0oy-ki), (165)
Oy = i(mxm), (01-ki—0o3-ks) , (166)
O3 = i(o1x03) (ke —maki) | (167)
Or = (TLa—T24) (01— 02) - (Ki + K3) . (168)

We observe that the loop divergencies from cl-c¢2 and ¢5-c6 can be reabsorbed in the LECs

z1 and z3, in the following way

_ r . ga 2
2 = 21+ o3 2 7 f#(l —39g%4)d., (169)
A
Z3 = 23 _'_ZW d, . (170)

Therefore in this subtraction scheme

Pl + €2 4 €5+ ¢6)|as + 21 01 + 2305 = {z{—z’g—A (1—931)} O,

+ [zg gi‘ }O. (171)
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5.3 TWO-BODY AXIAL CURRENT

As for the charge, the two-body current is written as a sum of one-pion exchange (OPE),

multi-pion exchange (MPE), and contact (CT) terms (notation and conventions are as in
Sec. 5.2),

50 = Jsa(OPE) + js.o(MPE) + js.,(CT) . (172)

We discuss Jgjf here. It is well known [52] that a single contact term occurs at order Q°

(Fig. 9), and none at order ). This term is taken (in the properly symmetrized form) as

j5,a(CT)=Zo[(7'1><T2)a 01 X023 — (T1><7'2)a<1'(0'1><0'2)} ) (173)

¢* +m;
where the second term is the pion-pole contribution. This contact term originates from
the interaction Lagrangian (N7“75 u, N ) NN and the LEC z is related to the LEC cp (in
standard notation) entering the three-nucleon potential at leading order [52]. The LEC z is
fixed by reporducing the Gamow-Teller matrix element contributing to tritium g-decay and

is discussed in the next chapter.

-

FIG. 9: Contact and corresponding pion-pole term occuring at order Q° in the axial current.
Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively.

Only a single time ordering is shown for the pion-pole topology (second diagram).

5.3.1 LEADING ONE- AND MULTI-PION EXCHANGE CONTRIBUTIONS

Leading contributions to js ,(OPE) and js ,(MPE) are shown, respectively, in panels d1-
d2, and panels el-e25 of Fig. 10. There are no contributions at order Q! from diagrams d1
and d2: in d1 the interaction HS\), ~ 4 contains no coupling to the field A,, while in d2 the

sum over the 6 time orderings, when leading order vertices from H 7(3, HSJN N> and H 751]\), N are
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considered, vanishes. The first non-vanishing contributions enter at order @°, and read

+(0) . 9a Ky oo+ 1 1
J5,a(d1> = 2—ﬁ<T1X’T2)a Zﬁ_ i 0'1><q+ C4+R 0'1><k2 O'g'kgw—g
ga 1
+f—72037'2,a ks o3 - ko w_ga (174)
jf—)o)(d2) - 94 9 [Tga (401 m2 + 203q-k2) —cy4 (1 X T), 01+ (q X kg)} o - k2i
a 2f3q2+m72r ’ m a w%
—1 94 d (’T1><’T2) (2K1+Z01Xk1)(q+k2) 0’2'1(2i
Gm 2 ¢+ 2 ‘ "
. gaA q 1
+Z8mf7% (]2—|—m72r (’7'1 XTg)a(Kl'k1+2K2'k2)0'2'k2w—g . (175)

For the diagrams contributing to js.(MPE) only a single time ordering is displayed for
each topology. It is understood that denominators involving pion energies in the reducible
topologies of diagrams el-e2, e6-e7, e8-el0, el3-el4, e20-e21, e22-e25 are expanded as in
Eq. (82). The resulting contributions depend on the off-the-energy-shell prescription adopted
for the non-static corrections to the OPE and TPE (reported in the Ch. 4), and OPE-
contact potentials (reported in Ref. [23]). Different prescriptions lead to different formal
expressions for these corrections as well as the accompanying weak axial current operators,
which, however, are expected to be related to each other by unitary transformations. This
unitary equivalence has been discussed in considerable detail in Ref. [23], where it was
explicitly verified to hold in the case of the electromagnetic charge operator and is conjectured
to hold also in the present case. The axial current operators derived below are obtained
by adopting the v = 0 prescription for the non-static corrections to the afore mentioned
potentials, as given in Eqs. (142),(144), and (145) of the previous chapter. We note that
in evaluating the contributions to diagrams e2 and €9 nonstatic corrections in the pion-pole
term of the axial current at leading order need to be accounted for. These are obtained in

Appendix H.



di é dz et é e2
e4 e5 ; eb6 e’
. - //—/ //—/
—~ — - // //
% / //
e9 Zi el ell é; el2
—~ Va /
- \/// >/ \h/ \ -7

el9 e20 e2 e22
[ Y {
\

44

e23

FIG. 10: Diagrams contributing to the OPE axial current operator at order Q° and to the

MPE axial current at order (). Nucleons, pions, and axial fields are denoted by solid, dashed,

and wavy lines, respectively. Crossed circle in diagrams d1 and d2 indicate vertices generated

from chiral Hamiltonians at order Q2. Only a single time ordering is shown for each topology.
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We find that the contributions of diagrams e3, e6-e7, ell-el4, el18-e25 vanish, while those

of the remaining diagrams are given by

3
i) = - 1?}4 T2,a [Rz(‘JQ')(kQ) o1 — ko RO (k) oy - k2} : (176)
.(1) . q +(1)
.]5,a(e2) - _q2 + m%— q 'J5,a(el) ’ (177)
et = — %o, |62 RO (k) = RO (k)| o (178)
5,(1 16 f;rl ,a 1 9

3
. g q
i(es) = 32;‘% T [TM [kf RO (k) — R(2>(k1)] (100 — 1) oy - ko + 05 - ki
— (11 x 1), R (ki) (o1 % kl)iag,j] , (179)

5
X g
‘]éi(eg) = —T?M [TQ,CL |: (0’1 X kg) X kQ [k’% S(O)U{Ig) — 5(2)(]{72)]

e S® (ky) — 5(4)(1@)} o — [/{:3 Sg)(kﬂ - S’i(;’l)<k2):| 0'1]}

—47'1,0, Eijkk2j Sé?(kg) (0’2 X k2)l] s (180)
(9 = 5 a-ies), (181)
a @+ m2 a
(1) 9 a 2 (0 2
.]5,(1(610) = 32 f;rl qQ + m?r |:(2 72,0 — Tl,u) [k2R( )<k2) - R( )(k2>i| o - k2
+ (‘Tl X TQ)a RZ(?)(k1> (0'2 X kg)z 01j:| , (182)
3
i e1s) = 33—?4 {m (10aq -3k + ko) [KERO (k1) R (k)]
oy -k
—4 (Tl X Tg)a Rﬁ)(kl) (0'1 X kl)j:| 2w2 2 s (183)
2
3
. g a
i§(e16) = 643‘% T [2 (5m2 + 2k + k5 + ¢) [k RO (k1) — R®) (k)]
+ [k RO (ky) — RO (k)] — 200 (¢ + k2 + 2m?) [kf RO(k)) — R(Q)(kl)}
-k
+8006J12:| 72 3 2
Wy
3
ga q (2) o3 -k
+16 f# (Tl X T2>a qz + m?r Rij (kl) (01 X kl)z (kQ + q)j W% ) (184)
3
.(1) 94 q o3 ko
Jsa(el?) = Sf#Tzan_{_m% (1 -10a) Jio 2 (185)

where the constants J,,,, are as in Eq. (392), and the loop functions RE;Z) have been defined
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ROW) = [ s Flonwn) (156)

RP(k) = /<;;3p2f(w+,w), (187)

RP (k) = /<;;3pipjf(w+,w_), (188)

ROW) = [ gt Flwnwn) (159)

(4) dp
Rij (k) - /(2 )3 pzp]p f(CU+, ); (190)
(191)
with 1

f<w+7w—> = wiw% . (192)

The loop functions Sfjn ) are defined similarly with f(w,,w_) replaced by

2 2
- wi +w? 1 ~
) === —— 1
g(w-‘raw ) Wj- wi 4d f(w+7 ) ( 93)

After dimensional regularization, we obtain

RO(k) = 167T/0 dz —— M( (194)
RO(k) = —% e lM(k z)—i? 5\2(;{;2;) kﬂ , (195)
RY (k) = 417T 0 dz[émM(k: )—i%ki/@} , (196)
ROk = ; /O dz{M(k:,z)?’—%(z—E)QM(k DR+ 810 5\24@23«) /ﬂ o)

ROK) = 3‘; dz {5 [M(k,z)?’ - 230 (z — %) M(k, 2) kQ]
—% [(z —22M(k, ) — % 5\2(7@22) /ﬂ k:k:]] : (198)

where

M(k,z) =+/2Zk*>+m2 | zZ=1—=z2. (199)

The regularized Sfjn )(k:) loop functions easily follow from Eq. (193). Inserting these relations

into the equations above, and noting that the a dependence cancels out upon summing
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the contributions of diagrams eb, el5, el6, and el7, we obtain the expressions reported in
Appendix I. No divergencies occur in these loop corrections at order (), consistently with
the fact that there are no contact terms in the axial current at this order. Contributions
coming from Ef}z,, proportional to the LECs d;’s, that enter through topologies d1 and d2,

turn out to vanish.
5.4 LOOP CORRECTIONS TO ONE-PION EXCHANGE

In this section we discuss how to calculate the loop corrections to the one-pion exchange
(OPE) operators, for both the axial charge and axial current. The calculation of the OPE ax-
ial charge is somewhat involved because the rather large number of nonvanishing topologies.

For the axial current the situation is considerably simpler.
5.4.1 COUNTERTERMS

We now proceed to renormalize the loop corrections to the OPE axial charge operator
which come in at order (). The renormalization of nucleon and pion masses, and field rescal-
ing factors Z, and Zy, has been carried out in Appendix D. The only other ingredients which
are needed are the relations between the renormalized (physical) pion decay constant fI and
nucleon axial coupling constant g’; and their respective bare quantities. These relations have

been derived in Appendix F. We report them here

r m:r2 ly Jo1
f7r - f7r (1_ fr2 +2fr2> ) (200)
4mr2
ga = g/g [1 + — 2fr2 J01 + 39;T2 J13 — grw d16:| , (201)
A

where the constants J,,,, are defined in Eq. (392).
Next we need the set of relevant counter-terms. As illustrated in Appendix C, the total

Lagrangian, including the axial field A%, can be written as

L = N (id—m"+TY 0orl + AL Ol + A') N”

1
+§ <8O7T2 p Oy + 8’7T’” Oy —mlAnl HY, 7rb) fr AL F), 0,
2

=T =T /. 0
MmNNume(w@—mUM+{?ﬁﬁ, (202)

which is expressed in terms of renormalized fields and masses, but bare g4, f. and other

LECs. This Lagrangian has essentially the same form as the bare one in Eq. (68) (the primed
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quantities are defined in Appendix C), and leads to a similar interaction Hamiltonian as in
Eq. (75),

Hr = H; [Eq. (75) with primed quantities and renormalized fields and masses}
=T =T /. om?
—smN'N" = 52y N (ir/0; —m") N" — Z‘” Al (203)

In addition to the vertices listed in Appendix B, this Hamiltonian generates vertices cor-
responding to the set of counter-terms in Eqs. (447)—(453), explicit expressions for which

follow from those in Appendix B.
5.4.2 RENORMALIZATION OF OPE AXIAL CHARGE

We begin by discussing the non-pion-pole contributions illustrated in Fig. 11. In diagrams
g2, g4, g6, ¢8, gl1, and gl4, the solid dot represents the interaction —dm — 4m’? ¢;, where
om is the nucleon mass counter-term. The contributions associated with diagrams gl-g2,
g3-g4, gh-gb, g7-g8, g9-gl1, and gl2-gl4 represent the renormalization of nucleon external
lines and, with the choice of dm in Eq. (131) they vanish.

Next, the solid square in diagrams g16, g18, and g20 represents the interaction

m;2l 5Z7T T T % T
HyY' = —/dx( RRE )(H AT+ 0 O
r4 T2 2
—{—/dX [mﬂ— (;3;+l4)+m2ﬂ 5Z7r_5772177} A (204)

with vertex (in the convention of Appendix B)

(4)7 277’1,;2 l4
<0’ H27r ‘kla ai; k27 Cl2> = 6a1,a2 f2 + 5Zﬂ- (w1w2 — k1 . k2)

2 m;4 (lg + l4)
+T

With §Z, and dm?2 as given in Eq. (131), the contributions of diagrams g15-g20 cancel out.

+mr287, — 5m72,} : (205)
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FIG. 11: Half of the possible time-ordered non-pole corrections to the OPE axial charge
at order (). Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,

respectively. See text for further explanations.

The remaining loop contributions in diagrams g21-g29 are given by

PR = oL D (1 100) (206)

A(e22) = o (a1) §2<1—4a><101, (207)
Pa(e23+824) = pf0 ()5 fQJlg, (208)
P25 +826) = —pf (a1 nglg, (209)

PE (827 + 828 + g29) = péa><a1>4—f2efm, (210)

while those in diagrams g30-g32 vanish identically. Here pé o )(al) is defined as in Eq. (155).
Finally, one needs to include the contributions due to the interactions coming from pion
and nucleon field redefinitions. These contributions enter through the 7NN vertex generated

by the Hamiltonian denoted as H 7(3\)73\/» reported in Eq. (473), and through the 7 NN A vertex
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generated by the following Hamiltonian

1 —r
s == 025 +02:/2) /de Ay (7 % ) N | (211)
They lead to the correction
erz 1)
2 5ZN + 5Z7r + g (2 d16 — dlg) p5 a (al) (212)
A

Thus, the sum of the order ) corrections to the axial charge from non-pole contributions,

(1)

denoted as p; ,(npp), reads

_ 1 /9 2
piapp) = pf."(al) [—2 (_ - 5a> Jon = 35 fz s + 202y

+0Z, + —— (2di5 — dlg)} : (213)
ga

which, which after insertion of 7y and 67, is expressed as

1 Y 1 ) 5972
pé}i(npp) = ZSfé"?(TIXTQ) g2 - k2 [ fT,QJ(n T;AQJB
2m 2m’?
o lat (2d16_d18):| ; (214)
Ix 9

where the bare g4 and f, have been replaced by their respective renormalized values—
this replacement is correct to the order of interest here. The complete non-pion-pole axial

OPE(npp) below, results from the sum of the leading-order contribution

charge, denoted as pg,
in Eq. (155) with the ratio ga/f? replaced by its renormalized value explictly derived in

Appendix E as

ga 9 e 2mr? 2m’?
AL 1-— Ji J ly — 2dig —d 215
IEN 2f’“2 gt T T T B 18)}’ 2
and the contribution pgi(npp). We obtain for this sum
psa(OPE npp) = i Y4 (7w m) 0 by (14 g = 92 7). )
7 8 fr? w3 8fr2 2fT2
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FIG. 12: Representative diagrams for each of the relevant classes contributing to pole cor-
rections to the OPE axial charge at order (). Nucleons, pions, and axial fields are denoted
by solid, dashed, and wavy lines, respectively. More than a single time ordering is shown for

some of the diagrams.

The diagrams describing the pion-pole corrections are illustrated in Fig. 12 (only repre-
sentative diagrams for each of the relevant classes are drawn for brevity), and are similar to
those in Fig. 11. A slightly more complicated analysis along the lines illustrated above leads
to a pion-pole OPE axial charge, denoted pgi(pp), given by

1 1 r2
P5,a(OPE,pp) =1 g (7'1 X TQ)a o9 - k2_2 (1 Ji 4 J13> . (217)

7 _ _gx
8 fr2 w3 g frz % o fr2

The sum of the npp and pp contributions evaluated in dimensional regularization is

.9 1 i’
p5.a(OPE,npp + pp) = '3 fr2 (11 X 72), 09 - k2w—§(2 B J13)

_ 3mr? 1
— pé,al)@l) [2 — 5 fTQgAQ <de — 5)} , (218)
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where d, is defined in Eq. (110).

Ny N/ /\/ , 7R -7 P
. // / /A -

’ § -7 - \§ é/
f1 f2 f3 f4 f5 f6

FIG. 13: Additional loop and tree-level corrections of order ) to the OPE axial charge.
Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively.

Only a single time ordering is shown for each topology. See text for further explanations.

There are additional loop corrections to the OPE axial charge, see Fig. 13. Their contri-

butions are obtained as

r2
g —

phalfl+2) = %505, (1) [k T (k) = 10(k)] (219)
1 _

PralB+1) =~ b () Lk (220)

where pé;l)(al) is again defined as in Eq. (155), except that g4 and f, are replaced by their

renormalized values ¢’ and f7. The loop function (¥ (k), I® (k) and L(k) have been defined

in Egs. (102)-(104). Evaluation in dimensional regularization leads to

r2
W4 ) — D a1)—IA Sy (SR (52 g
p5,a( + ) p5,a (a >487T2 f77r-2 kl n s1 — kl ( 1 + mw )

1 2
+ ki (5 de. — 33) +18m?? (dg - 5) } : (221)

_ 1 s3 s+ k 5
W3 44) = @) ——— [ 22 g2 k2 (a2 ) | (222
p5,a( + ) p5,a (a )4871'2 f77;2 kl n sp — kl my + 1 € 3 ( )

We also need to account for tree-level contributions of order () originating from the vertices
2rNN and NN7A® in Egs. (404) and (419), denoted by the solid diamonds in Fig. 13. They

can be written as

o +6) = 260 (1) (K} + ok + dy® + dymr?)

