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ABSTRACT 

HIP MECHANICS OF UNILATERAL DROP LANDING 

Bobbie S. Irmischer 

Old Dominion University, 2017 

Director: Hunter J. Bennett 

 

Increased hip forces are a proposed factor for osteoarthritis and femoroacetabular 

impingement. These forces can be estimated through musculoskeletal modeling using measured 

kinematics and kinetics. An understanding of hip joint loading during landing in a asymptomatic 

population will begin to elucidate what, if any, sex differences exist and how changes in landing 

condition alter hip mechanics. The overall purpose of this dissertation was to explore how sex 

and landing condition effect landing mechanics. Landing mechanics were quantified using 

ground reaction forces (GRF), hip joint forces (HJF), and lower extremity kinematics during 

unilateral drop landings from 30-cm, 40-cm, and 50-cm, as well as, a 40-cm land-and-cut task. 

The relationships between sex and limb side, sex and landing task, and sex and landing height on 

landing mechanics were assessed using three sub-studies.  

Eighty-three, recreationally active, adult volunteers completed landing tasks (40 

participants completed the land-and-cut task). For sex-limb side, bilateral differences (right 

versus left) were examined at 40-cm. No bilateral differences were identified. For sex-landing 

task, 40-cm drop landings were compared to land-and-cuts. Higher peak GRF (pGRF) and pGRF 

loading rates were identified for landing-only. Landing-only tasks were performed with less 

ankle dorsiflexion range of motion for landing (ROML) and impact (ROMI) phases. Landing-

only tasks demonstrated more hip adduction ROML and more hip flexion ROMI. For sex-landing 

height, landings were compared between 30-cm and 50-cm. Increasing landing height resulted in 

increased pGRF, pHJF, pGRF loading rate, and pHJF loading rate. With increased height, larger 



 

3-D hip and knee flexion ROMI and ROML were identified, as well as increased ankle 

dorsiflexion ROML.  

There were no interaction effects between sex and landing condition. Sex differences 

across sub-studies demonstrated consistent trends. In all studies, females incurred larger pGRF 

compared to males, yet only the landing height analysis demonstrated increased pHJF. Females 

exhibited larger hip adduction and reduced hip rotation ROML. Females exhibited larger hip 

flexion, hip adduction, and knee flexion ROMI.  The landing task analysis identified increased 

female ankle dorsiflexion ROMI.  

Sex differences were identified between landing conditions, yet the lack of sex-landing 

condition interaction indicates both sexes may utilize similar modifications in response to 

changing landing conditions. 
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CHAPTER 1: INTRODUCTION 

Femoroacetabular impingement (FAI) is the pathomechanical process created by 

anatomical abnormalities of the proximal femur and/or the acetabulum causing a mechanical 

abutment within the hip (Ganz et al., 2003; Ito et al., 2001; Leunig et al., 2009; Packer and 

Safran, 2015). Two classifications of bony impingement morphologies, cam and pincer, are 

associated with FAI. These subsets are classified by anatomical location (Ganz et al., 2003). Cam 

morphologies broadly describe a loss of sphericity of the femoral head, while pincer 

impingements are characterized by an over-coverage of the acetabulum (Bedi et al., 2008; 

Pfirrmann et al., 2006; Siebenrock et al., 2004). Cam and pincer bony morphologies may present 

in isolation; however, 50-70% of FAI diagnoses demonstrate some measure of both elements 

(Kapron et al., 2011). 

Symptomatic FAI typically presents in young, active adults and adolescents as insidious 

groin pain worsened by long periods of sitting, walking, or general exercise (Bedi et al., 2008; 

Ganz et al., 2003; Leunig et al., 2006). The condition, when symptomatic, hampers hip range of 

motion (ROM) and imposes activity limitations, both in athletics and daily life (Diamond et al., 

2014; Philippon et al., 2007b). Quality of life can be improved with arthroscopic correction 

(Malviya et al., 2012), however, the condition is difficult to diagnose. Early surgical intervention 

with symptomatic FAI increases the likelihood of long term success by reducing damage to the 

labrum and articular cartilage (Espinosa et al., 2006; Ito et al., 2001; Leunig et al., 2009). Unlike 

other arthritic conditions, FAI represents an “at risk” stage antecedent to developing end-stage 

hip arthritis. 

Research on FAI has increased in recent years, yet the etiology is not well understood 

(Diamond et al., 2014; Packer and Safran, 2015; Reiman and Thorborg, 2015). Several 
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etiological theories have been proposed including genetic factors, prior hip morphology (e.g. 

slipped capital femoral epiphyses), and athletic participation (de Silva et al., 2016; Packer and 

Safran, 2015). An association between high-level sports participation in adolescence and 

impingement morphology is rapidly gaining support (Agricola et al., 2012; Kapron et al., 2011; 

Siebenrock et al., 2011). Prevalence of FAI in adolescent and young adults varies to some degree 

by sport, with an increased incidence in cutting sports compared to flexibility, contact, 

impingement, or endurance based sports (Nawabi et al., 2014). In separate sport specific studies, 

athletes participating in high-levels of football, ice hockey, basketball, and soccer, beginning in 

childhood were at an increased risk of developing impingement morphology (Agricola et al., 

2012; Gerhardt et al., 2012; Kapron et al., 2011; K. A. Siebenrock et al., 2011; Klaus A. 

Siebenrock, Kaschka, Frauchiger, Werlen, & Schwab, 2013). The combination of repetitive hip 

loading with flexion and internal rotation incurred while participating in cutting sports, may 

present physiologically excessive demands during sensitive adolescent skeletal development 

(Clohisy et al., 2013; de Silva et al., 2016; Siebenrock et al., 2011).  

During this adolescent phase, skeletal development is more vulnerable to osseous 

adaptations in response to excessive and repetitive loading (Packer and Safran, 2015). Bone 

morphology remains highly susceptible to loading while the physis remains open and the 

individual is skeletally immature (Maffulli and Baxter-Jones, 1995; Nilsson et al., 2005). 

Longitudinal growth in the long bones occur at the physis, or growth plates. During adolescence, 

the physis environment is tremendously dynamic and lacks the resiliency of ligamentous and 

muscular structures (Mirtz et al., 2011; Nilsson et al., 2005). Perfusion within the femoral head 

can be impacted by repetitive loading, resulting in necrosis or stimulated bone growth (Maffulli 

and Baxter-Jones, 1995).  
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In addition to sport related risk factors, differences in the presentation and prevalence of 

symptomatic FAI have been linked with sex. Males are reportedly more likely to present with a 

cam or mixed morphologies (e.g. combination cam and pincer) and females more likely to 

present with pincer morphologies (Mascarenhas et al., 2016; Nepple et al., 2014b). Bilateral 

presentations are two to three time more prevalent in males compared to females (Klingenstein et 

al., 2013; Mascarenhas et al., 2016). Females self-reported reduced hip function and greater 

disability prior to hip arthroscopy (Nepple et al., 2014b). However, these sex differences were no 

longer identified after two years post-operation (Joseph et al., 2016). It is currently unclear how 

the proposed etiological factors contribute to sex-related differences in the development of 

symptomatic FAI.  

Reductions in hip ROM are a key component in a symptomatic FAI diagnosis. The 

limited ROM is likely a combined result of anatomical incongruity, soft tissue edema, and pain 

avoidance strategies (Brisson et al., 2013; Diamond et al., 2014; Kennedy et al., 2009b). The 

aberrant morphology in FAI places physical constraints on joint function, wherein the joint 

simply cannot rotate through motion to the same extent as healthy hip (Ganz et al., 2003). In 

addition, soft tissue edema from recurrent impingement likely contributes additional movement 

constraints (Kennedy et al., 2009a). There are a limited number of three-dimensional (3-D) 

movement studies comparing symptomatic FAI with asymptomatic controls. Stair climbing was 

examined in one study using preoperative FAI candidates and controls (Rylander et al., 2013). 

As an ADL, stairs present a unique testing situation which requires a larger hip ROM and more 

muscular strength than walking (Bergmann et al., 2001). Results indicated a significant 6.2° 

reduction in hip sagittal ROM, due in large part to a significant 4.8° reduction in hip extension. 

Maximum internal rotation in the FAI group was significantly diminished by 5°, which is 
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consistent with clinical testing FAI ROM data (Philippon et al., 2007b; Rylander et al., 2013). 

The combination of decreased internal rotation and extension may act as a pain avoidance 

strategy in attempting to avoid impingement with the femoral head and acetabulum (Kennedy et 

al., 2009a; Rylander et al., 2013). Drop landings were studied by Kumar et al. (2014) within the 

same study used to assess gait and deep squats. The 12-in drop landing height did not illuminate 

any kinematic or kinetic differences between FAI and healthy controls. Of note, FAI participants 

landed with their feet positioned more closely together. The smaller base of support may reduce 

the muscular strength needed to control the landing (Kumar et al., 2014). Movement studies have 

yet to illuminate clear kinetic trends in FAI mechanics potentially due to subject samples, small 

sample sizes, and task selection. Further, forces applied across the hip joint during dynamic tasks 

have not been studied. These forces can be estimated non-invasively through musculoskeletal 

modeling.  

 Estimation of hip joint forces began long before the age of computers. As early as the 

1940s, researchers estimated hip forces during gait to fall somewhere in the vicinity of 4.4 to 4.6 

times body weight (Rydell, 1966). Hip forces have traditionally been solved using an inverse 

dynamics approach with measured kinematics and ground reaction forces, then distributing the 

forces across load bearing structures surrounding the joint (Crowninshield et al., 1978). 

Optimization techniques have been extensively used to estimate joint forces. Static optimization 

has been criticized for oversimplifying system anatomy and failing to truly encompass muscle 

dynamics, yet it has been determined an effective method for force estimation in gait (Anderson 

and Pandy, 2001b; Wesseling et al., 2015).  
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Statement of the Problem 

Diagnoses of symptomatic and non-symptomatic FAI are rapidly increasing (Colvin et 

al., 2012; Montgomery et al., 2013; Sampson, 2005). The incidence of impingement morphology 

is estimated as high as 10% to 15% of the general population and believed responsible for 22% 

to 55% of all hip pain (Groh and Herrera, 2009; Schilders et al., 2009). Enhanced radiographic 

detection presents a larger issue for those individuals with radiographic impingement evidence, 

yet no symptoms. In a recent review of literature analyzing over 2000 asymptomatic hips, cam 

morphology was observed in 37% and pincer morphology was observed in 67%  (Frank et al., 

2015). Currently, we have insufficient data to predict which hips are at an increased risk of 

developing hip OA (Kahlenberg et al., 2014). With current evidence, prophylactic surgical 

correction of impingement morphology is not indicated for non-symptomatic hips (Collins et al., 

2014). Hip OA presents a major world risk, to which we do not have a cure nor a significant 

means of slowing disease progression (Felson, 2014; March et al., 2014).  

It is possible to detect impingement morphology in athletes at a very young age, before 

significant damage has occurred. There is a strong likelihood many of these individuals will go 

on to develop symptomatic FAI, labral tears, and/or cartilage damage. Nonetheless, older adults 

have been reported to demonstrate similar morphologies that never progress into a symptomatic 

condition. Medical professionals need better explanations for the underlying etiological 

differences between symptomatic and non-symptomatic FAI in order to prescribe the most 

appropriate courses of treatment.  

Increased forces between the femur and acetabulum are commonly accepted as a 

mechanism for damage in traditional hip OA, however it is unclear if FAI mechanics are related 

to increased hip force magnitudes, directions, or areas of force application (Ganz et al., 2003; Ito 
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et al., 2001). Wolff’s law has long been referenced to describe the ability of bone to undergo 

functional bone remodeling due to changes in its mechanical environment (Ruff et al., 2006). 

Considering the bony pathomorphology characteristic of FAI, it is reasonable to expect some 

degree of modified mechanical loading associated with the condition which elicits the altered 

bone structure. Unfortunately, hip contact forces cannot be directly measured via non-invasive 

measures. These forces can, however, be estimated through musculoskeletal modeling using 

measured kinematics and kinetics (Delp et al., 2007). These methods have been successfully 

used to estimate hip contact forces in normal and pathologic populations (Cleather et al., 2013; 

Modenese et al., 2011b). To date, hip contact forces in young, asymptomatic, active adults have 

not been examined during common sport actions such as, unilateral landing and cutting. These 

sport actions are prevalent amongst most sports and likely expose the hip to high forces. 

Developing an understanding of how asymptomatic hips respond to changes in landing limb side, 

landing height, and landing task will provide a baseline for examining potential changes 

associated with symptomatic hip pathologies.   

Statement of Purpose 

 The overall purpose of this dissertation was to examine lower extremity mechanics, 

specifically at the hip, demonstrated by asymptomatic subjects performing unilateral drop 

landing and land-and-cut maneuvers. The landing mechanics were quantified using a combined 

approach of measured kinematics and kinetics, and musculoskeletal modeling.  

Specific Aims and Hypotheses 

Specific Aim 1: To identify sex differences in peak resultant hip joint force (pHJF), timing of 

pHJF, peak resultant ground reaction force (pGRF), timing of pGRF, average loading rates for 

pHJF and pGRF, as well as, lower extremity ROM during unilateral drop landings. When 
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significant differences were present in ROM, maximum and minimum joint angles were 

examined. Continuous HJF, GRF, as well as, 3-D hip, knee flexion, and ankle dorsiflexion 

measures were compared at each percentage of the landing.  

Hypothesis: Males have been proposed to land with a more hip dominant landing strategy. As 

such, males were hypothesized to exhibit increased pHJF when compared to females. Females 

have been proposed to land with a stiffer landing configuration. As such, females were 

hypothesized to exhibit a diminished ROM in the hip, knee, and ankle and significantly larger 

normalized pGRF. 

Specific Aim 2: To determine if sex and landing task influence pHJF, pGRF, timing of pHJF and 

pGRF, average loading rate for pHJF and pGRF, IC joint angles, and lower extremity ROM. 

Continuous HJF, GRF, as well as, 3-D hip, knee flexion, and ankle plantar/dorsi-flexion 

measures were compared at each percentage of landing. 

Hypothesis: Land-and-cuts would incur larger peak forces and utilize less sagittal ROM 

compared to landing-only trials. It was also hypothesized females would incur larger peak force 

and utilize less sagittal ROM compared to males.  

Specific Aim 3:  To examine the relationships between sex and drop landing height with pHJF, 

pGRF, timing of pGRF and pHJF, average loading rate of pGRF and pHJF, lower extremity joint 

angles at IC, and lower extremity ROM. Continuous HJF, GRF, and 3-D hip, knee flexion, and 

ankle dorsi/plantar-flexion measures were compared at each percentage of the landing 

Hypothesis: pHJF and pGRF would be significantly higher for 50-cm landings compared to 30-

cm landings. Lower extremity ROM would increase for the hip, knee, and ankle measures when 

comparing the 30-cm landings to 50-cm landings. These differences would occur primarily in the 
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sagittal plane. It was also hypothesized females would land with greater pHJF and pGRF 

compared to males with less sagittal ROM. 

Limitations of the Study 

1. The study sample represents a generalized asymptomatic population. The presence of 

abnormal hip anatomy is not known.  

2. Retroreflective marker placement on anatomical landmarks is subject to human error. 

3. Musculoskeletal models used are simple models and may not accurately depict individual 

joint movements. The hip is modeled with 3-dof which may provide more accurate 

information compared to the 1-dof models employed for the knee and ankle joints. 

4. Several musculoskeletal model parameters, such as tendon slack length and physiological 

cross-sectional area, were not subject specific and may vary from participant to 

participant. The lack of subject-specificity of these model parameters may mask 

individual variances in estimating normal hip mechanics. 

5. Muscle force in the musculoskeletal model was estimated using static optimization, 

which is not time dependent. 

Delimitations of the Study 

1. Participants were between the ages of 18 and 30. 

2. Participants were in good general health and physically active. Physically active was 

defined as performing at least 30 minutes of exercise 3 times a week. At least one of 

these activity sessions was required to consist of repetitive jumping and landing, such as 

basketball or volleyball.  

3. Participants had no history of lower extremity surgery or any health condition that 

affected their ability to jump. 
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4. Participants had not experienced an injury to the lower extremities in the past six months. 

5. Participants wore lab standard shoes. 

Assumptions of the Study 

1. Participants provided honest information on all study documentation, including the health 

history questionnaire. 

2. Joints were frictionless, segment masses were concentrated at the center of mass, and 

segments behaved as rigid bodies for inverse dynamics calculations. 

3. The generic musculoskeletal model used in OpenSim fit the population utilized and 

adequately represented their true femoroacetabular kinematics.  

Significance of the Study 

 FAI represents a significant and growing cause of disability in otherwise healthy active 

adolescents and adults. Advances in radiographic imaging and screening tools may allow for 

early detection of potentially detrimental morphology. Surgical intervention during this stage 

may slow or prevent degenerative hip arthritis from developing. With radiographic evidence 

observed in adolescents as young as twelve, there is a strong inclination to correct the “aberrant” 

anatomy in an effort to reduce joint damage risk. Hip arthroscopy was up 365% between 2004 

and 2009, with the majority of patients between 20-yrs and 39-yrs of age (Montgomery et al., 

2013). Colvin et al. (2012) reported an 18-fold increase in hip arthroscopy between 1999 and 

2000. While short-term results and return to play statistics are optimistic, the long-term impact 

on development of hip OA remains to be seen. 

The current available information pertaining to FAI leaves us in a conundrum. Should 

healthcare providers act quickly to correct aberrant morphology upon detection, before 

permanent joint damage has occurred? At what stage of symptomatic progression is it 
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appropriate to consider surgical treatment? Young adult and adolescent hip pain present 

complicated issues in treatment and symptom management with the potential for significant 

financial costs and lifestyle limitations. With a strong link emerging between athletic 

participation and impingement morphology, we need a comprehensive understanding of 

asymptomatic hip mechanics during dynamic, sport related tasks. Data obtained through this 

research may improve understanding of hip biomechanics during landing, which can be used as a 

baseline for future studies with a symptomatic cohort. The multifaceted research approach seeks 

to identify changes during landing with respect to kinematics, kinetics, and hip joint contact 

force. The ramifications of these findings are pertinent within the context of pathological hip 

conditions. 

Operational Definition of Terms 

Femoroacetabular impingement: Pathomechanical condition of the femoroacetabular joint 

resulting in abnormal joint function. 

Femoroacetabular joint: Ball and socket joint formed by the acetabulum and proximal femur. 

Hip Joint Force: The force transferred from the femur to the pelvis.  

Kinematics: Mechanical analysis of the motion of an object. 

Kinetics: Mechanical analysis of the forces acting on an object. 

Musculoskeletal modeling: The use of mechanics to model human motion with respect the 

muscles and bones.  

 

  



11 

 

 

CHAPTER 2: REVIEW OF LITERATURE 

Introduction 

 The review of literature will have three primary areas of focus: femoroacetabular 

impingement, mechanics of landings, and musculoskeletal modeling. First, a discussion on the 

epidemiology and mechanics associated with FAI will lay a foundation with which to examine 

the need for understanding hip mechanics in sporting activity. Then, a review of our current 

understanding on lower extremity mechanics during landing will lend support and offer a 

foundation for a sound methodological design for studying landing hip joint mechanics. Finally, 

a summary of musculoskeletal modeling will describe the basis for key assumptions and 

mathematical relationships necessary for analysis of hip specific kinetic variables during landing. 

The integration of these three components will fully support the need for hip landing mechanics 

research, the basis for proposed methodology, and justify the use of musculoskeletal modeling.  

Femoroacetabular Impingement 

 One of the earliest reports of hip impingement emerged as a secondary outcome in 

patients undergoing periacetabular osteotomy (Myers et al., 1999). The goal of periacetabular 

osteotomy is to ameliorate congenital hip dysplasia and reorient the acetabulum to correct 

insufficient femoral head coverage. However, post-surgical complaints of groin pain and limited 

internal rotation persisted despite the corrected acetabular coverage. Upon further examination, 

Myers et al. (1999) identified a secondary impingement caused by a geometric incongruity of the 

femoral head-neck junction and the newly oriented acetabulum. An additional surgery to reshape 

the femoral head-neck junction, deepening the offset, was successful in restoring flexion and 

internal rotation without boney impingement. Hence, surgically correcting the impingement 

between the femur and acetabulum.  
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Within two years of the Myers et al. (1999) study, reports describing the presence of 

similar femoroacetabular impingements in non-dysplastic hips appeared (Eijer et al., 2001b; Ito 

et al., 2001). Today a Web of Science search with the key words, “femoroacetabular 

impingement” returns over 2,000 entries. FAI is now recognized a significant source of hip pain, 

resulting in limitations during activities of daily life. Surgical correction for FAI is deemed 

“medically necessary” and a covered benefit of most major health insurance companies. 

Understanding of the condition has grown volumes, yet there is a great deal we do not 

understand with respect to etiology and predictors of deterioration to hip OA.  

Epidemiology 

 Put simply, FAI is a condition brought about by a lack of fit between the head of the 

femur and the acetabulum. Anatomically, there is insufficient clearance between the bony 

structures to allow normal movement without creating bone-on-bone contact. The aberrant 

anatomical morphologies responsible for impingement are specific to the femur (cam) and 

acetabulum (pincer) (Appendix A).  

Cam morphologies are characterized by a loss of sphericity of the femoral head and 

decreased femoral neck offset (Ito et al., 2001). Loss of sphericity may be brought about by an 

osseous deformity, known a pistol grip, which increases femoral head radius where it should 

begin to taper into the femoral neck (Stulberg et al., 1975). As the malformed femoral head 

rotates within the acetabulum, a cam-effect occurs at hip internal and abductionROM boundaries. 

At this point, the femoral head’s rotational motion is translated to abnormal linear motion 

resulting in shear and compressive forces being transmitted to the acetabulum, articular cartilage, 

and labrum. Shear forces incurred as a result of this motion are detrimental to the labrum and 



13 

 

 

acetabular cartilage. With cam morphology, acetabular cartilage may undergo an outside-in wear 

pattern and potentially lead to avulsion from the labrum (Ganz et al., 2003).  

Pincer morphologies are characterized by an over coverage of the acetabulum which 

creates an excessively deep socket (Ganz et al., 2003). Both, coxa profunda (i.e. general over 

coverage) and acetabular retroversion (i.e. local over coverage) limit ROM as the femoral-neck 

junction contacts the acetabular rim. Under these conditions, a linear force is applied to the 

acetabular rim with each contact. As a result, excessive forces may lead to labral damage and 

potentially degenerative changes. Acetabular rim ossification can occur over time, compounding 

the issue due the additional increase in acetabular depth (Ganz et al., 2003).  

Cam and pincer morphologies often present in conjunction, to some degree. Radiographic 

evidence of both morphologies can be identified in 50 to 80% of impingement diagnoses (Ganz 

et al., 2008; Ganz et al., 2003; Kapron et al., 2011). In mixed cases, characteristics of both 

morphologies’ aberrant loading characteristics are hypothesized to occur. To this end, mixed 

morphology FAI may present with intra-articular damage to the labrum, articular cartilage, and 

acetabulum (Ganz et al., 2008). Conversely, some researchers have proposed the two 

morphologies result in entirely different conditions (Cobb et al., 2010; Laborie et al., 2011). 

Prevalence. The number of patients diagnosed with FAI has risen significantly in the past 

decade (Griffin et al., 2016), paralleling an increased diagnostic rate of hip injuries over the same 

time period (Orchard, 2015). It is estimated 20 million Americans have symptomatic FAI 

(Collins et al., 2014; Ganz et al., 2003). A clear distinction between symptomatic and 

asymptomatic FAI must be established before discussion of FAI prevalence. In 2016, the 

Warwick Agreement on FAI released a statement proposing FAI syndrome be used when 

referring to the combination of impingement pathomorphology, clinical indications and 
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symptoms (Griffin et al., 2016). To date, widespread acceptance of the terminology FAI 

syndrome has not occurred. Asymptomatic FAI refers to individuals with radiographic 

impingement morphology, but do not have reported symptoms and/or clinical indications. 

Several studies assessing prevalence of impingement morphology in symptomatic and 

asymptomatic individuals have been performed (Gosvig et al., 2008; Hack et al., 2010; Heijboer 

et al., 2014; Kapron et al., 2011; Laborie et al., 2011; Philippon et al., 2013; Pollard et al., 2010c; 

Siebenrock et al., 2011; Siebenrock et al., 2013). Current studies demonstrate several reoccurring 

descriptors associated with prevalence of impingement morphology: age, sex, adolescent sport 

participation, and specific sport participation. Due to study differences in definition of 

impingement morphology (i.e. alpha angle threshold), clinical examination, or presence of 

symptoms direct comparisons between studies are challenging. The discussion will address the 

prevalence of symptomatic and asymptomatic impingement morphology.  

