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ABSTRACT

Overhead video from a small number of laboratory tests conducted by Kaihatu et al. at the Tsunami Wave

Basin at Oregon State University shows that the breaking point of a shoaling solitary wave shifts to deeper

water if random waves are present. The analysis of the laboratory data collected confirms that solitary waves

indeed tend to break earlier in the presence of random wave field, and suggests that the effect is the result of

the radiation stresses gradient induced by the randomwave fields. A theoretical approach based on the forced

KdV equation is shown to successfully predict the shoaling process of the solitary wave. An ensemble of tests

simulated using a state-of-the-art nonhydrostatic model is used to test the statistical significance of the pro-

cess. The results of this study point to a potentially significant oceanographic process that has so far been

ignored and suggest that systematic research into the interaction between tsunami waves and the swell

background could increase the accuracy of tsunami forecasting.

1. Introduction

The solitary wave has long been the working paradigm

for both experimental and numerical simulations of tsu-

namis (e.g., Ippen and Kulin 1954), persisting as the

common performance benchmark for numerical models

(e.g., Madsen et al. 2008; Ma et al. 2012; Grilli et al. 2002;

and many others) even after the emergence of more re-

alistic models that account, for example, for ‘‘N-waves’’

(Tadepalli and Synolakis 1994) and solitary wave fission

(i.e., the disintegration of a leading wave into a train of

solitary waves; Madsen andMei 1969). Because tsunamis

reach deep-water phase speeds of the order of 200ms21

(Geist et al. 2006) and flow velocities near 2–5ms21 when

impacting the coast (Fritz et al. 2012), the term ‘‘solitary’’

was also used in the ‘‘soliton’’ sense—implying a general

insensitivity to the oceanographic and sedimentary

background. Nevertheless, the need for more realistic

forecasting models has eventually encouraged efforts to

include the effects of the oceanographic background.

Recent studies have considered tsunami interaction with

tides (Kowalik et al. 2006) and vorticity (Constantin and

Johnson 2008), as well as more accurate and realistic

initial conditions needed to better reproduce tsunami

fission (Matsuyama et al. 2007).

In accordance with the soliton paradigm, the interaction

between tsunamis and wind-wave fields has been approx-

imated as affecting only the wind waves (e.g., Longuet-

Higgins 1987; Zhang and Melville 1990). As a slowly

varying current, the tsunami can force wave steepening,

a description that applies for a scale separation between

the current and wave of the order g5O(m3/2), where g is

the ratio of the characteristic spatial scales and m is the

wave steepness. In deep water, the soliton paradigm is

justified by the significant scale separation (100m to

100km; 10 to 200ms21) as well as the intrinsic stability of

the soliton as a coherent structure (Osborne 2010).

In the nearshore, however, it is conceivable that the

effect of the wind-wave fields on the tsunami could
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become significant as the characteristic length and speed of

the tsunami decrease. From the point of view of soliton

dynamics, the balance between dispersion and nonlinearity

is broken, with the solitary wave eventually breaking in

shallow water. Field observations (e.g., Aida et al. 1964;

Madsen et al. 2008) and numerical simulations (e.g.,

Madsen et al. 2008) also show that the scale gap between

the tsunami andwindwaves decreases significantly even for

relatively short swells. For example, the 2004 IndianOcean

tsunami in the Strait ofMalacca had a height of 5m in 14-m

water depth (Madsen et al. 2008); the assumption of aKdV

solitarywave shape yields a characteristic length of 240m

(based on Goring 1979). For 10-s, 2-m swell waves, one

obtains g;O(m1/ 2), that is, g5 0:375 with m5 0:14.

This suggests that more complicated interactions may

occur in the nearshore that cannot be reduced to the

above wave–current interaction paradigm.

The possibility of nontrivial interactions between tsu-

namis and background swell over a sloping bathymetry in

shallow water (at swell scale) was investigated in a series

of laboratory experiments byKaihatu andEl Safty (2011)

and Kaihatu et al. (2012). Remarkably, images recorded

by overhead cameras observing a solitary wave shoaling

over a randomwave field suggest that background waves

can accelerate the solitary wave-breaking process. Using

wavelet analysis, Kaihatu and El Safty (2011) showed

that the energy of the short-wave band increased when

the solitary wave and the random wave field were su-

perposed. While this process may be connected to the

acceleration of breaking seen in the overhead imagery,

the interaction mechanism forcing the early breaking

is not understood. Although the phenomenon was

observed in the laboratory (with all the implied scaling

limitations when representing tsunami dynamics),

understanding the mechanism responsible for the

wave–tsunami coupling could be important for im-

proving tsunami forecasting skill of models as well as

their interaction with other aspects of the environment

(e.g., sediment and sediment transport).

This study focuses on the analysis of the experimental

data (described in section 2) in an attempt to identify the

location of the initial breaking event and evaluate possi-

ble mechanisms for tsunami–swell interaction (section 3).