~ 1
J4 d57'2,a0'1‘(qu2) Uz'kQF ) (223)

+1
2137 5
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where we have introduced the following combinations of LECs

di = 2do+ds, (224)
dy = Ady+2dy+4ds—dg (225)
dy = —2dy+dg, (226)
di = Ady+4dy+4ds+8ds, (227)
ds = dis+ 2dys, (228)

and the d; are LECs present in the subleading Lagrangian Esr?}z, The divergent parts of the
d;’s (and hence c?i’s) have been identified in the heavy-baryon formalism, without considering
any specific process, with the background-field and heat-kernel methods, see Ref. [53] and
references therein. We report below the expressions for these divergent parts from Table 4
of that work:

Bi .
di = F/\ +di (1) (229)
where, in the conventions adopted in the present work,
1 1
= d, +1n-—— 2
A 327r2(6+ nm72r> , (230)
. Bi my o
The S; functions of interest here are
4 2 4
9a 1 594 1 ga
— _JA - _ 74 =_ 4+ 2= 232
Bl 6 ) 62 12 12 ) ﬁ3 92 + 6 ) ( )
1 543 1 543
_ = - - _ = =0 233
Bs 24+ o1 Be 6 6 Bis = Das ) (233)

and fs is from Ref. [53] which corresponds to our choice of operator basis in £ For the

combinations d; above we obtain

~ 1 ~
d = —%W—w(1+5gf‘)de+d1, (234)
~ 1 ~

dy = ———d +dj, 235
2 16 72 f2 T (235)
~ 1 ~

dy = ———=d +dj, 236
! 16722 %M (236)

and 673 = cﬁ" and 675 = 6757; . We observe that the divergence proportional to m?2 from loop

corrections in pgaPE(npp + pp) cancels exactly that present in f1 + f2. Next, the divergent
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part of d, cancels exactly the term proportional to k% d, present in f1 + f2 and f3 + f4. The
divergent parts of 52 and 674 are the same, and therefore can be reabsorbed in the LEC 2z,
multiplying the contact term O,. Those of El:; and CZ:, vanish, which is consistent with the
fact that there are no divergencies proportional to ¢? or in the operator multiplying Jg,

Combining Egs. (216), (217), (221), (222), and (223), we then find that the renormalized
OPE contributions up to order @) included read as

94 1 gu’ 2 $1, S1+ ki
p5,a(OPE) Z4 f7,;2 (Tl X 7'2) (oI k2w {1 + W [(5]%’ +8m >k31 In s
13 5 2 1 si, sithki 5., r2 Tr2 | gr 1.2
—§k1+2mﬂi|+%Tf;;2( 11 k’l_gkl_gmﬂ— +(d1 ]{?1—|—d2k}2
~ ~ T ~ 1
AP m;2>:| n iQigjz & a0 (axks) 03 Ky — . (237)
™ 2

5.4.3 OPE AXTAL CURRENT

In this case there are no contributions of the type shown in Fig. 11 at order ) and the
only loop corrections to the OPE axial current are those in Figs. 12 and 14. However the
contributions of diagrams h1-h17 are easily seen to vanish, while those of diagrams m1-m2

are obtained as

) 1

Jég(ml) = 96g§' n Jia [97_2ak2 (7'1 X Tg)a (0’1 X kg)] g9 - kg E , (238)
2

-(1 q 1

Jam2) = —o=Eajsa(ml) (29)

In dimensional regularization we find the finite result

1
Jég(ml) = 2‘%25—]“”1 [9 2ak2 (Tl X Tg)a (0’1 X kg)] oy - k2 w—g . (240)

No renormalization is necessary in this case. We emphasize again that loop corrections to

diagrams d1-d2 of Fig. 10 enter at order Q? and are beyond the scope of the present Thesis.
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FIG. 14: The only non-vanishing loop corrections to the OPE axial current. Nucleons, pions,
and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time

ordering is shown for each topology.

5.5 SUMMARY OF AXITIAL CHARGE AND CURRENT UP TO

ONE LOOP

In this section we collect, for ease of reference, all expressions for ps;, and js,. All
couplings and masses are intended to be renormalized (the superscript r is dropped for
simplicity), and we label the various contributions by their power counting NnLO, where
n =1,2,3,and 4 and NnLO means the given contribution is suppressed by (Q/A,)" relative

to the leading order (LO) term. The one-body axial current operators read

e = —g?A la {0'1 T eam 0‘1'(1} ; (241)
j5N,(21LO = %Tl,a{f{(ahkl,fg)—mq'R(Uhthl)
2 fmzral K, k- Kl] : (242)
where
R(o1,k;,K)) = Kfo‘l—i—%kl x K, — o -K; Kl—l—%ayklkl. (243)

The OPE contribution to the axial charge reads

. gA 1
pra C(OPE) = i i (X ke (244)
The OPE contributions to the axial current read
35 o(OPE) = j5.(OPE) — q - js..(OPE) — g4 __d 4m2 ey T
’ ’ ¢ +mz " 2ffa+mzl "

7 1
B —— K ki +K5 -k cko— 245
2m(7'1 ><7'2)a( 1K+ Ko 2)}0'2 Zw% ; (245)
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where, for convenience, we have defined j; ,(OPE) as
js.a(OPE) = j35-°(OPE) + j5,"°(OPE), (246)

and the two quantities on the r.h.s. are given by

1 ce+ 1
JlgliLO(OPE) 2f2 [2 csToo ko + (1 X 1), {—Kl — Zm o, X q
1 1
+ C4+m 0'1Xk2 Ug'kgw—%, (247)
5
:N4LO gaMx 1
J5§ (OPE) = 25671‘]6# [97’2@1{2—(7’1 XTg)anXkQ]O'Q'kQuT% . (248)

The TPE axial charge, and MPE and short-range axial current, can be written, respectively,

as
Y 1 4m?2
P5N2LO(TPE) = 12871:2]”4 [(7'1 X 7'2)a o1 -k <3 - E - m) — 471, (o1 x 03) - ke
So + ko
21 249
k/'Q (82 - k’g) ’ ( )
with with s; defined as in Eq. (161), and
BICOIPE) = BIOOMPE) - s a - Jii O (MPE)
94 q

|
1287 f2 @2 +m2 TQ“{Zl(kl)@'(kl ko) + Zo(ka) o2 kQ_%}

+ (27'2’,1 — Tl,a) Zl(/{fg) o1 - k2 + (’7'1 X Tg)a |:Zg<k1) |:(0'1 X 0'2) . k1

—2(o1 x ki) - (ko +q) oz - ko (j 1 + Z3(ks) (01 X 02) .k2H

2
9i 1
‘= T2,a Zl(kl) |:<k2 — 3k1) (o3 k2 E — 20’2:|

128 w f4 2
9 1
o (11 X 72), Z3(k1) o1 x ki 02 - ko 32 (250)
where
3
Baroape) = A 7 Toa [Wi(ks) o1+ Walks) ks 0y - Ko ]
g4 Ti,a Wi(k2) (02 x ko) x ko, (251)

oans
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and the loop functions Z; and W; are

Wi(k) — /0 0 {(1—5931) M(k,z)—g"‘zk B;fk;;— A’;((;i))g“ (22

Wy(k) = /0 dz [—921“]5(22;{3 +Z§(72i\2;€723)_9"‘} : (253)
1/t 1

Wa(k) = —5/0 el (254)

Zi(k) = /0 dz [%-I—SM(/{?,Z)] , (255)

Zy(k) = /Oldz[élmi—10M(k,z)3+M(k;,z)(15mfr+14k2—6q-k—|—6q2
—2022k2)+%(5mi+4k2+2q2—2q-k—2k222) ,  (256)

Zy(k) = /0 LMk 1) (257)

and M (k, z) defined in Eq. (199).
5.5.1 THREE-BODY CURRENTS

We conclude the derivation by pointing out the following fact. In a three-nucleon system
the two-body loop corrections to the axial current enter at order (=2, owing to the presence

of a momentum-conserving d-function 6(p} — ps).

7/ -
’ -
~ < 7/ ;: =
3 1 2 3 1 2
(a) (b)

FIG. 15: Diagrams illustrating the three-body axial current at N4LO (i.e., order Q72 in a
three-nucleon system). Nucleons, pions, and axial fields are denoted by solid, dashed, and
wavy lines, respectively. Only a single time ordering is shown and pion-pole contributions

are ignored.

These loop corrections turn out to be of the same order as the three-body axial current,
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illustrated in Fig. 23 and first derived in Ref. [48]. They are given by

:N4LO
J5.a (3B) = E 6f4 (2710 T2 T3 — T2a T3 T1 — T30 T1 " T2)

cyc
401 -k k -koos -k

% (0_1__0'1 2l 1) (o) . 203 . 3’ (258)
3w w5 w3

where the sum is over the cyclic permutations of the three nucleons, and a momentum-

conserving d-function (27)36 (k; + ko + k3 — q) is implicit.
5.6 CURRENT CONSERVATION IN THE CHIRAL LIMIT

In the chiral limit (m, — 0) the axial current is conserved and

q 'j5,a = [Ha Ps,a] ) (259>

with the two-nucleon Hamiltonian given by (we ignore here three-nucleon potentials and
currents)
H=T 400 4@ 4 (260)

where the superscripts denote the power counting, the v(™ are the two-nucleon potentials

defined in Egs. (86) and (88), and the kinetic energy 7" (in momentum space) is

PP
2m

T = =L (27)%3(phy — po) + (1 = 2) . (261)

Here, the potentials and axial charge and current operators (including the axial coupling and
pion decay constants and LECs entering them) are to be understood in the chiral limit. Order

by order in the power counting, current conservation implies the following set of relations

a-js.) = 0, (262)
a-it = [T 20 (263)
a-§0 = [0, 0] 4 [0, 0] (264)
a3 = [0, 0] 4 o0, 20) (265)

where we have only kept up to terms of order ?>. Note that the commutators implicitly
bring in factors of Q. The first of these relations is obviously satisfied, see Eqs. (147). The
second relation has

qJé;zl) :_%Tl,akl‘Kldl'K1+(1\:\2) , (266)
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where jé;l) is given by th N2LO contributions in Eq. (242), and it is also satisfied. The
left-hand-side of the third relation has

(00 . gaA 1 B
q'.]5,a - Z4mf7% (Tl X T2>a g - k2w_% (kl . K1 + k2 . K2) + (1 — 2) > (267)
and this matches the first commutator on the right-hand side, [T(_l), pé;l)] with pé;l) given
by
_ , 1
P =i (1 %1y, 00 ke + (1=2) (268)

412 w2

i.e., the sum of terms al and a2 in Eqgs. (155) and (156). There are additional contributions to
jg?g, which arise from non-static corrections to the denominators involving pion energies in the
diagrams illustrated in Fig. 16, where the crossed (full) circle means that these denominators
are expanded as indicated in Eq. (82) to order Q° (Q) beyond the leading-order static term.

These contributions have not been considered in this Thesis.

o \&
N
N

~ y ] § § N\
FIG. 16: Illustration of some of the non-static corrections to the axial current reported in
Appendix H. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,
respectively. Pion lines with crossed (full) circle indicate that only the next-to-leading Q°

(next-to-next-to-leading () term in the expansion of energy denominators, Eq. (82), are

retained in the corresponding amplitudes.

Lastly, we consider the fourth relation, Eq. (265). The axial current Jél()l obtained in this
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Thesis is in the static limit, and one expects q - Jélc)l to satisfy the commutator

3
[U(O) ; Pé;l)} = —%'}4 (Tra — T2.4) Hki RO(ky) — R(Q)(k?)] o1 - ko

- [k% RO (k) — R(Q)(kl)} oy - kl}
9

6 /3

(7'1 X Tz)a |:RZ(]2)<]€2) 01, (0'2 X k2)j
—R (k1) 72 (0 % kl)j] , (269)

where the loop functions R™ (k) and Rz(jz)(k) in the chiral limit read

11
ROk == 270

1
RY(k) — ——k, (271)

16

1
RD(k) — LR (272)
and the ... indicate a term proportional to k; k;, which vanishes when inserted in Eq. (269).

The current-conservation constraint is seen to be satisfied by noting that the only non-
vanishing contributions to q - ngg are those due to diagrams e4, eb, el0, el5, el6, and el7
in Fig. 10, proportional to the combination of coupling constants g3 /f2. In particular, the

contributions of the purely irreducible diagrams e4, €5, el5, €16, and el7 combine to give

3
q ‘jgi(e‘l +eb5+elb+elb+el?) = _331}4 {Tl,a [k% RO (ky) — R(Q)(/@)} o1 - ko

3

+7—2,a |:]€% R(O) (kl) — R(2)<k1):| g9y - k1:| + 3313"4 (7'1 X Tg)a |:RZ(]2)<I€2) 01, (0'2 X k2)j

—RZ(JQ) (]{71) 02 (0'1 X kl)j] , (273)

with the remaining “missing” term being provided by q - jé (e10). The other commutator

1)
,a

[T(_l), Pfr,ot)z} has a factor 1/m, and therefore non-static corrections need to be included in

jgc)b, if the latter is to satisfy the complete Eq. (265). These corrections have again been

ignored in the present Thesis.
5.7 COMPARISON WITH OTHER STUDIES

We compare the one- and two-body axial charge and current operators derived here with

those obtained by Park et al. in Refs. [28] and [48] in the heavy-baryon (HB) formulation of
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covariant perturbation theory and by Krebs et al. in Ref. [49], with the unitary transforma-
tion method. The one-body axial charge and current operators at leading order in Eqs. (147)
and (148) are the same as those listed in Ref. [48], except for the pion-pole contribution to
jé;g), which, while nominally of the same order (Q~2) as the non-pole contribution, is nev-
ertheless suppressed at low momentum transfer ¢ and is therefore ignored in Ref. [48] (we
note incidentally that in that work k; = —q, i.e., the opposite convention adopted here).
Of course, this pion-pole contribution is crucial for current conservation in the chiral limit.
We have neglected the 1/m? relativistic corrections to the leading order axial charge. These
1/m? corrections are retained in Ref. [48]. However, the 1/m? corrections to the leading
order axial current in Eq. (152) are in agreement with those given in Ref. [48], except for
the last term proportional to q (o - q), which was again ignored in that work. For the
discussion of how the leading order axial charge emerges in covariant perturbation theory
see Appendix J.

Turning to the OPE contributions at tree level, we find that the contributions to the

(

axial charge p; ) in Eq. (244) and axial current in Eq. 247 reproduce tose given in Ref. [28].

-1
,a
The contact terms contributing to the Q° axial current in Ref. [48] can be reduced through

Fierz identities to the form given in Eq. (173).

nit % n2 n3

FIG. 17: Diagrams contributing to the axial charge (nl-n2) and current (n3) at order @
considered in Ref. [28]. Nucleons, pions, and axial fields are denoted by solid, dashed, and
wavy lines, respectively. Only a single time ordering is shown for each of the possible 12

(nl) and 60 (n2 and n3) cross-box topologies.

Next we consider loop corrections to the axial charge. The contributions of ¢3-c4, ¢7-c8,
and ¢9-c12 in Fig. 8 are found to vanish in both approaches, here and in Refs. [28, 48].
The contributions of diagrams cl and c¢2 are the same as in Ref. [28]. The contributions
of diagrams cb and c6 are different from those reported in Ref. [28] because of the different
treatment of reducible topologies for these types of terms. Indeed, if only the (irreducible)
cross-box topologies are retained for diagrams c¢b and c6, as illustrated in Fig. 17, then the

resulting operator is the same as those obtained in Ref. [48]. The OPE axial charge operator
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derived in Ref. [28] reads in our notation

- ga 1 ks (17g3+4 | .\ _ migi
p5’a(OPE, Park et (ll) = Zm (7'1 X TQ)aUQ . kgw—% [ — f_T% W 03 — m
2 3
ga S2 S+ k2 2 2 1 So So + k’g 9
—1 5k 8 —=1 -8 . 274
T “(52—1@)( 2+ 8m) + G L@ “(32_1@ ma |- 2T

Provided we define
(5+13g124)_ 1794 +4 ,

Wt dy —di = o = Tz

the expression above is in agreement with our Eq. (313) in the limit q = 0 (or k; = —ko)
which is assumed in Refs. [28, 48], except for the term proportional to m?2 in the first line
(note that ¢j is not to be confused with the LEC in 5;2]2,).

Moving on to the loop corrections to the axial current, the sum of the contributions due
to diagram m1 of Fig. 14 and diagram el5 of Fig. 10 is the same as in Ref. [48], provided the
parameter « in the 37 A vertex of diagram el5 is set to 1/6—the authors of Refs. [28, 48] use
the exponential parametrization for the pion field. The irreducible contributions of diagrams
el and e4 in Fig. 10, and the contributions associated with the cross-box topologies of diagram
e8 in Fig. 10 and illustrated in panel n3 of Fig. 17, are the same as those reported in Ref. [48].

Non-vanishing pion-pole diagrams e2, e5, €9, el0, el6, and el7 as well as diagrams e20-
e21 (e22-e25 vanish) in Fig. 10 have not been considered in Refs. [28, 48]. Because of this
incomplete treatment, loop corrections to the axial current are a-dependent in Refs. [28, 48].
Furthermore, the current is not conserved in the chiral limit.

In the following we compare our operators to those derived in Ref. [49]. That derivation
has been done with the unitary transformation method, and it includes nonstatic corrections
at order () which we have neglected. The formulas are rather involved and therefore we will
limit ourselves to the comparison in the limit case q = 0. In this limit all pion-pole diagrams
vanish, and the difference between the two expressions for the axial current is
&

__Ya
647 f2

jsT,SPT(q =0) —j}fg(q =0) [Tl,a (02 x ka) x ko A(ky)

10 m2 k2
+To4 [a’l [2 Alky)k3 + mﬂm}

4m2 + k3
(o] 'k2k2

275
: , (275)

Alka) (32 4 43) |

where A(ky) = 1/(2k) arctan [k/(2m,)]. The factor ¢%/f% in Eq. (275) indicates that the

difference comes from the box diagram, see panel e8 of Fig. 10. In particular, we note that
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our prescription is linked to the off-the-energy-shell extension of the potential v = 0. In
particular we note that our operator was obtained by considering the v = 0 prescription for
the off-the-energy-shell extension of OPE and TPE potential. It is possible that differences
in Eq. (275) might be due to the different off-the-energy-shell extrapolations adopted for
these potentials.