The prevalence of impingement morphology, particularly cam, is assessed most often in 

terms of alpha angle (Nötzli et al., 2002). Alpha angles are traditionally measured using axial 

imaging to quantify the geometry of the femoral head and neck using the two lines. The first line 

is placed through the geometric center of the femoral head and through the midline of the 

femoral neck. The second line is placed where the femoral head neck junction contour goes 

beyond the femoral head radius (Nötzli et al., 2002). Alpha angles associated with cam 

impingement vary by study and range from 50° to 83°, with a majority of researchers using 

values between 50° and 55° (Nötzli et al., 2002). Going forward, variations in study reports of 

cam prevalence will have inherent disjunction based solely on cam diagnostic criteria (Griffin et 

al., 2016) and populations examined.  
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In the general population, the prevalence of impingement morphology was originally 

estimated between 10% and 15%; however, in more recent studies a wider range of values are 

believed to exist (Gosvig et al., 2008; Laborie et al., 2011). A prospective study examining the 

hips of young adults (mean age = 18.6-yrs) presenting for conscription into the Swiss military 

demonstrated asymptomatic radiographic morphologies in 6.1 to 21% of participants (Laborie et 

al., 2011). This study benefitted from a large sample size (n=2081); however, researchers did not 

include alpha angle. While alpha angle has been argued as a flawed method for diagnosis, it is 

readily used and allows for comparison between studies. Another large population study 

(n=4151) was conducted in conjunction with the Copenhagen Osteoarthritis Sub study that 

detected cam impingements in 17% of males and 4% of females (Gosvig et al., 2008). The study 

sample was significantly older with a mean age of 59-yrs and 60-yrs for women and men 

respectively. Further, the prevalence may be under representative due to extremely high alpha 

angle thresholds of 83° for males and 57° for females.  

The prevalence of impingement morphology with respect to sex is currently 

undetermined. The preponderance of research has proposed young adult males are more prone to 

cam morphology, while athletic middle aged women are more likely to incur pincer morphology 

(Beck et al., 2005; Clohisy et al., 2010; Ganz et al., 2008; Ganz et al., 2003; Hack et al., 2010; 

Ito et al., 2001). Conflicting findings have indicated similar numbers of pincer morphology 

between sexes (Laborie et al., 2011). 

When considering all impingement morphologies, between 20% and 75% present with 

radiographic evidence of impingement morphology bilaterally (Allen et al., 2009; Ganz et al., 

2008; Klingenstein et al., 2013). Bilateral presentations may present as asymptomatic, have only 

one symptomatic hip, or with bilateral symptoms. When presenting with one symptomatic side, 
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researchers were unable to identify the symptomatic side based off bilateral radiographs 

(Klingenstein et al., 2013). However, when bilateral morphology is present, higher alpha angles 

were observed than in unilateral morphological presentations (Allen et al., 2009). Possible 

underlying genetic factors (e.g. histobiological or joint structure) may be linked with the high 

prevalence of bilateral presentation and the associated increased alpha angle (Pollard et al., 

2010c).  

Level of sport participation is associated with the prevalence of impingement 

morphology (Agricola et al., 2012; de Silva et al., 2016; Heijboer et al., 2014; Kapron et al., 

2011; Kapron et al., 2012; Kapron et al., 2015; Larson et al., 2013; Philippon et al., 2013; 

Siebenrock et al., 2011; Siebenrock et al., 2013). When considering elite level athletes, the 

prevalence of one radiographic measure of FAI has been estimated as high as 95% (Kapron et 

al., 2011; Weir, 2013). This increased risk of impingement morphology may be due to 

abnormally high training loads and volumes (Agricola et al., 2012; Keogh and Batt, 2008). 

Athletes with participation in practice at least three days a week were more likely than non-

athletes to have one indicator of impingement radiography (de Silva et al., 2016). The 

preponderance of surveillance data is available only for elite and near elite level athletes. 

Unfortunately, this leaves a void when recreational athletes are considered (Orchard, 2015). 

Daily activity level and impingement morphology was tracked in a cohort study of adolescents 

(Carsen et al., 2014). Findings demonstrated an increased activity level was significantly related 

with the presence of impingement morphology. 

The incidence of impingement morphology varies by sport. According to a meta-analysis, 

male adolescent athletes participating in ice hockey, basketball, and jumping sports in general 

were at an increased relative risk of developing abnormal morphology compared with controls 
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(de Silva et al., 2016; Nepple et al., 2015). In collegiate football, upwards of 70% of players have 

been identified with alpha angles greater than 55° and 95% have at least one sign of 

impingement (Kapron et al., 2011; Larson et al., 2013). Elite adolescent basketball players 

demonstrated an 89% occurrence of alpha angle greater than 55° compared to 9% of aged 

matched controls (Siebenrock et al., 2011). Adolescent hockey players’ alpha angles were 

significantly higher when compared to skiers. With an alpha angle of 55° as the threshold, 75% 

of hockey players had evidence of impingement compared to only 42% of skiers (Philippon et 

al., 2013). Research trends are beginning to show an increased risk related with specific sports 

and types of sports. However, these associations may be confounded in relation to body types, 

training habits, and lifestyle choices common to the sport.  

The prevalence of impingement morphology, specifically alpha angle, has been tracked 

with respect to physeal closure (Heijboer et al., 2014; Philippon et al., 2013; Siebenrock et al., 

2011; Siebenrock et al., 2013). Philippon et al. (2013) found an 18% increase in impingement 

morphology for adolescent hockey players when comparing open physis to closed physis, with 

an increased alpha angle after growth was complete. Siebenrock et al. (2013) also examined 

adolescent hockey players and reported an increase in alpha angle from the normal physiological 

range with an open physis to an alpha angle greater than 55° after physis closure. Similarly, 

impingement morphologies increased from 7% to 22% when adolescent soccer players were 

tracked for two years (Heijboer et al., 2014). Increases in age and level of play likely parallel 

increasing alpha angles over time (Philippon et al., 2013).  

Demographic and sport data of surgical FAI arthroscopy candidates indicated high-level 

athletes preparing to undergo arthroscopic FAI correction were significantly younger and more 

often male than recreationally active candidates (Nawabi, Bedi, Tibor, Magennis, & Kelly, 
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2014). In addition, these high-level athletes were more likely to have participated in cutting 

sports than flexibility, contact, impingement, or endurance based sports. Most alarming, the 

mean patient age at time of surgery was 27-yrs, with a majority falling between 15-yrs and 22-

yrs (Nawabi et al., 2014).  

Presentation and diagnosis. Presentation of symptomatic FAI initiates as a groin pain 

aggravated with prolonged sitting or standing and exercise (Ganz et al., 2003; Philippon et al., 

2007a). The onset of symptoms is typically insidious, yet patients may recall a minor trauma as 

the precursor to symptoms. Patients often demonstrate the “C” sign, cupping the hand around the 

hip just above the greater trochanter when asked to indicate where the pain is felt (Dooley, 

2008). Presentation is generally described as a gradual onset of hip pain, which occasionally may 

radiate laterally toward the trochanteric region, medially into the adductor region, and rarely into 

the buttocks or even down to the knee (Griffin et al., 2016; Philippon et al., 2007a; Sankar et al., 

2013). 

Common findings upon clinical examination are a positive impingement test and 

decreased hip internal rotation (Ganz et al., 2003; Nötzli et al., 2002). An impingement test is 

performed with the patient supine on a firm surface then flexing, adducting, and internally 

rotating the hip. In normal hips, the combined motion places the femoral head neck junction and 

acetabular rim in close proximity, while physical contact between structures occurs with 

symptomatic FAI (Ganz et al., 2003). In symptomatic FAI, pain is elicited when an additional 

force is applied towards internal rotation due to shearing forces within the potentially inflamed 

and/or damaged intra-capsular structures (Ganz et al., 2003; Leunig et al., 2000). Hip internal 

ROM is evaluated with the patient supine and hip and knee flexed to 90° (Nötzli et al., 2002). 

Manual or electric goniometers are used to gauge the ROM from neutral to terminal motion 
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(Kapron et al., 2012). Healthy hips fall within 30-45° ROM, and values below this threshold 

could considered limited (Roach and Miles, 1991). Pre-surgical FAI patients have been 

documented with internal rotation ROMs from 7-15°, which is a large deviation from the normal 

range (Eijer et al., 2001a; Kubiak-Langer et al., 2007; Lavigne et al., 2004; Siebenrock et al., 

2003). Clinical evaluations cannot positively identify hip joint pathologies; however, they can 

rule out those individuals whose symptoms are not due to a hip pathology (Reiman and 

Thorborg, 2015).  

Subjective measures of hip health include standardized and generalized self-reported 

assessments. Generalized assessments are unique to institutions (e.g. clinics or universities) and 

are used to gather health history information and injury specific details. Such details include, 

demographics, descriptors of symptom onset, duration of symptoms, aggravating and alleviating 

factors, and lifestyle and activity characteristics. This data is used to paint a general description 

of the patient’s history and lifestyle. Standardized assessments include the Western Ontario and 

McMaster Universities Osteoarthritis Index (WOMAC) (Bellamy et al., 1988), hip outcome 

score (Martin et al., 2006), and Harris hip score (Harris, 1969). 

When physical and subjective examinations warrant further investigation, radiographic 

and pharmacological diagnostic tools are available. Intra-articular hip injections, may be given to 

further support intra-articular morbidities (Ayeni et al., 2014). Injections containing an anesthetic 

and a corticosteroid serve a dual role as a therapeutic modality and diagnostic tool. The 

combination of medications reduce inflammation while relieving pain originating within the hip 

capsule (Ayeni et al., 2014). Significant pain relief after injection lends support to an intra-

articular mechanism as the underlying cause of pain as opposed to referred pain from a 

secondary condition (Ayeni et al., 2014; Klingenstein et al., 2013). Pain relief is not a strong 
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predictor of post-surgical outcome; however, lack of pain relief is a good indicator surgical 

correction will not improve symptoms (Ayeni et al., 2014). 

Radiographic diagnosis is an essential component for arriving at an FAI diagnosis. 

Radiographs, magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA), and 

commuted tomography (CT) may be used to identify soft tissue and bony comorbidities (Clohisy 

et al., 2007; Tannast et al., 2007a; Tannast et al., 2007b). Physical findings suggestive of cam 

morphology include an osseous bump on the femoral neck (e.g. pistol grip deformity), 

fibrocystic changes at the femoral head neck junction, and acetabular rim edema (Register et al., 

2012). In addition, radiographic examination includes visualization of potential soft tissue 

injuries including labral tears, loose bodies, and OA.  

The relationship between labral tears and FAI is complex. When examining patients with 

labral tears, 49-87% were found to demonstrate at least one bony morphology consistent with 

FAI (Guevara et al., 2006; Peelle et al., 2005; Wenger et al., 2004). Like symptomatic FAI, 

labral tears are associated with an increased risk of osteoarthritis (Peelle et al., 2005). In a blind 

review of asymptomatic patients, 73% demonstrated some abnormal morphology and 69% had 

evidence of a labral tear (Register et al., 2012). Presence of a labral tear does not directly indicate 

underlying impingement morphology; however, when considered with additional radiographic 

evidence it increases the likelihood of a FAI diagnosis.  

To date, a consensus for the definitive radiographic evidence needed to diagnosis FAI has 

not been reached (Chaudhry and Ayeni, 2014; de Silva et al., 2016). Quantitative measures from 

radiographic images provide a more objective means for diagnosis compared to using clinical 

and self-reported tools alone. Generally accepted ranges for alpha angle (Nötzli et al., 2002), 

internal rotation ROM, lateral center edge angle (Wilberg, 1939), head neck offset (Eijer et al., 
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2001a), acetabular index, and femoral anteversion are available. Specific techniques vary with 

imaging parameters and patient position; however, the measurement concepts remain similar. 

Femoral morphologies are most commonly measured radiographically by alpha angle and 

head neck offset or ratio (Eijer et al., 2001a; Myers et al., 1999; Nepple et al., 2014a). Alpha 

angle is a quantification of femoral neck concavity, with larger alpha angles indicative of 

diminished head neck concavity (Nötzli et al., 2002). It is a quantitative representation of the 

osseous bump associated with cam impingement. Alpha angle measurements demonstrate 

excellent intra-observer reliability, but only fair to moderate inter-observer reliability (Carlisle et 

al., 2011; Nepple et al., 2014a). An incongruity exists for the diagnostic threshold as well, with 

pathological values ranging from 50° to 83° across physicians and researchers (Nepple et al., 

2014a; Nötzli et al., 2002; Reiman and Thorborg, 2015; Tannast et al., 2007b). To further 

complicate matters, individual variation in the general population has reported alpha angles 

ranging from 32° to 62°, indicating a wide range of “normal” (Pollard et al., 2010c). On the 

positive side, alpha angles can be measured relatively quickly using standard x-ray imaging 

techniques which allows use across heath care and research institutions. Alpha angles can easily 

be compared, yet they must be interpreted with caution.  

Pincer morphology can be measured radiographically by the cross over sign (COS) and 

lateral center edge angle (LCEA) (Tannast et al., 2007b). Measurements of acetabular depth have 

been utilized in the investigation of hip dysplasia and demonstrate good reliability (Carlisle et al., 

2011; Mast et al., 2004; Tönnis and Heinecke, 1999). The LCEA is a measure of lateral 

acetabular coverage based on measurements (Wilberg, 1939). Values less than 20 are indicative 

of an over-coverage, characteristic of a pincer impingement (Tönnis and Heinecke, 1999). COS 

is a descriptor of acetabular retroversion in FAI, in which the anterior acetabular rim extends too 
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far laterally to the medial border (Tönnis and Heinecke, 1999). The test is considered 

symptomatic of abnormal morphology when positive. 

Variations in imaging tools, patient positioning, and radiographic measurement 

techniques create challenges in comparing findings between physicians, clinics, and studies 

(Carlisle et al., 2011). The complexities surrounding symptomatic versus non-symptomatic FAI 

illustrate the importance of a clearly defined, widely accepted criteria for diagnosis. According to 

Sankar et al. (2013), the Medical Subject Headings Thesaurus of the US National Library of 

Medicine provides five guidelines for the diagnosis of femoroacetabular impingement, “(1) 

abnormal morphology of the femur and/or acetabulum, (2) abnormal contact between these two 

structures, (3) especially vigorous supraphysiologic motion that results in such abnormal contact 

and collision, (4) repetitive motion resulting in the continuous insult, and (5) the presence of 

soft-tissue damage.”  It is important to note no mention of symptoms are required for diagnosis 

(Reiman and Thorborg, 2015; Sankar et al., 2013). In 2016, a symposium was convened to 

standardized FAI language, diagnostic measures, and criteria (Griffin et al., 2016). Going 

forward, the symposium suggested the addition of patient reported symptoms and clinical 

assessment be co-requisites for FAI syndrome diagnosis.  

Treatment. Conservative and surgical treatment options for symptomatic FAI exist 

(Lavigne et al., 2004). Following a FAI diagnosis, orthopedic surgeons may require a period of 

conservative treatment before considering surgical courses of action (Espinosa et al., 2006; 

Philippon et al., 2007c). Opinions vary on the appropriateness of conservative treatment in fully 

developed FAI, as prolonging the time before surgical correction may increase the potential for 

irreversible intraarticular damage. 
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Conservative treatments include the use of drugs for pain and inflammation management, 

intraarticular injections, physical therapy, and activity modification (Feeley et al., 2008; 

Klingenstein et al., 2013; Lavigne et al., 2004). Oral medications may be prescribed, including 

non-steroidal anti-inflammatory drugs (NSAIDs) and narcotics to ameliorate pain (Emara et al., 

2011). Physical therapy protocols are targeted on relieving inflammation, maintaining proper 

muscular control, and adapting activity modifications to prevent additional damage (Emara et al., 

2011). It is important to note, conservative treatment cannot correct the underlying abnormal 

morphology and thus cannot eliminate FAI (Ganz et al., 2003). Due to the mechanical nature of 

the condition, the only way to prevent further joint damage using conservative treatment is 

through life long activity modification (Emara et al., 2011; Lamontagne et al., 2009b).  

The goals of surgical treatments are to restore normal bony morphology and ROM, 

decrease pain, and improve long term joint heath (Kelly et al., 2012). Open, arthroscopic, and 

combined surgical approaches have been utilized to successfully restore natural joint motion 

(Clohisy et al., 2010; Ganz et al., 2003; Laude et al., 2009; Philippon et al., 2007d). 

Contraindications to surgery include hip dysplasia, posterior extension of cam morphology, and 

osteoarthritis (i.e. greater than Tonnis grade 1) (Beck et al., 2005; Klingenstein et al., 2013). 

Murphy et al. (2004) found a negative relationship between level of osteoarthritic change and 

surgical outcomes.  

 Specific surgical treatment procedures include acetabular rim trimming, labral 

debridement, labral refixation, and femoral osteochondroplasty (Byrd and Jones, 2011). When 

labral tears are present, debridement and refixation are the preferred course of treatment 

(Espinosa et al., 2007). However, with extensive damage labral resection may be required.  
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Surgical treatment carries an inherent risk. The risk is considered justifiable when 

managing pain and preventing additional joint damage associated with symptomatic FAI. Many 

cases of impingement morphology deteriorate into early OA (Audenaert et al., 2011; Bardakos 

and Villar, 2009). Asymptomatic FAI presents a different perspective for assessing surgical 

risks. Currently, prophylactic surgical treatment for asymptomatic FAI is not indicated based on 

a lack of long-term prospective studies providing evidence for progression to joint degeneration 

(Collins et al., 2014).  

Etiology. The underlying factors leading to impingement morphology and FAI syndrome 

remain ambiguous. Proposed factors include pre-existing morphologies, genetic factors, and 

early, high-level athletic exposure (Chaudhry and Ayeni, 2014; Leunig et al., 2009). A true 

causal relationship between these factors and FAI syndrome has not been determined due to a 

lack of long-term prospective studies. However, early evidence indicates the causes are likely 

multifactorial and due to an interaction between lifestyle, biology, and potentially trauma 

(Klingenstein et al., 2013). 

Pre-existing hip morphologies are an accepted casual factor in impingement morphology 

development (Fraitzl et al., 2007; Ganz et al., 2008). A variety of hip morphologies, such as hip 

dysplasia, SCFE, and Legg-Calve-Perthes, have been extensively examined and directly 

associated with OA development (Hoaglund and Steinbach, 2001; Jacobsen and Sonne-Holm, 

2005; Leunig et al., 2000; Murphy et al., 2004). In these conditions, a gross deformity results in 

an improper fit between the femoral head and acetabulum which is attributed to joint 

degeneration (Ganz et al., 2008; Leunig et al., 2000). In these cases, a subtle impingement 

morphology may present due to the preexisting mechanical environment, further inhibiting 

natural joint motion (Leunig et al., 2000; Rab, 1999). The presentation and progression of 
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impingement morphologies in conjunction with concomitant hip disease is difficult to generalize 

based on the large number of confounding variables. With current research, we can only 

definitively report that they co-exist and are interrelated.  

The role of genetics as a causal factor in impingement morphology has been proposed 

(Pollard et al., 2010b). In the Pollard et al. (2010b) study, FAI patients were compared with their 

siblings while using their spouses as controls. They observed the siblings were at a 2.0 relative 

risk of having a cam morphology and a 2.8 risk of having a pincer morphology when the 

morphology was present in the patient. In addition, the prevalence of impingement 

pathomorphology was significantly higher in the siblings compared to spouse controls. 

According to their findings, modified hip anatomy may be due to a genetic disposition or 

determined at conception. Genetic factors have been associated with comparable acetabular 

pathomorphologies (e.g. hip dysplasia), while femoral pathomorphologies (e.g. SCFE) have not 

demonstrated a genetic link (Pollard et al., 2010b). Hence, it is possible genetic factors and/or 

histology play a role in the development of symptomatic FAI. To date, only one study has 

examined this relationship. Limitations in study design do not account for compounding factors 

such as similar lifestyles in siblings during development compared to potentially different 

developmental lifestyles of spouses (Chaudhry and Ayeni, 2014).  

The role of adolescent lifestyle as an etiological factor in the development of 

impingement morphology is rapidly gaining support. In the early 1970’s, Murray and Duncan 

(1971) proposed a relationship between school sports participation and a “femoral head tilt 

deformity.” Enhancements in radiography and clinical awareness of hip conditions have 

promoted early detection of hip pathologies (de Silva et al., 2016). Recent findings indicate 

impingement morphology begins to form as early as 10-yrs to 12-yrs (Monazzam et al., 2013). 
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During this adolescent phase, skeletal development is more vulnerable to osseous adaptations in 

response to excessive and repetitive loading (Packer and Safran, 2015). Bone morphology 

remains highly susceptible to loading while the physis remains open and the individual is 

skeletally immature (Maffulli and Baxter-Jones, 1995; Nilsson et al., 2005). Longitudinal growth 

in the long bones occur at the physis, or growth plates. During adolescence, the physis 

environment is tremendously dynamic and lacks the resiliency of ligamentous and muscular 

structures (Mirtz et al., 2011; Nilsson et al., 2005). Perfusion within the femoral head can be 

impacted by repetitive loading, resulting in necrosis or stimulated bone growth (Maffulli and 

Baxter-Jones, 1995).  

The proximal femoral physis is located at the proximal end of the femoral head neck 

junction, adjacent to where the osseous bump occurs in impingement morphologies. It has been 

proposed that increased exercise volumes and intensities at a skeletally immature age are 

supraphysiologic, resulting in abnormal bone formation at the head neck junction. On average, 

physis fusion occurs between the ages of 15-yrs and 22-yrs (Buikstra and Ubelaker, 1994). After 

adolescence, once physis closure is complete, the same volume and load may become more 

manageable. After the proximal femoral physis has closed, the femoral osseous bump does not 

appear to arise. However, once morphology is present, alpha angle demonstrates a tendency to 

increase with age. It is possible that abnormal, reoccurring loads are incurred as a result of the 

initial impingement morphology. Thus, creating a perpetual cycle of degenerative mechanics. 

Additional bone growth can occur well past the adolescent years, further increasing the size of 

the initial morphology with repeated loading.  
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Symptomatic FAI Mechanics 

 Reductions in hip ROM are a key component in a symptomatic FAI diagnosis. The 

limited ROM is likely a combined result of anatomical incongruity, soft tissue edema, and pain 

avoidance strategies (Brisson et al., 2013; Diamond et al., 2014; Kennedy et al., 2009b). The 

aberrant morphology in FAI places physical constraints on joint function, wherein the joint 

simply cannot rotate through motion to the same extent as healthy hip (Ganz et al., 2003). In 

addition, soft tissue edema from recurrent impingement likely contributes additional movement 

constraints (Kennedy et al., 2009a). Outside of the hip, we must consider the impact of pain and 

pain avoidance on neuromuscular movement strategies (Beaulé et al., 2007; Kennedy et al., 

2009b; Rylander et al., 2011). All examinations of symptomatic FAI will be limited in their 

ability to quantify mechanics modifications specific to the underlying pathomorphology due to 

the individual compensatory strategies utilized to protect the hip. Conversely, we do not know 

which asymptomatic hips will progress into symptomatic FAI. Thus, without prospective studies 

we must proceed with caution in interpreting results. The mechanics associated with gait, 

squatting, and stair climbing have been examined and illustrate modifications associated with 

symptomatic FAI.  

 Prolonged walking is frequently reported as a symptom inducing activity for individuals 

with symptomatic FAI. Several studies have used three-dimensional movement analysis to 

examine hip kinematics and kinetics associated with level walking in pre-surgical FAI patients 

(Brisson et al., 2013; Diamond et al., 2014; Hunt et al., 2013; Kennedy et al., 2009b; Rylander et 

al., 2011; Rylander et al., 2013). There were no spatiotemporal differences observed in all 

studies when compared to either healthy controls or post-surgical results. Symptomatic FAI 

consistently demonstrated a significant reduced sagittal hip ROM of approximately 4° in several 



28 

 

 

studies (Brisson et al., 2013; Diamond et al., 2014; Hunt et al., 2013; Rylander et al., 2011). 

There was a mixed consensus as to the underlying movement direction, with two studies 

reporting limited hip flexion and one finding limited extension. Movement in the transverse and 

frontal planes did not yield as homogenous results. In the transverse plane, Hunt et al. (2013) 

reported a reduction peak internal rotation while Rylander et al. (2013) reported reduced internal 

rotation ROM. It should be noted, transverse hip motion has characteristically been the most 

difficult to capture accurately and with good repeatability (Besier et al., 2003). The remaining 

gait studies mentioned did not identify differences associated with the transverse plane. The 

frontal plane analyses yielded similarly confounding results. Only Brisson et al. (2013) and 

Kennedy et al. (2009a) found significant reductions in frontal ROM, including a reduced peak 

hip abduction angle after toe-off.  

 Kinetic differences in hip joint moments were examined in four of the studies using pre-

surgical patients and controls (Brisson et al., 2013; Diamond et al., 2014; Hunt et al., 2013; 

Kennedy et al., 2009a). In all but one study, no significant differences in any of the joint 

moments were reported. Hunt et al. (2013) reported reductions in both the hip flexor and internal 

rotation moments. These deficits were suspected to be related to reduced muscular activations in 

early and late stance, but could not be confirmed without EMG data.  

The most consistent finding in gait analysis of symptomatic FAI is a reduction in sagittal 

plane motion. Hip flexion in symptomatic FAI when compared to healthy controls is associated 

with a larger angular deficit than abduction and internal rotation (Nussbaumer et al., 2010). The 

3-D hip ROM utilized during gait should fall within the impingement free ROM available to 

individuals with symptomatic FAI. However, when considering additional constraints from soft 

tissue, perhaps the limited sagittal ROM available approaches those ranges experienced in gait. 
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As previously discussed, modified movement strategies may be used as a protective mechanism. 