The results are validated numerically in section 4 and

summarized in section 5, where the future directions of

research are also discussed.

2. Observations and data analysis

a. Laboratory experiment

The laboratory experiment was conducted during

March 2010 at the Tsunami Wave Basin (48.8m long,

26.5mwide, and 2.1m deep) atOregon StateUniversity.

Details of the experiment are given in Kaihatu and

El Safty (2011) and Kaihatu et al. (2012). The bathym-

etry profile (Fig. 1) was piecewise linear, with a 0.75-m

depth flat section for 0m # x # 10m, a slope of 1/15 for

10m # x # 17.5m, and a slope of 1/30 for 17.5m # x #

25m (x is the cross-shore coordinate, with the origin at

the location of the wave maker). Free-surface elevation

data were collected at a sampling rate of 50Hz at 22 lo-

cations from x 5 7.35m to x 5 23.18m using wire re-

sistance sensors. Overhead video imagery was also

recorded from two web cameras.

The experiment performed four tests (runs W1 to W4

in Table 1) with the same solitary wave shoaling alter-

natively over undisturbed water (run S) and random

wave fields (runs SW1 to SW4). The randomwaves were

generated based on a Texel–Marsden–Arsloe (TMA)

spectrum (Bouws et al. 1985) using default values for the

free parameters for spectral shape. Intrinsic constraints

in the mechanics of generating solitary waves in the

laboratory, as well as strong seiching resulting from the

solitary wave runup, limited the duration of runs that

included the solitary waves to 4min. However, 6- and

12-min runs of each of the four random wave conditions

with and without a solitary wave were also recorded

FIG. 1. Bathymetry profile of the experiment. Representative

sensors are highlighted using text boxes.

TABLE 1. Wave parameters for short random waves, whereHs is

the significant wave height, Tp is the peak period, kh is the relative

depth, a/h is the nonlinearity, and Ur is the Ursell number.

Run Hs (m) Tp (s) (kh)2 a/h Ur

W1 0.1 2 1 0.067 0.067

W2 0.05 4 0.02 0.033 0.163

W3 0.2 2 1 0.134 0.134

W4 0.1 4 0.02 0.067 0.331
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separately (runs SW1 to SW4 and W1 to W4) to allow

for statistical analysis.

The characteristics of the random wave fields were

chosen to preserve the values of nondimensional

parameters important for reproducing prototype pro-

cesses (Table 1). The nonlinearity of the solitary wave

(as/h5 0:33, where as is the solitary wave amplitude and

h is the characteristic depth) corresponds to a tsunami of

5-m amplitude in 14-mwater depth (e.g., the 2004 Indian

Ocean tsunami in the Strait of Malacca; Madsen et al.

2008). The random wave tests include two runs (W1 and

W3) with dispersive waves characterized by (kh)2 ’ 1,

where k is the characteristic wavenumber, and two

weakly dispersive runs (W2 and W4) with (kh)2 ’ 0:02.

Ursell numbers for the runs range between 0.067 (W1,

weakly nonlinear) and 0.33 (W4, strongly nonlinear).

The analysis presented here is motivated by Fig. 2.

A careful comparison of the overhead video of the

solitary wave alone and in the presence of random

waves seems to indicate that random waves acceler-

ate the solitary wave-breaking process (Kaihatu and

El Safty 2011). However, the interpretation of the

images in Fig. 2 is subjective, and the exact moment

of breaking depends on the type of breaking process

and the definition of the instantaneous breaking

event.

Time series from the experiment (e.g., Fig. 3) suggest

that the transformation of the solitary wave in all runs is

characterized by the peaking and steepening of the wave

front, similar to plunging breakers in random waves

(e.g., Whitham 1974; Peregrine 1983; confirmed by vi-

sual inspection at the site). However, because the

FIG. 2. Frames from overhead video showing the location of the breaking point of the solitary wave propagating

(a) in the presence of random waves and (b) over still water. The arrow marks the approximate location of the

breaking point in each frame. The location of the dashed line in (b) corresponds to the location of the breaking point

(arrow) in (a).

FIG. 3. Surface elevation (arbitrary units) for every two sensors from sensor 2 to sensor 20 for (a) run S and (b) run

SW1. Thick lines indicate sensors 2, 12, and18; thin lines indicate the rest of the sensors.
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instruments cannot detect a vertical surface corre-

sponding to a vertical wave front, a weaker breaking

criterion is needed based on observing the overall evo-

lution of the frontal steepness.

Therefore, the breaking point is defined here as the

position of the maximum frontal slope; this is also used

by Kaihatu and El Safty (2011) and Kaihatu et al.