For the axial charge operator expressions for two-pion exchange and short-range contri-
butions agree. For loop corrections to the one-pion exchange there are differences in the

logarithm free parts of Eq. (237).



64

CHAPTER 6

TRITIUM BETA DECAY

In this chapter we carry out a calculation of the tritium g-decay rate and constrain
the LEC 2, in the axial current by reproducing the tritium Gamow-Teller (GT) matrix
element. This decay has a Q-value of about 100 KeV and therefore we evaluate current
contributions at vanishing momentum transfer (i.e., all pion-pole contributions derived in
the previous chapter are neglected). The LEC z, is related to the LEC cp entering the
chiral three-nucleon potential at leading order [52] and therefore fixing 2, is equivalent to
fixing cp. There is another LEC, denoted as cg, which along with ¢p completely characterize
the three-nucleon potential. In the past cp and cg have been fixed by reproducing the GT
matrix element and the trinucleon binding energies [54, 55]. Those calculations included the

axial current up to order Q°. Here we retain all contributions up to order Q.

6.1 CONNECTION BETWEEN THE THREE-NUCLEON FORCE
AND THE CONTACT AXIAL CURRENT

The three-nucleon force at LO is given by the sum of the three diagrams in Fig. 18.

Diagram a represents contact term,

.. C
Valijk) = ) A Ef4 T Tk (276)
XJmw

cyclicijk

while diagram b is the two-pion exchange (TPE) contibution

2 1
Vb(ljk) = % 2 20-1' *q; Ti,a Fac(zjk) Tk,c O gk , (277)
cyclicijk fﬂ' Wi Wy
where
. m?2 25 4
Fac(ljk) = —4 ClF 6@0 + F q; - gk 5ac + Fo-j ' (qz X qk:) €acb Tjb » (278)

and we have defined q; = p; — p;. Lastly diagram c is the one-pion exchange term

~ .. ga ¢ 0;,-q; 0;-Q; O, qkr O " g
Vo(ijk) = — 3 2 AXI}Q( R e rj~rk) (279)

w; Wi

cyclicijk
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where ¢p is the LEC multiplying the following contact interaction [12]

CD

(1) = =
LiN,u, YW Ny*v5u, NNN . (280)
Since
1
u, = ——T-0,m+T-A,+..., (281)

Ix
(see Appendix A), it is easy to see that the term proportional to the axial field leads precisely

to the two-body contact axial current of Sec. 5.3. In particular it can be easily seen that the
LEC zy of this contact term is linked to the LEC ¢p of the three-nucleon force through the

following relation

CD
= —. 282
=0 oA, /2 (282)
I / k’
rJ k
a b c

FIG. 18: Diagrams illustrating the three-nucleon force at leading order. Nucleons, pions,
and axial fields are denoted by solid, dashed, and wavy lines, respectively. The full dot in
diagrams b denotes corrections to the vertex coming from Efﬁ,. Only a single time ordering

is shown for diagrams b and c. See text for further explanations.

In order to compare with previous determinations of this LEC [48, 54, 55], it is convenient

to define the adimensional LEC Z, by rescaling 2, as

2mf7%
= ——" 7

Zo = , 283
’ ga 0 ( )

and the LEC c¢p in the three-nucleon potential related to Zy via [48, 54, 55]

A
= IATxy (284)

Cp

where A, is taken as 1 GeV here (in Refs. [54, 55] A, = 0.7 GeV was adopted). The scale A,
is not to be confused with the cutoff A which regularizes the configuration-space expressions

of the axial operators.
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6.2 NUCLEAR WEAK CURRENTS

After defining the charge raising (4) and lowering (—) isospin operators as

e TI1T;
T = Tiw = Vi (285)
2
and
(TIXT2>:t = (T1XTQ)$:]:Z'(7'1XT2):‘:7 (286)

we introduce the charge changing axial current operators
Jbr = Jsatilsy. (287)

Referring to the summary in Sec. 5.5 we report in the following the one- and two-body
nuclear axial currents in the limit of vanishing external field momentum. The one-body

operator terms at LO and N2LO are

j%& = —gAT1,+£01, (288)
j5N,2iLO = 2%2 ns (Ko — Ky o1 -Ky) | (289)

while the two-body operator at N3LO are separated into one-pion exchange (OPE) and
contact (CT) terms corresponding respectively to Eqgs. (173) and (245)

. 1 7
‘]5Nj:LO(OPE) = 29‘?7% {4 C3To + k + (7'1 X TQ):E |:(C4 + m) o1 X k — %K1:| }
xoy - k R (290)
j?,iLO(CT) = 2 (T X Tz)i o1 X 02 . (291)
The (two-body) operator at N4LO are given by Egs. (245) and (250),
:N4LO 9,511 My 1
-]5,i (OPE) = 2567-(-‘]";_1 [187—2,ik_<7-1><7-2)i0-1><k] O-ka_]% , (292)
3
B g 1
JgiLO(MPE) = 3 ;fﬁ T4 |Wi(k) oy + Wa(k)k oy -k + Zy (k) <2k oy - kw_g _ 0,2)]
9 9
+327?167% T+ Wa(k) (02 x k) x k — 327/ (11 x 1), Z3(k) o1 x k
Xy - k (293)

=,
Wi
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where the loop functions are defined in Egs. (252)—(257). Lastly, the expression of the

three-nucleon axial current

. g
JgiLo(3B;k2,k3) = _28}44 (2T To T3 — Tt T3 T1 — T34 T1 - T2)
cyc 7r

o 05 k
oy 22220858 (204)
w3 W3

where the sum is over the cyclic permutations of the three nucleons, and in the q = 0 limit
k; = — (ko + k3). We have neglected the term proportional to o - k; in Eq. (294) since the
computational effort required to numerically implement thi operator is unjustified in view
of its expected contributions, see Table 1.

Configuration-space expressions for these two- and three-body operators (denoted gener-
ically as 2B and 3B, respectively) follow from

j5+(2B) = /%eik'”12 Ca(k) j5.+(2B; k) , (295)

, dky dks ao . a .
J5,:t(3B) - /(271_;3 (27_(_:)336 ke 20 kaTis CA(]'CQ) CA(kg) J5,:|:(3B;k2,k3), (296)

where the relative positions are defined as r;; = r; — r;, and Cj (k) is the momentum cutoft,

which we take as
Cp(k) = e /M (297)

This cutoff does not modify the power counting of the various terms, as it is easily seen by ex-
panding in powers of k/A. Lastly, terms proportional to K; in the N2LO and N3LO currents
are obtained by replacing K; with —i V; in configuration space (the momentum operator),
and need to be symmetrized accordingly to preserve hermiticity. Explicit expressions for
these Fourier transforms are listed in Appendix K.

The weak vector charge has in principle contributions from one- and two-body terms
derived in Ref. [23]; however, the latter vanish in the limit q = 0, and only the one-body

term at LO contributes in this limit p; = 7; 4 the well-known Fermi transition operator.
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6.3 GAMOW-TELLER MATRIX ELEMENT IN TRITIUM -DECAY

The Gamow-Teller (GT) matrix element is obtained from the tritium half-life via (see [56]

and references therein)
K/G2
(F)?+ fa/fv g2 (GT)*

where g4 = 1.2723 is the current experimental value [57] for the nucleon axial coupling
constant, dr = 1.9% is the outer radiative correction [58], ¢ is the half-life of *H, and fy/

(14 0g)t fv (298)

and f4 are Fermi functions reported in Ref. [59] to have the values 2.8355 x 107% and
2.8505 x 1079, respectively. The experimental value used for K/G% is (6144.5 +1.9) s as
obtained in Ref. [60], and that used for (14+0g) ¢ fy is (1134.6+3.1) s as reported in Ref. [59].
Finally, (F) and (GT) denote the reduced matrix element of the Fermi (F) and GT operators

(F) = (*Help,||’H), (299)
(GT) = (*Helljs.+|I'H), (300)

where the [*H) and |*He) wave functions are obtained with the hyper spherical-harmonics
(HH) expansion method (for a review see Ref. [61]) from two- and three-nucleon potentials
derived from either YEFT or the phenomenological approach.

The combination of chiral potentials is denoted as N3LO/N2LO(500) [N3LO/N2LO(600)]
corresponding to cutoff A = 500 MeV (A = 600 MeV), and consists of two-nucleon potentials
at N3LO from Refs. [9, 62] and three-nucleon potentials at N2LO from Refs. [12, 63]. ! The
combination of conventional potentials is denoted as AV18/UIX and consists of the Argonne
v1s (AV18) two-nucleon potential [64] and Urbana-IX (UIX) three-nucleon potential [65]. In
all cases we obtain (F) = 0.9998. From this value we extract via Eq. (298) the experimental

GT matrix element as
GTexp = (GT)pxp/V3 = 0.9511 £ 0.0013 . (301)

Contributions to the GT matrix element corresponding to the LO, N2LO, N3LO, N4LO,
and N4LO(3B) axial operators are reported in Table 1, where the LEC z; in the N3LO(CT)
operator is taken as zyp = 1 in units of GeV™®. The LECs c3 and ¢, in the N3LO(OPE)

operators are constrained by fits to m/N scattering data, and two different sets of values

!Note that for consistency with the convention adopted in Chapters 4 and 5, it would be more appropriate
to label these two- and three-nucleon potentials, respectively, as NALO and N3LO. However, this is not the
standard notation used in the literature.
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(listed in the table caption) have been used in the present study, one from Refs. [9, 62]
and the other from a recent analysis of these data based on Roy-Steiner equations [66],
specifically the values corresponding to the column labeled N3LO in Table II of that work.
The first set of ¢ and ¢4 values (from Refs. [9, 62]) enters the chiral two- and three-nucleon
potentials, used here to generate the *H and *He wave functions. Clearly, use of the second
set from Ref. [66] in the N3LO(OPE) axial current is not consistent with these potentials;
results for the GT matrix element are provided in that case only to give an estimate of their
sensitivity to the c3 and ¢4 values. As per the additional LECs (¢p, cg) in the three-nucleon
potential, these have been obtained by the fitting procedure described below. In particular,
we note that the LEC zy in the N3LO(CT) operator is related to c¢p via Eq. (284). The
GT (and F) matrix elements are computed exactly, without approximation, with quantum
Monte Carlo methods. The spin-isospin algebra is carried out with techniques similar to
those developed in Ref. [67] for the electromagnetic current operator. The results reported
in the tables below are based on random walks consisting of 10° configurations. Statistical
errors are not listed, but are typically at the few parts in 10, except in the special case of
the N3LO(OPE) results, for which they are at the few % level (see below).

In Table 1 we report the results for the N3LO/N2LO(500) and N3LO/N2LO(600) models,
and in parentheses those for the AV18/UIX model. The LO and N2LO axial operators do
not need to be regularized, and hence the corresponding contributions for the AV18/UIX are
the same for A = 500 MeV and 600 MeV. However, the N3LO/N2LO contributions change
(rather significantly at N2LO) as A varies in this range due to the intrinsic cutoff dependence
of the potentials. In the N3LO axial current of Eq. (290) the terms proportional to c¢3 and
¢4 have opposite signs and tend to cancel each other. The degree of cancellation depends
crucially on the values of the LECs and Hamiltonian model. In particular, when c3 and ¢4
are taken from Refs. [9, 62], the sum of their contributions for the N3LO/N2LO model is (in
magnitude) comparable to the contribution from the non-local terms proportional to K; in
Eq. (290).
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TABLE 1: Contributions to the GT matrix element of tritium S-decay corresponding to the
Hamiltonian model N3LO/N2LO (AV18/UIX) and cutoffs A = 500 MeV and 600 MeV in the
chiral potentials and weak axial current operators. The acronyms LO, N2LO, N3LO(OPE),
N3LO(CT), NALO(OPE), NALO(MPE), and N4LO(3B) refer, respectively, to the axial oper-
ators given in Eq. (288), Eq. (289), Eq. (290), Eq. (291), Eq. (292), Eq. (293), and Eq. (294).
In the N3LO(OPE) operator the LECs c3 and ¢, have the values c3 = —3.20GeV ™" and
cy = 5.40GeV™! from Refs. [9, 62], while in the N3LO*(OPE) operator they are taken as
c3 = —5.61GeV ! and ¢; = 4.26 GeV ™! from Ref. [66]. The LEC z, in N3LO(CT) is taken
to have the value 2y = 1 in units of GeV~>. The LECs (cp,cg) in the three-nucleon chi-
ral potential have the values (—1.847,—0.548) for A=500 MeV and (—2.030,—1.553) for
A =600 MeV. See text for further explanations.

A 500 MeV 600 MeV
LO 0.9363(0.9224) 0.9322 (0.9224)
N2LO ~0.569(-0.844)x 1072 | ~0.457(-0.844) x 102

N3LO(OPE) | 0.825(1.304)x1072 | 0.043(7.517)x10~2
N3LO*(OPE) | 0.579(0.812)x107* | 0.652(1.413)x 107
N3LO(CT) | —0.586(-0.721)x1073 | —-0.717(-0.644)x 103
N4LO(OPE) | —0.697(-0.964)x1072 | ~0.867(-1.216)x 1072
N4LO(MPE) | —0.430(-0.565)x 1071 | —0.532(-0.775)x10~*
N4LO(3B) | —0.143(-0.183)x 1072 | —=0.153(-0.205) x 102

The contributions from loop corrections, row labeled MPE, are relatively large and com-
parable to those from OPE. As a matter of fact, when the values for the c3 and ¢4 LECs are
from Refs. [9, 62], the N3LO(OPE) contributions are an order of magnitude smaller than the
N4LO(MPE) in the case of the chiral potentials. The origin of this large contribution can
be traced back to the term proportional to the loop function Wi (k) in Eq. (293), specifically
to the term with the factor (1 —5¢%) in Eq. (252). It originates from box diagram e8 of
Fig. 10. All the N4LO corrections have opposite signs relative to the LO and OPE at Q°.

Next, we discuss the determination of the value for the LEC z, required to reproduce
GTgxp for the various Hamiltonian models we consider, by retaining corrections in the axial
current up to either N3LO or N4LO. Values for the LECs are reported in Table 2 for the
hybrid calculation based on the AV18/UIX Hamiltonian model, and in Table 3 for the chiral
Hamiltonian model. In Table 2 the values for Z, and cp, related via Eq. (284) are listed,

so that they can be compared with previous determinations [48, 55, 68]. These values are
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obtained by simply reproducing the central value of GTgxp in Eq. (301).

TABLE 2: Adimensional values of the LECs corresponding to the AV18/UIX Hamiltonian
model and cutoffs A = 500 MeV and 600 MeV in the chiral axial current. The LEC Z; is deter-
mined by reproducing GTgxp in calculations including in this current corrections up to either
N3LO or N4LO. The values for Z; and ¢p are obtained using the LECs (c3, ¢4) = (—3.20, 5.40)
GeV~! from Refs. [9, 62], those for 2§ and c}, using (c3,cq) = (—5.61,4.26) GeV~! from
Ref. [66], in both the N3LO and N4LO calculations.

N3LO N4LO

A 500 600 200 600
Zo | —0.421 | 0.742 || -1.607 | —1.048
cp | —0.571 | 1.007 || —2.180 | —1.421

Zy | 0.769 | 2.038 || -0.417 | 0.235
cp | 1.043 | 2.764 || -0.566 | 0.318

In order to determine the values corresponding to the chiral potentials, we proceed as in
Ref. [55]. The *H and ®He ground state wave functions are calculated using these potentials
for A=500 MeV and 600 MeV. We span the range cp € [—4,3], and, in correspondence
to each cp in this range, determine cg so as to reproduce the binding energies of either *H
or 3He. The resulting trajectories are essentially indistinguishable, as shown in Fig. 21 for
A =500 MeV and in Fig. 22 for A=600 MeV, and as already obtained in Ref. [55]. Then,
for each set of (cp,cg), the triton and *He wave functions are calculated and the Gamow-
Teller matrix element, denoted as GTry, is determined, by including in the axial current
corrections up to N3LO or N4LO. The ratio GTty/GTgxp for both values of the cutoff A is
shown in Fig. 19 for the N3LO case and Fig. 20 for the N4ALO one.
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FIG. 19: The ratio GTry/GTgxp as function of the LEC ¢p obtained retaining corrections
up to N3LO in the nuclear axial current. The results for both values of the cutoff A are

shown.
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FIG. 20: Same as Fig. 19 but with the corrections in the axial current up to N4LO.

The LECs (cp,cg) that reproduce simultaneously GTgxp (its central value) and the

trinucleon binding energies are given in Table 3.
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TABLE 3: Values for the (cp, cg) LECs as obtained by fitting the A = 3 binding energy and
GTexp (its central value), using the N3LO/N2LO potential models with cutoffs A = 500
MeV and 600 MeV. The results labelled N3LO and N4LO are obtained retaining in the

nuclear axial current up to N3LO and N4LO contributions, respectively.
N3LO N4LO

A 500 600 500 600
cp | 0.353 | —0.443 || —-1.847 | —2.030
cg | —0.305 | -1.224 || -0.548 | —1.553

The values for ¢p at N3LO are found to be consistent with those listed in [55], after
allowance is made for the different A, (0.7 GeV in that work versus 1 GeV above) and for
the fact that GTgxp as determined here is slightly smaller than adopted in [55].