It also important to note that reported differences in hip kinematics for all planes were relatively 

small, between 3° and 5°(Brisson et al., 2013; Hunt et al., 2013; Rylander et al., 2013). Although 

these small changes were associated with statistically significant findings, the clinical impact 

may be negligible (Diamond et al., 2014).  

Additional motional analysis studies have been performed comparing symptomatic FAI 

and healthy controls for squatting (Bagwell et al., 2016; Kumar et al., 2014; Lamontagne et al., 

2009b), stair climbing (Kumar et al., 2014; Rylander et al., 2013), and drop landings (Kumar et 

al., 2014). The large ROM used during these movements enables a better assessment of lower 

limb mobility associated with symptomatic FAI (Konishi and Mieno, 1993). Additionally, 

squatting and stair climbing represent activities of daily life (Lamontagne et al., 2009b). Pre-

surgical FAI groups demonstrated reduced squat depth when compared to healthy controls 

(Bagwell et al., 2016; Lamontagne et al., 2009b). Modified three-dimensional kinetics and 

kinematics were identified between groups as well. 

In the sagittal plane, squat kinematics consistently demonstrated no significant 

differences in hip ROM (Bagwell et al., 2016; Kumar et al., 2014; Lamontagne et al., 2009b). 

However, differences in pelvic motion were identified in the FAI groups. With FAI, Bagwell et 

al. (2016) identified a reduction in pelvic tilt when lowering into the squat, which resulted in a 

more anteriorly positioned pelvis at maximum depth. The studied also observed a non-significant 

reduction in femoral flexion relative to anterior pelvis tilt. Although hip angle did not 

demonstrate a ROM effect due to FAI, limited femur flexion may indicate a functional limit 

imposed by aberrant morphology (Bagwell et al., 2016). Similarly, Lamontagne et al. (2009b) 

reported a 9° reduction in pelvic ROM with FAI during the squat. The only difference in sagittal 
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kinetics was a reduction in hip extensor moment reported by Bagwell et al. (2016). The 

combination of reduced pelvic posterior tilt and diminished hip extensor moment may be 

indicative of an underlying muscle imbalance. Weakness of the gluteus maximus has been 

associated with FAI and is known to accompany a more anteriorly (or less posteriorly) tilted 

pelvis (Casartelli et al., 2011). 

In the transverse plane, Lamontagne et al. (2009a) and Kumar et al. (2014) did not 

observe differences in peak hip internal rotation while Bagwell et al. (2016) found a 6° deficit in 

the FAI group. Bagwell et al. (2016) had subjects squat to a greater depth than Kumar et al. 

(2014) which could attribute to the discrepancy. Lamontagne et al. (2009a), on the other hand, 

used an almost identical protocol and failed to identify a significant difference between FAI and 

healthy controls. In the Bagwell et al. (2016) study, reduced internal rotation was not 

accompanied by a change in peak external moment. This combination may be a result of 

impingement pathomorphology constraining motion as opposed to insufficient muscular control 

(Audenaert et al., 2012). The only kinetic finding was an increase in peak internal rotation 

moment at the hip by Kumar et al. (2014). The Kumar et al. (2014) study was limited by a small 

sample size (7 FAI, 8 control), which were not matched with respect to age or sex.  

In the frontal plane, the squat kinematics and kinetic findings are again mixed. Kumar et 

al. (2014) reported an increase in peak hip internal rotation associated with FAI. No other ROM 

or kinetic differences were reported across squat studies. Kumar et al. (2014) did not control for 

foot placement during the squat where the other three studies used consistent placement.  

Additional functional testing was examined with stair climbing and drop landings. Stair 

climbing was examined in one study using preoperative FAI candidates and controls (Rylander 

et al., 2013). As an ADL, stairs present a unique testing situation that requires a larger hip ROM 
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and more muscular strength than walking (Bergmann et al., 2001). Results indicated a significant 

6.2° reduction in hip sagittal ROM, due in large part to a significant 4.8° reduction in hip 

extension. Maximum internal rotation in the FAI group was significantly diminished by 5°, 

which is consistent with clinical testing FAI ROM data (Philippon et al., 2007b; Rylander et al., 

2013). The combination of decreased internal rotation and extension may act as a pain avoidance 

strategy in attempting to avoid impingement with the femoral head and acetabulum (Kennedy et 

al., 2009a; Rylander et al., 2013). Drop landings were studied by Kumar et al. (2014) within the 

same study used to assess gait and deep squats. The 12-in drop landing height did not illuminate 

any kinematic or kinetic differences between FAI and healthy controls. Of note, FAI participants 

landed with their feet positioned more closely together. Drop landings provide a more dynamic 

task than gait or deep squatting, with larger muscular demands required. The smaller base of 

support may reduce the muscular strength needed to control the landing (Kumar et al., 2014). 

The limited number of three-dimensional movement studies comparing symptomatic FAI 

with healthy controls have yielded mixed findings. These differences may be attributed to 

differences in subject samples, small sample sizes, and data collection techniques. Future studies 

will help identify consistent trends in symptomatic FAI mechanics. 

Hip Mechanics 

Measured Hip Forces 

 Direct measurement of hip joint forces is limited due to the invasive methods necessary 

to gain access to the joint. Telemetering instrumented hip implants allow for direct measurement 

of these forces in vivo. Due to ethical considerations, only those individuals in need of a hip 

replacement would be potential participants in such research. This imposes potential bias in the 

findings, as all of the participants would no longer possess their native anatomy and would have 



32 

 

 

undergone a major lower extremity surgery. In the past, individuals in need of hip replacements 

either represented an older demographic or presented with an anatomic abnormality.  

 Rydell (1966) was the first researcher to directly measure hip joint forces. In a time 

before hip replacements were commonplace, existing prostheses were deemed inappropriate for 

data collection. The study details the daunting process of designing, machining, and 

instrumenting an implant without the luxury of computer aided design software and advances in 

electronic circuitry. Only the femoral head was replaced, leaving the native acetabulum in place. 

In one passage, Rydell describes how, “it is difficult to attach the gauges stably to the moist and 

slightly greasy surface of the bone” (Rydell, 1966). 

 Davy et al. (1988) examined one participant with a telemetrized hip implant during 

several tasks, 31 days after surgery. Forces during gait were 2.6 to 2.8 BW in stance and 2.1 BW 

in ipsilateral stance. Stair climbing generated a peak force of 2.8 BW. However, data was 

recorded from one participant quite soon after surgery. As such, it is difficult to generalize the 

findings to the larger population.  

 Bergmann et al. (1993) presented force data obtained from two participants with 

instrumented prostheses in the femoral reference plane. Participants were analyzed while 

walking and jogging on a treadmill, and stumbling without falling. Only one of the participants 

could be considered otherwise healthy, as the second participant was chosen due to a 

neurological condition. The researchers anticipated increased hip forces to be related to the 

neurological deficit. The healthy participant was found to exhibit 280% to 480% BW when 

walking 1km/h and 5km/hr respectively. Fast walking and jogging each exhibited 550% BW. 

Forces were higher in the second, pathological patient.  
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 In 2001, (Bergmann et al.) used a similar research framework with four participants 

ranging in age from 51-76 years of age. Testing was performed 11-20 months postoperatively 

and included nine activities. Over ground walking at three speeds, stair climbing and descending, 

standing up and sitting down, knee bends, and a 2-1-2 footed stance were assessed. Results 

indicated only small intra-subject variations in hip joint loading during cyclical activities, but 

much larger inter-subject variations. Walking at 4-km/h was found to generate averge peak hip 

joint forces of 238% BW. Stairclimbing was found to generate 251% BW climbing up and 260% 

BW on the way down. These forces were reported to be within range of previous findings 

(Bergmann et al., 2001; Davy et al., 1988; Rydell, 1966), but lower than Bergmann et al. (1993).   

Modeled Hip Forces 

 Estimation of hip joint forces began long before the age of computers. As early as the 

1940s, researchers estimated hip forces during gait to fall somewhere in the vicinity of 4.4 to 4.6 

times body weight (Rydell, 1966). The key methodical differences in estimating hip mechanics 

have been associated with defining how forces are distributed across the hip. Hip forces have 

traditionally been solved using an inverse dynamics approach with measured kinematics and 

ground reaction forces, followed by distributing the forces across load bearing structures 

surrounding the joint (Crowninshield et al., 1978). There have been two approaches to the 

problem: reduction of the number of factors and optimization. The numerous anatomical 

structures involved in hip motion present an indeterminate system, with more variables than 

equations to solve. Paul (1965) and Morrison (1967) used a mechanical simplification strategy. 

In another approach, Seireg and Arvikar (1973) and Penrod et al. (1974a) proposed the use of a 

limiting function to constrain the system of equations. Optimization utilizes an objective function 

to “optimize” and has been extensively used. However, the “best” objective function to use has 
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remained elusive. Static optimization has been criticized for oversimplifying system anatomy 

and failing to truly encompass muscle dynamics. However, when static optimization was 

compared with dynamic optimization and the physiological inverse approach, findings 

demonstrated static optimization was an effective method for hip force estimation in gait 

(Anderson and Pandy, 2001b; Wesseling et al., 2015).  

 Hip joint forces have been modeled in numerous studies (Correa et al., 2010; 

Crowninshield, 1978; Heller et al., 2001; Heller et al., 2005; Koopman and Horsman, 2008; 

Modenese et al., 2011a; Modenese and Phillips, 2012; Pedersen et al., 1997; Rohrle et al., 1984; 

Stansfield et al., 2003). Validation of hip forces musculoskeletal models has been approached 

using in vivo measurements and EMG (Lenaerts et al., 2008; Pedersen et al., 1987; Seireg and 

Arvikar, 1975). Measures of muscle activation through EMG are readily available and relatively 

noninvasive, but comparison between measured EMG and force output is not consistent or 

reliable (Anderson and Pandy, 2001b). Similarly, the timing of muscle activations based on 

EMG data may only roughly approximate modeled muscle activity. Direct comparison of in vivo 

data with simulated model data is important in establishing internal validity (Brand et al., 1994; 

Heller et al., 2001; Lu et al., 1997; Stansfield et al., 2003). Data obtained by Bergmann et al. 

(2001), known as Hip98, is open-source for musculoskeletal modeling. This data has been used 

as a pathway for validation in modeling studies by several researchers (Modenese et al., 2011b; 

Stansfield et al., 2003; Wesseling et al., 2015). However, care must be taken with the 

interpretation of comparisons between modeled findings and measured findings. Inter-subject 

variability has been reported in all direct measurement studies. Thus, a musculoskeletal model 

that “fits” a particular subject within the Hip98 data may not demonstrate similar results with all 
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subjects. In addition, data is limited by the instrumentation, collection, and possible processing 

errors incurred by the initial researchers.  

 Brand et al. (1994) used experimentally collected gait data and direct measurements from 

a single patient to compare hip joint loading. Using a non-linear optimization, findings indicated 

measured forces were lower than modeled. The laboratory and implant data were collected 

several weeks apart, which could account for some force differences. Considering the post-

operative time period, there may have been changes in gait mechanics over this time period that 

resulted in different hip loading characteristics. Loading of the implanted hip may require time to 

return to a normal force range. Reported peak forces during participant selected gait speed were 

between 2.5 and 3.5 BW. 

 Heller et al. (2001) collected femoral loading information via prosthesis in four 

participants for direct comparison with a custom model. The criterion used was the minimization 

of muscle force, with a limit on maximum muscle stress. They reported a predominantly 

compressive force in the femur, with a small shear component. The highest femoral forces were 

observed in stair climbing, followed by walking (speed not indicated). 

Stansfield et al. (2003) made a direct comparison with a musculoskeletal model and the 

Hip98 dataset. The model utilized a two-stage optimization. First, the optimization minimized 

maximum muscle stress. Then the sum of muscle and joint forces were minimized (Bean et al., 

1988). There was reasonable agreement between modeling with slow, medium, and fast walking 

speeds, as well as stand to sit tasks.  

Modenese et al. (2011b) implemented a new open source lower extremity model referred 

to as London Lower Limb using anthropometric data from Klein Horsman (2007). The study 

used kinematic and kinetic data available as part of Hip98 to validate the model with measured 
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force values. Inverse dynamics and static optimization were performed with OpenSim. The 

objective function was examined at different exponential values from 1 to 15 (Rasmussen et al., 

2001), and results indicated hip joint forces increased as the exponential power of the objective 

function increased. When muscle activation results were overlapped with EMG tracings from 

previous research (McFadyen and Winter, 1988; Wootten et al., 1990), a quadratic relationship 

was identified as the most representative of measured data. Increasing the objective function 

power is associated with increased muscle synergy, while simultaneously allowing a larger 

number of actuators to contribute to torque production (Dul et al., 1984b; Rasmussen et al., 

2001). Unfortunately, with increased muscles acting, moments are created out of the plane the 

external moment is acting and causes additional actuators to stabilize the hip (Modenese et al., 

2011b).  

Wesseling et al. (2015) used OpenSim Gait2392 (SimTK, 2016) to compare four 

different methods of determining muscle forces during gait and sit to stand in five participants. 

The participants’ EMG obtained in the study and the Hip98 dataset were then used for model 

validation. Two static optimization methods were used. The first was the OpenSim standard 

static optimization (Delp et al., 2007) with muscle forces resolved by minimizing the square of 

muscle activations subject to a quadratic optimization criterion (Modenese et al., 2011a; 

Rasmussen et al., 2001). The second was another static optimization method using a similar cost 

function with constraints to impact physiological activation (Lenaerts et al., 2008). The third 

method was CMC, which creates a forward dynamic simulation that utilizes static optimization 

with feedforward and feedback controls to optimally track position, velocity, and acceleration 

data that are used to compute muscle excitations and then muscle forces. The fourth approach 

was a physiological inverse approach (PIA) (De Groote et al., 2009). This method uses a global 
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optimization over the movement cycle with muscle activation squared as the optimization 

criteria. Results indicated that optimization approach significantly impacts hip joint force, with 

both static optimization methods producing values more consistent with measured forces. CMC 

produced the highest values for hip joint force. The second optimization method produced the 

lowest during gait and sit-to-stand. However, the additional constraints used in the second 

optimization method did not yield significant differences from the OpenSim standard method. 

CMC calculated hip joint forces were 238% higher than those reported via direct measurement 

(Bergmann et al., 2001). 

Internal hip joint forces have also been estimated during a maximal hight 

countermovement jump, jerk, and snatch (Cleather et al., 2013). The hip was modeled using only 

the right limb following the Klein Horsman (2007) model. Twelve athletic males were examined. 

Joint forces were normalized to body weight, jump height was not accounted for. Optimization 

was performed using sum of muscle stress raised to the 20th power (Crowninshield, 1978; 

Rasmussen et al., 2001). Muscle stress and cross-sectional area were used to calculate muscle 

forces. Then, internal joint force was estimated by accounting for intersegmental and muscle 

forces. Mean peak normalized internal hip joint force with standard deviation was reported as 5.5 

(1.1) for jumping and 6.0 (3.0) for landing. 

Landing Hip Mechanics 

The lower extremity mechanics associated with landing from a jump have been 

thoroughly examined, with a significant focus on the prevention of knee injuries. During a jump 

landing, a large amount of force is developed while simultaneously incurring large ROM in the 

hip, knee, and ankle. Subtle variations in landing technique can elicit a wide range of kinematic, 
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kinetic, and energetic outcomes. With recent attention focused on hip pathologies in young 

athletes, a better understanding of hip mechanics during landing is warranted.  

Drop landings are often used to assess landings in a controlled environment that allows 

for comparisons between participants and groups. A common approach for drop landings uses a 

platform of known height. The participant begins on top of some type of platform and then steps 

off to land on one or two force plates below. The participant may land on one foot, both feet, 

land-and-cut, or land and rebound depending on the study design. 

 Relationship between landing mechanics and sex. The high prevalence rate of anterior 

cruciate ligament (ACL) injuries in females has garnered widespread attention from the medical 

and science communities. Sex differences in landing mechanics during a wide array of sport 

specific movements have been examined. The preponderance of this research has focused on the 

knee and specifically how the lower extremities function with respect to the knee. Hip mechanics 

are typically mentioned, yet seldom fully discussed. 

 From the ever-growing body of ACL landing mechanics research, several sex differences 

have emerged in the mechanics of sports actions. Females are reported to demonstrate reduced 

hip flexion and knee abduction while performing sport actions (Brown et al., 2009; Kernozek et 

al., 2005; McLean et al., 2005; Weinhandl et al., 2010). During landings, females may also incur 

larger peak vertical GRF (Decker et al., 2003; Kernozek et al., 2005; Salci et al., 2004) and peak 

posterior GRF (Kernozek et al., 2005; Weinhandl et al., 2015). In examining the impact with 

respect joint kinetics, sex differences in the frontal plane indicate females may experience greater 

hip and knee loading while landing (Brown et al., 2009; Decker et al., 2003; Kernozek et al., 

2005; Weinhandl et al., 2010). The differences in GRF, kinematics, and joint kinetics carry over 

into the energy absorption strategy trends between sexes. Males are more likely to absorb 
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landing energy at the hip, while females are more likely to implement a more knee and ankle 

dominate energy absorption strategy (Decker et al., 2003; Schmitz and Shultz, 2010; Shultz et 

al., 2010; Weinhandl et al., 2010). The underlying mechanism for the varying strategy in females 

may be a result of diminished hip musculature strength (Decker et al., 2003; Shultz et al., 2010).  

Differences in frontal (i.e. coronal) plane kinematics and kinetics are the most 

pronounced findings among sex comparisons of landing (Ford et al., 2006; Garrison et al., 2005; 

Gehring et al., 2009; Hewett et al., 2004; Hewett et al., 2005; Jenkins et al., 2016; Kernozek et 

al., 2008; Kernozek et al., 2005; Pappas et al., 2007a; Pappas et al., 2007b; Russell et al., 2006; 

Weinhandl et al., 2015; Weinhandl et al., 2016). It should be noted, additional findings have 

failed to identify frontal plane sex differences (Kiriyama et al., 2009; Nagano et al., 2007). 

Greater knee abduction was reported in females compared to males in unilateral landings from 

13.5-cm to 60-cm heights (Ford et al., 2006; Pappas et al., 2007b; Russell et al., 2006). In double 

leg landings, a greater knee abduction angle was also reported for heights ranging from 40-cm to 

60-cm (Gehring et al., 2009; Kernozek et al., 2008; Kernozek et al., 2005; Pappas et al., 2007a; 

Pappas et al., 2007b). At initial contact during land-and cut maneuvers, females exhibited 

decreased hip abduction and increased knee abduction. In addition, females also displayed 

reduced knee abduction ROM (Weinhandl et al., 2016). Knee abduction angle in females may be 

related to pubescent status, with increased knee abduction angles reported in post-pubertal 

females (Hewett et al., 2004). Similar findings were reported for pubertal females experiencing a 

period of accelerated growth (Ford et al., 2010). 

Increased knee valgus moment has been associated with an increased risk in ACL injuries 

(Weinhandl et al., 2015). Internal knee valgus moments are generated by the combined 

contributions of knee adductor and hip abductor moments. Knee adductor moments have 
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demonstrated a sex effect for bilateral landings (Garrison et al., 2005), while unilateral landings 

have not displayed the same trend (Weinhandl et al., 2015; Weinhandl et al., 2010). During 

unilateral landings a greater knee adduction moment was observed in males (Garrison et al., 

2005). When examining a land-and-cut maneuver, females were reported to incur increased hip 

abduction, knee extension and ankle plantarflexion moments. 

 Differences in the sagittal plane have also been identified (Chappell et al., 2002; Decker 

et al., 2003; Ford et al., 2003; Hewett et al., 2001; Malinzak et al., 2001); however, the 

magnitude of these differences is smaller than frontal plane findings (Kernozek et al., 2005; 

Weinhandl et al., 2015). Compared to males, females landed with a less flexed hip and knee 

(Salci et al., 2004). Pollard et al. (2010a) reported that females who landed with less hip flexion 

were more likely to generate greater knee valgus and knee adductor moments. Several studies 

did not find ROM sex differences with respect to the hip (Kernozek et al., 2005) and knee 

(Fagenbaum and Darling, 2003). However, females demonstrated greater ankle dorsiflexion 

(Decker et al., 2003; Kernozek et al., 2005). At initial contact for a land-jump task, females 

demonstrated less hip and knee flexion compared to males (McLean et al., 2005).  

Females have been reported to land with a more erect posture during a double leg drop 

landing (Decker et al., 2003; Salci et al., 2004). This finding has not been reported in all landing 

studies and appears to be sensitive to the population, task, and task complexity (Fagenbaum and 

Darling, 2003; McLean et al., 2005). The knee is the primary mechanism responsible for energy 

absorption during landing in both sexes. However, females show a propensity to rely on knee 

and ankle joints for additional energy absorption while males incorporate the hip (Decker et al., 

2003; Weinhandl et al., 2015). Montgomery et al. (2014) attempted to equalize task demands 

between sexes to eliminate the potential bias. Their results found that males still incorporated the 
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hips more for energy absorption, but no sex differences were observed for the knee and ankle. 

The kinetic energy developed during landing is absorbed in part by eccentric muscle action of 

the lower extremity extensors (McNitt-Gray, 1993; Schmitz and Shultz, 2010). Thus, in females 

the knee extensors and plantar flexors are more responsible for energy absorption than the hip 

extensors, and vice versa for males (Decker et al., 2003). The knee dominant landing strategy 

observed in female landing mechanics may be attributed in part to diminished hip extensor 

strength (Pollard et al., 2010a; Zhang et al., 2000).  

The relationship between sex and landing mechanics is complex due to the variety of 

populations studied in an array of landing and sport tasks. The reoccurring themes amongst study 

findings are that the largest differences are related to frontal plane motion at the hip and knee. 

These differences are reported in terms of hip and knee positioning at initial contact, maximum 

angles, and ROMs. Diminished strength in the female hip musculature compared to males in 

conjunction with altered positioning has been proposed as a risk factor for ACL injuries. The hip 

dominant approach reported in males may present long term issues not yet fully understood. The 

implications of using the hip as an energy absorber may have cumulative detrimental impacts of 

a more insidious nature. Changes in the bony morphology associated with FAI are likely 

associated with loading and energy absorption characteristics that result in osseous adaptations. 

A more complete understanding of how the “normal” hip behaves during loading conditions is 

needed. 

 Relationship between landing mechanics and limb side. Bilateral differences in landing 

mechanics have been described in terms of left versus right and dominant versus non-dominant 

sides. Strength, flexibility, and coordination deficits between sides are associated with an 

increased injury risk (Hewett et al., 1999; Hewett et al., 1996). With an imbalance, the weaker 
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and/or less coordinated limb may be unable to withstand increased forces or maintain control in 

an aberrant situation while the stronger limb may experience excessively high loading in an 

attempt to protect the weaker limb (Weinhandl et al., 2016). The differentiation between 

dominant and non-dominant limbs has been open to interpretation.  

 Bilateral differences have been reported in landing research (Brown et al., 2009; 

Weinhandl et al., 2016). Brown et al. (2009) reported significantly more hip flexion, adduction, 

and internal rotation, as well as, less knee flexion and adduction at initial contact in the non-

dominant leg of a land-and-cut task. The study did not identify any kinetic differences between 

limb sides. Similarly, Weinhandl et al. (2016) examined land-and-cut maneuvers and reported 

decreased hip flexion at initial contact on the dominant side. Additionally, a decrease in hip 

flexion and hip adduction ROM were reported during the landing. Other studies have not 

indicated significant meaningful differences in bilateral kinematics and kinetics (McLean et al., 

2007; Van der Harst et al., 2007b). Limb related data has not yielded clear, consistent findings 

pertaining to mechanical differences by limb side (Brown et al., 2009; Weinhandl et al., 2016). 

In ACL injury research, landing mechanics may relate to an interaction between landing 

side and sex. An association with the non-dominant limb and increased injury risk has been 

reported in females (Brophy et al., 2010; Negrete et al., 2007). Within these studies, the non-

dominant limb was acting as stabilizer while the dominant leg kicked. Conversely, males were 

more likely to injure their dominant limb (i.e. kicking limb). Ford et al. (2003) reported increased 

valgus knee angles in female high school basketball players’ dominant limb compared to non-

dominant. The same discrepancy was not found in males. Reduced hip abduction and knee 

adduction at initial contact, as well as, hip abduction and knee adduction ROM were identified in 

females during unilateral land-and-cut maneuvers (Weinhandl et al., 2016). In addition, 



43 

 

 

increased hip abduction, knee extension, and ankle plantarflexion moments were also reported in 

females compared to males.  

Relationship between landing mechanics and height. As landing height increases, it is 

reasonable to assume differences in landing mechanics would occur. There were no significant 

differences identified in vertical or posterior GRF when landing height was increased 

(Weinhandl et al., 2015). It should be noted, GRF was normalized by body weight and landing 

height squared. Normalization for landing height allows for the comparison of GRFs while 

accounting for differences due to landing from varying heights. There was a reduction in knee 

and ankle energy absorption as landing height increased, but hip energy absorption remained 

similar. Interestingly, a shift in lower extremity energy absorption with increased landing height 

did not include a shift toward proximal joints (Montgomery et al., 2014; Weinhandl et al., 2015). 