(2012) in their analysis of the wave evolution charac-

teristics of these experiments. This definition is subject

to the ambiguity of defining the wave slope itself;

therefore, it seems prudent to use several slope defi-

nitions and derive conclusions based on the consistency

of the results.

b. Analysis methods

1) ENERGY FLUX ESTIMATE

The evolution of energy flux associated with the

solitary wave and the random wave field can be used

to identify possible nonlinear interactions between

them. The energy flux for a potential flow is (e.g., Mei

et al. 2005)

F5 r
1

T

ðt
0
1T

t
0

ðh
2h

ftfx dz dt , (1)

where T is a characteristic time, f is the velocity po-

tential, x is the wave propagation direction, and r is

the density. Equation (1) can be approximated based

on the information about the free-surface elevation h.

For random waves, the energy flux of short random

waves was estimated using the linear approximation in

discrete form:

F5
rg

2
�
n

j
jajj2Cj , (2)

where vj, kj, and Cj are the radian frequency, wave-

number, and group velocity of the spectral mode j; aj is

the complex amplitude of mode j in the Fourier de-

composition of the free-surface h; and n is the total

mode number and h is the local depth.

The solitary wave is assumed to have negligible de-

pendence on the vertical coordinate. Equation (1) then

simplifies to

F5 rg
1

T

ðt
0
1T

t
0

uh(h1 h) dt, u5
ch

h
, c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(h1 a)

p
,

(3)

where nonlinear effects at breaking are accounted for,

and a and c are the amplitude and phase velocity of the

solitary wave.

2) FRONTAL STEEPNESS

The wave steepness is defined by the spatial gradient

of the free-surface elevation. Observations based on

stationary wave gauges, however, are time series at fixed

locations: h(x, t). The spatial slope hx can be related to

the time derivative ht using the linear approximation

ht 52chx, (e.g., Kaihatu and El Safty 2011; c5
ffiffiffiffiffiffi
gh

p
,

with h as the local depth and g as the gravitational ac-

celeration). Because nonlinear behavior is expected to

dominate near the breaking point, a KdV approxima-

tion (e.g., Whitham 1974),

ht 1 c

�
11

3h

2h

�
hx 1ghxxx5 0, c5

ffiffiffiffiffiffi
gh

p
, g5

1

6
ch2 ,

(4)

may be more appropriate (e.g., h5 0:75m, where

as 5 0:25myields as/h ’ 0:33). Breaking occurs in shallow

water, where the dispersive term should be less important.

Indeed, typical experimental values of as 5 0:25m and

L5 10m (based on Goring 1979) yield an Ursell number

3

2

c

h
hhx

ghxxx

;Ur5
aS
h

L2

h2
5 103 � 1, (5)

suggesting that the nonlinear term dominates. Neglect-

ing the dispersive term in Eq. (4) yields for the wave

steepness the nonlinear relation

hx52

� ffiffiffiffiffiffi
gh

p �
11

3h

2h

��21

ht . (6)

The slope h(S)
x of the solitary wave elevation h(S) can be

used to define two estimates of the breaking point, based

on the location of the maximum steepness or the maxi-

mum mean steepness. The maximum frontal steepness

is simply the maximum value of the frontal steepness

recorded: [h(S)
x ]max 5 supx,th

(S)
x . The maximum mean

steepness is the maximum ratio of the solitary wave

amplitude to the horizontal span LF of the front

hh(S)
x imax 5 supx(aS/LF), where sup represents the max

function.

3) WAVELET FILTERING

One of the basic difficulties in comparing observa-

tions of the solitary wave alone and in the presence of

random wave fields is separating the two wave struc-

tures. This is especially true for estimating the steep-

ness of the solitary wave as the superposed waves

distort the solitary wave surface (Fig. 3b). Filtering out

the randomwave signal becomes necessary, but simple
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frequency filters (e.g., a Fourier filter) are not usable

because they do not differentiate between the random

wave signal and the bound high-frequency compo-

nents associated with the steep frontal slope of the

solitary wave. The approach used here takes advan-

tage of the intrinsic temporal localization of the soli-

tary wave and uses time–frequency analysis (e.g.,

wavelet transforms; see Chui 1992; Torrence and

Compo 1998; and many others). Time localization al-

lows for separating at least the nonsynchronous, ran-

dom wave, high-frequency Fourier components from

the bound components associated with the solitary

wave-breaking process.