Alternatively, we could choose a different set of three-nucleon observables to fit these
LECs. We consider here, together with the A =3 binding energy, the nd doublet scattering
length a4, for which we take the experimental value 0.645 4 0.010 fm, obtained in Ref. [69].
In the range ¢p € [—4,3] the resulting trajectories are displayed in Figs. 21 and 22 for
A = 500 MeV and 600 MeV, respectively. The experimental uncertainty in a,q has been

taken into account, and therefore the results of Figs. 21 and 22 are presented as a band.
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FIG. 21: The cp-cg trajectories fitted to reproduce the experimental A =3 binding energies
and the doublet nd scattering length using the N3LO/N2LO potential with A =500 MeV.
The values of 8.475 MeV, 7.725 MeV and 0.645 + 0.010 fm [69] are used for the *H, *He
and nd scattering length, respectively. Note that the A = 3 binding energies have been
corrected for the small contributions (+7 keV in 3H and —7 keV in 3He) due to the n-p mass
difference [70]. The (cyan) band is due to the experimental uncertainty on the nd scattering
length. The vertical lines indicate the ¢p values obtained by fitting GTgxp and retaining up
to N4LO or N3LO contributions in the axial current.
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FIG. 22: Same as Fig. 21 but for A =600 MeV.
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The trajectories originating from the A =3 binding energies and nd scattering length

are quite close to each other, but do not overlap. In the A = 500 MeV case, there is a
crossing point at (c¢p,cg)=(—2.340, —0.567), while for A = 600 MeV there is no crossing.
In particular, using the (cp,cg) in Table 3, we obtain a,q = 0.654(0.665) fm for A =500
MeV and a,4 = 0.687(0.699) fm for A =600 MeV, when the N4LO (N3LO) contributions in

the axial current are retained. The present calculations of the nd scattering wave functions

ignore higher order electromagnetic interaction terms, such as those associated with the

nucleons’ magnetic moments. These terms are known to reduce the a,, value of about 3

% [61], when the AV18/UIX Hamiltonian model is used. Thus, the present analysis seems

to indicate that the three A=3 observables (A =3 binding energies, GTgxp, and a,q) are

simultaneously reproduced, at least for A = 500 MeV, when the nuclear axial current retains

corrections up to N4LO.
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CHAPTER 7

INCLUSIVE NEUTRINO SCATTERING OFF THE

DEUTERON AT LOW ENERGIES

In this chapter we discuss inclusive neutrino scattering off deuteron induced by neutral
and charge-changing weak currents in a chiral EFT framework. A number of studies of these
processes was carried out in the past several decades. These efforts culminated in a set of
predictions [71, 72], in the early 2000’s, for neutrino-deuteron cross sections for incoming
neutrino energies up to 150 MeV. The calculations were based on the conventional meson-
exchange framework, and used last-generation realistic potentials available at the time and
a realistic model for the nuclear weak currents, which included one- and two-body terms.
The Nakamura et al. studies played an important role in the analysis and interpretation
of the Sudbury Neutrino Observatory (SNO) experiments [29], which have established solar
neutrino oscillations and the validity of the standard model for the generation of energy and
neutrinos in the sun [30].

Concurrent with those studies was a next-to-next-to-leading order calculation of neutrino-
deuteron cross sections at low energies (< 20 MeV) in an effective field theory in which pion
degrees of freedom are integrated out and which is consequently parametrized in terms of
contact terms [73]. In the strong-interaction sector, the LECs multiplying these contact
terms were fixed by fitting the effective range expansions in the 'Sy and 3S; two-nucleon
channels (which dominate the low-energy cross sections). The weak current included one-
body terms with couplings (nucleon magnetic moments and axial coupling constant) taken
from experiment as well as two-body terms. In the vector sector, the two LECs associated
with these two-body terms were determined by reproducing the radiative capture rate of
neutrons on protons at thermal energies and the deuteron magnetic moment. In the axial
sector the two-body terms were characterized by a single LEC (labeled L, 4, and correspond-
ing to our zp), which however remained undetermined. Nevertheless, by fitting the results
of Ref. [72], Butler and collaborators [73] were able to show that the resulting value for L 4
was natural, and that the calculated cross sections reproduced well the energy dependence

obtained in the Nakamura et al. calculations.
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The energy range of the Nakamura et al. studies was extended up to 1 GeV in the more
recent calculations by Shen et al. [74]. These calculations too were based on the conventional
framework, but included refinements in the modeling of the weak currents, which, however,
turned out to have only a minor impact on the predicted cross sections [74]. The results
confirmed those of Nakamura et al. in the energy range up to 150 MeV.

The calculation reported in this chapter differs from all previous ones in one essential
aspect: it is fully based on a xYEFT formulation of the nuclear potential 9, 62] and weak
currents [22, 23, 24, 75, 76| at high orders in the power counting. The LECs in the potential
have been constrained by fitting the nucleon-nucleon scattering database in the energy range
extending up to the pion-production threshold [9, 62], while the LECs in the electroweak
current have been fitted to a number of low-energy electro-weak observables in the A =2 and
3 nuclei [24, 76] (specifically, the isoscalar and isovector magnetic moments of the deuteron
and trinucleons, and the tritium Gamow-Teller matrix element).

A comparison among the results of the various calculations is discussed at the end of this

chapter.
7.1 NEUTRINO INCLUSIVE CROSS SECTION

The differential cross section for neutrino (v) and antineutrino (7) inclusive scattering off
a deuteron, specifically the processes *H(v;, v;)pn and *H(7;, 7;)pn induced by neutral weak
currents (NC) and denoted respectively as 1-NC and 7;-NC, and the processes H(v,, ¢ )pp
and *H(7,, e")nn induced by charge-changing weak currents (CC) and denoted respectively

as 1-CC and 7;-CC, can be expressed as [74]

( do ) = E 2 1) [ vo0 Roo -+ vor Ron — 00 R+ s Ron T 00y R (302)
da),, 877 ¢ ; 2z L0z 2 Lz + Upg Pogg F Vgy Ligy |
where G=GF for the NC processes and G=GF cos f¢ for the CC processes, and the — (+)
sign in the last term is relative to the v (7) initiated reactions. Following Ref. [72], we adopt
the value Gr = 1.16637876 x 107° GeV~2 as obtained from an analysis of super-allowed
0t — 0" [B-decays [60]—this value includes radiative corrections—while cos ¢ is taken as
0.97425 from Ref. [77]. The initial neutrino four-momentum is &* = (e, k), the final lepton
four momentum is k*’ = (¢/,k’), and the lepton scattering angle is denoted by #. We have
also defined the lepton energy and momentum transfers as w = ¢ — ¢ and q = k — K/,
respectively, and the squared four-momentum transfer as Q% = ¢> — w? > 0. The Fermi

function F(Z,k") with Z = 2 accounts for the Coulomb distortion of the final lepton wave
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function in the CC reaction,
2

: y=1/1—(Za)*, (303)

and it is set to one otherwise. Here y = Za € /K, I'(z) is the gamma function, r, is the

(y+iy)

F(Z,K) = 2(149) @K a2 exp (79) | 515

deuteron charge radius (ry = 1.97 fm), and « is the fine structure constant. Radiative
corrections for the CC and NC processes due to bremsstrahlung and virtual photon- and
Z-exchanges have been evaluated by the authors of Refs. [78, 79] at the low energies (~ 10
MeV) most relevant for the SNO experiment, which measured the neutrino flux from the *B
decay in the sun. However, these corrections are not retained in the present work.

The factors v, in Eq. (302) denote combinations of lepton kinematical variables including
the final lepton mass, while the nuclear response functions are defined schematically as
(explicit expressions for the v, and R, can be found in Ref. [74])

Runla,) ~ 3 37 3780w+ ma = Bp) (i@ w)ld M) (17 (@,)ld, M), (304

M f
where |d, M) and |f) represent, respectively, the initial deuteron state in spin projection
M and the final two-nucleon state of energy Ey, and my is the deuteron rest mass. The
three-momentum transfer q is taken along the z-axis (i.e., the spin-quantization axis), and
j*(q,w) is the time component (for u = 0) or space component (for u = x,y, z) of the NC

or CC, denoted, respectively, by jio or jee. The former is given by
e = —2sin’0w j8 g + (1 — 2sin*0y) 31, + jE (305)

where 6y is the Weinberg angle (sin*0y, = 0.2312 [77]), jé" g and j£ _ include, respectively, the
isoscalar and isovector terms of the electromagnetic current, and jéf, . includes the isovector
terms of the axial current (the subscript z on these indicates that they transform as the
z-component of an isovector under rotations in isospin space).

The charge-changing weak current reads
Joe = Ji+ s (306)
where j4 and j; . are respectively the weak vector and weak axial currents defined as
gy o= grEigy,  Jia=Jh. Eijh,. (307)
We observe that the conserved-vector-current hypothesis relates 74 to the isovector compo-

nent j£ . of the electromagnetic current via

[7—1,@ + T2,a) jé/iz} = 2 ieazbjll; . (308)
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Before turning to a brief discussion of the one- and two-body yEFT contributions to the NC
and CC, we note that, as described in considerable detail in Ref. [74], we evaluate, by direct
numerical integrations, the matrix elements of the weak current between the deuteron and
the two-nucleon scattering states labeled by the relative momentum p and in given pair-spin
and pair-isospin channels, thus avoiding cumbersome multipole expansions. Differential cross
sections are then obtained by integrating over p and summing over the discrete quantum

numbers the appropriate matrix-element combinations entering the response functions [74].
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7.2 ELECTRO-WEAK CURRENT

The xEFT contributions up to one loop to the electromagnetic current (j,) [22, 24] and
charge (p,) [23, 24] are illustrated diagrammatically in Figs. 23 and 24, while those to the
weak axial current (js,) and charge (ps,), obtained in this Thesis (see also Refs. [75, 76]) in
Figs. 25 and 26. We recall here that the former are denoted below as j, = j,iy and p, = jf)/,
and the latter as j5 = ji, and p; = jJ, respectively, and subscripts specifying isospin

components are dropped for simplicity here.

N3LO -

FIG. 23: Diagrams illustrating one- and two-body electromagnetic currents entering at Q2
(LO), Q7' (NLO), Q° (N2LO), and Q' (N3LO). Nucleons, pions, and photons are denoted
by solid, dashed, and wavy lines, respectively. The square in panel (d) represents the (Q/m)?
relativistic correction to the LO one-body current (m is the nucleon mass); the solid circle in
panel (j) is associated with the ym N coupling involving the LECs dg, dgy, and 2 dy1 —das in the
mN chiral Lagrangian 57(73]2[ [41]; the solid circle in panel (k) denotes two-body contact terms
of minimal and non-minimal nature, the latter involving two unknown LECs (see text). Only
one among all possible time orderings is shown for the NLO and N3LO currents, so that all

direct- and crossed-box contributions are accounted for.

The electromagnetic currents from LO, NLO, and N2LO terms and from N3LO loop

corrections depend only on the nucleon axial coupling g4 and and pion decay amplitude
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f= (NLO and N3LO), and the nucleon magnetic moments (LO and N2LO). Unknown LECs
enter the N3LO OPE contribution involving the y7 NV vertex from the chiral Lagrangian Eg,
(see Ref. [41]) as well as the contact currents implied by non-minimal couplings, as discussed
in Sec. 7.2.1. On the other hand, in the charge operator there are no unknown LECs up

to one loop, and OPE contributions, illustrated in panels (c)-(e) of Fig. 24, only appear at
N3LO.

LOl\H\

c d e
~ N - -7 / Y
N > !
N4LO(§ > > - | ﬁﬁ
/ E - ol \
f g h i j k

FIG. 24: Diagrams illustrating one- and two-body electromagnetic charge operators entering
at Q73 (LO), Q' (N2LO), Q° (N3LO), Q' (N4LO). The square in panel (b) represents
the (Q/m)? relativistic correction to the LO one-body charge operator, whereas panel (c)
represents the charge operator p(fyo)(OPE) given in Eq. (309). As in Fig. 23, only a single
time ordering is shown for the N3LO and N4LO contributions.

The contributions in panels (d) and (e) involve non-static corrections [23], while those in
panel (c) were first derived by Phillips [80]

2

ga o1-q0;y-ky
8m f2

O(OPE) =
p,(OPE) k2 +m2

(11 T2+ 722) (309)

This operator plays an important role in yielding predictions for the A=2-4 charge form
factors that are in excellent agreement with the experimental data at low and moderate

values of the momentum transfer (¢ <1 GeV/c) [18, 24]. The calculations in Ref. [24] also
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showed that the non-static corrections of pion range from panels (d) and (e) of Fig. 24 are

typically an order of magnitude smaller than those generated by panel (c).

it |t
RATIARR S

FIG. 25: Diagrams illustrating one- and two-body axial currents entering at Q=3 (LO), Q!
(N2LO), Q° (N3LO), and Q! (N4LO). Nucleons, pions, and axial fields are denoted by solid,
dashed, and wavy lines, respectively. The squares in panels (¢) and (d) denote relativistic
corrections to the one-body axial current, while the circles in panels (e) and (f) represent
vertices implied by the ijz, chiral Lagrangian [41], involving the LECs ¢; (see Ref. [75] for

additional explanations). As in Fig. 23, only a single time ordering is shown.

The axial current and charge operators illustrated in Figs. 25 and 26 include pion-pole
contributions, which turned out to be relevant for the current to be conserved in the chiral
limit as we saw in Sec. 5.6. In the electromagnetic current the divergent parts of the loop
integrals are reabsorbed by the LECs multiplying contact terms [22], while those in the
electromagnetic charge cancel out, in line with the fact that there are no counter-terms at
N4LO [23]. We recall here that in the case of the axial operators, there are no divergencies
in the current, while those in the charge lead to renormalization of the LECs multiplying
contact-type contributions. In particular, the infinities in loop corrections to the OPE axial
charge (not shown in Fig. 26) are re-absorbed by renormalization of the LECs d; in the Ef}z,

chiral Lagrangian.
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FIG. 26: Diagrams illustrating one- and two-body axial charge operators entering at Q=2
(LO), @' (N1LO), and Q' (N3LO). Nucleons, pions, and axial fields are denoted by solid,
dashed, and wavy lines, respectively. The diamonds in panels (1) and (m) indicate higher
order ATN vertices implied by the Ef}z, chiral Lagrangian [41], involving the LECs d; (see

Ref. [75] for additional explanations). As in Fig. 23, only a single time ordering is shown.

7.2.1 CONSTRAINING THE LECS IN THE ELECTRO-WEAK CURRENTS

There is a total of ten LECs entering the two-body electro-weak currents discussed above,
five of these are in the electromagnetic (vector) sector and the remaining five (in the limit
of vanishing momentum transfer) in the axial sector. In the vector sector, contact terms
originate from minimal and non-minimal couplings. The LECs multiplying the former are
known from fits of the two-nucleon scattering database [24]. Non minimal couplings enter
through the electromagnetic field tensor, and it has been shown [22] that only two indepen-

dent structures occur at order @) (see panel (k) in Fig. 23):
j(vl)(CT) =—ie Ef o1 +57V(7'17Z —Ty.) 01| Xq, (310)

where e is the electric charge, Ef and EWV are the two LECs, and the superscripts specify
the isoscalar (S) and isovector (V') character of the associated operator. There is also a

pion-range two-body operator resulting from sub-leading vw N couplings associated with the
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Esz, Lagrangian, and illustrated by panel (j) in Fig. 23. It reads:

ga 02 -ko

m V2 T

[ <CTX17'2,Z + (Lsﬁ : Tz) ko
—dY,y (T x ). o1 X kz] xq, (311)

where the LECs d. (EZVVQ and Elvf are related [24] to the LECs dg, dg, dy;, and doy in the

7,10 P,
original ESTSK, Lagrangian [41] in the following way

JS:—Sdg 5 C/ivv

vy vl =

—8 dg 5 JXQ == 2d21 - d22 . (312)

As discussed below, these LECs have been determined by a combination of resonance satu-
ration arguments and fits to photo-nuclear data in the two- and three-nucleon systems.

In the weak axial sector, the single contact term at order Q° (or N3LO, see panels (g)
and (h) of Fig. 25) has one LEC z; and it has been fixed in the previous chapter. The axial
charge operators at N3LO from OPE [panels (1) and (m) of Fig. 26] and contact interactions
[panel (n)] involve, in principle, nine LECs [75]. Since the processes of interest in the present
work are relatively low-momentum transfer ones, however, we have considered here these

operators in the limit ¢ — 0 (or k; ~ —ks), which leads to

So + ]{?2 13

(1) _ . 9a 2 2 2y 52 2 2
p57a(OPE> = Zm (Tl X Tg)a {gA [(5 k?2 + 8m,r) ]{j_an S5y — k2 — ?kQ + Qmﬂ
3
Sy, Sathky 5, 2 ~v o2 v 2| 02K
+ (k‘_Q In 5y — k’2 — §k2 — Smﬁ + d571 k?2 -+ d5’2 m, W s (313)

pgé(CT) = ingz (11 X 1), 01 - k1 + z‘ngg Tiq (01 X03) ko +(1=2), (314)
where we recall that s; = |/k7 +4m2. The LECs 35‘/2 denote the combinations [75]
Ay =4(dy +dy+d3) . dYy=4(d +dy+ds) +8ds (315)

in terms of the d;’s in Eg, [41], and are taken from an analysis of 7N scattering data as

reported in Ref. [62]. The LECs Eg/z where 645/,2 = 29 and 6?3/,3 = 23 have yet to be determined.

TABLE 4: The LECs in units of powers of 1/A (A is the short-range cutoff) as in Eq. (317).

Their values are adimensional. See text for forther explanations.