Proximal-to-distal energy absorption strategies are believed to expose passive structures to 

higher forces when landing (Norcross et al., 2010).  

Joint moments and work have been reported to increase with increased landing height 

(Huston et al., 2001; McNitt-Gray, 1993; Yeow et al., 2009, 2010b). The extent of these changes 

is a function of sex (Huston et al., 2001). When drop landing height was equal to their maximal 

vertical jumping ability, females displayed less hip abduction at initial contact than males 

(Weinhandl et al., 2015). Further, females generated higher peak knee extensor and plantar 

flexor moments during the landing. As landing height increased, females and males modified 

their mechanics using different strategies. Females exhibited an increased peak knee adductor 

moment and a decreased peak ankle plantarflexor moment. Conversely, males implemented a 

reduced peak hip abductor moment (Weinhandl et al., 2015).  
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Kinetic and kinematic analysis of landing mechanics provides insight into differences 

associated with sex, landing condition, landing height, and landing limb side. This information 

describes what forces are being incurred with varying condition and how the motions occurred. 

However, joint kinetics generated using this approach represent a net value of all the muscles 

crossing the joint. Musculoskeletal modeling allows for the inclusion of muscle geometry and 

physiology to estimate joint loading using measured kinetics and kinematics.  

Musculoskeletal Modeling 

Traditional biomechanical analysis of human movement involves the use of kinematic, 

kinetic, and EMG data. When used in conjunction, researchers are capable of quantifying 

segment and angular mechanics on a gross scale. However, these studies are limited in their 

ability to describe movement dynamics on the muscular level (Delp et al., 2007; Delp et al., 

1990a). While the contributions of muscle groups (i.e. moments) and muscle activity (i.e. EMG) 

can be obtained using traditional methods, individual muscle force is not generally quantifiable. 

Muscle activity measured using EMG does not directly correlate with segmental motion, due in 

part to the complex geometry of the musculoskeletal system. Segmental accelerations can be 

generated by muscles that are not directly attached and joint accelerations applied to joints the 

muscle does not span (Zajac and Gordon, 1989). Further, the system complexity is compounded 

by muscles that span multiple joints. A straightforward one muscle to one segment mechanical 

relationship cannot be used. Movement simulations provide solutions to estimate muscle and 

joint forces which otherwise are unavailable via noninvasive measurements. These simulations 

apply multibody movement mechanics within the framework of human neuromuscular anatomy 

and physiology parameters.  
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Modeling Steps 

Inverse Kinematics. Experimentally collected marker coordinates and scaled model data 

are synthesized to create generalized model coordinates using inverse kinematics. Using scaled 

model data, maker trajectories for each time point are fitted with respect to the model, generating 

generalized coordinates. The resulting “pose” is the mathematical best fit between experimental 

data and scaled model parameters. Errors incurred during data collection are inherent (e.g. 

movement artifact), which reduce the likelihood of a perfect fit for the model. Additionally, 

musculoskeletal models typically do not include the 6 dof for each segment that are included in 

traditional motion capture. These differences between available model motion and experimental 

data necessitate the usage of an optimization procedure to match model and experimental 

motions. Thus, a weighted least squares approach is used to minimize the difference between 

experimental marker and virtual marker positioning (applied to the model) at each time point: 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟 = ∑ 𝑤𝑖(�⃗�𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

− �⃗�𝑖
𝑚𝑜𝑑𝑒𝑙)

2
+ ∑ 𝑤𝑗(Ѳ𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡
− Ѳ𝑗

𝑚𝑜𝑑𝑒𝑙)
2

 

𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒

𝑗=1

 

𝑚𝑎𝑟𝑘𝑒𝑟

𝑖=1

 

The three-dimensional positions of the ith marker for the subject and model are expressed as 

�⃗�𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

and �⃗�𝑖
𝑚𝑜𝑑𝑒𝑙 respectively. The three-dimensional positions of the jth joint angle for the 

subject and model are expressed as Ѳ𝑗
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

 and Ѳ𝑗
𝑚𝑜𝑑𝑒𝑙 respectively. Marker weights, 𝑤𝑖 and 

𝑤𝑗,  can be designated to control how tightly virtual model data tracks the experimental 

coordinate and joint angle data. Individual marker locations associated with high tracking 

variability can be given low weighting, while markers needing tight control can be given higher 

weighting. Segmental cluster data is typically weighted higher than individual data points.  

 Unfortunately, errors in experimental data collection and processing, as well as, model 

simplifications and assumptions yield model kinematics that are dynamically inconsistent with 
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measured ground reaction forces and moments. In this case, measured ground reaction force and 

model marker accelerations violate Newton’s second law of motion. Thus, additional non-

physiological forces and moments, called residuals, must be added to balance the inconsistency. 

The following equation represents Newton’s second law with the inclusion of residual forces: 

�⃗�𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = ∑ 𝑚𝑖�⃗�𝑖

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑖=1

− �⃗�𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

where �⃗�𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is measured GRF minus the body weight vector, �⃗�𝑖 and 𝑚𝑖 are the translational 

COM and mass of the ith segment, and �⃗�𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the residual force. Residual moment is 

calculated similarly using GRF moment. Conceptually, residual forces and moments would 

approach zero in a perfect modeling experiment. However, when experimental data is 

considered, residuals represent non-negligible quantities. In order to maintain dynamic 

consistency, residuals must be applied to a body within the model.  

 OpenSim utilizes an algorithm known as the Residual Reduction Algorithm (RRA) to 

manipulate marker trajectories and model mass parameters to minimize residuals while 

maintaining dynamic consistency. When residual forces are low, the model’s movement can be 

attributed to the internal joint torques with more certainty. The RRA represents a form of 

dynamic forward simulation, where the model begins at an initial time point with kinematics 

derived during inverse kinematics and steps forward incrementally to the pre-defined end time 

point, calculating force values for all model actuators to drive the inverse kinematics. The 

skeletal structure and joint anatomy described previously are assigned torque actuators for each 

dof. The torque actuators generate internal torques necessary for motion. The six degrees of 

freedom between the pelvis and the ground are each modeled with a residual actuator, where 

translations are represented as forces and rotations represented as torques.   
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Estimating Muscle Forces. Static and dynamic optimization solutions can be used to 

estimate muscle forces. Static optimization uses an inverse dynamic while dynamic optimization 

is based on forward dynamics. In both types of optimization, segmental motion is estimated 

based on internal joint torques and applied forces.  

Static Optimization. The concept of static optimization began in the early 1970s as a 

method of calculating lower extremity muscle forces in different static positions (Seireg and 

Arvikar, 1973). Within a few years, variations of the first static optimization would follow using 

the wrist (Penrod et al., 1974b) and walking (Seireg and Arvikar, 1975). Numerous static 

optimization studies have followed (An et al., 1989; An et al., 1984,Crowninshield, 1978 #217; 

Crowninshield and Brand, 1981a; Crowninshield and Brand, 1981b; Dul et al., 1984a; Dul et al., 

1984b; Hardt, 1978; Herzog and Leonard, 1991; Kaufman et al., 1991a, b; Penrod et al., 1974b; 

Prilutsky et al., 1997), yet the underlying goal of determining the set of muscle forces necessary 

to recreate a desired action while minimizing a measurable quantity remains consistent. The 

theory is that in a system where multiple muscle force solutions are possible, the use of a 

particular combination of muscle forces must be based on some prescribed criterion 

(Crowninshield, 1978). Advances in computational power have enabled the development of 

increasingly complex model and optimizations. An et al. (1989) stated, “the problem has been to 

develop a muscle model that is phenomenologically correct without being overwhelmingly 

complex for practical applications.” 

The net joint moments at each time step can be determined using static optimization to 

calculate individual muscle forces. The inputs needed for static optimization are the joint torques 

calculated during inverse dynamics (possibly RRA) and the scaled model with lines of muscle 

action. Given this information, a linear or non-linear algorithm can be applied to determine a 
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solution that generates muscle forces while minimizing the performance criterion and 

reproducing joint torques. The measurable quantity to be minimized is referred to as the 

performance criterion. Cost functions and objective functions can similarly be used to constrain 

the system dependent on the research or movement objective. 

A variety of performance criterion have been suggested to best represent human 

movement. Initial studies focused on minimizing muscular effort or force (Seireg and Arvikar, 

1973). However, this criterion did not account for muscle geometry nor physiology. In some 

instances, small muscles were tasked to generate unreasonable amounts of force. The 

physiological cross sectional area (PCSA) of a muscle was then included to determine muscle 

stress, using constraint equations to limit PCSA (Crowninshield, 1978). This new criterion 

satisfied the need for geometrical consideration. In a slightly different approach, Pedotti et al. 

(1978) used a non-linear performance criterion by using the sum of muscle stress squared, while 

also accounting for the force length velocity muscle properties. This approach was argued to 

incorporate geometry and physiology, as muscle stress squared is a measure of fatigue 

(Crowninshield and Brand, 1981a). This concept was further extended with the concept of 

minimizing global stress (An et al., 1989). By minimizing global stress, load sharing increased 

between synergistic muscles. The global minimization of muscle activation squared was then 

proposed (Kaufman et al., 1991a, b). 

 With Static Optimization, the cost function is evaluated at each time step independently, 

where frames prior to and after do not directly dictate muscle forces in the given frame. This 

characteristic of static optimization can present issues when adjacent frames result in 

dramatically different muscle forces. Muscle physiology does not support an on-off function of 

muscle mechanics, which indicates the muscle forces are not indicative of true forces. However, 
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muscle forces from the previous frame can be used as inputs from the subsequent frame’s 

calculations. The cost function is still evaluated to determine muscle forces at the given frame, 

but they are less likely to incur dramatic on-off muscle actions. Cost functions are sensitive to 

initial conditions, thus starting near a solution increases the likelihood of similar behavior. A 

reduction in computational time is an additional benefit. Once static optimization is complete for 

each frame, the simulated muscle forces can be used to reproduce model motion. 

  Dynamic Optimization. A muscle driven dynamic simulation provides a complement to 

traditional movement data and provides the opportunity to examine cause and effect relationships 

between muscular excitations and resulting motions (Delp et al., 2007). A muscle driven 

dynamic simulation of movement is built upon a dynamical model of the musculoskeletal system 

(including environmental interaction) and muscle excitation inputs. A musculoskeletal model for 

dynamic simulations requires specific parameters describing skeletal structure and joint 

kinematics, muscle paths and activations, as well as excitation-contraction coupling relationships 

(Delp et al., 1990b). Muscle excitations serve as model inputs and can be calculated by solving 

the optimization problem at each time point (Neptune and Hull, 1998). A working simulation can 

provide muscle and joint force data previously unavailable to researchers. Dynamical simulations 

can be evaluated based upon a task criterion or level of agreement between measured kinematics, 

kinetics, and EMG and simulated outcomes. Unfortunately, identifying a combination of muscle 

excitations that reproduce the desired coordinated multibody movement comes at a high 

computational cost. OpenSim (SimTK, 2016) is an open source simulation environment which 

allows dynamic modeling of human motion. The implementation of multibody simulations 

specifically within OpenSim will be discussed. 
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Dynamic optimization has several benefits over static optimization, which are purported 

to better incorporate muscle physiology. In a dynamic optimization, the entire motion sequence 

is used when minimizing performance criterion. This yields a continuous flow of muscle forces 

that are time dependent. Further, the number of muscles contributing to torque production are not 

limited by degrees of freedom as can be found with linear optimization techniques (e.g. linear 

algebra). The resulting muscle forces are less likely to be impacted by errors incurred in data 

collection and processing as the entire process is analyzed. However, these advantages come 

with a tremendous computational cost (Anderson and Pandy, 2001b). 

In OpenSim, a modified form of dynamic optimization called computer muscular control 

(CMC) utilizes static optimization in conjunction with feedforward and feedback controls to 

drive the model towards the inverse kinematic solutions. A static optimization criterion is used to 

distribute forces across synergistic muscles with an overall objective to minimize global error 

between measured and simulated kinematics. The differential equations within are referred to as 

state equations and are used to describe activation dynamics, musculotendon dynamics, and 

Newton’s second law of motion. A forward dynamic model of human movement begins with a 

dynamical model of the musculoskeletal system including model interaction with the 

environment and necessary muscle excitation inputs. 

Model Components 

 Skeletal Model. The skeletal model serves as the primary framework for developing a 

modeling system. Boney segments are created as rigid bodies, based upon polygons fitted to the 

surface of specific bone (Delp et al., 1990a). The base model for these bones are stored in 

individual files and can be scaled based on a participant’s anthropometric data. Each bone file, 

classified as a body, contains the mass properties and associations with other visible objects. The 
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relationship between bones is prescribed as a joint, with each joint containing a parent and child 

segment. Joint motion is defined in terms of coordinate and kinematic transforms with respect to 

the parent segment.  

The motion of a joint is a relationship between two bodies (parent and child). The body 

represents a moving frame of reference with a prescribed COM and inertial properties, called the 

body frame. A joint frame of reference, the joint frame, can be defined with respect to the body 

frame. The rotational and translational transforms of the child with reference to the parent define 

joint motion. Specific joint options include weld, pin, slider, ball, ellipsoid, free, and custom 

joints. Pin and ball joints are commonly used in the lower extremities. A pin joint utilizes one 

coordinate about a common x-axis, while a ball joints allow three rotational coordinates about 

the x, y, and z axes.  

The generalized model created above can be scaled to an individual’s anthropometry for 

improved subject specificity. Individualized model scaling is achieved by fitting a calibration 

model with experimental maker data. Segment positioning in the general reference frame must 

be defined by a least three non-collinear markers which provide angels and translations in six 

dof. The fitting of a calibration model results in appropriate scaling of all the musculoskeletal 

element geometries and mass properties.  

Environmental Interaction. Interaction with the ground can be modeled using springs and 

dampers in series (Anderson and Pandy, 1999; Anderson and Pandy, 2001a). Three dimensional 

springs allow simultaneous force in the vertical, fore-aft, and transverse directions. Vertical force 

varies exponentially with respect to vertical foot positioning. Fore-aft and transverse forces vary 

linearly with position. As a drawback to this method, the damped spring will always apply forces 

to the model. With exponential decay, this force becomes negligible at a designated height above 
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the ground. Expressing model-ground compliance with the damped-spring method minimizes 

vertical displacement below ground level and saves computational cost (Anderson and Pandy, 

1999).   

Muscle models. The skeletal model is actuated by muscles, represented as specialized 

force elements. Muscle actuator files define muscle properties and geometry. Specific actuator 

properties dictate activation and contraction dynamics, fiber length, and geometry. Muscle 

actuators are connected to bones as discrete points with origins and insertions consistent with 

their anatomical structure (Pandy and Anderson, 2000). In special cases where muscles have 

broad origins or insertions, the muscle can be modelled using multiple muscles to better simulate 

effective force actions and moment arms. Muscle geometry is defined by the path associated 

with muscle action. One method of determining muscle geometry is with straight-line muscle 

paths and via points (Delp et al., 1990a; Hoy et al., 1990; Jensen and Davy, 1975). A centroid-

line method of determining geometry has also been proposed, which defines muscle path through 

the locus of cross-sectional muscle centroids (Jensen and Davy, 1975). This approach may better 

represent muscle action; however, the ability to repeatedly recreate centroid location across 

multiple subjects and positions is questionable.  

The fit of straight-line muscle paths can be amended for non-linear muscle actions 

through via points (Anderson and Pandy, 1999). Via points attach to bone, similar to the origin 

and insertion. The muscle would then run from the origin, through via points and into the 

insertion. An indefinite number of via points can be applied to sub-divide a muscle line into 

separate smaller linear paths. While each segment is linear, the summative effect of multiple 

segments can create a more curvilinear path. Further, via points can be activated and deactivated 
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as a function of joint position. The resulting application of muscle force provides a better 

approximation of muscle wrapping around bones and joints.  

Musculotendon Actuation. Musculotendon mechanical behavior can be modeled as a 

three element Hill type muscle in series with tendon (Zajac and Gottlieb, 1989). The force-

length-velocity relationship for muscles and the elastic properties of tendon are integrated using 

a lumped parameter model. A contractile element characterizes force length and force velocity 

characteristics of muscle, while series and parallel elastic elements represent passive and active 

stiffnesses, respectively (Zajac and Gordon, 1989; Zajac and Gottlieb, 1989).  

  Muscle force can be calculated using five muscle metrics: peak isometric muscle force, 

optimal muscle fiber length, pennation angle, tendon slack length, and maximum shortening 

velocity. First, peak isometric muscle force represents the largest amount of force a given muscle 

can produce without changing length. The measure is scaled with respect to PCSA to ensure 

small muscle forces are not tasked with supra-physiological forces (Brand et al., 1986; Delp et 

al., 1990b; Wickiewicz et al., 1983). Initially presented by Haxton (1944), PCSA describes 

overall muscle architecture and includes measures of muscle mass, pennation angle, fiber length 

and density (Wickiewicz et al., 1983). The second and third metrics, optimal muscle fiber length 

and pennation angle, are derived from muscle conditions when peak isometric force is exerted. 

Both measures are measured from cadaveric data where optimal fiber length is the measure of 

fiber length at peak isometric force and pennation angle is the orientation of the fibers in relation 

to axis of muscle shortening. The fourth metric, tendon slack length, is a measure of the visible 

tendon plus the aponeurosis. Inclusion of the aponeurosis makes it difficult to obtain direct 

measurements without compromising muscle function. When the tendon is displaced beyond 

slack length (Zajac and Gottlieb, 1989), elastic force is generated following a linear force curve 
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(Pandy et al., 1990). Using a linear force curve simplifies the amount of strain energy stored in 

the tendon; however, the resulting effect on actuator performance is relatively small. The non-

linear toe region of the force displacement graph occurs where forces are low. Then, as forces 

increase a linear approximation provides a good fit. Subtle changes in tendon slack length have a 

significant impact with respect to the joint angle where peak force occurs and the resulting 

magnitude of the force (Hoy et al., 1990; Zajac and Gottlieb, 1989). The ratio of optimal muscle-

fiber length to tendon slack length is a commonly used metric in predicting muscle coordination 

in simulations (Delp et al., 2007). The last metric, maximum shortening velocity, is commonly 

assumed as a constant and independent of the specific muscle at 10s-1 (Pandy et al., 1990). The 

muscle specific maximum shortening velocity can be represented as 

10 (
𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑚𝑢𝑠𝑐𝑙𝑒 𝑓𝑖𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ

𝑠
). The constant value for shortening velocity represents the 

summative result of slow, intermediate, and fast twitch muscle fiber actions (Zajac and Gottlieb, 

1989).   

 Musculotendon actuators are defined for each muscle acting within the model. The time 

rate of change for muscle force, for any given muscle, can be represented as: 

�̇�𝑀𝑇 = 𝑓(𝐹𝑀𝑇 , 𝑙𝑀𝑇 , 𝑣𝑀𝑇 , 𝑎𝑚); 𝑤ℎ𝑒𝑟𝑒 0 < 𝑎𝑚 < 1 

Hence, �̇�𝑀𝑇 is a function of musculotendon force (𝐹𝑀𝑇), musculotendon length (𝑙𝑀𝑇), 

musculotendon shortening velocity (𝑣𝑀𝑇), and activation (𝑎𝑚). The resultant muscle force is 

representative of active and passive components and related to a specific musculotendon length, 

velocity, and activation (Delp and Loan, 1995). 

Excitation-Contraction Coupling. Muscle activation is mediated by calcium 

concentrations in response to motor unit action potentials (Ebashi and Endo, 1968). The 

correlation between calcium dynamics and muscle excitation generates a continuum between 
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activated and relaxed muscle states, in which the muscle does not instantly become activated or 

deactivated and a delay exists between excitation and activation (Zajac and Gottlieb, 1989). A 

first order process using muscle activation and excitation can be used to model the delay. 

𝑎�̇� = (𝑢 − 𝑎𝑚) ∙ [
𝑢

𝜏𝑟𝑖𝑠𝑒
+

(𝑢+1)

𝜏𝑓𝑎𝑙𝑙
]; when 𝑢 > 𝑎𝑚 

𝑎�̇� =  
(𝑢−𝑎)

𝜏𝑓𝑎𝑙𝑙
; when 𝑢 < 𝑎𝑚 

In this representation, the time rate of change in muscle activation is only dependent on 

activation and excitation at a given time point. Excitation (u) is a measure of net neural drive and 

varies from fully deactivated (0) to fully activated (1). Previous studies have included two 

variables for excitation to capture recruitment and stimulation (Happee, 1994; Pandy and Zajac, 

1991; Raasch et al., 1997). In multi-joint simulations, incorporation of these quantities did not 

impact model outcome to the extent of time constant values (Zajac and Gottlieb, 1989). The time 

constants (𝜏) vary with respect to activation and deactivation (Raasch et al., 1997). When 

excitation is less than activation the muscle is relaxing, thus the time constant for contraction 

does not impact activation. Time constants for contraction vary from 12-20ms, while relaxation 

constants vary from 24-200ms (Zajac and Gottlieb, 1989).  

Estimation of Muscle Excitations. As discussed previously, the goal of a dynamic 

simulation, such as CMC, is to identify the set of muscle excitations capable of reproducing 

desired kinematics. The process begins by using the experimentally collected kinematic data 

(with or without RRA) to identify desired accelerations. The accelerations of the generalized 

coordinates can be found using 

�̈⃗� = 𝐴−1(�⃗�) ∙ {�⃗�(�⃗�) + 𝐶(�⃗�, �̇⃗�) + 𝑅(�⃗�) ∙ 𝑓𝑚 + �⃗⃗�(�⃗�, �̇⃗�)} 
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where �⃗�, �̇⃗�, �̈⃗� represent the generalized coordinates, velocities, and accelerations, 𝐴−1is the 

inverse of the system mass matrix, 𝑅 is the muscle moment arm matrix, 𝑓𝑚 is the vector of 

muscle forces, and  �⃗�, 𝐶, and �⃗⃗� are the vectors of generalized forces associated with gravity, 

Coriolis and centripetal forces, and environmental interactions respectively. 

Once desired accelerations are identified for the current time point, the acceleration, 

velocity, and position data are fed forwards to determine accelerations a short time later (e.g. 

0.01s later). Feedback gains are employed to modify the calculated acceleration to best fit the 

velocity and position data. Static optimization is then used to obtain muscle activations that 

ultimately recreate the calculated accelerations and inverse dynamics data. Using force length 

velocity properties and contraction dynamics, muscle forces can be approximated using 

activation. With the activations now known, the necessary muscle excitations for the future time 

point are solved for and implemented at the current time point, which allows for the 

incorporation of excitation-activation dynamics. In the final step, simulated excitations are fed 

into the forward dynamic model. At each time step, the state equations are integrated to output 

acceleration, activation, and contraction dynamics. The simulation progresses until the 

predetermined end state is reached. Simulated and experimental joint angles and ground reaction 

forces are compared using an RMS approach.  

OpenSim Gait2392 

 Several models of human motion are available within OpenSim. OpenSim is an open 

source, collaborative effort which allows the creation and visualization musculoskeletal 

movement while generating meaningful mechanical and physiological data outputs (Delp et al., 

2007). The program is an attempt to streamline musculoskeletal modeling and encourage 

simulation repeatability across institutions (Seth et al., 2011). However, generalized comparisons 
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of simulation data must be avoided due to the dependence on experimental data and the high 

vulnerability to measurement error due to collection equipment, methodologies, and pre-

processing (Reinbolt et al., 2011). 

Gait2392 is a three-dimensional, 23-dof model of the musculoskeletal system designed to 

analyze lower extremity mechanics within OpenSim. Darryl Thelen, Ajay Seth, Frank C. 

Anderson, and Scott L. Delp served as the primary architects. However, the model represents 

collaborative research efforts in defining bone, muscle, and joint geometry as well as inertial 

properties and actuator characteristics (Anderson and Pandy, 1999; Delp et al., 1990b; Hoy et al., 

1990; Inman, 1976; McConville et al., 1980; Nisell et al., 1986; Spector et al., 1980; Stredney, 

1982; Wickiewicz et al., 1983; Yamaguchi and Zajac, 1989). It is important the underlying 

equations, assumptions, simplifications, and sources of error within a model be understood when 

designing research studies and interpreting results. 

Kinematics 

 The kinematic definitions described within the following sections pertain to the unaltered 

Gait2392 model; specific parameters can be refined as warranted based on study design and 

research questions. The unscaled model in Gait2392 is 1.8 m tall with a body mass of 75.16 kg. 

Ten rigid segments (one pelvis, four segments for each limb) representing the lower extremity 

are set in motion by 92 actuators, representing 76 different muscles.  

Bone geometry. The lower extremity model is comprised of the pelvis, femur, patella, 

tibia, talus, calcaneus, and toes. Each bone has been recreated in three-dimensions to represent a 

scalable, generalized boney structure. Pelvis and thigh bones were reconstructed using polygon 

mesh to recreate slices within a plane. The recreated structure was then digitized for three-
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dimensional coordinates (Delp et al., 1990b). The  tibia, talus, calcaneus, and toe structures were 

defined using higher order computer fitting technique (Stredney, 1982, 1985).  