The continuous wavelet transform pair is defined as

a two-parameter (s, t) transformation:

G(s, t)5

ð‘
2‘

g(t)Cs,t
*

�t2 t

s

�
dt, and (7)

g(t)5N21
C

ð‘
2‘

ð‘
2‘

G(s, t)Cs,t(t) dt ds , (8)

where g and G are the transform pair of functions, and

C is the mother wavelet (here, Morlet wavelet; see

Goupillaud et al. 1984)

C(t)5p21/4 exp

�
2
t2

2

�
exp(iv0t) , (9)

with v0 5 3 (Farge 1992). The coefficient NC is the

norm of the mother waveletC. The parameters t and s

represent the translation and scaling groups of

transformations. The quantity jGj2 is called the sca-

logram. The wavelet transform of Eqs. (7)–(8) con-

serves the energy of the signal in the sense thatÐ jGj2 dt ds5 Ð jg(t)j2 dt.
Figure 4 shows examples of scalograms for runs S and

SW1 at sensors 6 and 16. The solitary wave scalogram

has a pyramidal shape (Figs. 4b,d), obvious also when

random waves are present, and which becomes verti-

cally elongated and sharp (high-frequency compo-

nents; Figs. 4b–d) before breaking. Here, the solitary

wave signal gS(t) is identified by inverting only the

FIG. 4. (a),(c),(e),(g) Time series and (b),(d),(f),(h) wavelet scalogram for (top) run S and (bottom) run SW1.

Scalograms shown for (left) sensor 6 and (right) sensor 16. The thick black contour lines GS and GSW are used for the

filtering procedure (see text for details).
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scalogram region inside the pyramidal shape, that is,

by determining in the time–frequency space a closed

contour G that defines the solitary wave ‘‘pyramid’’ and

computing

g(t)5N21
C

ð‘
2‘

ð‘
2‘

G(s, t) xCs,x(t) dt ds ,

x(s, t)5

(
1 insideG ,

0 otherwise.

where x is the characteristic function of the pyramid.

This procedure does not eliminate the random wave

variance inside the pyramid. The exact determination of

the contour G is rather arbitrary. Here, G was defined by

choosing a closed scalogram contour (some smoothing

was necessary) enclosing 98% of the variance in the Dt
segment, that is,þ

G
jGj2 dt ds5 0:98

ðt1Dt

t
dt

ð
dsjGj2 , (10)

where Dt5 6 s represents the effective duration of the

solitary wave (Goring 1979). Similar to the edge effect of

the Fourier transform, the cone of influence occurs at the

beginning and end of the wavelet scalograms because we

deal with time series with finite length. This effect was

minimized by zero padding the time series up toN5 1024

points. The wavelet transform was performed by using

the wavelet script for MATLAB developed by Torrence

and Compo (1998). The procedure reconstructs well the

original solitary wave for run S (Figs. 5a,b). For the SW1

case, the wavelet filter captures the sharp peak of the

solitary wave and preserves the slope of the wave front

(Figs. 5c,d). To conclude this discussion, the validity of

the method used here hinges on a significant frequency

separation between solitary wave and the random wave

field, which appears to be satisfied in this case.

3. Results

a. Solitary wave shoaling and breaking

Figure 6 shows the evolution of the solitary wave

frontal steepness. For all runs, and regardless of the

steepness estimator used (linear or nonlinear, maximum

or mean), the evolution of the solitary wave frontal

steepness (Fig. 6) shows two maxima, suggesting two

individual breaking events. In run S (solitary wave

alone), breaking events are sharp and occur in close

FIG. 5. Comparison between the original (dots) andwavelet filtered time series (lines), for (a),(b) run S and (c),(d) run

SW1 at (left) sensor 6 and (right) sensor 16.
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succession at sensors 18 and 20. This is in marked con-

trast with the evolution in the presence of random

waves, as seen in run SW4, illustrated in Fig. 6. All SW

runs behaved similar to SW4 (with the exception of

SW3, in which the solitary wave breaks at sensor 8). In

the presence of waves (Fig. 6), the first breaking event is

‘‘smoother,’’ with a milder slope (sensor 16), while the

second breaking is much weaker and occurs farther

onshore (sensor 21). Steepness values grow faster for

SW4 than for S before the maximum but stay much

lower after that. Overall, the trends of the steepness

estimators seem to agree with assertion derived from

visual observation (Fig. 2) that the solitary wave breaks

earlier in the presence of random waves.

Wave–amplitude evolution (Fig. 7) is not exhibited as

a clear indication of the early breaking of the solitary

wave in the SW runs. In both S and SW runs, the am-

plitude peaks at sensor 20, with the exception, again, of

the SW3 run. However, there is a subtle difference: for

evolution in the presence of random waves, the growth

rate of the solitary wave amplitude is noticeably weaker,

especially close to the breaking point (SW1 and SW3

show almost no growth; Fig. 7c). This behavior suggests

a difference in the mechanisms leading to the solitary

wave breaking in the runs S and SW. Alone (run S), the

solitary wave appears to break by growing and peaking,

much like a regular shoaling wave. In the presence of

random waves, the frontal slope grows faster, but the

amplitude growth is suppressed.

Random waves clearly have an effect on the soli-

tary wave, but the mechanism for interaction is not

clear. Possible nonlinear interactions should have an

FIG. 6. Evolution of the frontal steepness in runs S and SW4. (a),(b) Nonlinear and (c),(d) linear steepness

estimates. (top) The maximum steepness and (bottom) the mean steepness. Thick lines refer to run S; thin lines

refer to run SW4. All four runs show similar trends. Dashed lines mark breaking locations.