S % % s % v 4 % % %
A (MeV) | df di,  diy Cy ¢y dy ds o %1 5,2 .3

500 0.219 3.458 0.865 | 4.072 -7.981 || -0.210 0.690 | 13.22 0.062 0.062
600 0.323 4980 1.245 | 11.38 -11.69 || -0.302 0.994 | 25.07 0.130 0.130
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The two-body operators are regularized with the same short-range cutoff Cy(k) =
exp(—k*/A?) used in the previous chapter. In the electromagnetic sector, the two isoscalar
LECs Ef and 675 are fixed (for each A) by reproducing the deuteron and isoscalar trinucleon
magnetic moments, while the two isovector LECs cﬂl:‘// , and J,YVQ are constrained by assuming
A-resonance saturation [24],

7’1_9771(777,A—m) ’ 12T gl

v~ _Araaha vo— Ly (316)
where ma —m =294 MeV, ha/(2fr) = fana/m. with f2,,/(47) = 0.35 as obtained by
equating the first-order expression of the A-decay width to the experimental value, and the
transition magnetic moment i,y is taken as 3 puy [81]. The remaining LEC ¢ is determined
by reproducing the isovector trinucleon magnetic moment [24]. In the weak axial sector, the
LEC ng 1 s fixed by reproducing the tritium Gamow-Teller matrix element [76], while the
other two LECs ¢, and ¢y5 in the axial charge are taken here to assume natural values
ESV,Z- ~1 /Af(, for i=2,3 and with A, =1 GeV. However, cross sections results are insensitive
to variations of ¢y, and ¢ over a rather broad range (see Sec. 7.3). In Table 4 we list the

values of all these LECs in units of the short-range cutoff A, namely

TS 35 /A2 TV gV /A2 ~S _ .S /A4 ~V _ VA4
d} =d; /A, dy;=d /A, cy =cl /A", c, =c, /A",
dSV,z = dEYz/AZ ) EE},/l = CEYl/AB ) 55,2 = CEI,/2/A4 ) /55,3 = CE},/3/A4 . (317)

Finally, we note that, since the processes under consideration involve small but non-
vanishing four-momentum transfers 2, hadronic electro-weak form factors need to be in-
cluded in the YEFT operators. Some of these form factors have been calculated in chiral
perturbation theory [82], but the convergence of this calculation in powers of the momen-
tum transfer appears to be rather poor. For this reason, in the results reported below, the
form factors in the electromagnetic current and charge are accounted for as in Ref. [24], i.e.,
the nucleon, pion, and NA-transition electromagnetic form factors are taken from fits to
available electron scattering data. For the case of the axial charge and current, the oper-
ators are simply multiplied by G4(Q?)/ga, where G4(Q?) is the nucleon axial form factor,
parametrized as G4(Q?) = ga/(1 + Q*/A%)? with A4 =1 GeV, consistently with available

neutrino scattering data (see [74] and references therein).
7.3 CROSS-SECTION PREDICTIONS

Total cross sections, integrated over the final lepton energy and scattering angle and

obtained for the v.-CC, 7.-CC, y-NC, and 7;-NC processes, are shown, respectively, in
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Figs. 27-30, where they are compared to the corresponding predictions from Ref. [72] for

incoming neutrino energies ranging from threshold up to 150 MeV.
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FIG. 27: (Color online) Total cross sections in fm? for the 1,-CC induced process on the
deuteron. The solid line corresponds to the YEFT calculation with cutoff A = 500 MeV,
based on the chiral potential of Ref. [9] and including electro-weak contributions up to N3LO
in the vector current and axial charge, and up to N4LO in the axial current and vector charge,
see Figs. 23-26. The dashed line is obtained within the conventional meson-exchange picture

of Ref. [72]. The inset shows the ratio of conventional to YEFT predictions.
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FIG. 28: (Color online) Same as in Fig. 27 but for the 7.-CC induced process on the deuteron.

The present YEFT calculations are based on the Entem and Machleidt potentials of
Refs. [9, 62] corresponding to cutoffs A =500 and 600 MeV, and weak (vector and axial)
current and charge operators of Refs. [22, 23, 24, 75], as described in the previous section.
Matrix elements of these operators, suitably regularized as in Sec. 7.2.1, between the initial
deuteron and final two-nucleon scattering states are evaluated with the methods developed
in Ref. [74]. In practice, this entails obtaining the two-nucleon radial wave functions from
solutions of the Lippmann-Schwinger equation in pair spin-isospin ST channels with total
angular momentum J < J,.., and in approximating these radial wave functions by spherical
Bessel functions in channels with J > J,... The full wave function, labeled by the rela-
tive momentum p (and corresponding energy p?/(2u), u being the reduced mass) and the
discrete quantum numbers ST, is then reconstructed from its partial-wave expansion [74].
Consequently, interaction (including Coulomb in the case of two protons) effects in the final

scattering states are exactly accounted for only in channels with J < J,.«. For the neutrino
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energies of interest here, however, we find that these effects are negligible when Jy. = 5 [74].
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FIG. 29: Same as in Fig. 27 but for the v.-NC induced process on the deuteron.

The cross sections increase rapidly, by over two orders of magnitude, as the neutrino
energy increases from threshold to 150 MeV. Nevertheless, the present yEFT predictions
remain close to, albeit consistently larger at the 1-2% level than, those obtained in the
conventional frameworks of Refs. [72] and [74], as shown explicitly for the case of Ref. [72]
by the insets in Figs. 27-30 . The present yEFT electro-weak current and the meson-
exchange models adopted in Refs. [72] and [74] provide an excellent description of low-
energy observables in the two- and three-nucleon systems (see Refs. [18, 24] and references
therein). In particular, the axial current in both approaches (yEFT and meson-exchange) is

constrained to reproduce the tritium Gamow-Teller matrix element.
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TABLE 5: Total cross sections in fm?, corresponding to cutoff A =500 MeV, for the CC-
induced processes on the deuteron at selected initial neutrino energies and at increasing
orders in the chiral counting. Referring to Figs. 23-26, the rows are labeled as follows: LO for
the leading-order vector and axial current and charge; N(1|2)LO including the vector current
and axial charge at N1LO, and the axial current and vector charge at N2LO; N(2|3)LO
including the vector current at N2LO, and the axial current and vector charge at N3LO;
N(3]4)LO including the vector current and axial charge at N3LO, and the axial current and
vector charge at N4ALO. Also listed are the results at LO and N(3|4)LO but A = 600 MeV
(labeled as LO* and N(3|4)LO*), and those obtained in the conventional frameworks of (i)
Ref. [74] in impulse approximation (IA) and with inclusion of two-body currents (TOT) and
(ii) Ref. [72] with inclusion of two-body currents (TOT). The notation (zx) means 10%*.

I o (1-CC) o (7.-CC)

E, (MeV) 10 50 100 150 10 50 100 150

LO 2.676(-16) | 1.345(-14) | 6.611(-14) | 1.591(~13) || 1.243(-16) | 7.441(~15) | 2.661(-14) | 4.944(~14)
N(1|2)LO || 2.670(-16) | 1.345(-14) | 6.606(-14) | 1.581(~13) || 1.237(-16) | 7.341(~15) | 2.602(-14) | 4.792(-14)
N(2[3)LO || 2.794(-16) | 1.413(-14) | 6.913(-14) | 1.653(-13) | 1.298(-16) | 7.825(-15) | 2.801(~14) | 5.221(~14)
N(3[4)LO || 2.734(-16) | 1.388(-14) | 6.852(-14) | 1.650(-13) || 1.266(~16) | 7.523(~15) | 2.676(-14) | 4.981(-14)

LO* 2.666(—16) | 1.342(~14) | 6.593(~14) | 1.588(~13) || 1.239(-16) | 7.417(~15) | 2.653(~14) | 4.925(-14)
N(3|4)LO* || 2.729(-16) | 1.388(-14) | 6.858(~14) | 1.656(-13) | 1.263(-16) | 7.520(-15) | 2.679(~14) | 4.998(-14)
IA Ref. [74] || 2.630(-16) | 1.314(-14) | 6.424(-14) | 1.516(-13) || 1.219(-16) | 7.260(~15) | 2.567(~14) | 4.688(~14)
TOT Ref. [74] || 2.680(-16) | 1.348(-14) | 6.631(~14) | 1.574(-13) || 1.242(-16) | 7.403(-15) | 2.606(~14) | 4.751(-14)
TOT Ref. [72] || 2.708(-16) | 1.376(-14) | 6.836(-14) | 1.641(~13) || 1.242(-16) | 7.372(~15) | 2.618(-14) | 4.871(~14)

The YEFT cross sections of Figs. 27-30 correspond to cutoff A =500, but their variation
as A is increases to 600 MeV remains well below 1% over the whole energy range, as can be
seen in Tables 5 and 6, rows labeled N(3|4)LO and N(3]4)LO*. The convergence of the chiral
expansion is also shown in these tables, where the various rows are labeled in accordance
with the power counting adopted in the present chapter, see Figs. 27-30. Overall, corrections
beyond LO lead to a couple of % increase in the cross sections for both the CC and NC
processes. A similar increase due to two-body terms in the weak current is obtained in
the conventional calculations, see rows labeled IA and TOT in Tables 5 and 6. Note that
the IA row corresponds to results obtained with one-body currents, including relativistic
corrections [74]. These IA currents are the same as the YEFT ones illustrated by panel (a)
of Fig. 23, panels (a) and (b) of Fig. 24, panels (a)-(d) of Fig. 25, and panel (a) of Fig. 26.
Since the contributions due to the OPE two-body terms in the vector current, panels (b) and
(c) of Fig. 23, and axial charge, panels (b) and (c) of Fig. 26, are very small, the difference
between the IA and N(1|2)LO results essentially reflects differences in the wave functions

obtained from conventional and chiral potentials. Indeed, the overall ~ 2 % offset between
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FIG. 30: Same as in Fig. 27 but for the 7.-NC induced process on the deuteron.

TABLE 6: Same as in Table 5 but for the NC-induced processes.

o(ve-NC) o(7~-NC)

E, (MeV) 10 50 150 10 50 100 150
LO 1.101(-16) | 5.872(-15) ) | 5.991(-14) || 1.050(-16) | 4.554(-15) | 1.664(14) | 3.175(-14)
N(1[2)LO || 1.097(-16) | 5.856( 15) ) | 5.912(-14) || 1.045(-16) | 4.505(-15) | 1.631(-14) | 3.076( 14)
N(@2[3)LO || 1.151(-16) | 6.178(-15) ) | 6.250(-14) || 1.007(-16) | 4.793(-15) | 1.752(-14) | 3.347(-14)
N@B4LO || 1.124(-16) | 6.032(-15) ) | 6.176(-14) || 1.069(-16) | 4.625(-15) | 1.684(-14) | 3.214(-14)
LO* 1.096( 16) | 5.853(15) ) | 5.973(14) || 1.045(-16) | 4.530( 15) | 1.659( 14) | 3.165( 14)
N(34)LO* || 1.121(-16) | 6.028(-15) ) | 6.191(-14) || 1.067(-16) | 4.622(-15) | 1.685(-14) | 3.224(-14)
IA Ref. [74] || 1.084(-16) | 5.747(-14) ) | 5.720(-13) || 1.033(-16) | 4.449(-15) | 1.604(-14) | 3.003(~14)
TOT Ref. [74] || 1.104(-16) | 5.802(-15) ) | 5.935(-14) || 1.053(-16) | 4.546(-15) | 1.640(-14) | 3.075(-14)
TOT Ref. [72] || 1.107(-16) | 5.944(-14) ) | 6.130(-13) || 1.053(-16) | 4.535(-15) | 1.647(-14) | 3.129(~14)
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The cross sections for the v,-NC and 7;-NC processes only differ in the sign of the interfer-
ence response function R,, in Eq. (302). In the case v,-CC and 7.-CC processes, additional
differences result from isospin-symmetry breaking terms in the final state interactions of
pp versus nn. At low energies (E, < 10 MeV), cross sections are dominated by the axial
current, the associated contributions being more than two orders of magnitude larger than
those from the vector current. As the energy increases, vector-current contributions increase
becoming comparable, albeit still significantly smaller by over a factor of five at £, = 150
MeV than, axial-current ones. As a consequence, the v,-NC and 7;-NC are fairly close at
low energies, but diverge significantly from each other as the energy increases. Because of
the aforementioned isospin-symmetry breaking effects (primarily induced by the Coulomb
repulsion), the v,-CC and 7.-CC differ even at low energies. Finally, cross section contri-
butions from the axial charge are negligible at F, = 10 MeV and remain well below 1% at
E, =150 MeV. At this latter energy, for example, ignoring these axial-charge contributions
altogether would reduce the v-NC (7;-NC) cross section from the N(3]4)LO value of 6.176
(3.214) listed in Table 6 to 6.157 (3.194) in units of 107! fm?. Thus, uncertainties in the
values of the LECs ¢5 2 and ¢ 3 in the contact axial charge do not have a significant impact

on the present cross section predictions.
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CHAPTER 8

CONCLUSIONS

In the first part of this Thesis, after reviewing some key points of chiral effective field the-
ory (xEFT), we have discussed the formalism used to derive nuclear potentials and currents
form chiral Lagrangians. This formalism consists in essence of the following two steps: (i)
time ordered perturbation theory is used to calculate the field-theory amplitude, and power
counting is used to organize the various terms contributing to the amplitudes; (ii) nuclear
potential and currents are obtained by requiring that when they are iterated into the cor-
responding Lippmann-Schwinger (or Schrodinger) equation they generate T-matrices that
match the field-theory amplitudes on-the-energy-shell order-by-order in the power counting.
As we have seen this prescription leads to the partial cancellations between the contributions
of irreducible diagrams and those owing to nonstatic corrections from energy denominators
of reducible diagrams.

In the second part of this Thesis, we have discussed in detail the derivation of nuclear
potentials and currents up to one loop. In both derivations ultraviolet divergences associated
with loop corrections are isolated in dimensional regularization and reabsorbed through a
redefinition of LECs. The resulting axial current is finite and conserved in the chiral limit,
while the axial charge requires renormalization. For the axial current there is a single LEC
2o which enters at N3LO, while for the axial charge four independent LECs have been found
to be present at N4LO. Loop corrections to the one-pion exchange (OPE) axial charge lead
to renormalization of linear combinations of the LECs d; in the subleading ﬁf})v Lagrangian.

In the third part of this Thesis, we have reported two applications. The first is the
calculation of the tritium S-decay rate by including in the charge-changing weak current the
corrections up to one loop (N4LO) derived in Ch. 5. The LEC z; in the axial current has
been constrained by reproducing the empirical value for tritium Gamow-Teller (GT) matrix
element. Using trinucleon wave functions obtained from solutions of the Schrodinger equation
with two- and three-nucleon potentials corresponding to either yEFT (the N3LO/N2LO
combination [63, 83]) or meson-exchange phenomenology (the AV18/UIX combination) we
have found that the contributions due to loop corrections in the axial current are, in relative
terms, as large as those from the one-pion exchange, which nominally occur at lower order

in the power counting.
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The second application has been the calculation of the inclusive cross sections for the
reactions *H (v.,e”) pp and *H (v, e") nn, and *H (v, /v, v, /v') np. The results are within
1-2 %, albeit consistently larger than, those obtained in earlier conventional calculations.
The weak dependence on the cutoff suggests that the associated theoretical uncertainty is
very small.

The operators derived in this Thesis can be used to improve the accuracy and reliability
of theoretical predictions for weak nuclear reactions, for example the proton weak captures
on protons and 3He important in solar physics. Earlier calculations of these processes, such
as those reported in Refs. [48, 84], have used axial current operators up to N3LO. In view
of the relatively large contributions obtained here at N4LO for the tritium Gamow-Teller
matrix element, it would be interesting to reexamine these capture reactions by including
these N4LO loop corrections.

Finally, we note that an accurate theory of nuclear electroweak structure and dynamics
is relevant for low-energy tests of physics beyond the standard model in S-decay experi-
ments [85]. Phenomenologically, the weak interactions are known to couple only to left-
handed neutrinos and to violate parity maximally. However beyond-the-standard-model
(BSM) theories have been constructed in which small deviations from these properties are
introduced. These deviations affect the correlation coefficients entering the [S-decay rates
and can, in principle, be detected. For a proper interpretation of these measurements and,
in particular, to unravel possible signatures of BSM physics, it is crucial to have control of
the nuclear structure and weak interactions in nuclei.