Muscle geometry. Muscles are modeled as muscle actuators. Each muscle actuator has a 

muscle path that dictates the direction of applied forces. The origin and insertion of each muscle 

are based on anatomical landmarks (Delp et al., 1990b). Muscles with broad insertions are 

divided into multiple muscle actuators that share an origin and have insertions that are in line 

with the true muscle. Muscle paths are modeled as close to anatomically correct as possible, 

which requires additional constraints beyond the direct path from origin to insertion. Special 

points called via points are utilized along the muscle path to account for bone wrapping with 

position changes and retinaculum movement constraints. Some lower extremity muscles are not 

included in the model due to difficulties in recreating realistic muscle paths and moment arms. A 

complete listing of the muscles included is provided in Appendix B.  

Segment geometry. The lower body rigid body segments in Gait2392 are the torso, pelvis, 

thigh, shank, foot, and toes. The foot is comprised of the talus and the calcaneus. Reference 

frames are fixed in each segment. The orientation of each segment’s reference frame is defined 

below (Delp et al., 1990b). 

1. The pelvic frame is located at the midpoint of the line connecting anterior 

superior iliac spines. 

2. The femoral frame is located at the center of the femoral head. 

3. The tibial frame is located at the midpoint between medial and lateral femoral 

condyles.  

4. The talar frame is located at the midpoint between apices of the medial and lateral 

malleoli. 
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5. The calcaneal frame is located at the most interior, lateral point on the posterior 

surface of the calcaneus. 

6. The toe frame is located at the base of the fifth metatarsal. 

Joint geometry. Joints connect adjacent segments and are defined as the hip, knee, ankle, 

subtalar, and metatarsophalangeal joints. Joint motions are prescribed as relative motion between 

segments. For each joint, parent and child segments are defined. Translations and rotations are 

defined for the child segment in reference to the parent.  

Each joint is defined with motions representative of joint mechanics. The hip joint is 

straightforward and can be modeled as a ball and socket joint. The knee joint is a more 

challenging system, comprised of the femur, patella, and tibia. Yamaguchi and Zajac (1989) 

simplified knee motion to one dof which accounts for tibiofemoral kinematics while still 

allowing the mechanical advantage generated by the patella (Nisell et al., 1986). The 

transformations between reference planes of the three bones can then be expressed as a function 

of knee angle (Delp et al., 1990b). The ankle, subtalar, and metatarsophalangeal joints are 

modeled as frictionless revolute joints (Delp et al., 1990b). Orientation and location of joint axes 

for the ankle was described by Inman (1976). In order to maintain articulation, the 

metatarsophalangeal joint is oriented 8° on a right-handed axis.  

Dynamics 

 Movement of the musculoskeletal model described above is directly related to the models 

inertial properties and the muscle actuators that generate motion. Inertial properties of a segment 

quantify that segments resistance to change in state of motion, with respect to mass density and 

velocity. These properties shape how each segment will move when toque is applied.  
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 Inertial properties. Mass distribution characteristics for five participants were reported by 

Anderson and Pandy (1999) using the detailed methodology of McConville et al. (1980). The 

segmental mass and inertial properties used in Gait2392 were based on this data (scaled by 

1.05626), with the exception of the hindfeet and toes. For these segments, a size ten shoe was 

used to estimate the total segmental volume. Assuming density was constant, segment masses 

were estimated as density integrated over volume. Segmental lengths were obtained from (Delp 

et al., 1990b). The inertial parameters for each segment are provided in Appendix C. 

 Muscle actuators. The musculoskeletal geometry and parameters of 43 actuators in each 

leg were taken from Delp et al. (1990b) with an additional six actuators to account for pelvic-

HAT kinematics from Anderson and Pandy (2001a). A scaling factor has been applied to the 

actuators taken from Delp et al. (1990b) to account for differences in modeled strength and 

experimentally measured joint-torque angle relationships. Muscle strengths within the model are 

derived from both Delp et al. (1990b) and Anderson and Pandy (2001a), depending on which 

data more accurately represented physiologically measured values. Musculotendon properties are 

quantified comparably to Hoy et al. (1990). PCSA was determined while incorporating findings 

from Spector et al. (1980), Friederich and Brand (1990), and Wickiewicz et al. (1983). Muscle 

optimal fiber length and pennation angle were taken from Wickiewicz et al. (1983) when 

possible. The fiber length was scaled as a ratio of sarcomere length at peak muscle force (2.8-

µm) versus measured sarcomere length (2.2-µm) (Wickiewicz et al., 1983). For unavailable 

muscles, muscle optimal fiber length and pennation angle were taken in the anatomical position 

from Friederich and Brand (1990).  

 Performing simulations utilizing a well-developed, yet not overly complex, model such 

as Gait2392 allow for decreased computation time while providing a thorough examination of 
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hip joint forces. The kinematic and kinetic data needed for model inputs can be collected non-

invasively, with limited time commitment, as well as, relatively low financial cost. The 

combined methodologies allow for the collection and computation of hip joint forces from a 

large participant sample given limited resources.   
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CHAPTER 3: METHODS 

 The overall objective for this dissertation was to examine hip mechanics in asymptomatic 

individuals during landing maneuvers. To this end, there were three separate aims: (1) identify 

bilateral and sex differences in HJF, GRF, and lower extremity kinematics during a drop landing; 

(2) determine if landing task and sex influence HJF, GRF, and lower extremity kinematics; and 

(3) examine the relationships between drop landing height and sex with HJF, GRF, and lower 

extremity kinematics. 

Participants 

For this study, a total of 83 participants were recruited from a medium sized university 

and the surrounding communities. Inclusion criterion stated all participants were between 18 and 

30 years of age and physically active. Physically active was defined as performing at least 30 

minutes of exercise 3 times a week. At least one of these activity sessions was required to consist 

of repetitive jumping and landing, such as basketball or volleyball. Participants from both sexes 

and all ethnicities were included. The screening process required each subject to complete a 

general medical history form. Scoring on these questionnaires helped identify members of each 

group and describe our study sample. Individuals who reported a lower extremity injury in the 

past six months, any history of lower extremity surgery, or a health condition which may affect 

their ability to land from a jump were excluded from participation. Participants were free of pain 

on testing days.  

Instrumentation and Equipment  

Testing was performed in the Neuromechanics Lab (ODU, Norfolk, VA, USA). Spandex 

shorts and lab standard tennis shoes (Air Max Glide, Nike, Beaverton, OR, USA) were worn for 

testing sessions. Three-dimensional (3-D) marker coordinate data was collected at 200-Hz using 
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an eight-camera Vicon MX motion analysis system (Vicon, Centennial, CO, USA). Ground 

reaction forces (GRF) were measured synchronously at 2000-Hz using two flush mounted force 

plates (Bertec, Columbus, OH, USA). 3-D lower extremity kinematics and kinetics were 

calculated through Visual3D (v4.95, C-Motion Inc., Rockville, MD). OpenSim (v3.1, 

http://simtk.org) was used to create a 3-D model for landing and land-and-cut simulations (Delp 

et al., 2007). Further data reduction and batch processing was performed using MatLab 

(MathWorks, Natick, MA, USA). Statistical analyses were performed using custom MATLAB 

code and SPSS (SPSS Inc., Chicago, IL, USA). 

Experimental Protocol 

Upon arrival for data collection, all participants received a full explanation of the study 

purpose and procedures. Prior to data collection, participants were informed of study procedures 

and provided the written informed consent in accordance with university institutional review 

board policies. Once consent was given, a health history questionnaire was completed. 

Participants were asked to change into snug fitting spandex shorts and lab standard tennis shoes. 

Height and weight were documented. 

Prior to data collection, the motion capture system and force plates were calibrated 

according to manufacturer’s specifications. The force plates were manually zeroed. The motion 

capture system was calibrated using a standard reference wand with retro-reflective markers in 

precise locations. To define the data collection volume, the wand was waved in 3-D throughout 

the desired movement space. Each marker was identified within the program and tracked for the 

duration of the system calibration trial. 

Single reflective markers were placed on the skin over specific anatomical landmarks 

(Weinhandl et al., 2010) with adhesive tape for calibration purposes only. Calibration-only 
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markers were placed bilaterally on the acromioclavicular joints, iliac crests, greater trochanters, 

medial and lateral knee epicondyles, medial and lateral malleoli, first metatarsal heads, and fifth 

metatarsal heads. Marker tracking in movement trials utilized eight cluster plates positioned on 

the upper torso and pelvis, as well as, bilateral thighs, shanks, and feet. For these tracking 

clusters, four retro-reflective markers were attached to semi-rigid, molded Orthoplast (Johnson & 

Johnson, Raynham, MA, USA). Thigh and shank clusters were secured using a cohesive wrap 

and McDavid groin wraps (McDavid, Woodridge, IL, USA). Foot clusters were affixed to lab 

shoes using industrial strength Velcro. Pelvis and trunk clusters were secured with custom 

neoprene straps.  

When all markers were placed on the participant, a three-second static trial was collected. 

For this trial, the subject was asked to stand motionless with arms crossed high over the chest 

and each foot on a separate force plate. Calibration-only markers were removed and technical 

markers remained. 

Participants completed five successful unilateral landings and land-and-cut maneuvers on 

their right and left limbs from three heights. All participants completed the landing-only task and 

42 participants completed landing-only and land-and-cut tasks. Testing heights for drop landings 

were 30-cm, 40-cm, and 50-cm. Land-and-cut tasks were performed from 40-cm. Selected 

heights are absolute and commonly used in drop landing research (Bruton et al., 2013). The 

landing task required participants to begin on top of a box with prescribed height standing on the 

contralateral limb desired for landing. The intended landing limb was lifted with hip and knee 

flexed approximately 90°. When ready, the participant stepped from the platform and landed on 

the force plate. The land-and-cut task required participants to drop from a prescribed height, land 

on the designated limb, and immediately cut to the contralateral side along a 1-m wide path 
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oriented at 45°. The 1-m wide path ensured participants maintained a cutting angle of 40°–50°. 

For all landing tasks, participants were instructed to keep their arms folded across their chest 

throughout the maneuver. A successful landing trial was defined as participants’ ability to (1) 

perform the task without stepping down or jumping up from the box, (2) land with their entire 

foot on the force plate, (3) land without hopping or jumping (4) land without the contralateral 

limb contacting the ground, and (5) maintain crossed arms. A successful land-and-cut trial was 

defined as participants’ ability to (1) perform the task without stepping down or jumping up from 

the box, (2) land with their entire foot on the force plate, (3) execute the side cut without 

hesitation while staying within the boundaries, and (4) maintaining crossed arms. No instructions 

were provided on landing technique or style. Landing height order and limb side were 

counterbalanced across participants. Participants were allowed to perform practice trials before 

each condition. Data collection for each participant lasted approximately 30 minutes.  

Data Analysis 

 Data reduction was implemented through Visual3D (v4.95, C-Motion Inc., Rockville, 

MD). Raw 3-D marker coordinate and GRF data were low-pass filtered using a 4th-order, 

Butterworth filter with a cutoff frequency of 10-Hz (Kristianslund et al., 2012). The landing for 

all tasks were defined as initial contact (IC) with the force plate through maximal knee flexion 

(MF). IC was identified as the first-time point GRF surpasses 20-N. MF was defined as the time 

point when knee flexion reaches the first global minimum (i.e. the minimum of knee extension). 

Data was time normalized to 101 data points to define 100% of the landing phase. Comparisons 

were made at each percent of motion.  

Using Visual3D, a kinematic model comprised of eight skeletal segments (trunk, pelvis, 

and bilateral thighs, shanks, and feet) was created from the standing calibration trial (Weinhandl 
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et al., 2010). An unweighted least squares approach was used (Spoor and Veldpaus, 1980). The 

hip joint centers were defined as 25% of the distance from the ipsilateral to the contralateral 

greater trochanter markers (Bennett et al., 2016; Weinhandl et al., 2010). Joint centers for the 

knees and ankles were defined as the midpoints between medial and lateral epicondyles (Grood 

and Suntay, 1983), as well as, medial and lateral malleoli markers (Wu et al., 2002), respectively. 

3-D bilateral ankle, knee, and hip angles were calculated using a joint coordinate system 

approach (Grood and Suntay, 1983). 3-D joint kinetics were calculated using a Newton-Euler 

approach (Bresler and Frankel, 1950) and reported in the distal segment reference frame. 

Dempster (1955) was used for body segment parameter data. 

OpenSim v3.3 (SimTK, 2016) was used to simulate landing from IC to MF. For this 

study, a 19-dof, 8 segment generic musculoskeletal model was scaled for each subject using 

individual anthropometric data from the calibration trial (Delp et al., 1990b). For simplicity, the 

head, arms, and torso were combined into a rigid body segment referred to as HAT. The 

remaining seven segments were the pelvis, bilateral thighs, shanks, and feet. The pelvis was the 

principal segment with position and orientation identified by six generalized coordinates. 

Remaining segments branched from the pelvis in an open-chain system.  

Pelvic translation and rotations were modeled with 6-dof. Lumbar and hip motions were 

modeled as 3-dof ball and socket joints (Anderson and Pandy, 1999), while knee and ankle 

motions were modeled as a one dof revolute joints (Delp et al., 1990b). Tibiofemoral translation 

was constrained as a function of knee flexion (Nisell et al., 1986; Yamaguchi and Zajac, 1989). 

Ninety-two Hill-type contractile elements in series with tendon were used to actuate the model; 

43 for each leg and 6 for the torso (Anderson and Pandy, 1999; Delp et al., 1990b; Zajac and 

Gordon, 1989).  



67 

 

 

The inverse kinematics problem was solved at each frame to compute model joint angles. 

This generated model coordinate values to match experimental data using a least squares 

approach while accounting for constraint weights (Delp et al., 2007). Inverse dynamics were 

performed using calculated joint angles and measured GRF data. The results provided an 

estimation of forces and moments that caused the motion to occur. The net reaction forces and 

moments for each joint which maintain equilibrium were determined (Kuo, 1998).  

Muscle forces were estimated using static optimization at each time step using inverse 

dynamics outputs, external load data, scaled model and optimization criteria. Output forces and 

moments were filtered at 6-Hz. Residual actuators were added to the top most segment, the 

pelvis, for 3-D dynamic inconsistencies in forces and moments. Optimization criteria was the 

sum of muscle stress squared (Anderson and Pandy, 2001b; Crowninshield and Brand, 1981a; 

Kaufman et al., 1991a). RMS reserve joint torques were verified to be below 5% of net joint 

moments (Hicks et al., 2015). Sample trials were compared with published modeling data in 

landings (Hicks et al., 2015). 

Hip joint forces (HJF) were calculated using the JointReaction analysis algorithm within 

OpenSim (SimTK, 2016). HJF represents the intersegmental joint reaction forces between 

adjacent segments, acting through the center of the joint. The internal loads represent the 

summative result of all loads applied to the body. HJF were reported as the pelvis on the femur 

in the femoral reference frame and acting through the joint center (Steele et al., 2012).  

Discrete kinetic variables were peak GRF (pGRF), peak HJF (pHJF), and time of pHJF. 

Resultant values of GRF and HJF were calculated using their 3-D components and normalized 

by body weight. GRF and HJF discussed refer to resultant measures except when explicitly 

stated. pGRF and pHJF were identified as the first global maximum for each respective measure. 
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Time to pGRF and pHJF were determined from IC. Average loading rates for pGRF and pHJF 

were calculated as the respective maximal force value divided by time to peak force. Discrete 

kinematic variables were 3-D hip, knee flexion, and ankle dorsi/plantar-flexion measures at IC 

and pGRF. ROMs were calculated for 3-D hip, knee flexion, and ankle dorsi/plantar-flexion for 

the impact phase (ROMI) and landing phase (ROML). HJF, GRF, and 3-D hip, knee flexion, and 

ankle dorsi/plantar-flexion angles were exported as continuous data for each trial. Subject 

averages were computed at each percentage of landing phase. Subject averages were averaged 

again to generate group means for sex and condition (e.g. limb side) at each percentage of the 

landing phase. 

Statistical Analysis 

Statistical analyses were performed using custom MATLAB code (MathWorks, Natick, 

MA, USA) and SPSS (SPSS Inc., Chicago, IL, USA). For all aims, participant demographics are 

presented with mean and standard deviation for weight and height. All discrete variables were 

checked for outliers, normality, and homogeneity prior to statistical analyses. Effect sizes were 

quantified for each study using eta squared (η2) and calculated as the sum of squares for each 

factor divided by the total sum of squares for each factor, interaction, and error terms. 

Aim 1 

The first aim of this dissertation was to examine sex and bilateral differences in hip 

mechanics during a drop landing. Differences between sex and limb side for HJF, GRF, and 3-D 

hip, knee flexion, and ankle dorsi/plantar-flexion measures were assessed using mean ensemble 

curve analysis with corresponding two standard deviation intervals for each percentage of the 

landing. Statistically different areas of the landing phase were identified where the two standard 

deviation intervals of the mean ensemble curves between sexes did not overlap. Differences in 
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pHJF, pGRF, timing of pGRF and pHJF, loading rate of pHJF and pGRF, as well as, 3-D hip, 

knee, and ankle ROMI and ROML between sexes and limb sides were assessed via separate 2x2 

(sex x limb side) ANOVAs (p<0.05). When significant differences were present in ROM, the 

maximum and minimum joint angles for the designated measure were analyzed using two-tailed 

t-tests. Paired t-tests were used for limb comparisons while unpaired t-tests were used for sex 

comparisons. 

Aim 2 

The second aim was to investigate the effects of sex and a 40-cm drop landing maneuver 

(landing-only versus land-and-cut) on hip mechanics. If significant bilateral differences were 

reported in Aim 1, limb side would have been examined. Since no bilateral differences were 

indicated only sex and landing tasks were included as independent variables. Differences 

between sex and landing maneuver HJF, GRF, as well as, 3-D hip, knee flexion, and ankle 

dorsi/plantar-flexion kinematics were assessed using mean ensemble curve analysis with 

corresponding two standard deviation intervals for each percentage of the landing. Statistically 

different areas of the landing phase were identified where the two standard deviation intervals of 

the mean ensemble curves between landing maneuvers or sexes did not overlap. Differences in 

pHJF, pGRF, timing of pGRF and pHJF, loading rate of pHJF and pGRF, 3-D hip, knee flexion, 

and ankle dorsi/plantar-flexion measures at IC, as well as, ROMI and ROML, between sexes and 

landing tasks were assessed via separate 2 x 2 (sex x landing tasks) ANOVAs (p<0.05).  

Aim 3 

The third aim was to examine the effects of sex and landing height (30-cm versus 50-cm) 

on hip mechanics during landing. If significant bilateral differences were reported in Aim 1, limb 

side would have been examined. Since no bilateral differences were indicated only sex and 
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landing height were included as independent variables. Differences between heights and sexes 

for HJF, GRF, and 3-D hip, knee flexion, and ankle dorsi/plantar-flexion kinematics were 

assessed using mean ensemble curve analysis with corresponding two standard deviation 

intervals for each percentage of the landing. Statistically different areas of the landing phase 

were identified where the two standard deviation intervals of the mean ensemble curves between 

landing heights did not overlap. Differences in pHJF, pGRF, timing of pGRF and pHJF, loading 

rate of pHJF and pGRF, 3-D hip, knee flexion, and ankle dorsi/plantar-flexion measures at IC, as 

well as, ROML and ROMI, between sexes and conditions were assessed via separate 2 x 2 (sex x 

landing height) ANOVAs (p<0.05). 

  



71 

 

 

CHAPTER 4: HIP MECHANICS DURING UNILATERAL DROP LANDINGS 

Introduction 

Groin injuries have traditionally encompassed a broad spectrum of injuries to the hip and 

groin area (Griffin et al., 2016; Weir, 2013). Over the past decade, increasing awareness of hip 

specific conditions, such as femoroacetabular impingement (FAI), has facilitated enhanced 

diagnostic tools and highlighted a paucity in our understanding of young adult hip mechanics 

(Orchard, 2015). FAI is the pathomechanical process created by anatomical abnormalities of the 

proximal femur and/or the acetabulum causing mechanical abutment within the hip (Ganz et al., 

2003; Ito et al., 2001; Leunig et al., 2009; Packer and Safran, 2015). Increasing evidentiary 

trends indicate FAI may be a causal factor in the development of secondary osteoarthritis in 

young, active adults (Ganz et al., 2003; Tannast et al., 2007b). As a result, FAI is postulated to 

be a significant and growing cause of disability in otherwise healthy active adolescents and 

young adults (Ganz et al., 2003). In a cohort study of FAI patients younger than 50-yrs, hip 

arthroscopy treatment costs were approximately $23,000 compared to over $99,000 for non-

operative treatments. In patients receiving surgical treatment, a 2.3 increase in quality of life 

years was also reported over a 10-year period. FAI may present a greater economic disability 

than both shoulder arthroscopy and ACL tears (Mather et al., 2016). 

Increased forces between the femur and acetabulum are commonly proposed as a 

mechanism for damage in traditional hip osteoarthritis; however, it is unclear if FAI mechanics 

are related to increased hip force magnitudes, directions, or areas of force application (Ganz et 

al., 2003; Ito et al., 2001). In cadaveric studies, incremental landing loads applied to knee joints 

yielded tibiofemoral cartilage deformation and degeneration (Yeow et al., 2009). Knee and hip 

OA present with similar biomechanical pathogeneses ultimately due to an inability of joint 
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structures to maintain healthy tissue (Brandt et al., 2008). The directions, magnitudes, and 

frequencies of these forces determine the mechanobiology of the articular cartilage (Carter et al., 

2004) and result in cartilage maintenance, growth, or degeneration. The mechanical joint 

response is further impacted by soft cartilaginous viscoelasticity and interstitial fluid pressure (Li 

et al., 2005). Given the viscoelastic properties of bone and cartilage, loading rates incurred 

during landings are an important descriptor of the overall joint loading.  

During a jump landing, a large amount of force is developed while simultaneously 

incurring large ranges of motion (ROM) in the hip, knee, and ankle (Weinhandl et al., 2015). 

Subtle variations in landing technique can elicit a wide range of kinematic and kinetic outcomes. 

Sex and bilateral differences in landing mechanics have yielded varied results that are strongly 

related to the specific task employed (Brown et al., 2009; Weinhandl et al., 2015). With respect 

to sex differences, the reoccurring themes amongst study findings are related to frontal plane 

motion at the hip and knee positioning at initial contact, maximum knee flexion, and ROM. 

Females have been proposed to land with a stiffer landing configuration compared to males 

(Decker et al., 2003). In addition, females have been associated with significantly higher vertical 

ground reaction forces (GRF) during landings (Pappas et al., 2007a; Van der Harst et al., 2007b). 

Inter-limb investigations have not yielded clear, consistent findings pertaining to mechanical 

differences by limb side  (Brown et al., 2009; Weinhandl et al., 2016), potentially indicating sex 

differences in landing are bilateral.  

With recent attention focused on hip pathologies in young athletes, a better understanding 

of hip mechanics during landing is warranted. Unfortunately, hip contact forces cannot be 

directly measured via non-invasive measures. These forces can, however, be estimated through 

musculoskeletal modeling using measured kinematics and kinetics (Delp et al., 2007). These 



73 

 

 

methods have been successfully used to estimate hip contact forces in normal and pathologic 

populations (Cleather et al., 2013; Modenese et al., 2011b). A comprehensive understanding of 

hip joint loading during landing in a asymptomatic population would provide a foundation to 

begin examining pathological hips. The purpose of this study was to explore what, if any, 

relationships exist between sex and limb side hip mechanics during unilateral drop landings.  

Methods 

Eighty-three asymptomatic, physically active participants between the ages of 18 and 30 

volunteered for study participation. Upon arrival, all participants received a full explanation of 

study purpose and procedures. Prior to data collection, participants provided written informed 

consent in accordance with university institutional review board policies. Participants were 

recruited from a medium sized university and the surrounding communities. Physically active 

was defined as performing at least 30 minutes of exercise three or more times a week. At least 

one of these activity sessions consisted of repetitive jumping and landing, such as in basketball 

or volleyball. Participants completed a general medical history questionnaire that was used to 

identify members of each group and describe the study sample. Individuals who reported a lower 

extremity injury in the past six months, any history of lower extremity surgery, or a health 

condition which may have affected their ability to land from a jump were excluded from 

participation. Spandex shorts and lab standard tennis shoes (Air Max Glide, Nike, Beaverton, 

OR, USA) were provided for testing sessions. 

Three-dimensional (3-D) marker coordinate data were collected at 200-Hz using an eight-

camera Vicon MX motion analysis system (Vicon, Centennial, CO, USA). GRFs were measured 

synchronously at 2000-Hz using two flush mounted force plates (Bertec, Columbus, OH, USA). 

Single reflective markers were placed bilaterally on the acromioclavicular joints, iliac crests, 
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greater trochanters, medial and lateral knee epicondyles, medial and lateral malleoli, first 

metatarsal heads, and fifth metatarsal heads. (Weinhandl et al., 2010) Marker tracking in 

movement trials utilized rigid cluster plates with four retro-reflective markers positioned on the 

upper torso and pelvis, as well as, bilateral thighs, shanks, and feet. A static calibration trial was 

collected with all markers in place. For individual participant calibration, the participant stood 

with arms crossed high over the chest and each foot on a separate force plate. Calibration-only 

markers were then removed, leaving the cluster markers in place. 