FIG. 7. Solitary wave amplitude (obtained from the wavelet-filtered time series) as a function of position.

(a),(c) Evolution of solitary wave amplitude normalized by the initial value; (b),(d) bathymetry with the location of

the sensors. Solid lines indicate the solitary wave, dotted lines indicate runs SW1 and SW2, and dashed lines indicate

runs SW3 and SW4.
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expression in the evolution of the energy flux associated

with the two wave fields. However, the evolution of net

fluxes integrated over typical time–frequency bands

(Fig. 8) does not show any significant energy exchange.

Both waves are subject to breaking dissipation and the

solitary wave flux decays faster in the presence of waves

(Fig. 8a), but the evolution of the energy flux of the

random waves shows no detectable change in the pres-

ence of the solitary wave (Fig. 8b). Note that in Fig. 8 the

energy fluxes for S and SW4 represent one realization

(30-s time series), while those for the random waves

alone (run W4) are averaged for 47 realizations (12-min

time series divided into 47 segments with 50% overlap).

Therefore, discrepancies in the behavior of the two en-

ergy fluxes of the random waves are expected.

Tank seiching could also cause early breaking of the

solitary wave and, if prominent, can affect the ability to

translate these results to possible predictive applica-

tions. Approximating the seiche as a slowly varying

current, we would anticipate that U5O(c), where

U and c are the characteristic velocities associated with

the seiche and solitary wave, if the seiche were signifi-

cant. If so, the modulation induced by the seiching

should result in an increase in the frontal steepness for

upstream propagation (Uc, 0) and thus early breaking.

Defining the seiche domain in the estimated scalograms

as f , 0:05Hz (e.g., Figs. 4f–h), the surface elevation of

the seiche can be determined from the measurements

using the wavelet filter. Here, we are interested only in

the seiche motion excited by the wave maker before the

solitary wave runup and reflection on the slope. Elemen-

tary estimates of the seiche free-surface elevation and flow

based on the linear approximation (e.g., Mellor 1996) in-

dicate that 1)U � c (Fig. 9a), and 2) in the runs available,

the phase of the seiche is typically such that the solitary

wave is stretched rather than compressed (Fig. 9b). The

results suggest that the breaking of the solitary wave is not

significantly influenced by the tank seiche.

b. The effect of random waves

The analysis of the previous section showsmeasurable

effects of the random wave field on the solitary wave

but without detectable conversion of energy to random

C waves. The suppression of the growth of the solitary

wave height suggests that the interaction could be

FIG. 8. Evolution of band energy flux (normalized by the total

energy flux estimated at sensor 1) vs position for run SW4, the most

nonlinear random wave run. (a) Total band for SW4 and solitary

wave band for S and SW4; (b) randomwave band for SW4 andW4.

The solitary wave and randomwave bands are defined in the time–

frequency domain and divided using wavelet filter. The corre-

sponding energy fluxes are calculated using Eqs. (2) and (3).

(c) Bathymetry with the location of the sensors.

FIG. 9. Characteristic surface elevation, velocity, and phase of

the seiche compared with the solitary wave characteristics for run

SW3. (a) Amplitude of the surface elevation (thick line) and ve-

locity (thin line), normalized by the local maximum amplitude and

velocity of the solitary wave. The 8 represents gauge 8, where the

solitary wave breaks for run SW3. (b) Surface elevation of the

solitary wave (thick lines, arbitrary units) and direction of seiche

flow (solid lines are shoreward; dashed lines are seaward) for the

sensors in the vicinity of the breaking point.
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treated as a dissipative effect rather than a dynamical

wave–wave interaction mechanism. In the presence of

a random wave field, the nonlinear shoaling of the soli-

tary wave may then be modeled using a variable

coefficient-perturbed KdV equation (see the appendix):

ht 1 chx1
cx
2
h1

3c

2h
hhx1

ch2

6
hxxx 52

1

2c
Sx , (11)

where S is the radiation stresses due to the random

wave field, and the subscripts denote derivatives (e.g.,

Sx is the gradient of the radiation stresses). With vari-

ous forcing terms, this class of equations has been used

extensively in the past to study the evolution of solitary

waves over a sloping bed with forcing like bottom fric-

tion (e.g., Grimshaw 1979; Grimshaw et al. 2010, 2014;

El et al. 2007; Johnson 1973a,b; andmany others). In Eq.