When coupled to numerically exact methods such as quantum Monte Carlo techniques,
to solve the many-body Schrodinger equations, the yEFT potentials and weak currents
obtained in this Thesis offer the opportunity to carry out a first-principles calculation of
these decays and provide predictions for their rates and associated theoretical uncertainties
rooted in QCD.
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APPENDIX A

CHIRAL LAGRANGIANS

We summarize the notation and conventions for the various fields and covariant deriva-

tives adopted in this Thesis [41]:

! 1 5 ta 8a—1

U = 1+ET'7T—2f7%7T——7§7T T T+ S 7 o (318)

u = VU
= 1+2;7‘~7‘r—8—;3772—%7727~77+%?r4 . (319)
u, = i[O, —ir,)u—u(d,—il,)u'] (320)
DU = U —ir,U+iUl, (321)
D,N = (au+FM)N:aHN+%[u*(au—zru)u+u(au—z'zu)uﬂN, (322)
F. = u'FlutuFLul, (323)
Fﬁj = Oury — Oyry —i[r,, 1], T, =, +a,, (324)
Flo= O, — 0l —ill,, L], li=v.—a,, (325)
X+ = uTxuj:uXTu:mi(UT:i:U) . (326)

The parameter « is arbitrary because of the freedom in the choice of pion field—the only
constraint is that U be unitary with det U = 1. In the following we consider only the coupling
to the axial-vector field; further, we ignore isospin-symmetry-breaking effects as well as the

coupling to the isoscalar component of the axial-vector field, and hence

1
r, = _luzéT'A;m (327)
1
FE = 57 (OuAy — 0 AL+ Ay X A,) (328)

1
Fi, = =57 (0,A, — 0,4, — A, x A,) . (329)
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Inserting the expansions for U and w and keeping terms linear in the axial-vector field, we
find:

1 da—1
u, = —ﬁ(l—%w)T-aﬂerg—fST-ww-@#w
—l—T'AH—i-zLF[(TXTF)Xﬂ']-AM—i—..., (330)
: 1 7 1
D“U = 1T- ﬁgﬂﬂ'— 1—2—‘]02 A“ f27T a‘uﬂ"}‘fﬂ Aﬂ+ s (331)
o2
D,N = {8 +4f2(7'><7r) aﬂ-_ZfW<1_aF)<TXﬂ-)'A“
(8a—1)
+2Tﬁ7r28u7r-(17><7')+... N, (332)
El = J} (Txm) -Fu+..., (333)
_ 1
F, = [7’4—2f7?(7'><7r)><7'r}oFW—l—...7 (334)
o2
Xy = (2_F) e (335)
X. = —%er T+, (336)

where F,, = 0,A, —0,A,, and the ... denote higher powers of the pion field than shown.
A.1 7= SECTOR

The 7 Lagrangians up to order Q* read [34]:
f2

2 = I p,u (o), (337)
£y = 2<D U (D)) (DU (DU + 2D,U (DU)) (DAU (D)) + 1 ()
L[ DU (D)) )+ 2 (U XU 4 x U UY) = ()2 — 4 (3
+1s((FR U PP UT) %(FL FI + FEFE))
i SRR DU (D'D) + Bl (DAU) DU — Tt )24 R oy
& 1_6h3 ()2 + (x-)* =2 (U UT + U X U X))
—2hy(FL FI" + FILFR) (338)

where in the absence of isospin symmetry breaking (which is assumed throughout the present

Thesis) x is proportional to the identity matrix, namely xy = m?2, and (x_) vanishes. Here

)
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(...) implies a trace in flavor space. Furthermore, the terms proportional to the LECs [y, ls,
l5, lg, and h; do not contribute to the order of interest. The symmetric matrices éab, Gab,

H,p, and Fy, in the Lagrangian of Eq. (68) are obtained as

Gy = (1 — %ﬂ2 + 2l47}1—§> Oab — 40}—3—1 TaTh (339)
Gy = Gap+2 02;7‘;3 NN G, | (340)
H, = {1 - SZ‘f; Lo g+ 1) T}L—g Sup (341)
Fop = (1 - 2;‘;7% Loy 2147}1—5) Sap — 20}—;1 Moy - (342)

By retaining only terms linear in the pion field and external axial field, the equation of

motion implied by £2 s

Ogm = — (80, +m2)w+ [ A’ + fr A" (343)

A.2 7N SECTOR

The 7N Lagrangians up to order Q? read:

L8 = N(iD—m+Z i) N (344)
7

LA = Y aNOP N, (345)
=1
23

L = Y 4 NOP N, (346)
=1

with the operators Ol@) and Of’) defined as in Ref. [41]. Here g4 is the nucleon axial coupling
constant, and the ¢; and d; are LECs. Below, the +*, ~5, and ¢*” are v matrices and
combinations of y-matrices in standard notation [32], and ¢**? is the Levi-Civita tensor

with €9123 = 41,



In terms of the expansions above, ES}V is given by

£ox = W{i 41f2(‘”<77)'@’77_2‘(]?7r (1_%772)7'%%
f (40‘_1)7 T @7"%4‘% 2P (mxT)
+2>ﬂ (1—%7‘&')(7’XT&')-A+ A75+4f2[(7'><7r)><
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W]'A’Ys N

(347)

where § = v#9, and A = v#A,,. The operators OZ( in the E 2) Lagrangian are expressed

as (below the notation Yy = x4+ — (x+)/2 is used)

72
OF = (x4) —4m? ( 2f2) ; (348)
1
052) = —W@Mu,,) D" +h.c. — f23o71' dom — anﬂ' Ao
1 4
< O - Oy — Oy - Ay — Oy - AO) 70 iﬁzv (349)
mfw Jr
1
O§2) = §<uuu“) F(’? 7 Ot — E@ T AP (350)
' 1
Off) = %[uw uy| o — 5T ( 7 Oy X Oy + — 7 Au X (91,71') o, (351)
Oé?) _ %4_ — 0 ’ (352)
1 y v
O = GuFi ot — o (7 xm) kot 559
1
O'(ZQ) _ <F+ > ot 0 (354)

8m
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while those in the E( ) Lagrangian reduce to

3
0%

3
o

1 2 1
—— [u,, D, u"|D" +h. l (-—a Do + A, X D"
2m[uu,[ ut| D" + C—>f7rT a T X o' + Ay, x Opot'm
— A, x 8“77) 0 (355)
fuy [DF w10 b o (= X 9+ Ay x
™ Uy, c. T T~ T T 7T " ot
—9,Aq x a*w) 0 (356)
1 2
—— [u,, [Dy, uw,]] D" + . ( i Ay x 92
53 [w, s | u,)] +hec — — f7r fwaoﬂ' X 0o+ Ag X OF
—80A0 X 80 7'l'> ")/O s (357)
—5- P (u,u,u0)Dp + hoc. — 0 (358)
. 2
= p _4my
2m [x—, u,|D* +h.c. — T T- [ <f7r Oy — Aoﬂ : (359)
2m (D", FLID" +h.e. — O'F5A" (360)
2m (D", (F5)]D” +he. — 0, (361)
ﬁ 8 (Ftu) Dy +hc. — 0, (362)
ﬁ e (4 Y u, Dy +hoe. — 0 (363)
1
5 s (w-uyu, — 0, (364)
1
3 s (uuwy) v’ — 0, (365)
1
S Vs (uauy) u, DM 4 he. — 0 (366)
1
B Vs (wuy) uy D +he. — 0 (367)
L om(D D +h. ! ( A,
ype ([Dx, uwu]u,) D™ + h.c. —>f7r fﬁ(?o&ﬂ' 0;m — OOy -
—(%AZ : 8j7r) O'ZJ"}/ s (368)
o (4, (D, w)) D + ! ( A
ype (uu[D, , uy])D* + h.c. —>f7r fwﬁﬂ' 0p0; — O;m - 0;Ag
_Az : 808j7r) O'ZJ’Y s (369)
1 1 ,
5 Vs (1) Uy —> 2mE T - < - f—&-ﬂ' + Al-) Y5 (370)
1
5775 (X4 ) — 0, (371)

2
(372)
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Og) = %7“V5[DuaX] %T 87"7%7

O = S7lDy, (] — 0,

o = —8i S5 [E s ua] DY 4 he. — 0

05) = %7 ¥ [E, u] — 0,

0y = %’Y“% D", F,,| — %T c"Fiy s

Ogg) = 1%75 etvod (u Flog) — — ! — P9, - Fopvis -

2 fx

(1)
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(373)
(374)
(375)
(376)
(377)

(378)

. . . 2 3
Several comments are now in order. First, the expressions above for L. 5, ﬁsrjz,, and cﬁr ]2,

retain all terms relevant in the present study. Typically, these include at most three pion,

two pion, and one pion fields for n = 1,2,3 in ,ng\),, respectively. In some instances, for

example in O§3), terms with two pion fields are also considered for reasons having to do with

the treatment of tadpole-type contributions (see below). The Lagrangian ) 5533 can now

conveniently be expressed as given in Eq. (68) with the quantities T?(n), A% (n), and A(n),

defined in Egs. (69)—(70), given at leading order by

1 —1
o) = —4—ﬁ(T><7r)a70 +8féf4 w2 (T X )y, (379)
M) = =2 (1= 57°) mars + 2a— 1) mmas . (380)
a 2fﬂ— 7% a 4f3 a )
94 i 1 ) 0
A(l) = ET'Ai’Y%ﬂLQfW (1—f—7%71')(7'><71')-A0fy
9 i
4?2 (7 x ) x| - Ajv'ys (381)
at next-to-leading order by
+c
o) = 94 (1 2 e + 94 (40— 1)(7- 0y — 22153 4o 2
o) 2fﬁ( ) s+ e (e m -2 20 AL, s
AL(1 T X T +—8Z —2—A’—— TXA;) o
() 4f2( ) f2 f7r f7r( J)a
g (r < ym), o+ B () (383)
«
A(2) = g77'-A0’y0fy5—|—2f7r (1_f_,%ﬂ-2) (T xm) Avy +4f2 (T x ) x 7] - Ag7"7s

2

—|—4mfrcl (1 — il

2f2) i 47;61? (T xm) - 0A; 07 ;

(384)
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and at next-to-next-to-leading order by

‘@) = mcj‘ (J} O0img — Ai, >’y i’ +f— [; (T x o), — (TXAZ')G}O'O
d1;d2 {(‘rxﬁiaﬂr)—l—(Txaz )?z} +°

2
rp SERED L ), (rx 00m), + (7 x 047, |

¢ fﬂ
4d my 0, du—di a ”a 0;A
_ 5f2 (TX?T) ’y +T fﬂ iTTq O + jaU

+Aj407°0 } Y+ ;3 €9 Fita %5 (385)

™

+2

; = ) d .
AL(2) = _ﬂf_jc Aoa?’i 0+ 22 (1 x Ayg), 0% — zf—l (1 x BA?) 7°

4 —LpA, 00 — @a Ag a0

fr
m.

dos
_f_ T (2dyg — dig) T ' 75 +2 f_ ewkoFkO’Wj% ) (386)

c o ditdytd
4m6f7r (TXW)'(aoAi—aiA())O'O —2$
2

d . ,
—|—4d5f—7' (7 x Ag)7° + f—6 (T xm) - OFi0° +2m2 dig T - Aiy'ys

oy .
—1—% T -0"Fiy'7s (387)

A@3) =

(T x Ag) - (0'0; + mim) A°

Second, the various derivatives act only on the field to their immediate right, for example
0o - Ap means (Jym) - Ag. However, the symbols ?l = 32 — (5@ and ?Z = 31 + (5@ in
Egs. (349) and (385)—(386) denote derivatives acting only on the right and left nucleon fields,
respectively.

Third, the power counting Q™ of cfj;& counts powers of derivatives of the pion field (or of
pion mass factors) and factors of A* and its derivatives (note that A* is counted as being of
order ). However, the Lorentz structure of the terms may lead to additional suppression.

For example, in 57(3]2, a term like

(T X 7T) '807770 ;

4 f2
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is of order ), but a term like

which is nominally of order @, is in fact of order Q?, since Nv%y5N couples the lower to
the upper components of the spinors, and therefore involves the three-momenta of the initial
and final nucleons (of order ()). We have taken advantage of this suppression in some of
the terms OES) in Eg, by retaining only the diagonal piece in their Lorentz structure, for
example in term Oﬁ).

Fourth, time derivatives of the nucleon fields in Efsz, and Eff]z, are removed by making

use of the equation of motion (to order ())
QN = —im~"N + [—7°7'0; + i7° T2(0) doma + i7°AL(0) Oima + i7" AL)] N, (388)

implying that

BN = —m’N —im~°[...]N—im[...]'N (389)
2 mga i5 i m 0
= —m N—l—[— 7 T -0y +mgAT-Ai’y'y5—f—T-(A0><7r)’y N ,(390)

where in the second line we have ignored non-linear terms in the pion field, since they do
not contribute to the order of interest here.

Fifth, double time derivatives of the pion fields in 57(3]2/ are removed by making use of the
equation of motion, see Eq. (343) above. Terms containing both one time derivative and one
space derivative of the pion fields have been rewritten by integrating by parts. For example,
in 57(?137 a term like

dl;T_%dQ N (7' X 808i7r) -O;wN

can be re-expressed, modulo a total divergence, as

2

dy + dy—

-2 7 N | (T x Opm) - 0'0ym + (T X D) - 8i7r%>i N .
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APPENDIX B

INTERACTION VERTICES

In this appendix we report expressions for the vertices corresponding to the interaction

terms in the Hamiltonian of Eq. (75), which we write as

3
= [ (HS + Hr + Hiho -+ )+ (HSs + B+ HSoha ) |

n=1

2
3 [(Héim)+H§ ™ 4. > + (H(Qm)+H§frZ?)+ )} : (391)

m=1

+

where the superscript n denotes the power counting Q" and the subscript specifies the number
of pion, nucleon, and axial fields entering a given interaction term. We use the following
notation: A = por (N = p’o’7’) are the momentum and spin and isospin projections of the
initial (final) nucleon; kq, ks, ... and ay,as, ... are the momenta and isospin projections of
pions 1,2, ... with energies wy, ws, . .., where w; = \/k:f—l—imfr ; q and a denote the momentum
and isospin projection of the external axial field with energy w, and its spatial and time
derivatives expressed as VA! — iq A" and 0pA¥ — —iw, AY. We also define P =

(p’ + p)/2 and the constants

dl2m
A . 392
/(2#)3 W (392)
B.1 7NN VERTICES
The interaction terms read

Y = 29}“ / dx N7 - 9y N | (393)

2, = 29;‘ / dx N7 - TIy°°N | (394)

HO _ Mrog g dx Nt - ;7c~yin° N 395

NN = f( 16 — dig) XINT - Oy 7y ) (395)
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from which the following vertices for pion absorption are obtained

(N H NN|)\ka> = 2f Aok, (396)
. gA

N[ HZ [Nk a) = —zszﬂTawa-P, (397)
m2

</\/| NN|)\ka) = ’Lf—(2d16—d18)7'a0' k

ga (p'—p) -k

+1 8m2f7r7_a 20 -Pk-P—0o-(p—p) 5
—2P*c-k—ik-(p'—p) xP|, (398)

where on the r.h.s. of the above equations the 1/v/2w normalization factor from the pion
field expansion in normal modes, the initial and final spin-isospin states of the nucleons,
and the three-momentum conserving d-function (27)2§(p’ — p — k) have been dropped for
simplicity. We will continue to do so in the equations to follow. Vertices in which the
pion is in the final state (pion emission) are obtained from those above by the replacements
w,k — —w, —k. Lastly, only the leading order is retained in the non-relativistic expansion
of the Lorentz structures associated with the various interaction terms (here and to follow)
unless otherwise noted. Indeed, Eq. (398) includes the leading relativistic correction to the

vertex given in Eq. (396).
B.2 2rNN VERTICES

The interaction terms read

7Y, = 4}2 / AXNTI- (7 x )N | (399)
HQ(?NN = /de {r;aiﬂ-(rxw)vi+cl2;z;7r _Falﬂ o0y +
_CQE%n 1+ o (O x Oym) o }N, (400)
Y,y = /dxﬁ[ W(TXH)-(aiaiﬂ—Fmgrﬁ)’Yo—ﬁldE)ngi(HXﬂ')'T’}/O
1 dl;‘h (7 x II) . (aiamwiw%)i) 70+df—ﬂdl4n D 0 940 | N

(401)
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from which the vertices follow as

i

N'| Hyyn [ Xiki,aisks,az) = 2o T (w1 —wa) (402)
W ki) = 2T i) a4 40 b

_2f_i23 ki ko 0q, 0, + Z(CQf—;—CS)MC@ Oay.as

—%a‘ - (k1 X K2) €ayapaTa » (403)
N HP w [Nk an ke, a2) = i(wr — wy) {GT< —2 me +4 d;—Ti

+2 % k- k2) + %(k1 < K) O 0ayay|.  (404)

Vertices in which either or both pions are in the final state are obtained from those above

by replacing k;, w; — —k;, —w;.
B.3 3tNN VERTEX
The interaction term reads
H?E?NN = —29—;13 /dxﬁ {a T O+ %(404 —)r-7m- 82-77} Yv°N | (405)

which leads to the following interaction vertex
i ga

Yk [75 (20 —1/2) (ks + ky) + 2ak)]

+Ta25a1,a3 [(2 o — 1/2) (k1 + k3) + 2 Oékg]

FTasBaran [(200 — 1/2) (ky + ko) + 2 ozkg]] . (406)

<>\/‘ H§§717)NN |>\;k1,a1;k2,a2;k3,a3>

The corresponding tadpole contribution is

1 . ga
N HY v Xk, a) = ~igs (100 —1) Jy a0 -k, (407)
where Jy; has been defined in Eq. (392).
B.4 4t NN VERTEX
The interaction term reads
1 1 —
HY = 527 / dx N (I, 7% + w*1L,) (T x ), 7" N, (408)
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and the tadpole contribution follows as
51

0] HEF)NN |k, a1; ke, as) = 327 Jo1 €ayape Te(w1 — wa) . (409)
B.5 NNA VERTICES
The interaction terms read
H](\}])VA = —g?A dx N7, AL v v°N | (410)
Hvy = — / de<2 m2dis T - Aiy'ys + %T : asz-ﬂi%)N : (411)
from which the vertices follow as
WIS = Do P o p) x P o PP
—8;20-(1)’—13) P -p) | A, (412)
NI HG 4 1N = 2midigr, o Ay + o (ag -0 —q¢°0) - A, , (413)