Participants then completed three successful unilateral drop landings on their right and 

left limbs from 40-cm. The landing task required participants to begin on top of a 40-cm box 

standing on the contralateral limb desired for landing (i.e. standing on the left leg for a right leg 

landing). In the starting position, the intended landing limb was raised with hip and knees flexed 

approximately 90°. When ready, the participant stepped from the platform and performed a one-

footed landing on the force plate. Participants were instructed to keep their arms folded across 

the chest throughout the landing. A successful landing trial was defined as participants’ ability to 

(1) perform the task without stepping down or jumping up from the box, (2) land with their entire 

foot on the force plate, (3) land without hopping or jumping, (4) land without the contralateral 

limb contacting the ground, and (5) maintain crossed arms. No additional instructions were 

provided on landing technique or style. Landing limb side order was counterbalanced. Practice 

trials were allowed before data collection.  

  Data reduction was implemented through Visual3D (v4.95, C-Motion Inc., Rockville, 

MD). The landing phase was defined as initial contact (IC) with the force plate through maximal 

knee flexion (MF). IC was identified as the first-time point vertical GRF exceeded 20N. MF was 

defined as the time point when knee flexion reached a global maximum. Continuous data was 
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time normalized to 100% of the landing phase for comparison at each percent of motion from IC 

to MF. The impact phase was defined from IC through the first peak in resultant GRF. Raw 3-D 

marker coordinate and GRF data were low-pass filtered using a 4th-order, Butterworth filter with 

a cutoff frequency of 10-Hz (Kristianslund et al., 2012).  

Using Visual3D, a kinematic model comprised of eight skeletal segments (trunk, pelvis, 

and bilateral thighs, shanks, and feet) was created from the standing calibration trial (Weinhandl 

et al., 2010) using an unweighted least squares approach (Spoor and Veldpaus, 1980). Hip joint 

centers were defined as 25% of the distance from ipsilateral to contralateral greater trochanter 

markers (Bennett et al., 2016; Weinhandl et al., 2010). Joint centers for the knees and ankles 

were defined as the midpoints between medial and lateral epicondyles (Grood and Suntay, 1983) 

and malleoli markers (Wu et al., 2002), respectively. Visual3D was used to perform inverse 

kinematics on marker trajectories and anthropometrics to fit the Gait2392 model. Gait2392 is a 

model composed of 8-segments, 19 degrees of freedom (dof), and 92 Hill-type muscle actuators 

(Delp et al., 1990a). The eight segments and respective dof are: head-arms-trunk segment (3 

rotations), pelvis (3 translations and 3 rotations), the hips (3 rotations), and the knees and ankles 

(1 rotation each). 

The inverse kinematics problem was solved at each frame to compute model joint angles. 

This generated model coordinate values that closely matched experimental data using a least 

squares approach while accounting for constraint weights (Delp et al., 2007). Inverse dynamics 

analysis was performed using calculated joint angles and measured GRF data. The net reaction 

forces and moments for each joint to maintain equilibrium were determined (Kuo, 1998). Muscle 

forces were estimated using static optimization at each time step using inverse dynamics outputs, 

external load data, scaled model and optimization criteria. Output forces and moments were 
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filtered at 10-Hz (Kristianslund et al., 2012). Residual actuators were added to the principal 

segment, the pelvis, for 3-D dynamic inconsistencies in forces and moments. The sum of muscle 

stress squared was used for optimization criteria (Anderson and Pandy, 2001b; Crowninshield 

and Brand, 1981a; Kaufman et al., 1991a). RMS reserve joint torques were verified to be below 

5% of net joint moments (Hicks et al., 2015). The hip joint forces (HJF) were calculated using 

the joint reaction analysis algorithm within OpenSim. The HJFs represent the intersegmental 

joint reaction forces between femur and pelvis segments, acting through the center of the hip 

joint. The HJFs are expressed as the pelvis on the femur in the femoral reference frame (Steele et 

al., 2012). Timing of peak force represents time from IC. Due to the nature of the hip joint, 

resultant forces were utilized to capture overall hip mechanics. Resultant GRF and HJF were 

calculated from force components and normalized by body weight. All GRF and HJF discussed 

henceforth represent resultant measures except when specified. Loading rates for HJF and GRF 

were calculated as the respective peak resultant force measure divided by the time from IC to 

peak resultant force measure. 

Statistical analyses were performed using custom MATLAB code (MathWorks, Natick, 

MA, USA) and SPSS (SPSS Inc., Chicago, IL, USA). Discrete kinematic variables are 3-D hip, 

knee flexion, and ankle dorsi/plantar-flexion ROM during the impact (ROMI) and landing 

(ROML) phases. Discrete kinetic variables are peak GRF (pGRF), pGRF timing, peak HJF 

(pHJF), pHJF timing, GRF loading rate, and HJF loading rate. The HJFs, GRFs, and 3-D hip 

angles were exported as continuous data for each trial and averaged for each subject and limb 

side. All discrete variables were checked for normality and homogeneity prior to statistical 

analyses. Separate 2x2 (limb x sex) ANOVAs were used to assess differences between each 

discrete variable with respect to sex and limb side (p<0.05). Effect size was quantified using eta 
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squared (η2) and calculated as the sum of squares for each factor divided by the total sum of 

squares for sex, limb side, sex-limb side interaction, and error terms. When significant 

differences were present in ROM, the maximum and minimum joint angles for the designated 

joint angle were analyzed using unpaired t-tests (p<0.05). Differences between sexes for 

continuous HJF, GRF, and 3-D hip kinematics were assessed using mean ensemble curve 

analysis with corresponding two standard deviation intervals for each percentage of the landing. 

Statistically different areas of the landing phase were identified where the two standard deviation 

intervals of the mean ensemble curves between sexes and sides did not overlap.  

Results 

Three participants’ data was not included in analysis. One participant was excluded due 

to errors in data collection. The last two female participants to undergo data collection were 

excluded to maintain balanced sex groups. Forty females (height = 1.64 ± 0.06-m, mass = 61.19 

± 8.66-kg) and 40 males (height = 1.79 ± 0.08-m, mass = 79.78 ± 13.53-kg) were used for data 

analysis. Five trials were collected for each condition, however only the first three successful 

trials were used for analysis.  

Group ensemble curves for GRF and HJF are provided in Figures 1 and 2. Group mean 

ensemble curves for joint angles are provided in Figures 3 and 4. There were no significant 

differences in continuous GRF, HJF, 3-D hip, knee flexion, or ankle dorsi/plantar-flexion 

measures between sexes or limb sides at any percentage of normalized landing phase. The effects 

of sex and limb on the kinetic and kinematic discrete variables are provided in Table 1. Across 

all variables examined, there were no significant effects for limb side or interaction effects 

between sex and limb. 
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Significant main effects for sex were identified for pGRF, ROMI hip flexion, ROMI hip 

adduction, ROMI knee angle, ROML hip adduction, and ROML hip rotation. No other significant 

main effects were reported for sex. Females performed unilateral landings with 0.17 BW higher 

pGRF than males (F1,156 = 6.650, p = 0.011, η2 = 0.041). For ROMI, females displayed 2.0° 

greater hip flexion ROM (F1,156 = 12.289, p = 0.001, η2 = 0.073), 1.5° greater hip adduction 

ROM (F1,156 = 12.428, p < 0.001, η2 = 0.111), and 2.7° more knee flexion ROM (F1,156 = 17.897, 

p < 0.001, η2 = 0.100). Females utilized 4.3° more hip adduction ROML (F1,156 = 29.455, p < 

0.001, η2 = 0.159) and 1.8° less hip rotation ROML (F1,156 = 6.534, p = 0.012, η2 = 0.040).  

Independent t-tests were used to examine sex differences in pooled limb data for 

maximum and minimum joint angles where ROMs indicated main sex effects. For ROMI, males 

incurred greater maximum hip adduction (-15.6°± 7.3° versus -12.8°± 7.2°) and knee flexion (-

15.5°± 5.4° versus -13.7°± 4.6°), and reduced maximum hip flexion (14.9°±13.9° versus 

20.1°±12.5°) compared to females (p < 0.050). When examining ROML, males incurred greater 

maximum hip adduction (-6.7°±6.8° versus -1.2°±7.8°) and minimum hip rotation (-7.8°± 6.7° 

versus -5.4°± 5.5°) compared to females (p < 0.050).  
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Table 1. 

Group means ± STD for study one discrete variables. 

  

Males Females Right Left 

Peak Force (BW)     

pGRF# 3.47 ± 0.40 3.64 ± 0.41 3.57 ± 0.42 3.54 ± 0.40 

pHJF# 9.36 ± 2.18 9.86 ± 1.61 9.57 ± 1.74 9.64 ± 2.11 

Loading Rate (BW/s)     

pGRF  58.85 ± 11.17 61.44 ± 10.85 61.39 ± 11.57 58.90 ± 10.43 

pHJF 136.26 ± 65.09 135.95 ± 55.69 133.58 ± 61.50 134.22 ± 0.80 

Time to Peak Force (ms)    

pGRF 60.42 ± 7.90 60.60 ± 7.63 59.71 ± 8.41 61.31 ± 6.97 

pHJF 66.60 ± 30.38 77.29 ± 40.19 70.65 ± 33.19 73.25 ± 38.62 

ROMI (°)     

Hip Flexion# 6.80 ± 2.99 8.79 ± 4.03 7.86 ± 3.88 7.73 ± 3.48 

Hip Adduction# 4.51 ± 1.88 5.96 ± 2.24 5.28 ± 2.26 5.19 ± 2.13 

Hip Rotation 6.27 ± 3.14 5.67 ± 2.80 5.96 ± 2.93 5.98 ± 3.05 

Knee Flexion# 20.68 ± 3.94 23.33 ± 4.06 21.48 ± 4.18 22.53 ± 4.20 

Ankle Dorsiflexion 33.02 ± 9.14 34.17 ± 8.20 32.55 ± 9.07 34.64 ± 8.17 

ROML (°)     

Hip Flexion 16.52 ± 8.28 19.15 ± 9.61 18.07 ± 9.17 17.61 ± 8.95 

Hip Adduction# 13.39 ± 4.63 17.68 ± 5.29 15.68 ± 5.68 15.39 ± 5.14 

Hip Rotation# 10.67 ± 5.02 8.90 ± 3.56 9.68 ± 4.57 9.90 ± 4.30 

Knee Flexion 48.12 ± 9.86 49.05 ± 8.14 48.81 ± 8.85 48.36 ± 9.24 

Ankle Dorsiflexion 44.55 ± 10.45 45.51 ± 7.81 44.23 ± 9.72 45.83 ± 8.65 
# Significant main effect for sex (p < 0.05) 

  



80 

 

 

 

Figure 1. Study one continuous normalized group mean GRF and HJF (bold) ± two STD for limb 

side. 

 

 

Figure 2. Study one continuous normalized group mean GRF and HJF (bold) ± two STD for sex. 
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Figure 3. Study one continuous normalized group mean joint angles ± two STD for limb side. 
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Figure 4. Study one continuous normalized group mean joint angles ± two STD for sex. 
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Discussion 

The number of patients diagnosed with hip pathologies has risen significantly in the past 

decade (Griffin et al., 2016). Before we can further investigate hip pathomechanics, an 

understanding of hip mechanics in asymptomatic, active, young adults is needed. The 

exploratory nature of this study was designed to broadly examine the relationships associated 

with landing mechanics, specifically at the hip. Using a relatively large-scale modeling sample 

size, sex and bilateral differences in GRF, HJF, peak force loading rate, peak force timing, and 

lower extremity kinematics during unilateral drop landings were assessed. Examination of 

continuous resultant GRF, resultant HJF, 3-D hip, knee flexion, and ankle plantar/dorsi-flexion 

measures did not reveal significant differences over a normalized landing phase. GRF tracings of 

the landing phase demonstrated a similar unimodal force time curve reported in vertical GRF 

landing studies (Schmitz et al., 2007). Similar HJF loading characteristics are evident during the 

impact phase, however the HJF curve presents a slight secondary peak between the end of the 

impact phase and peak knee flexion. Limited studies have assessed hip forces during dynamic 

activities, such as the single leg landing task used in the current study. The HJF measures 

reported in this study are higher than those observed in in vivo studies (Bergmann et al., 2001; 

Bergmann et al., 1993) and comparable with landing studies in silico given the drop height 

utilized (Cleather et al., 2013). 

Examination of the discrete measures teased apart differences corresponding to specific 

time points and ranges. Our results demonstrated females experience greater resultant pGRF 

during unilateral landing, without a corresponding sex difference in resultant pHJF. The 

significantly higher pGRF reported in female landings is consistent with previous findings for 

vertical and posterior GRFs (Decker et al., 2003; Kernozek et al., 2005; Pappas et al., 2007a; 
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Salci et al., 2004; Schmitz et al., 2007; Weinhandl et al., 2015). Loading rates and timing from 

IC to pGRF and pHJF also failed to demonstrate sex effects.  

ROM was assessed during impact and landing phases to examine kinematic differences 

between IC and pGRF and MF respectively. During the impact phase, high GRFs must be safely 

dissipated by the hip, knee, and ankle. Females generated higher pGRF forces, however, they 

also experienced larger hip and knee sagittal ROMs during the impact phase. The increased 

pGRF in females may have been due to landing with a more extended knee at IC. In addition, the 

increased use of sagittal ROM observed in females may have contributed to the absence of GRF 

loading rate sex differences. Frontal plane hip measures remained negative throughout impact 

and landing phases, thus yielding only hip abduction. During both phases, females incorporated 

larger hip frontal plane ROM, specifically due to lower hip abduction measures (e.g. maximum 

hip adduction). In similar unilateral landings, Pappas et al. (2007a) found a similar range of hip 

adduction motion, but did not identify sex differences in hip kinematics. However, positioning of 

the contralateral limb during landing was not specified and may have contributed to pelvis 

positioning. Hewett et al. (2006) reported similar trends of decreased hip abduction in female 

unilateral landings without sex differences in sagittal ROM. Insufficient strength of the hip 

muscular has been proposed as a key component of the alterations in hip adduction and is 

associated with an increased risk of lower extremity injury (Hewett et al., 2006; Padua et al., 

2005). Interestingly, the only increased ROM observed in males was landing phase hip rotation 

and associated with greater hip external rotation. All other landing and impact phase ROMs did 

not indicate sex differences.  

Bilateral differences were not reported for any of the kinetic or kinematic variables 

analyzed, suggesting both limbs landed with similar mechanics. Clear trends in limb differences 
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have yet to be established. A similar lack of bilateral differences has been reported in unilateral 

hopping (Van der Harst et al., 2007b) and varied heights of unilateral landing (McPherson et al., 

2016). However, it should be noted these studies utilized a dominant versus nondominant limb 

designation. For the exploratory nature of the current study, right and left side designations were 

implemented. The sample population used in the current study were asymptomatic, young adults 

which were generally active in sports requiring jumping and not primarily recruited from sports 

associated with task specific limb differences (i.e. soccer or tennis). As such, significant limb 

dominance or muscle imbalances were not considered significant intrinsic factors. When 

considering emerging trends in pathological hips, FAI is estimated to occur bilaterally in up to 

75% of radiographic diagnoses which may submit both hips experience similar forces (Allen et 

al., 2009; Ganz et al., 2008; Klingenstein et al., 2013). 

Interpretation of results and findings should be tempered by several methodological 

limitations. First, the absolute drop height of 40-cm may have represented different levels of task 

demand based on individual participant jump heights (Weinhandl et al., 2015). Second, HJF 

were estimated based on simplified musculoskeletal modeling and subject to sources of error 

associated with marker placement, movement artifact, and muscle force estimates (Hicks et al., 

2015). Third, for model simplicity, knee motion was modeled as a 1-dof hinge joint which may 

have masked sex differences in knee adduction. Lastly, the study sample represents a generalized 

asymptomatic population and the presence of abnormal hip anatomy is unknown. 

 Moving forward, inclusion of joint energetics and muscle activations would greatly 

enhance overall understanding sex differences in hip mechanics during landings. Sex differences 

in peak GRF and joint kinematics have been associated with energy absorption strategies. Males 

are suggested to be more likely to absorb landing energy at the hip, while females are more likely 
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to implement a more knee and ankle dominate energy absorption strategy (Decker et al., 2003; 

Schmitz and Shultz, 2010; Shultz et al., 2010; Weinhandl et al., 2010). Further exploration of 

these factors may help illuminate the underlying mechanisms responsible for the relationship 

between GRF and HJF loading characteristics.  
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CHAPTER 5: THE EFFECTS OF SEX AND LANDING TASK ON HIP MECHANICS 

Introduction 

Research on femoroacetabular impingement (FAI) has increased in recent years, yet the 

etiology is not well understood (Diamond et al., 2014; Packer and Safran, 2015; Reiman and 

Thorborg, 2015). Etiological theories have proposed genetic factors, prior hip morphology (e.g. 

slipped capital femoral epiphyses), and athletic participation as potential factors (de Silva et al., 

2016; Packer and Safran, 2015). In particular, an association between high-level sports 

participation in adolescence and impingement morphology is rapidly gaining support (Agricola 

et al., 2012; Kapron et al., 2011; Siebenrock et al., 2011). Prevalence of FAI in adolescent and 

young adults varies to some degree by sport, with an increased incidence in cutting sports 

compared to flexibility, contact, impingement, or endurance based sports (Nawabi et al., 2014). 

In separate sport specific studies, athletes participating at high intensity levels of football, ice 

hockey, basketball, and soccer, beginning in childhood were at an increased risk of developing 

impingement morphology (Agricola et al., 2012; Gerhardt et al., 2012; Siebenrock et al., 2011). 

The combination of repetitive hip loading with flexion and internal rotation during cutting sports 

may present excessive physiological demands during sensitive adolescent skeletal development 

(Clohisy et al., 2013; de Silva et al., 2016; Siebenrock et al., 2011). Early exposure to aggressive 

sporting activity in adolescence may expose the proximal femoral epiphysis to excessive stress 

and may contribute to development of boney pathomorphologies (Beck et al., 2004; Byrd and 

Jones, 2011).  

The relationships between landing mechanics during sport actions and potential injury 

risk have received a great deal of attention. Unilateral landings have been proposed to present a 

different task demand than bilateral landings, with unilateral landings associated with more ‘at 
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risk’ mechanics (Boden et al., 2000). Landing and cutting are two commonly performed sports 

actions attributed to an increased injury risk, both of which are often performed unilaterally. 

Although similar in nature, specific kinematic and kinetic differences have been associated with 

drop jump landings and cutting tasks (O’Connor et al., 2009). During these motions, 

combinations of knee abduction movements and excessive loading have been associated with 

knee injury mechanisms (Koga et al., 2011; Koga et al., 2010). Moving up the kinetic chain, it is 

unclear how these kinematic and kinetic differences observed during landing and cutting relate to 

overall hip mechanics. 

Sex differences in the mechanics of sports actions are commonly recognized (Kernozek 

et al., 2005; Schmitz et al., 2007; Weinhandl et al., 2016; Weinhandl et al., 2010). Females are 

reported to demonstrate kinematics, kinetics, muscle activations, and energy absorption 

strategies during landing and cutting that increase their risk for knee injury (Chappell et al., 

2007; Malinzak et al., 2001; Pollard et al., 2004; Salci et al., 2004; Sigward and Powers, 2006; 

Zazulak et al., 2005). In a study exploring sex differences in unilateral and bilateral drop 

landings, females exhibited increased vertical ground reaction forces (GRF) and knee valgus 

compared to males during unilateral, but not bilateral conditions (Pappas et al., 2007a). 

Interestingly, during the same study no significant differences in hip kinematics were identified. 

Similar relationships in knee valgus behavior have been reported across various change of 

direction tasks (Jones et al., 2014; McLean et al., 2005) and single leg landing and cutting 

(Kristianslund and Krosshaug, 2013). In addition, females performed unilateral landings and 

relative height land-and-cuts with less hip flexion and knee adduction ROM (Weinhandl et al., 

2015). In terms of neuromuscular control during landing, females are reported to demonstrate 

greater medial to lateral muscle activation imbalances (Palmieri-Smith et al., 2009) and land with 
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greater quadricep activations (Shultz et al., 2009) compared to males. Given the biarticular 

structure of the hamstrings and rectus femoris, sex differences in neuromuscular control 

strategies may impact hip and knee biomechanics (Brown et al., 2014).  

Examination of hip kinematics and loading during unilateral sport actions will assist in 

providing a foundation to begin exploring if proposed sex difference trends in knee mechanics 

persist within respect to the hip. Thus, the purpose of the current study was to explore sex 

differences in hip loading, GRF, and lower extremity kinematics during unilateral drop landings 

and land-and-cut tasks. It was hypothesized that land-and-cuts would incur larger peak forces 

and utilize less sagittal ROM compared to landing-only trials. Similarly, it was also hypothesized 

females would incur larger peak force and utilize less sagittal ROM compared to males.  

Methods 

Prior to data collection, ethics approval for experimental procedures was received from 

the university institutional review board and informed written consent was obtained from each 

participant. Forty-one participants (21 females; 20 males) from the university and surrounding 

communities volunteered for study participation. A general health history questionnaire was used 

to aid in screening participants with respect to inclusion and exclusion criteria. Inclusion criteria 

required that participants were: 18-30 years, recreationally active for at least 30 minutes 3 or 

more days per week, and participated in at least 1 activity per week including jumping and 

landing (i.e. basketball or volleyball). Exclusion criteria included: any history of lower extremity 

surgery, any injury to the lower extremities in the past six months, and presence of any condition 

that would impair the ability to jump and land safely.  

Three-dimensional (3-D) marker coordinate data (200-Hz) and GRFs (2000-Hz) were 

captured during two landing tasks using a Vicon MX eight-camera motion analysis system 
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(Vicon, Centennial, CO, USA) and flush mounted Bertec force plates (Bertec, Columbus, OH, 

USA). The force plates and motion analysis system were calibrated according to manufacturer’s 

specifications before data collections. For testing, all participants wore spandex shorts (and 

sports tops for females) and laboratory standard footwear (Air Max Glide, Nike, Beaverton, OR, 

USA). Eighteen individual retroreflective markers were placed at specified anatomical 

landmarks for calibration purposes (Weinhandl et al., 2010). Rigid plates with four retro-

reflective markers in a cluster were placed on the torso, pelvis, and bilateral thighs, shanks, and 

feet for tracking in landing trials. A 3-s standing calibration trial was collected with the 

participant standing with one foot on each force plate and arms crossed high across the chest. 

Calibration-only markers were then removed.  

Participants completed five trials of unilateral drop landings and land-and-cut maneuvers 

with their right leg. All landings were completed with a drop height of 40-cm. For the all landing 

maneuvers, participants began on top of the box while standing on their left leg. The right limb 

was lifted with hip and knees flexed approximately 90°. When ready, the participant stepped 

from the platform and either landed or immediately performed the cutting task. For landing-only 

tasks, the participant was required to land on the intended limb without additional instructions. 

For the land-and-cut task, the participant landed on the right limb and immediately cut to the 

contralateral side along a 1-m wide path oriented at 45° (Weinhandl et al., 2016). The 1-m wide 

path ensured participants maintained a cutting angle of 40°–50°. For both conditions, a 

successful trial required participants to perform the task without stepping down or jumping up 

from the box, land with the foot entirely on the force plate, and maintain crossed arms. 

Additionally, land-and-cut trials were required to perform the side cut without hesitation while 
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staying within the boundaries. Landing tasks were counterbalanced across subjects. Testing 

sessions lasted approximately 30 minutes. 

Data reduction and analysis was performed with Visual3D (v4.95, C-Motion Inc., 

Rockville, MD). Raw 3-D marker coordinate and GRF data were low-pass filtered using a 4th-

order, Butterworth filter with a cutoff frequency of 10-Hz. Subject specific, eight-segment 

kinematic models (trunk, pelvis, and bilateral thighs, shanks, and feet) were created for each 

subject from calibration data. The model contained 19-dofs of freedom attributed to 3 rotations 

from the head-arms-trunk, 3 rotations and 3 translations from the pelvis, 3 rotations from the 

hips, 1 rotation from each knee, and 1 rotation from each ankle. Initial contact (IC) with the force 

plate was defined as the first timepoint vertical GRF exceeded 20N. Landing phases for both 

landing tasks were defined from IC to the first global minimum in knee extension (i.e. maximum 

knee flexion). The location of hip joint centers was determined using 25% of the distance from 

ipsilateral to contralateral trochanter markers (Bennett et al., 2016; Weinhandl et al., 2010). Knee 

joint centers were identified as half the distance between epicondyle markers (Grood and Suntay, 

1983) and ankle joint centers were identified as half the distance between malleoli markers (Wu 

et al., 2002).  