(11), the radiation stresses term on the right-hand side

represents the forcing induced by the radiation stresses

gradient. A similar equation was used by Grimshaw

et al. (2014) to describe the combined effects of back-

ground rotation and variable topography on a slowly

varying internal solitary wave. The slowly varying soli-

tary wave solution yields for the evolution of the solitary

wave height a (see the appendix)

a(x)5 a0
h0
h(x)

[11D(x)], and (12)

D(x)5
S02S(x)

ga0h0
, S5

gA2

2

�
2
Cg

C
2

1

2

�
, (13)

where A, C, and Cg are the characteristic amplitude,

phase, and group velocity of the random waves; a is

the solitary wave amplitude; S(x) is the radiation

stresses induced by short random waves; D is the

dissipation rate; and the zero subscript denotes the

value of the parameter at x5 x0. Equation (12) rep-

resents the shoaling law for the solitary wave. The

effect of the random waves on the solitary wave is

contained in the coefficient D.

Without randomwaves (D5 0) in Eq. (12), the solitary

wave height increases monotonically as the water depth

decreases. For the solitary wave, shoaling over un-

disturbed water, the evolution estimated based on Eq.

(12) agrees well with observations (run S, the thin line in

Fig. 10a). The observations exhibit the two-stage shoaling

process identified by Synolakis (1991) and Synolakis and

Skjelbreia (1993): (i) a standard Green’s law stage, char-

acterized by a} h21/4, and (ii) a rapid shoaling regime,

governed by the Boussinesq law a} h21 (e.g., Grimshaw

1971). The Boussinesq law is a special case of Eq. (12) in

which D5 0 and the solitary wave is infinitesimal.

In the presence of random waves, the variable ra-

diation stress gradient modulates the behavior of the

solitary wave. In the random wave shoaling zone,

S0 2S(x)# 0; therefore, D, 0, and the radiation

stress gradient acts as a dissipative force to suppress the

solitary wave growth. After short waves break on the

upper slope, S0 2S(x). 0, and the radiation stress

gradient causes the solitary wave to grow, which may

explain the early solitary wave breaking.

One can estimate the dissipation rate induced by the

random waves using the 12-min runs of random waves

only (run W4). The results based on Eq. (12), shown in

Fig. 10b, appear to capture the trend of the observa-

tions despite the crudeness of the formulation (e.g., the

FIG. 10. Normalized solitary wave amplitude a(x)/a0 vs normal-

ized depth h(x)/h0. (a) Solitary wave over undisturbed water

(run S); (b) solitary wave in the presence of random waves run

SW4. Dots indicate observations; thick lines indicate Green’s law;

thin lines indicate Boussinesq’s law; and dashed lines indicate KdV

shoaling with radiation stress [Eq. (A12)]. All SW runs exhibit

a behavior similar to run SW4. Vertical dashed lines mark the

boundaries of the Boussinesq-type shoaling domain.
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solitary wave is assumed to remain symmetric in the

process) and the different statistics represented by the

different curves. An alternative model not accounting

for the dissipation induced by random waves (e.g.,

Synolakis and Skjelbreia 1993) significantly over-

estimates the shoaling growth rate.

The effect of the radiation stresses also explains the

difference between the evolution of the solitary wave

height in four SW runs (Fig. 7). Indeed, the height

growth is weaker and breaking occurs earlier for runs

SW1 and SW3, which exhibit a stronger radiation

stresses gradient (Fig. 11b). Conversely, for a weak ra-

diation stresses gradient, the effect of the random wave

field on the solitary wave is also weak (Fig. 11a).

4. Numerical simulations

The early breaking phenomenon exhibited by all SW

runs has so far been implicitly treated as statistically sig-

nificant behavior, despite having only a single realization

for each of the four runs. To overcome the scarcity of

laboratory observations, we turn to a numerical model to

simulate a statistical ensemble of runs. The numerical

simulations were conducted using the Non-Hydrostatic

WAVE model (NHWAVE) (Ma et al. 2012), a time-

domain model capable of accurately describing fully

dispersive, nonlinear surface waves in 3D coastal envi-

ronments, as well as the breaking solitary wave runup and

rundown on sloping beaches. The model solves the in-

compressible Navier–Stokes equations in well-balanced

conservative form, with the governing equations dis-

cretized by a combined finite volume/finite difference

approach with a Godunov-type shock-capturing scheme.

Numerical experiments were conducted using a 10-layer,

Dx5 0:03-m grid resolution and an initial time step of

Dt5 0:02 s (the time step is adjusted during computa-

tions based on the CFL number). The model used the

topography of the laboratory experiment (Fig. 1), with

the internal wave maker located at x5 2:10 m inside the

domain, generating the time series measured at sensor 1.

The simulations compare well with the observed time

series (Fig. 12). They do not reproduce accurately the

inundation induced by the solitary wave and its sub-

sequent reflection; however, these processes are not of

interest for this analysis. Although estimators of steep-

ness based on the numerical simulations are less accu-

rate, the essential trends (twomajor breaking events can

be observed, while the first one occurs in relatively

deeper water for all SW runs) of the observations are

captured (Figs. 13–14).