2
where in Eq. (413) terms of order Q? have been retained in the expansion of the bilinear
NAvsN, since they have been shown to generate significant corrections to the single-nucleon

axial current [48].
B.6 TNNA VERTICES

The interaction terms read

1 —
Hia = 77 [ Ve (rxm) N (114)
vd 1 i Cg i 203 i
H7(r21\)/NA = /dXN{— E(T x ) Ay’ — 4mf7r(7- X 7)) 0;A; 07 + fA Oy
+%<8ﬂ&' X T)- A, a”} N, (415)
—|2ds +d : d g
HS\),NA = /de[%(@m X T) - BZAOVO + f;5ajA0 ) 81-71'0”70
+2 %EOijk o - O A% 9" — % (1 x ) - 0;0'A%°

dy + do
Jx

+2 (T % Ap) - (0O + 8i7r<5>i)70 +



111

where the dots indicate terms which do not contribute in tree-level diagrams of order @), for

example
/dxw[ —2 %emjk iy" I - O, Ay, — QW T- (@-Ai X H) Y IN
. dy +dy+d
2%/dxﬁ‘r-(&)A0xH)yoN,

and JyAg — —iw,Ay is of order @*, since in our counting the energy of the external field is

of order @?. The interactions in Eqgs. (414)-(416) lead to the following vertices

1
(N] HS\)JNA [ A\ik,a) = _F €abe Ap Te (417)
NI H i I hka) = —— e Ao [P+ Lo x (o —p)
TNNA LI 2m fr 2
—iﬁeabc A, (0% q)+ 2@'% k-A,
—i% care Ty A - (0 X K) | (418)
2d; — d d 2d
V] Hiea | Mkoo) = S22 (A r)q ko TR (@ x4
d
—f—G(AO X T)aq” . (419)
B.7 2rNNA VERTICES
The interaction term reads
H2(71r)NNA = —f—; /dXNAZ' (T x w) x w9 N, (420)
which leads to the following vertex and tadpole contributions
N HD wa Ik, g kg ag) = f—; (Garas Tas + Oaas Tar — 200100 Ta) Au - 0 (421)
(V| Hyhwa | = —f—; JorTa Ay -0 . (422)
B.8 3tNNA VERTICES
The interaction term reads
da—1 —
H:,()}T)NNA = fCG—f?’ /dXN7l'2 A’ (1 xm) "N, (423)
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from which the tadpole contribution is obtained as

5(4a—1)
Wl Hypna |Nkea) = === (T x A7), (424)
B.9 2r VERTICES
The interaction terms read
mfr l4 i mfr (lg + l4)
Héi):/dx [— I (H-H+87r~8m)+Tﬂ'-7r} , (425)

from which the vertex is obtained as

<w1w2 — k1 : k2> + (426)

2mz 2m (I3 + 1
<O| H2(;1r) |k17a1;k27a2> - (5(117&2 |: w4 M] :

JE E
where, as noted earlier, the momentum-conserving d-function (27)3d(k; + kz) and the pion
field normalization factor 1/v/4wjws are understood. Vertices in which one or both pions
are in the final state follow by replacing w;,k; — —w;, —k;. Enforcing the § function

requirement k; = —ks = k and w; = wy = w, the vertex in Eq. (426) reduces to
(4) Am2ly 5  2mily
(0| Hy, |k,a;—k,a) = 72 w IE (427)
Similarly, we find
el 12 1) = 258 (425)

according to the prescription given above. Apart from the factor 1/(2w), which is not

included in the equations above, these vertices are the same as given in Appendix F of

Ref. [47].
B.10 47 VERTICES

The interaction terms read

4o —1 4
ng) = /dx[ O;fQ (7O -7+ -m Om-m)

. S8 — 1
—l—% (WQH-HWQ—FT&'Qaﬂl"alﬂ')— a 2t

7 8—f2m”ﬂ- : (429)
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which leads to the following vertex

1
(0] Hﬁ) | k1, a1; ko, as; ks, ag; ky, aq) = ﬁ

X [(5(11,@25@37,14 [—20(w1 + ws + w3 + wa)® +m2 + (ks + ka)® + (w1 + wa) (w3 + wi)]
+5a1,a35a2,a4 [-20&(&)1 + %) —+ w3 + W4)2 —+ mfr + (kl + k3)2 + (w1 + LU3)(CU2 + W4)}
+0a1,010a5,05 [—20(w1 + wa + w3 + wa)? + m2 + (ki + ka)® + (w1 + wa) (w2 + ws)] ] , (430)

and the corresponding tadpole contribution is

0] HZ |k, a1;k0,09) = Gay.ar Jon % (wiws — Ky - k) — %mi} , (431)
and the constant Jy; has been defined in Eq. (392).
B.11 7A VERTICES
The interaction terms read
H® = f, / dx (A’ 0w + A° - I) (432)
7Y = 2”}7% L / dx A’ - 9 (433)
from which the vertices are obtained as
(0] H [k,a) = ife (k- Ay —wAf) (434)
0] HY |k, a) = 2im§rl4k-Aa. (435)
B.12 3rA VERTEX
The interaction term reads
H?E?A = i/dx[Q(l—?a)Ai-ﬂ w0 — 2a+1)A - O 7w

+2(a—1/2) A, m+2a A (- TM+TL-7w7,) |, (436)
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which leads to the following vertex

<0| H:gi)A |k17a1;k27a2;k37a3> = f a2 as Aal [(205_ 1)q_2k1]

ala Aa2 [(2@— 1)(1_ 2k2]

+0ay a5 Ay - [(2ax — 1) q — 2 k3]
_5(12#13 Aal [2 & (Wl + we + W3) - Wl]
_6111,03 A22 [2 « (Wl + wo + W3) - W2]

_5a17a2A23 2 (wy + wy + w3) — ws] } ., (437)

where in the first three lines use has been made of the d-function (27)3d(k; + ko + k3 + q).

The tadpole contribution is found to be

(5a+1/2) Aa~k+(5a—3/2)A2w] . (438)

2
O] HZ, |k a) = —mfm
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APPENDIX C

COUNTER-TERMS TO ORDER @?

In this section we construct the counter-terms corresponding to the Lagrangian in
Eq. (68). The expressions below are obtained in the presence of the external axial field. The
counter-terms needed for the renormalization of the OPE potential discussed in Sec. 4.1.2
follow easily from these by ignoring the terms proportional to A*.

Having made the replacements in Eqgs. (124)-(128), the bare Lagrangian £ of Eq. (68)

can be rewritten in terms of the renormalized fields and physical masses as
L = LT4+0L", (439)

where L" is the same as in Eq. (68) but now in terms of renormalized fields and masses, and

OL" includes the set of counter-terms
0L = 6mN N"+6ZyN'" (iv"0, —m")N" + 6ZxN" [T97(0)dmt + AL"(0)0;ms + AT(1)] N7

+0Z,N' { [T97(0) + 6T0"(0)] Doy, + [AL7(0)/2 + SAL™(0)] Oyl + 5AT(1)} N”

5m3r r_r 5Z7T r [ ~r T r r [ ~r T i, T
+ 92 aTa + 92 |:807ra (Gab + 5Gab> aOﬂ-b + ai,ﬂ-a < ab + 6Gab> a Ty
—mi? my (Hy, + 0Hy,) WZ} — 07 fr AG(Fop/2 + 0F3,)0umy (440)

where T97(0), A%"(0) and A™(1) are the field combinations defined in Eqs. (379), (380)

and (381) expressed in terms of renormalized fields and physical masses. The remaining
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quantities are given by

—1
ST (0) = 8: f4 w7 (T xn"), O (441)
SALT(0) = 4f3 [2 arn w1, +@lda—-1)T- 7TT7TZ] Yvs (442)
1 3o
A1) = — (11— " Agy?
A" (1) 4f7r( f27r 7T>(7'><7r) 0Y
gaA r )
4f2[(1'><7'r)><7r}~Ai’yfy5, (443)
- 2 1—4
G, =~ w b+ —— (444)
JE e
r 1 -8« r r
0Hy, = 4f2 w7 a (445)
. 20+1 1-2a , ,
0F,, = — e T Oy + 72 T, T - (446)
It is convenient to define
Gl = Gy + 02, (Gry + 6GT,) (447)
w = Gu+2 2;;63 N'N"6a (448)
Fy = Fo+0Z: (Fp/2+0Fy) (449)
H), = Hy+0Z; (Hy +0Hy) | (450)
Y = T9"+6ZnT07(0) 4 02, [TY7(0) + 6T07(0)] (451)
A = A+ 6ZNA(0) + 6Z: [AL7(0)/2 + 6ALT(0)] (452)
A" = AT+0ZyAT(1)+ 672, 0A7(1) , (453)

which then leads to the Lagrangian as given in Eq. (202). The interaction Hamiltonian in

terms of the renormalized fields and physical masses is given in Eq. (203).
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APPENDIX D

FIELD AND MASS RENORMALIZATION OF THE NUCLEON

AND PION

In this appendix we discuss mass and wave function renormalization of the nucleon and
pion in TOPT. We closely follow the treatment Ref. [47].

We begin by discussing the nucleon case. The relevant interaction Hamiltonians are given

by Eq. (203) of the previous Appendix, and read

= / dx (0MNN —4m2cNN) (454)
= —0Zx / dxN (iv'0; — My) N, (455)
= 297A/dXNT-8i7rfyi75N. (456)

The transition amplitude for a single nucleon is given by the diagrams in Fig. 31.

st s2 s3

FIG. 31: Diagrams relevant for 0 M and Zy.

The contributions s2 and s3 are

2 = OM —4mie,+6ZyE, , (457)
3g?4/ dk K2 |

3 — . 458

T 872 @l wn By — (B twn) +ie (458)

Diagram s3 at order Q? gives

394

¥ T 5

J12 ) (459)
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where Jj has been defined in Eq. (392). We set the N — N amplitude to zero order by

order in the power counting, assuming
M = M® +5M® .. (460)

where §M ™ is of order Q™. Therefore we obtain

3 2
5M(2) :4micl, 5M(3 8?‘:3(]12’ (46].)
and the correction 6Zy E, (of order Q?) is fixed below.
2
S U 1 o AN O A
<——Er—-> <—Er——> 1 <——Er-——>
a b c

FIG. 32: Parts of a general diagram with the propagation of nucleons only.

Next we consider the “dressing” of a nucleon line belonging to a more complicated di-
agram, see Fig. 32. Panel a on this figure represents a diagram in which one nucleon of
momentum p is created at vertex 1 and annihilated at vertex 2 (shown by the two dots at
the beginning and end of the nucleon line). The other nucleons have energies collectively
denoted by E,. Note that there are no pions in flight in the intermediate state. The energy

denominator of diagram a is
1 1

Py(E) = =
b(E) E; —(E,+ E,) +ic E+ie

: (462)

where £ = E; — E,— E, and Ej; is the initial energy (which depends on the particular process
under consideration).

Diagrams b and c in Fig. 32 represent, respectively, the contribution in which nucleon 1
emits and reabsorbs a pion of momentum k and that in which a contact interaction occurs.

These contributions are given by

dk 3¢5 k? 1 )
E) = o =—4 SM + ... 4
S(E) / (2r)38f2 wy E+ Ep — Ejp_i| — Wi mecr+0M+ ..., (463)

and S(0) = 0 follows from the choice of §M discussed previously for a single nucleon (of

course, energy denominators in the diagrams of Figs. 31 and 32 are different, and S(E) only
vanishes for £ = 0).
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By summing up repeated b- and c-type insertions, we obtain the well known result

1 1 1
Po(E) = S(E
p(E) = pct e B et
|
_ N (464
E — S(E) +ie

By expanding S(F) in powers of E (F is assumed to be small) and by keeping only linear

terms in F, we find

1 1 7
b(E) 1—S(0)E+ie FE+ie’ (465)

where Zy = 1/[1 — S'(0)],

, dk 3g3 k* 344
_ , 4
s0=- [ G S Tp oo

™

Since —F = E,+ E, — E; is the energy of the intermediate state relative to the initial energy,
it is physically sensible that for £ — 0 the dressed operator should have the same form as the
bare propagator 1/(E + i€) up to the (nucleon wave function) renormalization factor Zy. In
the following we adopt the common practice of attaching a v/Zy at each of the two vertices
of an internal nucleon line, and of multiplying by an extra \/Zx each external nucleon line.
The renormalization of nucleon lines when additional pions are present must be discussed
case by case.

In the case of the pion the relevant interaction Hamiltonians from Eq. (203) are

r2l ) r4 l l
Hy) = /dx[ : (I - II" + O'w" - O;m") o ST (s + 4)71'”-71"”

2 e
02 - om?
— (I" - II" + Oymc” - 0’1" — m>w” - ") — %ﬂ"" : 71”] : (467)
H(2)’ _ d dor—1 "I IT LI I r az r r
o= x| 5 (7" "+ O’ - w O’ ")
YT r_r r2 r i__T 8o — 1 r2__rd
f2( -1 =, + n" o= -8#)—meﬂ . (468)

with vertices (in the convention of Appendix B) given by

2m2 1 2mi (I + 1
<O‘H2 |k, ap; ko, a0) = 5@1@2{M(W1W2—k1'k2)+m

VES NE
+6Zx (wiws — ky - ko +m2) — (5m2} , (469)
1-10a 2000 — 3
<0‘ H4 |k1, ay; k2, CL2> = 5a1,a2 J()l |:2—f2 (w1w2 — k1 . k2) — 4—f2 mi} (470)
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Considerations similar to those obtained above for the nucleon lead to

mr4 mr2

(Smi = 2l3 fg +4—f7,r2<]01, (471)
r2 10 — 1

02, = —20m g 20 g (472)

1z 212
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APPENDIX E

RENORMALIZATION OF THE RATIO g4/ f,

The relevant Hamiltonians are

1 .
H?(nlr)](fN = 29;3 /dXN {a T Ot + 5(4@ -7 -nw'x" - &ﬂ”} Y ASNT | (473)
- r2 5Z . )
HiY = /dx La (2di6 — dis) + TN T -0y N L (474)
f7T 2f7r 2
/ / / /
/ / / /
ut u2 u3 u4

FIG. 33: Diagrams relevant for the renormalization of g4/ f.

The contributions of diagrams in Fig. 33 are

ul = 229?0 k7, , (475)

u2 = —’lg—fg (10@ ) JOI g - kTa s (476)
92

u3 48f3 J130' kTa s (477)

2

[ mz 395
ud = 1 K(QdIG_dlg) 15;3—#5—;(—27712 ly +

and their sum reads

2m?2 I m2
Ul + U2 —f- U3 + U4 = 1?0' k |:1 + 94 (2 d16 — dlg) 3f2 J13 — f2 . (479)
In terms of the renormalized coupling, we must have
igAa-kTa:u1+u2+u3—|—u4, (480)

2 1%
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which implies (to order Q?)

r 2 2 2
g ga m; g my ly
9a _ 9A 1 L M g~ 2dyg) — JA g, —
fr fw[ gy e = 2ds) = g D fﬁ]
ga 4m? 94 mfrl4) ( 2m? )
_ Ay Ame 94 g =20 481
fw( TR g e (481)

where in the second line we have isolated the Goldberger-Treiman discrepancy [47]. The

quantity Jy3 is ultraviolet divergent, and in dimensional regularization is given by

3m2 7
AL 482

where d. has been defined in Eq. (110). The divergent parts of [;’s and d;’s have been

identified in the heavy-baryon formalism, without considering any specific process, with the
background-field and heat-kernel methods (se Ref. [53], and references therein). We report

below the expressions for these divergent parts from Table 4 of that work:

i = WA+, (483)
Bi .
do= S+, (484)
where, in the conventions adopted in the present work,
N Sy (485)
T e\ )
2
r _ i m7r r
. Bi my oo

. . L : 4 3
where (] (m,) and d}(m,) are the physical (i.e., scale independent) LECs from £%) and £7(r ]2,

The v; and B; functions of interest here are those relative to Iy and dig respectively

Y4 = 2 ) (488)
1
Bie = §QA + 9,321 . (489)

We note that LEC d;g has no divergent part. As we can see divergencies, cancel out exactly
in Eq. (481), and we are left with

gz gA 4 m;2 r 7 922 r2 m;2 lz
A _ JA(g 2 e _TIA 2 490
I fw< T T e T T ) (490)

where on the r.h.s. we have replaced g4, fr, m, by their renormalized quantities, which is

correct to the order Q% we are considering here. Note that

g_A _ % 1_4m;2 r 7g22 mr2 m:TQlZL
9 1272 fr2 7 frr )

fx fx

(491)
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APPENDIX F

RENORMALIZATION OF THE ONE-BODY AXTAL

CURRENT

We first discuss the renormalzation of the pion decay constant f,. The relevant interac-

tion Hamiltonians are

H?' = [, / dx (A7 9" + A" IT") (492)

Héi)f{ = ﬁ/dx[Q(l —20)A" -7 w O — (2a+ )AT- O "
+2(a—1/2) A7) + 2 A (nl " - II" + 11" - wrwg)] ) (493)

HY' = /dx {2”?2 Al o 55”]; (—Ai-amwAO-H*)] , (494)

where H 7(3' and H?Efr)f( are the same as in Eqgs. (432) and (436) but in terms of renormalized
pion field and mass, while Hfrgl relative to Eq. (433) includes counter-terms. The contribu-

tions illustrated in Fig. 34 read

al = —ify (k-A, —wA)), (495)
a2 = —#J01[—(5oz+1/2)Aa~k—(5@—3/2)A2w], (496)
r2 7
3 = -2 “oan i 2o (A 0 (497)
| |
| | l
| | |
§ /é g
at az a3

FIG. 34: Diagrams relevant for the renormalization of f.
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We now require that the renormalized (physical) pion decay constant is equal to

—iff (k- A—wA)) = al+a2+a3, (498)
implying y P
. my
= fr <1+ f24—2—;12) : (499)

which to the order Q? of interest also gives

o (1 )

mE 2

This result is in accord with that obtained in Ref. [35].