In OpenSim (Delp et al., 2007), the Gait2392 model was used with doubled strength and 

activation to simulate the landing phase. The inverse kinematics problem was solved at each 

frame to compute model joint angles using a least squares approach while accounting for 

constraint weights (Spoor and Veldpaus, 1980). Inverse dynamics were addressed using 

calculated joint angles and measured GRF data to identify net joint reaction forces and moments 

necessary to maintain equilibrium. Static optimization was used to estimate muscle forces at each 

time step using the sum of muscle stress squared as the optimization criteria (Anderson and 
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Pandy, 2001b). RMS reserve joint torques were verified to be below 5% of net joint moments 

(Hicks et al., 2015). The same inputs from static optimization were combined with generated 

muscle force values in the JointReaction analysis algorithm (Steele et al., 2012) to calculate hip 

joint forces (HJF). Hip joint torques from the JointReaction analysis outputs were randomly 

sampled trials were confirmed negligible.  

Resultant GRF and HJF were calculated from 3-D components and used for all analyses. 

HJF were expressed in the femoral reference frame. Peak GRF (pGRF) and peak HJF (pHJF) 

were identified as the first global maximums after IC. Loading rates for pGRF and pHJF 

represent average loading from IC to the respective maximal measure. The impact phase was 

defined from IC to pGRF. Continuous resultant HJF, resultant GRF, as well as 3-D hip, knee 

flexion, and ankle dorsi/plantar-flexion measures from the landing phase were normalized to 101 

data points. Averages for each continuous variable were calculated by sex and task.  

Statistical analyses for discrete variables were performed via separate two by two (sex × 

task) analyses of variance (SPSS Inc., Chicago, IL, USA). Significance threshold was set a priori 

as p < 0.05. Kinetic discrete variables examined were pGRF, pHJF, pGRF loading rate, pHJF 

loading rate, and time to pGRF and pHJF. Kinematic discrete variables were 3-D hip, knee 

flexion, ankle planta/dorsi-flexion measures at IC, as well as, impact phase ROMs (ROMI) and 

landing phase ROMs (ROML). Effect size was quantified using eta squared (η2) and calculated as 

the sum of squares for each factor divided by the total sum of squares for sex, task, sex-task 

interaction, and error terms. Continuous variables were analyzed using custom MatLab 

(MathWorks, Natick, MA, USA) code for mean ensemble curve analysis with corresponding two 

standard deviation intervals. At each percentage of the normalized landing phase, areas of non-

overlap were identified as significantly different.  
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Results 

 One participant was removed from analyses due to errors in data collection. The last two 

female participants to undergo data collection were also removed to maintain balanced sex 

groups. The final group was comprised of 19 females (height = 1.62 ± 0.05-m; mass = 60.04 ± 

7.36-kg) and 19 males (height = 1.80 ± 0.05-m; mass = 79.13 ± 10.10-kg). 

Continuous resultant forces and joint angles are provided in Figures 5-8. Mean ensemble 

curve analyses for all continuous variables did not identify areas of non-overlap between sexes. 

Significant differences in continuous forces were found between landing tasks for GRF between 

20-28% of landing phase and for HJF between 21-25% of landing phase. Significant differences 

in joint angles were identified between landing tasks for hip adduction (42-100%), hip rotation 

(0-28%), and ankle dorsi/plantar-flexion (20-100%). There were no significant differences for 

continuous hip and knee flexion between landing tasks. 

Discrete variable means ± standard deviations are provided in Table 2. There were no 

significant interaction effects identified for sex and landing task (p<0.050). Significant main 

effects for sex were identified for pGRF (F1,72  = 4.776, p = 0.032, η2 = 0.055), time to pGRF 

(F1,72  = 8.691, p = 0.004, η2 = 0.125), time to pHJF (F1,72  = 5.178, p = 0.026, η2 = 0.062), IC 

knee flexion (F1,72  = 12.018, p = 0.001, η2 = 0.126), ROMI hip flexion (F1,72  = 11.913, p = 

0.001, η2 = 0.134), ROMI hip adduction (F1,72  = 23.533, p < 0.001, η2 = 0.244), ROMI knee 

flexion (F1,72  = 6.402, p = 0.014, η2 = 0.082), ROMI ankle angle (F1,72  = 6.506, p = 0.013, η2 = 

0.071), ROML hip adduction (F1,72  = 29.398, p <0.001, η2 = 0.260), and ROML hip rotation (F1,72  

= 4.276, p = 0.042, η2 = 0.056). Females landed with 0.20-BW greater pGRF without an 

accompanying significant increase in pHJF. Females used 6.45-ms more time to reach pGRF and 

14.96-ms more time to reach pHJF. At IC, the only significant sex difference was 4.09° less knee 
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flexion observed in females compared to males. For ROMI, females utilized larger 3-D hip, knee 

flexion, and ankle dorsi/plantar-flexion ROMs compared to males. For ROML, females utilized 

5.69° less hip adduction ROM and 2.19° more hip rotation.  

 Significant main effects for landing task we identified for pGRF (F1,72  = 8.035 p = 0.006, 

η2 = 0.092), pGRF loading rate (F1,72  = 11.983, p = 0.001, η2 = 0.141), time to pGRF (F1,72  = 

6.487, p = 0.013, η2 = 0.125), IC hip rotation (F1,72  = 11.640, p = 0.001, η2 = 0.137), IC knee 

flexion (F1,72  = 9.302, p = 0.003, η2 = 0.097), ROMI hip flexion (F1,72  = 4.785, p = 0.032, η2 = 

0.054)), ROMI ankle (F1,72  = 12.332, p = 0.001, η2 = 0.134), ROML hip adduction (F1,72  = 

11.111, p = 0.001, η2 = 0.098), and ROML ankle (F1,72  = 31.163, p < 0.001, η2 = 0.289). 

Landing-only trials incurred 0.25-BW higher pGRF compared to land-and-cut trials. In addition, 

landing-only trials reached pGRF 5.57-ms faster and incurred a 5.57-BW/ms higher loading rate. 

At IC, landing-only trials were performed with 5.49° more hip abduction and 3.60° less knee 

flexion. Over the impact phase, landing-only trials also utilized 1.75° more hip flexion ROMI 

and 8.59° less ankle dorsi/plantar-flexion ROMI. Over the landing phase, landing-only trials 

utilized 3.49° more hip adduction ROML and 12.39° less ankle dorsi/plantar-flexion ROML 

compared to land-and-cuts.  
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Table 2. Groups means ± STD for study two discrete variables. 
  

Males Females Land Land-and-Cut 

Peak Force (BW)     

pGRF#,* 3.25 ± 0.37 3.45 ± 0.43 3.47 ± 0.43  3.22 ± 0.36 

pHJF 10.06 ± 1.43 10.26 ± 1.99 10.40 ± 1.53 9.92 ± 1.90 

Loading Rate (BW/s)     

pGRF  56.13 ± 13.05 57.92 ± 11.21 61.55 ± 11.16 52.50 ± 11.47 

pHJF 165.57 ± 42.38 155.43 ± 63.75 170.32 ± 53.54 150.68 ± 53.37 

Time to Peak Force (ms)    

pGRF#,* 57.63 ± 7.26 64.08 ± 11.85 58.07 ± 8.91 63.64 ± 10.92 

pHJF# 59.34 ± 23.00 74.30 ± 33.46 63.99 ± 31.79 69.65 ± 27.15 

IC (°)     

Hip Flexion 15.91 ± 8.48 16.64 ± 10.04 15.41 ± 8.45 17.14 ± 10.00 

Hip Adduction -15.98 ± 6.27 -16.80 ± 5.73 -15.98 ± 6.27 -16.33 ± 6.56 

Hip Rotation* -3.42 ± 7.93 -4.90 ± 7.00 -6.90 ± 6.80 -1.41 ± 7.16 

Knee Flexion#,* -18.62 ± 6.39 -14.53 ± 4.32 -14.78 ± 4.52 -18.38 ± 6.41 

Ankle Dorsiflexion -19.52 ± 10.92 -24.46 ± 12.33 -23.15 ± 12.34 -20.83 ± 11.35 

ROMI (°)     

Hip Flexion#,* 7.51 ± 2.69 10.28 ± 4.26 9.77 ± 4.14 8.02 ± 3.26 

Hip Adduction# 4.12 ± 1.82 6.41 ± 2.26 5.50 ± 2.45 5.03 ± 2.24 

Hip Rotation 6.26 ± 3.71 5.79 ± 2.94 6.00 ± 3.45 6.05 ± 3.26 

Knee Flexion# 19.86 ± 3.48 22.86 ± 6.33 21.37 ± 4.83 21.35 ± 5.78 

Ankle Dorsiflexion#,* 30.70 ± 9.14 36.94 ± 13.41 29.53 ± 9.36 38.12 ± 12.57 

ROML (°)     

Hip Flexion 19.86 ± 7.56 21.22 ± 10.27 22.43 ± 8.59 18.66 ± 9.09 

Hip Adduction#,* 10.23 ± 3.36 15.92 ± 6.00 14.82 ± 5.93 11.33 ± 4.73 

Hip Rotation# 11.17 ± 5.72 8.98 ± 3.03 9.98 ± 5.62   10.17 ± 3.57 

Knee Flexion 50.14 ± 7.50 51.14 ± 10.68 49.62 ± 8.37 51.66 ± 9.93 

Ankle Dorsiflexion* 45.55 ± 10.26 49.98 ± 12.55 41.57 ± 10.02 53.96 ± 9.68 
# Significant main effect for sex (p < 0.05) 
* Significant main effect for landing task (p < 0.05) 
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Figure 5. Study two continuous normalized group mean GRF and HJF (bold) ± two STD for 

landing task. 

 

 

Figure 6. Study two continuous normalized group mean GRF and HJF (bold) ± two STD for sex. 
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Figure 7. Study two continuous normalized group mean joint angles ± two STD for landing task. 
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Figure 8. Study two continuous normalized group mean joint angles ± two STD for sex. 

  



99 

 

 

Discussion 

 It was hypothesized that land-and-cut tasks and females would generate greater pGRF 

and pHJF while exhibiting reduced sagittal ROM compared to landing-only tasks and males, 

respectively. The results partially supported these hypotheses. There was a significant increase in 

pGRF and pGRF loading rate with a reduction in time to peak pGRF for the landing-only task. 

However, these kinetic differences were not accompanied by differences in pHJF variables nor 

sagittal knee ROMI or ROML. Other sagittal differences identified were greater ankle 

dorsi/plantar-flexion ROMI and ROML and reduced hip flexion ROMI during land-and-cut tasks. 

In the frontal plane, hip adduction ROML was greater in landing-only tasks. At IC, landing-only 

tasks were performed with more external hip rotation and less knee flexion compared to land-

and-cut tasks.  

 In support of our hypothesis, females performed landings with significantly greater 

pGRF. However, the second part of the hypothesis was refuted as pHJF did not indicate a 

significant difference between sexes. Increased normalized peak vertical, posterior, and resultant 

GRFs have been identified in females during landing tasks (Kernozek et al., 2005; Pappas et al., 

2007a; Weinhandl et al., 2015). Females took more time to achieve pGRF and pHJF than males. 

As a result, pGRF and pHJF loading rates differences were not identified. In examining the IC 

kinematics, males landed with more knee flexion compared to females. Weinhandl et al. (2015) 

showed similar, yet nonsignificant, sex difference trends in IC knee flexion during 40-cm 

unilateral landings. Pappas et al. (2007a)  also identified similar IC group mean knee flexion 

angles (e.g. pooled sex data for landing task) using a unilateral landing from 40-cm, but they did 

not identify sex differences in IC knee flexion using a landing-only task. Females utilized a 

larger hip adduction ROML and less hip rotation ROML. Over the impact phase, females 
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employed a larger ROMI for hip flexion and adduction, knee flexion, and ankle dorsi/plantar-

flexion. The increased hip adduction ROM observed in females has been well documented in 

sporting actions and considered a contributing factor in knee valgus collapse (Ford et al., 2006; 

Hewett et al., 2005; McLean et al., 2004; Myer et al., 2005).  

While significant kinetic and kinematic differences were identified between sexes and 

tasks for discrete measures, only task differences were identified for continuous measures. 

Continuous GRF force tracings for both landing tasks were unimodal, which is consistent with 

previous unilateral landing task studies (Ali et al., 2014; Hargrave et al., 2003). Continuous HJF 

force tracings presented smaller second peaks which were more pronounced for the landing-only 

task. Landing-only continuous GRF and HJF were significantly higher during 20-28% and 21-

25% of the landing phase, respectively. Interestingly, these ranges occur during the impact 

phase. 

  In the sagittal plane, continuous hip and knee flexion were not significantly different 

between tasks; however, land-and-cut tasks were performed with less ankle plantar-flexion from 

20-100% of landing phase. Only ankle dorsi/plantar-flexion differences aligned with the 

differences in continuous GRF. From 20-28% of landing, landing-only tasks were performed 

with more internal hip rotation. Land-and-cut tasks experienced more hip abduction from 42-

100% of landing. These differences in hip rotation and abduction seem logical given the task 

demands (i.e. the land-and-cut task was performed on the right leg with a cut to the left while the 

landing-only task was a simple drop landing on the right leg). However, the relative timing of hip 

rotation differences during the impact phase and hip adduction differences after the impact phase 

is interesting.  
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A lack of sex differences in the continuous variables was surprising, especially for GRF, 

and may have been impacted by the use of time normalization to the landing phase. The female 

impact phase ended later in the landing phase compared to males, which caused maximum GRF 

between sexes to occur at different landing phase percentages. The landing phase was selected 

for normalization as it captures the downward phase of landing and maximum knee flexion is 

commonly used to signify the end of landing (Decker et al., 2003; Yeow et al., 2010a). 

Examination of continuous kinetics and kinematics normalized over the impact phase may 

provide additional information on sex differences due to the high GRF and HJF loading rates. 

These findings can be explored in terms of hip health with our current knowledge of FAI 

mechanics and etiology. FAI is a condition brought about by a lack of fit between the head of the 

femur and the acetabulum (Ganz et al., 2003). Anatomically, there is insufficient clearance 

between the bony structures to allow normal movement without creating bone-on-bone contact. 

Hip impingement is most likely to occur during motions incurring hip flexion with internal 

rotation (de Silva et al., 2016; Stull et al., 2011), with adduction furthering increasing 

approximation of the femoral neck and acetabulum (Ganz et al., 2008). Cutting sports are 

proposed to incur a higher prevalence than other types of sports (Nawabi et al., 2014). In our 

continuous analysis, land-and-cut tasks exhibited fairly neutral to slight internal hip rotation 

during the impact phase compared to a more externally rotated hip for landing-only. However, 

over the impact phase landing-only GRF and HJF were similar or higher than land-and-cut 

forces. Also over this phase, landing-only tasks used greater hip flexion ROMI, pGRF, and pGRF 

loading rate. After the impact phases, the land-and-cut tasks presented more hip abduction than 

landing-only. This timing corresponds to a second nonsignificant peak in HJF observed for 

landing-only, but not land-and-cut. Yet, landing-only trials also presented greater hip adduction 
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ROML. In general, land-and-cut hip positioning over impact and landing phases may have 

demonstrated subtle positioning characteristics more likely to yield hip impingement, however 

resultant GRF and HJF did not indicate greater loading. Further analysis using 3-D force 

components may tease apart directional loading differences. 

The data and results of the current study should be interpreted with respect to several 

limitations. First, the ‘asymptomatic’ participants in the current study were young adults (18 to 

30-yrs), recreationally active, and free from lower extremity injuries or pain. As no diagnostic 

imaging or tests were performed, specific individual hip anatomies are not known and 

undiagnosed pathologies may exist. Thus, results can be only be generalized based on this 

sample population. Second, the selected tasks provided anticipated and constrained versions of 

sporting activities conducted in a laboratory setting. As an exploratory study, the landing tasks 

were selected to maximize standardization across data collections. Unanticipated landings may 

result in different landing mechanics (Brown et al., 2009). Third, the musculoskeletal model used 

was designed to focus on hip mechanics with 3-dof of hip motion and only 1-dof each for the 

knees and ankles. It is difficult to compare measured kinematics from the current study with 

existing studies employing knee and ankle models with additional dofs. Last, the landing heights 

used were absolute and not related to individual participants jumping ability. The use of absolute 

heights may have represented different task demands between participants (Weinhandl et al., 

2015). 

Increasing awareness of hip specific pathologies, particularly FAI, has highlighted a 

paucity in our understanding of asymptomatic hip mechanics during dynamic tasks. Moving 

forward, a well-developed understanding of asymptomatic hip mechanics in young adults, during 

sport actions will provide a basis of comparison to identify potentially risky biomechanical 
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trends. The purpose of this study was to begin exploring sex and hip task differences during 

landing-only and land-and-cut maneuvers. To this end, the study utilized continuous measures of 

kinematics and kinetics to capture the entire landing phase, as well as discrete measurements 

from IC and peak knee flexion. Females and landing-only tasks produced greater pGRF, 

decreased time to pGRF, greater ROML hip adduction, greater ROMI hip flexion, and decreased 

IC knee flexion compared to males and land-and-cut tasks. However, ankle ROMI was higher in 

females compared to males, while it was lower in landing-only tasks compared to land-and-cuts. 

In addition, females utilized larger ROMI for hip flexion, hip adduction, knee flexion, and ankle 

plantar/dorsi-flexion, as well as, a smaller ROML for hip adduction. Despite the increased ROMs 

employed by females, significant differences in pHJF were reported. Kinematic and kinetic 

differences for sex and task indicate  
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CHAPTER 6: SEX AND LANDING HEIGHT EFFECTS ON HIP JOINT LOADING, 

GROUND REACTION FORCES, AND LOWER EXTERMITY KINEMATICS 

Introduction 

Femoroacetabular impingement (FAI) represents a significant and growing cause of 

disability in otherwise asymptomatic active adolescents and adults. Diagnoses of symptomatic 

and asymptomatic FAI are rapidly increasing (Colvin et al., 2012; Montgomery et al., 2013; 

Sampson, 2005). The incidence of impingement pathomorphologies are estimated as high as 

10% to 15% of the general population and believed responsible for 22% to 55% of all hip pain 

(Groh and Herrera, 2009; Schilders et al., 2009). The number of hip arthroscopies performed 

between 2004 and 2009 increased approximately 365%, with the majority of patients between 

20-yrs and 39-yrs of age (Montgomery et al., 2013). While short term results and return to play 

statistics are optimistic, the long-term impact on development of hip osteoarthritis (OA) remains 

to be seen. Our understanding of hip biomechanics during activities of daily life and athletics in 

steadily improving; however, there is much we do not fully grasp. Traditionally, hip conditions 

have been associated primarily with older, less active adults. With a strong link emerging 

between athletic participation and impingement morphology, we need a more comprehensive 

understanding of asymptomatic, hip mechanics in action. 

Several authors have proposed increased risks of modified landing mechanics and injury 

potential are associated with increasing landing height (McNitt-Gray, 1993; Weinhandl et al., 

2015; Yeow et al., 2010a; Yeow et al., 2009). According to unilateral landing study findings, 

body weight normalized GRFs increases with landing height (Ali et al., 2014; Yeow et al., 

2010a) and the largest kinematic differences are related to frontal plane motion at the hip and 
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knee (Kernozek et al., 2005). Kinematic differences have been reported in terms of hip and knee 

positioning at initial contact, maximum angles, and ROMs. However, when GRFs were assessed 

with additional normalization for height, no significant differences were reported between 

vertical and posterior GRF and landing height (Weinhandl et al., 2015).  

A reduction in knee and ankle energy absorption has been observed with landing height 

increases, while hip energy absorption remained similar. The shift in lower extremity energy 

absorption with increased landing height did not include a shift toward proximal joints 

(Montgomery et al., 2014; Weinhandl et al., 2015). Proximal-to-distal energy absorption 

strategies are believed to expose passive structures to higher forces when landing (Norcross et 

al., 2010). Diminished strength in the female hip musculature in conjunction with altered joint 

positioning have been proposed as risk factors for ACL injuries (Decker et al., 2003; 

Khayambashi et al., 2016; Lawrence et al., 2008). However, more energetically hip dominant 

landing mechanics proposed in males (Yeow et al., 2009) may result in altered hip joint loading 

and long term implications not yet fully realized. Examining hip kinematics and kinetics during 

dynamic, sporting activities would garner a more complete understanding of lower-extremity 

mechanics and provide a basis of comparison for pathological presentations. While direct 

measurement of hip joint forces is extremely invasive, musculoskeletal modeling can be used to 

estimate joint forces using measured kinematics and kinetics.  

Unilateral landings are a common movement in sporting activity and associated with an 

increased injury prevalence compared to bilateral landings (Ali et al., 2014). In addition, 

unilateral landings present different mechanics than those reported in bilateral ladings (Ali et al., 

2014; Dufek and Bates, 1990). As such, the purpose of the current study is to examine what, if 
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any, sex differences exist in hip joint loading, ground reaction forces (GRF), and lower extremity 

kinematics at different unilateral drop landing heights. 

Methods 

Eighty-three asymptomatic, physically active participants between the ages of 18 and 35 

were recruited from a medium sized urban university and the surrounding communities. Upon 

arrival, all participants were given a full explanation of the study purpose and procedures. 

Written informed consent was obtained in accordance with university institutional review board 

polices. A general health history questionnaire was provided to screen for study inclusion 

criteria. Inclusion criteria stated participants would be recreationally active, defined as 

participation in at least 30 minutes of exercise per week including a minimum of one jumping 

related activity per week, have no history of lower extremity surgery, no lower extremity injury 

within the past six months, and no condition that would impair their ability to jump or land.  

Three-dimensional (3-D) marker coordinate data were collected for landing trials at 200-

Hz using an eight-camera Vicon MX motion analysis system (Vicon, Centennial, CO, USA) with 

ground reaction forces (GRF) measured synchronously at 2000-Hz using two flush mounted 

force plates (Bertec, Columbus, OH, USA). Prior to data collection, the motion capture system 

and force plates were calibrated according to manufacturer’s specifications. For testing, 

participants wore snug fitting spandex shorts and lab standard tennis shoes (Air Max Glide, Nike, 

Beaverton, OR, USA). Single retro-reflective markers were placed on the skin over specific 

anatomical landmarks with special adhesive tape for calibration purposes only (Weinhandl et al., 

2010). Calibration-only markers were placed bilaterally on the acromioclavicular joints, iliac 

crests, greater trochanters, medial and lateral knee epicondyles, medial and lateral malleoli, first 

metatarsal heads, and fifth metatarsal heads. Marker tracking in movement trials was employed 
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using four-marker, rigid cluster plates positioned on the upper torso and pelvis, as well as, 

bilateral thighs, shanks, and feet (Weinhandl et al., 2016). A three-second static trial was 

collected with the participant standing motionless, arms crossed high over the chest, and each 

foot on a separate force plate. Calibration-only markers were removed before landing trials.  

Participants completed five successful unilateral landings on their right limbs from 30-cm 

and 50-cm. Selected heights are absolute and commonly used in drop landing research (Bruton et 

al., 2013). For the unilateral drop landing, participants begin standing on the contralateral limb 

desired for landing with intended landing limb in approximately 90° of hip and knee flexion. 

When ready, the participant stepped away from the platform and landed on the force plate with 

the intended landing limb. For a successful landing, the participant performed the task without 

stepping down or jumping up from the box, landed with their entire foot on the force plate, 

landed without hopping or jumping, landed without the contralateral limb contacting the ground, 

and maintained arms crossed high across the chest. Practice trials were allowed. Instructions 

were not provided on landing technique. Landing height order was counterbalanced between 

participants.  

An eight-segment kinematic model was created in Visual 3D (v4.95, C-Motion Inc., 

Rockville, MD) based upon standing calibration data using a least squares approach (Spoor and 

Veldpaus, 1980). Raw 3-D marker coordinate and GRF data were low-pass filtered using a 4th-

order, Butterworth filter with a cutoff frequency of 10-Hz (Kristianslund et al., 2012). Trochanter 

hip joint centers were defined as 25% of the distance from ipsilateral to contralateral greater 

trochanter markers (Bennett et al., 2016; Weinhandl et al., 2010). Joint centers for the knees and 

ankles were defined as the midpoints between medial and lateral epicondyles (Grood and Suntay, 

1983) and malleoli markers (Wu et al., 2002), respectively. The start of landing was defined as 
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initial contact (IC) with the force plate, specifically the time point where GRF exceeded 20N. 

The landing phase was defined from IC to the maximum knee flexion (MF).  

Subject specific models were incorporated for use with Gait2392 in OpenSim (SimTK, 

2016) to simulate each landing phase (Delp et al., 1990b). Gait2392 is an 8-segment model with 

19 degrees of freedom (dof) actuated by 92 Hill-type contractile elements in series with tendon 

(Delp et al., 1990a). The segments represented the head-arms-trunk (3 rotations), pelvis (3 

translations and 3 rotations), hips (3 rotations each), knees (1 rotation each) and ankles (1 

rotation each). Each dof was accompanied by a reserve actuator that was manually checked after 

simulations were complete. Muscle forces were estimated using static optimization at each time 

step with inverse kinematics outputs, external load data, a scaled model and the sum of muscle 

stress squared as the optimization criteria (Anderson and Pandy, 2001b; Crowninshield and 

Brand, 1981a; Kaufman et al., 1991a). Hip joint forces (HJF) were calculated using the 

JointReaction analysis algorithm within OpenSim. To assist in model validation, resulting hip 

torques were verified as null, reserve actuators were checked to be below 5% of RMS net joint 

moments, and values were compared to published modeling data (Hicks et al., 2015). The HJFs 

represent the internal loads associated with all unmodeled structures and are expressed with 

respect to the pelvis on the femur, in the femoral reference plane, and acting through the joint 

center (Steele et al., 2012).  