For each of the four SW runs, an ensemble of 60 re-

alizations was simulated by superposing the time series

recorded at sensor 1 in run S with a random wave field

constructed based on the random-phase approximation

(random, uniformly distributed initial phases; e.g.,

Nazarenko 2011) tomatch the properties in Table 1. The

statistical distribution of the solitary wave-breaking

point (Fig. 15), obtained by applying the procedure de-

tailed in sections 2–3, clearly shows the early breaking

effect induced by the presence of the randomwave field,

with 93%, 72%, 100%, and 73% of the runs breaking

earlier in simulations that reproduce runs SW1 to SW4,

respectively.

5. Discussion and conclusions

Overhead video from a small number of laboratory

experiments conducted by Kaihatu and El Safty (2011)

and Kaihatu et al. (2012) at the Tsunami Wave Basin at

Oregon State University suggests that the breaking

FIG. 11. Radiation stresses gradient vs position estimated using runsW for randomwaves alone, which consists of

47 realizations. (a),(c) Evolution of radiation stresses gradient; (b),(d) bathymetry with the location of the sensors.

Dotted lines show runs W1 and W2; dashed lines show runs W3 and W4.
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point of the solitary wave shifts to deeper water if ran-

domwave fields are present. In general, this points to the

possibility of a measurable interaction between shoaling

solitary waves and the background short-wave fields.

Themechanism for this interaction has not been studied.

By extension, in asmuch as the solitary wave can be used

as a paradigm for tsunami propagation, one would hy-

pothesize that a similar effect should be detectable in the

case of shoaling tsunamis.

Understanding the evidence provided by the labora-

tory experiments posed a number of challenges. Surface

elevation data were collected for only a small number of

tests, and the early breaking of the solitary wave was

established through visual inspection. The goal of

this study was to quantify the perception of ‘‘early

breaking’’; to verify the plausibility of this process; to

develop a theoretical background for understanding the

process; and finally to reconstruct the missing statistics

to test the significance of the process.

Because of experimental constraints, the breaking

criterion had to be formulated in terms of surface ele-

vation evolution. The instantaneous breaking point was

defined as the position corresponding to the solitary-

wave slope reaching a maximum value (defined both as

an average and a local value). For combined solitary

wave/random wave runs, an additional difficulty was

posed by the need to separate the solitary wave from the

randomwave signal. This difficulty was overcome by using

a filter based on the time–frequency analysis (wavelet

transform). The solitary wave signal was reconstructed by

identifying its signature in the time–frequency domain

and then reconstructing the time-domain signal using

FIG. 12. Comparison between modeled and measured free-surface elevation for (a)–(d) run S and (e)–(h) run SW3 at gauges (top to

bottom) 1, 6, 11, and 16. Lines indicate model results; dots indicate laboratory observations.

FIG. 13. Evolution of the frontal steepness for run S from model results and laboratory data. (a),(b) Nonlinear

and (c),(d) linear estimations. (top) The maximum steepness; (bottom) the mean steepness. Dashed lines together

with the text show the breaking location.
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the inverse wavelet transform. The filtered data pre-

served the slope and peak of the solitary wave well

enough to allow for estimating the frontal steepness

even in the presence of the random waves.

The analysis based on the evolution of the maximum

and mean steepness estimates confirms the visual ob-

servations (Kaihatu and El Safty 2011; Kaihatu et al.

2012). Moreover, it suggests that early breaking is ac-

companied by a suppressed amplitude growth. While

breaking is clearly identifiable in the evolution of the

energy fluxes associated with the solitary wave and

the random waves, there is little evidence of a transfer

of energy between them. The breaking process appears

to have more in common with the process of wave

FIG. 14. As in Fig. 13, but for run SW4.

FIG. 15. Frequency of occurrence of solitary wave breaking estimated based on first maximum steepness at the

locations of the sensors (total number of runs is 60). Dashed lines show the breaking location of the solitary wave

propagating over undisturbed water (run S): (a) run SW1, (b) run SW2, (c) run SW3, and (d) run SW4.

MARCH 2015 T I AN ET AL . 803



propagation through a random flow perturbation than

with wave–wave interaction processes. Indeed, a simple

modification of the KdV model to include the radiation

stresses forcing due to the random wave field compares

well with the observed behavior of the solitary wave and

explains differences between the four runs based on the

characteristics of the random wave fields alone. The

tank seiching was shown to be negligible for the solitary

wave. The statistical ensemble, reconstructed using the

NHWAVE model, confirms the significance of the

random wave effect on the solitary wave shoaling.

We believe that the results of this study point to

a potentially significant oceanographic process that has

so far been ignored. They suggest that systematic re-

search into the interaction between tsunami waves in

their various realizations [N-waves in Tadepalli and

Synolakis (1994); soliton fission in Madsen and Mei

(1969); undular bores in Grue et al. (2008); etc.] is nec-

essary for increasing the accuracy of tsunami forecasting.