(500)

We can now move on to discuss the renormalization of the axial coupling contant g4
by considering the coupling to A,. The relevant interaction Hamiltonians are HS},’N and
Hg(jr)]\l,NA in Egs. (410) and (420), and

—r . . d , )
Hﬂ,’N = —/ dxN (2 m2die T - Aiy'ys + 5ZN%47' Ay s+ %T : 83Fij7175> N™ . (501)

We consider a similar set of diagrams as in Fig. 34, but for the incoming pion line replaced

by the external field. Their contributions are given by

bl = %ATQU-AG , (502)
ga
b2 = —4—]2(]017'&0"Aa, (503)
9
b3 = 48f7% J13 Ta O Aa s (504)
d
b4 = (%4 §Zy +2mL? d16> Ta0 - Ay + %Ta [ax(gxo)]-A,, (505)

and sum up to g4 o 7,/2, with the renormalized axial coupling constant (to order Q%) ob-

tained as ) )
_ 1 gy 4m!

W= 1— Jo1 — J — dyg| 506

ga = 94 [ > fr 01 3 fr2 13+ 7 16 (506)

and g, apart from the Goldberger-Treiman discrepancy, is in agreement with Eq. (490). It
is also in agreement with the results, to order Q?, reported by Schindler et al. in Ref. [50].

The term proportional to dys quadratic in q contributes to the nucleon axial radius [50].
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FIG. 35: Pion-pole diagrams.

Finally we examine the pion-pole contributions illustrated in Fig. 35. We obtain

d1

d2 +d3

d4

dd

d6

Their sum reads

dl+---+d6

AN LT
2 q2+m;2

ga "2 Jo1 q-o
Q_F(_mw l4+7>Aa'qua>
ga q-o
s 100~ A e

3

9a q-o
- JisAo-d5T—757Ta

agfz e T T

o (2 — dug) + 294

a 16 — Q18 162 13

ga ro 10 —1 q-o
—— | -2 ly+—J A q————T,.
4fz( e Ty ) | e T
ga 1 s 4my? 2m”
-5 [1—2f;2<]01—3f;2<]13+ 7, dig| [ 1— 7, dis
><1Aa'q -2

—
2 r2 @7
q=+mz
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(507)

(508)

(509)

(510)

(511)

(512)

and therefore the renormalized ¢’; follows exactly as in Eq. (490), including the Goldberger-

Treiman discrepancy. The renormalized (single-nucleon) current is then given by

and this current is conserved in the chiral limit (m, — 0), since in that limit ¢, = g}.

q-o

=T T
ga da
2 r2 Ta
q° +my

j o= " 0T, +
Js, 9 T 2(1

(513)
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APPENDIX G

CONTACT TERMS FOR THE AXIAL CHARGE CURRENT

The weak-interaction potential vs = A ps , — A, - 5.4 is parity (P) and time-reversal (7))
invariant, which implies that ps, SN —ps5.a and Js 4 N Js.a, and ps 4 SN (—)**! p5, and
Js.a U (—)*js.a- At order Q° there is no momentum dependence, and consequently there
are no contact terms which can be constructed for ps 4, while two such terms occur for js 4, of
which only one is independent (Fierz identities, see below) and is given in Eq. (173). At order
(@ the contact terms in p; , and j5, must be linear in either k; = p, —p; or K; = (p} + p;) /2
with ¢ = 1 and 2. None can be constructed for j;,. A complete, but non minimal, set of

hermitian operators for the axial charge ps, is the following:
(Tra + T20) (01 + 02) - (K1 + K>)
O ( )
O3 = i(T1q+ T2a) (01 X 02) - (k1 — ko)
Oy = (Tia—T2a) (01 —02) (K1 +Ky)
Os = (T4~ T2a) (01 +02) - (K1 — Ky)
Os = i(T1q— To4) (01 X 02) - (k1 + ko)
O7 = i(m1 x™), (61 —02) (ki +ko)
Os = i(m xX™), (01+02) (ki —ky) ,
Oy = (11 x1), (01 x09) (K; +Kpy)

The antisymmetry of initial and final two-nucleon states requires
O; = —P7 P7P°(), | (514)

where P°P*¢ is the space exchange operator, and P? and P” are the spin and isospin exchange
operators with P = (14 o - 03) /2 and similarly for P7. Exchange of the final momenta

of the two nucleons p} = p}, leads to

Pspace(kl + k2) _ kl + kg ’ Pspace(kl _ k2) =2 (K2 — Kl) R (515)
PPeKy +Ky) = Ki+ Ky, PPCK; - Ky) = (ks — ki) /2, (516)
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while spin exchange implies

P’ (o1+03)=01+0y, P’ (oy—03) =i(o1 X03) , PP (01 X03) =—i(07—03) ,
(517)
and similar relations follow under isospin exchange. The following (Fierz) identities are
obtained from Eq. (514):

0, =05/2, Oy = Oy, 05=08/2, O5=-0r, (518)

while 51 is required to vanish. Hence only 4 of the above 9 operators are independent, and

a convenient set is
0, = (57—58) 12, 0y = (67+68) /2, Oy = (56—53) /2, 04=04.  (519)

We note that O; and O3 have the same operator structures associated with the divergent

parts of the loop diagrams.
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APPENDIX H

NONSTATIC CORRECTIONS TO ONE-BODY PION-POLE

DIAGRAM

The one-body axial current, coming from the pion-pole term (diagrams a and b of Fig. 36),

before the expansion of the energy denominator, reads

ga q g1:q

L , 520
Js.a®) 4 B B — P+ m2 P+ m2 o
. ga a 9149

ab = —Tia ’ 521
Jsa(b) 4B —w,— By — @A mZ @ m2 o

where F; = w, + E is the initial energy carried, respectively, by the external axial field and
the nucleon, \/¢? +m?2 is the pion energy, ¢ is the three-momenta of the axial field, and a

momentum conserving d-function is understood.

S

FIG. 36: Time orderings for the pion-pole one-body axial current topologies, indicated in

a b

diagram a2 of Fig. 4. Nucleons, and pions are denoted by solid, and dashed lines, respectively.

The second nucleon line is not displayed. See text for further explanations.

The LO contribution enters at order Q—3, obtained by the LO expansion of energy de-
nominators of diagrams a and b and it is the pion-pole analogue the one-body GT operator
.(—3) ga q
a+b) = ——m.,—5————-01-q. 522
J5.a ( + ) 27_17 (12_’_77,’172r 1°q ( )
The nonstatic correction at order Q=2 turns out to vanish on the energy shell

ga q

+(—2) _
‘]57(1 (a—l—b) = —7T17QW01-(1

(2E;— By, — E, —w,) =0.  (523)
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We take it to vanish off-the-energy-shell too. At order @' Eq. (520) reads

'(_1) _ gA q / 2
jsa (@+Db) = T el m2)y o1 -q(E) — Ey)
= _9a 1 o qu, (524)

2 M (g? +m2)?

where the two forms are equivalent on the energy shell. In this Thesis the off-the-energy-

shell-extension of the one-body axial current at order Q!

second line of Eq. (524).

used is the one reported in the
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APPENDIX I

REGULARIZED LOOP CONTRIBUTIONS TO jlg/fE

The regularized contributions of diagrams in Fig. 10 read:

3 1 _
+(1) g4 2z
1) = o d M (Ko, k kg ——— |, 525
Jsalel) 647#7%72, /0 Z{Ul (k2,2) + ko oy - ko M(l@,g)} (525)
3 1 2—
.(1) ga kizz
4) = ——— 1o, dz | ———— M (kq, ) 526
et =~ o [ ] s, (526)
3 1 2 —
D) = —24___19 d (i — ko) [ 3k
.]5,@(65) 1287.‘..}(‘# q2 _'_m72r/0 “ [TQ’Q o) ( 1 2) M(khz) + 3 ( 172:)
—(T1X7'2)a(0'1 XO'Q)'klM(kil,Z) s (527)
5 1 2/ —\2 _
+(1) _ __9a Mk ko Tk ks (2%) 1—-7z2z
35@(68) 6471"]0;1/0 dz [Tgﬂ [50‘1 ( 2,2) + 9 (o a1 2 M(kg,z)?’ + M(k‘Q,Z)
k2 9zz—1  k2(22)° Tia 1
= — : k kg———— 528
oo [M(kg,z) Mo | | T2 (o2 xke) xlegra—st (528)
3 1 2
Js.a(e10) = 287 fig? + m2 /0 dzl(Q T2, — Tla) [m + 3M(1€2,Z)] o1 - ko
—+ (7'1 X Tg)a M(]CQ,Z) (0’1 X 0'2) . k2:| , (529)
3 1 2 .=
.(1) ga ki 2z
1 = d ol =——— + 3 M(ky, ko — 3k
i) = i | [ e 30, (e - 3k)
g9 - k2
+4 (‘Tl X T2)a (0’1 X kl) M(k’l, Z) 2 R (530)
2
(1) 93 q !
j5,a(616) = 1282]64 q2 + m2 /0 dz T2,a |: o 10M(k172)3 + M(k17z)(15m72r +11 k%
+3k3+3¢* — 20kizzZ ﬁ5 2 Lk 4+ 3k - 2k%2z
2 q 12Z)+M(k1 z)( my + Ry +q° +SR] 127)
g9 - k2
_2(T1><7'2)a(0'1 Xk1)<k2+q)M<k1,Z) 7 s (531)
2
(1) g,?ix m? q oy ko
J5a(el?) = ——FT : (532)

327 f1 @+ m2 Wl
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where M (k, z) and Z have been defined in Eqs. (199). The contributions corresponding to
diagrams e2, €9, and e21 easily follow from those for el, e8, and €20. The loop functions W;
and Z; introduced in Egs. (250) and (251) are defined as

Wi(k) = /0le {(1—593) M(k,z)—g‘%‘QkQ [9]\;(1_2)1 +4lj\24((ff)3” . (533)
W = | 1‘”[ g%fkﬁ#*zg(%&,@)_gﬁ] | (534)
Wyk) = —» / M (535)
Zi(k) = /Odz {%nLSM(k,z)} , (536)

1
Zy(k) = /dz{élmfr—10M(k,z)3+M(k:,z)(15mfr—|—14k;2—6q-k+6q2
0

2z k?
M(k, z)

Zs(k) = /01 dz M(k,z) . (538)

—202ZK%) +

(5m2 44k +2¢*—2q-k—2k*2%) |, (537
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APPENDIX J

LEADING ORDER AXIAL CHARGE IN COVARIANT

PERTURBATION THEORY

We discuss here how the one-body axial charge operator emerges in covariant perturbation

theory. The relevant interaction Hamiltonian densities are

Hoalz) = frA%2) -T(z), (539)
HO (@) = %N(@T-H(:ﬁ)vovw(@, (540)
ngk}\),N(x) = QgTAN(iL')T'aZ'W(I)’}/i’}/BN(l‘), (541)

where all fields are in interaction picture.

c] 2

FIG. 37: Feynman amplitudes contributing to the one-body axial charge at leading order.

The S-matrix elements associated with the Feynman amplitudes in Fig. 37 are given by
1
S =5 [ @ dy NI T [Haa@) M) + MR () Has@)] I023) . (542)

where v = a or b, T denotes the usual chronological product. Then for v = a we obtain

S = o R A [ dtedly [0 T M) ()] 1)
el (O[T [Ty () TL(y)] [0)] (543)

where we have considered the leading order in the non-relativistic expansion of the nucleon

matrix element. Since in the interaction picture the conjugate field momentum II.(z) =
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. (z), it is easily seen that (see also Ref. [86])
(0|7 [ILe(2) Ia(y)] [0) = 850, (O|T [me() ma(y)] 10) — i dead(a” — y°) 6(x — )

: ¢k e ks
—Zécd/ (27‘()46 (z—y) (1+m) , (544)

with the Feynman propagator defined by

(OIT [me() ma(y)] |0) = T e . (545)

The T-matrix element T; obtained from Sy; = —i (2m)*6(p' — p — q) T}; reads
T = A0 o (' +p) mexa 1+ d (546)

Fi 4m A m2+q?—q2—ic)’

where the term proportional to gy = pj — po is suppressed by Q? in the power counting. The
leading order term leads to the axial charge operator in Eq. (148). A similar analysis shows
that the leading-order contribution to S}E’) vanishes.

As already noted, the interaction Hamiltonian in Eq. (75) contains no direct coupling of
A? to the nucleon. However, diagrams of the type illustrated in Fig. 37 are not considered
in Refs. [28, 48]. It would appear that their contribution is accounted for by retaining the
term —i d.q (x —y) in Eq. (544), which effectively leads to a direct coupling between AY and

the nucleon.
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APPENDIX K

CONFIGURATION-SPACE EXPRESSIONS

The Fourier transforms of two-body operators are easily reduced to one-dimensional
integrals [or two-dimensional ones in the case of the NALO(MPE) operator]|, which can be
conveniently evaluated by Gaussian quadrature formulae. For example, the N3LO(OPE)

current is given by

JEHO(OPE) = j0(e3) + JE°10 (ey) + 350 (nl) (547)

where
iBO>c3) = —mox {M oy + Fo(z;03)2 (02 i)] +(1=2), (548)
JPc) = —(mix ) o1 % {M o2+ Fa(zc4) 2 (02 - i>] +(1=2) ,(549)
POm) = —(mxm),  {—-iV], F(znl) o2} +(1=2) . (550)

Here we have defined r = r; — ry, the adimensional variable z = Ar, —i V7 as the adimen-

sional momentum operator, and the radial functions

1 gacs [ z3 e

Fl(Z;Cg) = —F?—f/o dxme j1($2), (551)
1 gAE e $4 —zt .

FQ(Z;C3) = F 723/0 dxme 4]2(372?), (552)

where j,(zz) are spherical Bessel functions. We have also introduced adimensional constants

(denoted with the overline) expressing them units of the cutoff A. They are given by
mwzmﬂ/A, m:m/A, Tﬂ:fﬂ/A, 53263A, E4ZC4A. (553)

The functions Fi(z;cq) and Fy(z;¢4), and Fi(z;nl) follow from those above by the replace-

ment of the pre-factor as

1 gacs 1 ga (_ 1

— ?: P 7—: Cq + i for Fi(z;c4) and Fy(z;¢y4) (554)
1 C 1

—JA% A for Fy(z;nl) . (555)

L



135

The Fourier transform of the three-body operator is given by

YO BB) = Z(QTI,:E Ty Ty —Tor T TI — T34 T1 T2)

cyc

XO1 (0’2 . 212) (0’3 . 213) Fl(le; 3B) Fl(Zlg; 3B) , (556)
and the function Fi(z;3B) is obtained from F}(z;c3) by replacing
1 g

1 gacs A
— — . 557
m 72 4272 F? (557)

The Fourier transform of the second term in the N4LO(3B) current of Eq. (294) propor-
tional to oy - k; can be reduced to a two-dimensional parametric integral. To this end we

first regularize it as,

2nd term = Czyc 6 i (isospin) o3 - V3 09-Vy01-V Vi | (558)
I :/ , On(|ky 4 kg |)eilkerathors) __ — (559)
(27T)5 (27T) w12<2+k3 w12<2 w12<3

where (isospin) stands for the isospin factor in parentheses of Eq. (556). After changing
variables to ko = P/2 + p and k3 = P/2 — p, making use of Feynman’s parametrization
for the denominator 1/ (wP 24k WP /g_k), and carrying out the angular integration over the

P directions, we find

e~ PA) 1
d dP P?°——j,(P|lri—R. ~L(Py)ras___* 560
16Ws/ v [ AP P o (Pln—Raa ) e S (560
where
L(P,y) = /m2+ P2(1/4—?) . (561)

In terms of adimensional variables, the current now reads

gzt

3
2nd term = Z g4 7 (isospin) o3 - V3 05 - V3 01 - V] VZ/ dy/ dx x*
1/2

529673 F, -+ 7y
N e (z|Z +yz|) (562)
———jo(w yzl|) ,
L(z,y)

where the gradients are relative to z; = Ar;, and we have defined Z = A (r; — Ry3) and

VAES AI’23, and

= \/mfr+x2(l/4—y2) : (563)
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In order to evaluate the gradients, we introduce the Jacobi variables,
z Z z 1 Z z z 1 Z z
where the gradients VZ and V# are now relative to Z and z, respectively. We obtain

1 1 1 T
03509~ 013 (vavf —V;Vi - §v§v§ + évgvf) [e_LZ ViVZijo(z|Z+ yz|)]

—_

_ 1 _
_ e Ty, alﬂ{ﬁ (1 _ y2> VARV, (5 - y) VIV
/1 ettt |2 1y,, L tot \
oL (5 +y) SVEVEVE - (T (14 = ) 2% = 0| VAV pinlt) (565)

where we have defined t = 2 Z + xyz and the corresponding gradient V*. By making use
of the identities

VT o) = s (29 o) + 1t (1LY o) (566)
B aJo - af tdt Jo alp tdt Jo )

t ot ot 1d 2. 1d 3,
VoVaVaido(t) = (Bapty +0ayts +0syta) { T ) Jolt) +tatsty { 5= ) Jo(t) . (567)
trt ot ot 1d\*

V(;Vvvﬁvajo(t) = ((5a5(575+5a.y555+5575a5) Z% jo(t)—F((Sagt.yt(;—F(ga,ytgt(s

1d\°
+(5,37 tots + 0us t5 t,y + (555 to t,y + 575 ta tﬁ) < ) jo(f;)

tdt
vtototts (24Y o) (568)
atp by b tdt Jo )
and L™ .
(F25) 0l = " n) (569

the current in Eq. (562) is reduced to a sum of terms depending on parametric integrals
in x and y. While the matrix element of 2nd term could in principle be evaluated, the
computational effort required to do so in the present Monte Carlo calculations is, however,
too large (and unjustified in view of its expected contribution, see Table 1). For this reason

it has been neglected in Ch. 6 of the present Thesis.
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