Resultant GRF and HJF were calculated from 3-D force components and normalized by 

body weight. All GRF and HJF discussed are in reference to resultant measures except when 

stated otherwise. Variables were classified as discrete or continuous. Continuous variables were 

taken from the group mean for each percentage of the normalized landing phase (0-100%). 

Continuous sex and condition group means for GRF, HJF, 3-D hip ROM, knee flexion ROM, 
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and ankle dorsi/plantar-flexion ROM were calculated. Discrete kinematic variables were 3-D 

hip, knee flexion, and ankle dorsi/plantar-flexion ROM during the impact (ROMI) and landing 

phases (ROML), as well as, joint measures at IC. The impact phase was defined from IC to the 

first peak in GRF (pGRF). Discrete kinetic variables were pGRF, pGRF timing, peak HJF 

(pHJF), pHJF timing, GRF loading rate, and HJF loading rate. pGRF and pHJF were defined as 

the first peaks in respective resultant plots. Loading rates for pHJF and pGRF were calculated by 

the respective force measure divided by time to peak value. All discrete variables were checked 

for normality and homogeneity prior to statistical analyses. IC represents the starting time for all 

analyses.  

Two by two analyses of variance (sex x height) were performed for each discrete variable 

(SPSS Inc., Chicago, IL, USA) (p<0.050). Effect size was quantified using eta squared (η2) and 

calculated as the sum of squares for each factor divided by the total sum of squares for sex, 

height, sex-height interaction, and error terms. Continuous variables were compared using mean 

ensemble curve analyses, with corresponding two standard deviation intervals at each percentage 

of the normalized landing phase. Statistically different areas of the landing phase were identified 

where the two standard deviation intervals of the mean ensemble curves between sexes and 

heights did not overlap.  

Results 

Three participants’ data were not included in analysis. One participant was excluded due 

to errors in data collection. The last two female participants to undergo data collection were 

excluded to maintain balanced sex groups. Forty females (height = 1.64 ± 0.06-m, mass = 61.19 

± 8.66-kg) and 40 males (height = 1.79 ± 0.08-m, mass = 79.78 ± 13.53-kg) were used for data 
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analysis. Five trials were collected for each condition; however, only the first three successful 

trials were used for analysis.  

Continuous GRF and HJF are provided in Figures 9 and 10. There were no significant 

differences between sex and any of the continuous kinetic or kinematic variables. Significant 

differences in continuous forces between landing height were identified for GRF between 1-29% 

and HJF between 14-24% and 77-100% of the landing phase. The only joint angle with 

significant differences associated with landing height was hip adduction from 1-22% of the 

landing phase (Figure 11).  

Means ± standard deviation for all discrete variables are provided in Table 3. There were 

no interaction effects between landing height and sex (p<0.050). Significant main effects for sex 

were identified for pGRF (F1,156  =  8.553, p = 0.004, η2 = 0.036), pHJF (F1,156  = 8.894, p = 

0.003, η2 = 0.044), GRF loading rate (F1,156  = 4.301, p = 0.040, η2 = 0.019), IC hip flexion (F1,156  

= 7.312, p = 0.008, η2 = 0.045), ROMI hip flexion (F1,156  = 7.607, p = 0.007, η2 = 0.045), ROMI 

hip adduction (F1,156  = 23.919, p ¸0.001, η2 = 0.095), ROMI knee (F1,156  = 10.189, p = 0.002, η2 

= 0.046), ROML hip rotation (F1,156  = 7.988, p = 0.005, η2 = 0.046), ROML hip adduction (F1,156  

= 44.434, p < 0.001, η2 = 0.133). Females landed with 0.19-BW higher pGRF, 0.92-BW higher 

pHJF, and 3.62-BW/s higher pGRF loading rate compared to males. As a ratio, these values 

represent 5.5% and 9.9% increases respectively in pGRF and pHJF for females. Only hip flexion 

differed at IC, with females exhibiting 5° more hip flexion than males. For ROMI, females 

exhibited 1.54° greater hip flexion ROM, 1.75° greater hip adduction ROM, and 1.56° greater 

knee flexion ROM. Females exhibited 5.46° more hip adduction ROML and 2.01° less hip 

rotation ROML.  
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Significant main effects for landing height were identified for pGRF (F1,156  = 76.517, p < 

0.001, η2 = 0.316), pHJF (F1,156  = 35.502, p < 0.001, η2 = 0.177), pGRF loading rate (F1,156  = 

62.764, p < 0.001, η2 = 0.281), pHJF loading rate (F1,156  = 8.454, p = 0.004, η2 = 0.051), time to 

pGRF (F1,156  = 13.754, p < 0.001, η2 = 0.111), IC hip adduction (F1,156  = 77.410, p < 0.001, η2 = 

0.331), ROMI hip flexion (F1,156  = 5.066, p = 0.026, η2 = 0.030), ROMI hip adduction (F1,156  = 

70.229, p < 0.001, η2 = 0.280), ROMI hip rotation (F1,156  = 7.625, p = 0.006, η2 = 0.046), ROMI 

knee (F1,156  = 10.189, p = 0.002, η2 = 0.059), ROML hip flexion (F1,156  = 14.287, p < 0.001, η2 = 

0.083), ROML hip adduction (F1,156  = 129.852, p < 0.001, η2 = 0.390), ROML hip rotation (F1,156  

= 9.864, p = 0.002, η2 = 0.056) , ROML knee (F1,156  = 19.489, p < 0.001, η2 = 0.111), and ROML 

ankle (F1,156  = 4.372, p = 0.027, η2 = 0.027). Landings from 50-cm incurred 0.57-BW more 

pGRF and 1.86 BW more pHJF compared to 30-cm landings, representing 17.4% and 21.1% 

increases respectively. Loading rates from 50-cm measured 13.82-BW/s higher for pGRF and 

28.46-BW/s higher for pHJF. Only hip adduction differed at IC, with 50-cm landings exhibiting 

8.44° more hip abduction than 30-cm landings. For all angles except ankle dorsi/plantar-flexion, 

ROMI were greater for 50-cm than 30-cm landings. All ROML were greater for 50-cm landings 

compared to 30-cm landings.  
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Table 3. 

Group means ± STD for study three discrete variables. 

  

Males Females 30-cm 50-cm 

Peak Force (BW)     

pGRF#,* 3.47 ± 0.49 3.66 ± 0.52 3.28 ± 0.43  3.85 ± 0.43 

pHJF#,* 9.26 ± 2.34 10.18 ± 1.98 8.79 ± 1.91 10.65 ± 2.11 

Loading Rate (BW/s)     

pGRF#,* 58.97 ± 12.76 62.59 ± 13.23 53.87 ± 10.45 67.69 ± 11.76 

pHJF* 126.92 ± 65.59 140.74 ± 60.65 119.60 ± 59.42 148.06 ± 64.32 

Time to Peak Force (ms)    

pGRF* 60.21 ± 7.93 59.83 ± 6.86 62.15 ± 7.94 57.96 ± 6.17 

pHJF 73.19 ± 33.91 79.10 ± 47.65 77.44 ± 41.20 74.85 ± 41.69 

IC (°)     

Hip Flexion# 8.61 ± 10.41 13.32 ± 11.50 11.70 ± 11.06 10.22 ± 11.33 

Hip Adduction* -18.42 ± 7.68 -18.36 ± 7.09 -14.17 ± 5.74 -22.61 ± 6.33 

Hip Rotation -5.68 ± 8.52 -4.53 ± 6.05 -5.83 ± 6.14 -4.38 ± 8.43 

Knee Flexion -15.81 ± 6.19 -15.40 ± 5.72 -16.46 ± 6.23 -14.76 ± 5.55 

Ankle Dorsiflexion -24.68 ± 11.38 -26.99 ± 7.50 -25.26 ± 10.03 -26.41 ± 9.33 

ROMI (°)     

Hip Flexion#,* 6.94 ± 3.18 8.48 ± 3.89 7.08 ± 3.35 8.34 ± 3.80 

Hip Adduction#,* 4.70 ± 2.44 6.45 ± 2.96 4.08 ± 2.00 7.08 ± 2.78 

Hip Rotation* 6.41 ± 3.35 5.72 ± 2.84 5.40 ± 2.88 6.73 ± 3.21 

Knee Flexion 20.73 ± 4.32 22.29 ± 3.88 20.50 ± 4.46 22.52 ± 3.62 

Ankle Dorsiflexion#,* 32.39 ± 9.26 32.93 ± 8.49 31.91 ± 9.05 33.41 ± 8.66 

ROML (°)     

Hip Flexion* 17.31 ± 8.76 19.23 ± 10.24 15.53 ± 8.12 21.01 ± 10.11 

Hip Adduction#,* 13.04 ± 5.65 18.86 ± 8.15 11.46 ± 5.00 20.80 ± 6.65 

Hip Rotation#,* 10.87 ± 5.47 8.86 ± 3.54 8.75 ± 3.79 10.97 ± 5.26 

Knee Flexion* 48.64 ± 11.27 48.41 ± 9.22 45.12 ± 9.75 51.93 ± 9.67 

Ankle Dorsiflexion* 44.32 ± 1.60 45.20 ± 7.94 43.23 ± 9.18 46.30 ± 9.32 
# Significant main effect for sex (p < 0.05) 
* Significant main effect for landing height (p < 0.05) 
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Figure 9. Study three continuous normalized group mean GRF and HJF (bold) ± two STD for 

landing height. 

 

 

Figure 10. Study three continuous normalized group mean GRF and HJF (bold) ± two STD for 

sex. 
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Figure 11. Study three continuous normalized group mean joint angles ± two STD for landing 

height. 
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Figure 12. Study three continuous normalized group mean joint angles ± two STD for sex 
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Discussion 

 The purpose of the current study was to examine the effects of sex and landing height on 

unilateral HJF, GRF, and lower extremity kinematics. Kinematic and kinetic variables were 

assessed using data from discrete time points, as well as continuous data over the landing phase. 

Due to the exploratory design of this study, these variables were selected to quantify differences 

over the duration of the landing phase in an effort to tease apart sex and landing height 

differences. The HJF calculated in the current study are higher than direct measurement via 

instrumented prosthesis (Bergmann et al., 2001; Bergmann et al., 1993). However, differences in 

sample characteristics and the task employed may have been a factor. Currently, HJF have not 

been modeled during a dynamic landing task. The values calculated here are comparable to 

previous modeling studies examining walking and running (Giarmatzis et al., 2015; Rooney and 

Derrick, 2013). 

Examination of the continuous kinetic and kinematic variables did not illuminate any 

significant sex differences. However, landing height differences were identified for continuous 

GRF, HJF, and hip adduction. GRF were higher for the 50-cm landings for 0-28% of the landing 

phase which corresponds to the impact phase for 50-cm landings. The GRF curves for both 

heights were unimodal which is consistent with unilateral landings (Ali et al., 2014; Dufek and 

Bates, 1990; Hargrave et al., 2003). However, the 50-cm height reached the end of the impact 

phase faster, with force curve shifted to the left (e.g. earlier in the landing phase). This shift 

played a large role in the early differences in GRF between heights. Meanwhile, the HJF curve 

demonstrated height differences from 13-23% and 77-100% of the landing phase with the 50-cm 

landings yielding higher forces. The initial range occurs during the impact phase and shows 

similar unimodal characteristics as the GRF tracing. After the impact phase, HJF behavior differs 
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between heights with the 50-cm landing incurring higher forces again as the landing phase ends. 

This behavior was not observed in the GRF tracings. The only continuous kinematic difference 

identified with respect to landings was associated hip adduction early in the impact phase. 

Landings from 50-cm demonstrated more hip abduction beginning at 0% or IC, which persisted 

through 21% of the landing phase.  

 Increasing landing height from 30-cm to 50-cm resulted in alterations of all kinetic 

measures and ROMs with the exception of time to pHJF and ankle plantar/dorsi-flexion ROMI. 

Conversely, landing height differences in IC kinematics did not demonstrate the same behavior. 

Only hip adduction at IC demonstrated differences between heights. Previous research 

employing similar landing heights reported differences in IC hip flexion and knee adduction, 

with hip adduction demonstrating a sex-landing height interaction (Weinhandl et al., 2015). The 

current study did not identify any sex-landing height interactions. A positive relationship 

between unilateral landing height and knee flexion was also identified by Ali et al. (2014) and 

Fagenbaum and Darling (2003). Yeow et al. (2010a), on the other hand, identified similar 

behavior for double leg landings, but not for bilateral landings. Ali et al. (2014) did not identify 

significant main landing height effects for peak ankle plantar flexion or peak hip flexion. 

However, the study used different definitions of the landing phase and reported peak values 

where ROMs were employed here.  

The increased pGRF reported is consistent with previous research on unilateral and 

bilateral landing heights (Ali et al., 2014; Seegmiller and McCaw, 2003; Yeow et al., 2009; 

Zhang et al., 2000). pHJF demonstrated a similar increase with landing height. The hip joint 

must assist in dissipating GRF incurred while landing, thus increases in HJF with reported higher 

GRFs are not surprising. Interestingly, time to pHJF was not significantly different between 
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heights, while time to pGRF was different. 3-D hip and knee flexion ROMI were larger for the 

50-cm landings compared to 30-cm; however, ROMs were not calculated over the hip joint 

loading phase and cannot be quantitatively compared.  

Although sex differences were not detected in continuous variables, analysis of discrete 

measures identified kinematic and kinetic differences. Females incurred higher pGRF and pHJF 

compared to males. Higher posterior (Weinhandl et al., 2015) and vertical (Pappas et al., 2007a) 

GRFs in unilateral landings have been previously reported in females. The increase in female 

pHJF was in excess of four times the change observed in pGRF. Females also incurred a higher 

pGRF loading rate, without a significant increase in pHJF loading rate. The times to pGRF and 

pHJF did not demonstrate a sex effect. Kinematic differences between sexes were identified in 

the all three planes of hip motion and knee flexion. Females presented with more hip flexion at 

IC and went on to utilize larger hip and knee flexion ROMI.  Sagittal plane joint motion has been 

associated with GRF loading. In the current study, females exhibited larger pGRF and pGRF 

loading rate in conjunction with larger sagittal ROMI. Increased ankle ROM in females has been 

proposed to help absorb energy at the ankle and safely dissipate GRFs (Decker et al., 2003; 

Kernozek et al., 2005). It should be noted, over the landing phase there were no differences in 

sagittal plane hip, knee, or ankle ROML. Females utilized a larger hip adduction ROM over both 

impact and landing phases. Only an increase in hip rotation ROMI was associated with males.  

The observed sex differences suggest there are kinematic and kinetic differences 

associated with hip joint loading during a unilateral landing. Modified hip joint loading has been 

proposed as an etiological factor in FAI. Females incurred higher pHJF, however over the entire 

landing phase HJF were similar between sexes. The highest HJF were detected during the impact 

phase during which time females utilized more hip flexion and adduction ROM. The increased 
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female hip ROM may help limit excessive loading in the same joint configuration and decrease 

the development of pathomorphologies. Sports associated with large amounts of internal hip 

rotation have been proposed to incur an increased risk of developing FAI, as such, it is important 

to note that hip rotation ROM did not demonstrate sex differences. Limitations in hip ROM are 

associated with symptomatic FAI and typically attributed to pathomechanical constraints from 

boney contact and soft tissue edema (Ganz et al., 2003). Future research may examine if limited 

hip ROM is a prexisting factor in the etiogenesis of impingement morphology. Individuals that 

perform landings with a more limited hip flexion and adduction ROM from a young age may 

create loading conditions more susceptible to physiological maladaptations. 

There are several limitations to consider when interpreting the study findings. First, the 

drop heights used are absolute and may present different task demands depending on individual 

jumping ability (Weinhandl et al., 2015). Vertical jump height was not assessed and it is possible 

the 50-cm height represented an unlikely landing height for some participants. Second, only right 

leg landings were included in analysis. Previous findings have failed to identify clear bilateral 

differences with respect to left/right or dominant/nondominant limbs (Van der Harst et al., 

2007b). Third, the anatomical model used for analysis was defined and scaled using 

retroreflective spherical markers adhered to the skin. These markers are used to approximate 

locations of boney anatomical landmarks, many of which have complex structures. Potential 

sources of error during data collection are related to proper and consistent placement of markers, 

as well as, marker movement artifact during data collection. Errors incurred during the 

placement and movement trial data collection phases are propagated throughout analysis (Hicks 

et al., 2015). These placement errors were minimized by the use of an experienced clinician for 
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all marker placement. Movement artifact errors were reduced via marker clusters for tracking 

movement trials.   

Less than ideal distribution of GRFs have been proposed as mechanisms of ankle and 

knee injuries (Boden et al., 2009); however, the implications for hip health are unknown. Hip 

mechanics of sporting actions have received limited attention due in part to the low incidence of 

acute hip injuries. High forces across the hip are a proposed etiological factor in the development 

of FAI and OA, yet what ‘high forces’ means with respect to specific mechanical characteristics 

is vague. It is difficult to classify pathologically high forces without first generating a range 

associated with asymptomatic, normal hips. Musculoskeletal modeling of hip joint forces allows 

for the non-invasive estimation of joint loading during dynamic tasks. The model employed was 

individually scaled for each participant, but did not require medical imaging. The use of such 

model allows for generalized comparisons between large numbers of participants with a 

minimum of computational cost. The current study modeled 80 asymptomatic, active participants 

and identified sex and landing height differences. In summary, increases in landing height 

yielded similar increases in pGRF and pHJF with increased 3-D hip and knee flexion ROMs 

during impact and landing phases. Females demonstrated increased pGRF and pHJF, increased 

hip adduction ROMI and ROML, increased hip and knee flexion ROMI, and decreased hip 

rotation ROML.  
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

Increased forces between the femur and acetabulum are a proposed mechanism for 

damage in traditional hip OA and FAI (Ganz et al., 2003). Males have been reported to land with 

a hip dominant landing strategy that is associated with a reduced risk of knee injury (Weinhandl 

et al., 2015). Conversely, females are associated with increased GRF during landings and 

sporting actions (Pappas et al., 2007a; Van der Harst et al., 2007a). The resulting hip loading 

associated with these landing strategies are not fully understood. Unfortunately, hip joint forces 

cannot be directly measured via non-invasive methodologies. These forces can be estimated 

through musculoskeletal modeling using measured kinematics and kinetics (Bergmann et al., 

2001; Delp et al., 2007). The overall purpose of this dissertation was to explore the effects of 

sex, limb side, landing task, and landing height on landing hip mechanics. The problem was 

addressed via three specific studies intended to examine differences in hip joint forces, ground 

reaction forces, and lower extremity kinematics between (1) sexes and limb sides, (2) sexes and 

landing tasks, and (3) sexes and landing height. The first study failed to identify significant 

bilateral differences. As such, bilateral comparisons were not performed for the second or third 

studies. Sex differences, on the other hand, were identified in the first study and persisted across 

the second and third studies.  

The data from 80 participants (40 females, height = 1.640-m, mass = 61.190 kg; 40 

males, height = 1.793-m, mass = 79.777-kg) were included for analysis in this dissertation. All 

participants were between the ages of 18 and 30-yrs, asymptomatic, recreationally active, had no 

history of lower extremity surgery, nor any condition that would impair their ability to land from 

a jump. Participants were fitted with retroreflective markers for calibration and tracking 

purposes. Once complete, a series of landing trials were performed with conditions 
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counterbalanced across subjects. Trial conditions consisted of unilateral drop landings on each 

limb from 30-cm, 40-cm, and 50-cm box heights. In addition, a 38-participant subset (19 

females, height = 1.625-m, mass = 60.041-kg; 19 males, height = 1.796-m, mass = 79.125-kg) of 

this sample performed land-and-cut tasks using the 40-cm box height. Measured kinematics and 

kinetics were to used simulate the landing phase via individually scaled, 3-D musculoskeletal 

models. Each musculoskeletal model was used to calculate internal joint loads experienced at the 

hip. This data was used in conjunction with measured ground reaction forces and lower 

extremity kinematics to describe landing mechanics. Landing mechanics were classified by 

landing and impact phases. Landing phase described the time from initial contact to maximum 

knee flexion, while impact phase describes the time from initial contact to maximum normalized 

resultant ground reaction force.  

Several similarities in sex differences were identified across the three studies. In all three 

studies, females incurred larger normalized peak GRF. However, only the landing height study 

identified a corresponding increase in GRF loading rate or peak HJF in females. Females 

performed landings with more hip adduction and less hip rotation ROMs during the landing 

phase in all three studies. Also across studies, females utilized more ROM during the impact 

phase for hip flexion, hip adduction, and knee flexion. When landing task was included in 

assessment, females performed the impact phase with more ankle plantar/dorsi-flexion ROM as 

well. These findings highlight potential differences in how the hip undergoes loading during a 

unilateral jump landing with respect to resultant forces and joint motion. Force application across 

differing ROM would potentially result in modified physiological responses. The larger hip 

flexion and adduction ROMs identified in females across conditions likely results in a different 
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loading profile across the joint. Given the prevalence of FAI in male athletes may be higher than 

females and less active individuals, these differences warrant further investigation.   

Landing condition differences were examined between landing limb side (study one), 

landing task (study two), and landing height (study three). In study 1, bilateral differences were 

not identified between right and left limbs during a 40-cm unilateral drop landing.  These results 

suggest participants performed right and left sided unilateral drop landings with similar 

mechanics. When considering these findings with respect to current FAI research, 20% and 75% 

of individuals present with radiographic evidence of impingement morphology bilaterally (Allen 

et al., 2009; Ganz et al., 2008; Klingenstein et al., 2013). The lack of limb side differences may 

indicate both sides undergo similar joint loading that results in similar physiological changes.  

In study 2, unilateral drop landings were compared with unilateral land-and-cuts. Only 

right leg landings were used. The landing-only task yielded increases in peak GRF and peak 

GRF loading rate with a reduction in time to peak GRF. No differences were detected with 

respect to peak HJF, peak HJF loading rate, or time to peak HJF. At initial contact, landing-only 

trials displayed increased external hip rotation and decreased knee flexion compared to land-and-

cut trials. During the impact and landing phases, landing-only trials went on to exhibit reduced 

ankle plantar flexion ROM. Additional kinematic differences were identified with landing-only 

trials demonstrating increased hip flexion ROM over the impact phase and increased hip 

adduction ROM over the landing phase. Participation in cutting sports have been posited as a 

factor in development of FAI in young athletes due to repetitive hip loading with flexion and 

internal rotation (Clohisy et al., 2013; de Silva et al., 2016; Siebenrock et al., 2011). The landing-

only condition was performed with a more externally rotated hip and increased hip flexion ROM 

during the impact phase compared to the land-and-cut. It is possible that the combination of 
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landing-only kinematics without a task difference in HJF brings about loading conditions less 

likely to elicit physiological changes associated with FAI. 

In study 3, unilateral drop landings were compared from 30-cm and 50-cm heights. 

Again, only right limb data was used for analysis. Landing from increased height resulted in 

greater peak values, loading rates, and time to peak GRF and HJF. At initial contact, 50-cm 

landings exhibited more hip abduction than those from 30-cm. Increased ROM was observed for 

3-D hip and knee flexion during impact and landing phases. Conversely, 50-cm ankle 

plantar/dorsi-flexion ROM was greater during the landing phase, but not the impact phase. The 

increased forces reported with landing from the higher height were not surprising given the 

additional kinetic energy needed to be dispersed.  

Interestingly, no interaction effects between sex and landing condition were identified for 

all kinematic and kinetic variables examined. One possible interpretation of these findings is that 

while males and females may have responded differently to a given landing condition, they 

experienced similar modifications in response to changing landing conditions. Another important 

factor to consider when interpreting reported findings is the sensitivity of Gait2392 in modeling 

of landing tasks. Joint forces were estimated based on calculations of muscle excitations-

activations-forces which generated the best fit for the specified cost function. As such, there 

exists a range of possible solutions to the mathematical expression that would have generated 

different muscle activation patterns. Given muscle actions are directly related to joint loading, 

true differences in mechanics may have been masked due to discrepancies between estimated 

and actual muscled activations.  

These findings present a vast array of future research paths to continue unraveling the 

complex relationships associated with hip mechanics. This study only grazed the surface with 
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respect to the kinematic and kinetic relationships of unilateral landings. Joint moments and 

energetics would provide more information about how the lower extremity musculature 

dissipates ground reaction forces. Inclusion of electromyography would further aide in capturing 

the timing of muscle activation and addition of isometric testing would further individualize the 

musculoskeletal model. Moving forward, studies which focus on specific populations may 

illuminate subtle differences with sporting activies given the increased incidence of hip injury in 

cutting sports. Prospective studies of adolescent athletes landing mechanics have been in place 

for the past decade to track ACL injuries. Similar studies could be designed to identify trends in 

landing mechanics which may eventually led to hip pathologies.  
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