Laboratory experiments that further investigate this in-

teraction, at a larger scale, are presently underway.
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APPENDIX

The KdV Equation with Radiation Stresses Forcing

Here, we present a formulation for the effect of ran-

dom waves on solitary wave propagation based on

the conceptual model of a wave propagating through

a random flow, turbulent background. Because this is

a fundamentally statistic model, the derivation pre-

sented below is not rigorous, the model will be applied

eventually to a handful of realizations, and laboratory

scaling may or may not be meaningful for field appli-

cations, we regard this model as a first, crude step to-

ward understanding this process. Obviously, further

work is required to establish a consistent theoretical

model.

The goal of the approach is to modify the variable

depth Korteweg–deVries equation (e.g., Grimshaw

et al. 2010) to introduce the effect of the random waves

as a radiation stress type of forcing. The linear shoaling

of a long wave in the presence of short waves is governed

by the second-order equation (e.g., Longuet-Higgins

and Stewart 1962; Mei et al. 2005):

htt 2 (ghhx)x52Sxx , (A1)

where x is the position, t is the time, h(x, t) is the free-

surface elevation, h(x) is the depth, g is the gravita-

tional acceleration, and S(x, t) is the radiation stress

due to the random wave field. Subscripts x and t denote

partial derivatives; for example, Sx is the radiation

stress gradient.

The random wave field is assumed stationary and nar-

row spectrum, for example,At 5 0, withS approximately

given as

S5
gA2

2

�
2
Cg

C
2

1

2

�
, (A2)

where A, C, and Cg are the characteristic amplitude,

phase, and group velocity of the random waves.

For the solitary wave, following Grimshaw (1971) and

Grimshaw et al. (2010), we introduce the slow variables

X5 «x, j5 «2x, and T5 «t ,

where h/L5 « � 1 and a/h;O(«2), with L and a char-

acteristic spatial scale and height, and transform to a new

reference frame moving with the velocity c5
ffiffiffiffiffiffiffiffiffiffiffiffi
gh(j)

p
:

t5
1

«2

ðj
0

ds

c(s)
2T . (A3)

The free-surface elevation is assumed to scale as

h5 «2~h(t, j)1O(«4), with ~h5O(1). In the new vari-

ables (t, j), Eq. (A1) becomes

«62c~htj 1 «6cj~ht 1 «8(c2~hj)j 52«2Stt 1O(«8) .

(A4)
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Neglecting the terms of order O(«8), integrating once

over t, and reverting to the original coordinates finally

yields the equation

ht 1 chx1
cx
2
h52

1

2c
Sx . (A5)

Note that the magnitude ofS has not been discussed

so far. To be included into Eq. (A5),S should be scaled

as Sxx 5O(«6), which implies that either S(X) and

A/h5O(«2) or S(x) and A/h5O(«3). For our experi-

ment, the former seems more suitable, as the random

waves are of the same order of magnitude as the soli-

tary wave. Equation (A7) can be put in the equivalent

form

hx52
1

c

�
ht 1

cx
2
h1

1

2c
Sx

�
. (A6)

For shoaling random waves Sx . 0; therefore, the ra-

diation stress term in Eq. (A6) increases the long-wave

frontal steepness, accelerating breaking.

The nonlinear terms can now be accounted for by

using the variable coefficient KdV equation (e.g.,

Grimshaw 1971, 1979; Johnson 1973a,b):

ht 1 chx1
cx
2
h1

3c

2h
hhx1

ch2

6
hxxx52

1

2c
Sx . (A7)

Switching spatial to time derivatives, for example,

ht 52chx 1O(«4), Eq. (A7) can be written in a more

convenient form for our experimental framework:

ht 1 chx 1
cx
2
h2

3

2h
hht 2

h2

6c2
httt 52

1

2c
Sx . (A8)

A conservation law for Eq. (A8) is

›

›x

ð‘
2‘

ch2 dt52

ð‘
2‘

1

c
hSx dt . (A9)

Both Eqs. (A7) and (A8) have a slowly varying solitary

wave solution for h at the leading order (e.g., Grimshaw

1971, 1979; Grimshaw et al. 2010, 2014):

h5 a sech2[k(x2Vt)], k5

�
3a

4h3

�1/2

, V5 c1
ca

2h
.

(A10)

Substituting Eq. (A10) into Eq. (A9) yields for Eq. (A9)

the form

[(ah)3/2]x52
3Sx

2g
(ah)1/2 . (A11)

Equation (A11) can be readily integrated to yield

a(x)5 a0
h0
h(x)

[11D(x)], and (A12)

D(x)5
S02S(x)

ga0h0
, (A13)

where h0 5 h(x0) and S0 5S(x0) are the initial depth

and radiation stresses at x5 x0.
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